pimath 0.0.31 → 0.0.34
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/pi.js +6530 -1
- package/dist/pi.js.map +1 -1
- package/dist/pi.min.js +2 -0
- package/dist/pi.min.js.map +1 -0
- package/docs/assets/search.js +1 -1
- package/docs/classes/algebra.Equation.html +9 -9
- package/docs/classes/algebra.LinearSystem.html +1 -1
- package/docs/classes/algebra.Logicalset.html +2 -2
- package/docs/classes/algebra.Monom.html +37 -37
- package/docs/classes/algebra.Polynom.html +10 -10
- package/docs/classes/algebra.PolynomExpFactor.html +1 -1
- package/docs/classes/algebra.PolynomExpProduct.html +1 -1
- package/docs/classes/algebra.Rational.html +2 -2
- package/docs/classes/coefficients.Fraction.html +4 -4
- package/docs/classes/coefficients.Nthroot.html +1 -1
- package/docs/classes/geometry.Circle.html +2 -2
- package/docs/classes/geometry.Line.html +2 -2
- package/docs/classes/geometry.Point.html +1 -1
- package/docs/classes/geometry.Triangle.html +5 -5
- package/docs/classes/geometry.Vector.html +1 -1
- package/docs/classes/numeric.Numeric.html +5 -5
- package/docs/classes/shutingyard.Shutingyard.html +4 -4
- package/docs/enums/geometry.LinePropriety.html +1 -0
- package/docs/enums/shutingyard.ShutingyardMode.html +1 -1
- package/docs/enums/shutingyard.ShutingyardType.html +1 -1
- package/docs/interfaces/geometry.remarquableLines.html +1 -1
- package/docs/modules/algebra.html +1 -1
- package/docs/modules/coefficients.html +1 -1
- package/docs/modules/geometry.html +1 -1
- package/docs/modules/random.Random.html +1 -1
- package/docs/modules/random.html +1 -1
- package/docs/modules/shutingyard.html +1 -1
- package/esm/main.js +2 -0
- package/esm/main.js.map +1 -1
- package/esm/maths/algebra/equation.d.ts +62 -17
- package/esm/maths/algebra/equation.js +597 -502
- package/esm/maths/algebra/equation.js.map +1 -1
- package/esm/maths/algebra/linearSystem.js +154 -101
- package/esm/maths/algebra/linearSystem.js.map +1 -1
- package/esm/maths/algebra/logicalset.d.ts +11 -0
- package/esm/maths/algebra/logicalset.js +18 -6
- package/esm/maths/algebra/logicalset.js.map +1 -1
- package/esm/maths/algebra/monom.d.ts +144 -0
- package/esm/maths/algebra/monom.js +626 -398
- package/esm/maths/algebra/monom.js.map +1 -1
- package/esm/maths/algebra/polynom.d.ts +49 -0
- package/esm/maths/algebra/polynom.js +995 -712
- package/esm/maths/algebra/polynom.js.map +1 -1
- package/esm/maths/algebra/rational.d.ts +12 -0
- package/esm/maths/algebra/rational.js +97 -82
- package/esm/maths/algebra/rational.js.map +1 -1
- package/esm/maths/coefficients/fraction.d.ts +18 -0
- package/esm/maths/coefficients/fraction.js +390 -332
- package/esm/maths/coefficients/fraction.js.map +1 -1
- package/esm/maths/coefficients/nthroot.d.ts +3 -0
- package/esm/maths/coefficients/nthroot.js +48 -33
- package/esm/maths/coefficients/nthroot.js.map +1 -1
- package/esm/maths/expressions/numexp.js +11 -3
- package/esm/maths/expressions/numexp.js.map +1 -1
- package/esm/maths/expressions/polynomexp.bkp.js +93 -93
- package/esm/maths/expressions/polynomexp.bkp.js.map +1 -1
- package/esm/maths/expressions/polynomexp.js +22 -9
- package/esm/maths/expressions/polynomexp.js.map +1 -1
- package/esm/maths/geometry/circle.d.ts +18 -6
- package/esm/maths/geometry/circle.js +139 -42
- package/esm/maths/geometry/circle.js.map +1 -1
- package/esm/maths/geometry/line.d.ts +9 -2
- package/esm/maths/geometry/line.js +245 -188
- package/esm/maths/geometry/line.js.map +1 -1
- package/esm/maths/geometry/point.d.ts +12 -0
- package/esm/maths/geometry/point.js +121 -73
- package/esm/maths/geometry/point.js.map +1 -1
- package/esm/maths/geometry/triangle.d.ts +22 -0
- package/esm/maths/geometry/triangle.js +197 -158
- package/esm/maths/geometry/triangle.js.map +1 -1
- package/esm/maths/geometry/vector.d.ts +4 -0
- package/esm/maths/geometry/vector.js +139 -115
- package/esm/maths/geometry/vector.js.map +1 -1
- package/esm/maths/numeric.d.ts +17 -0
- package/esm/maths/numeric.js +40 -0
- package/esm/maths/numeric.js.map +1 -1
- package/esm/maths/random/randomCore.js +15 -15
- package/esm/maths/random/randomCore.js.map +1 -1
- package/esm/maths/random/rndFraction.d.ts +3 -0
- package/esm/maths/random/rndFraction.js +19 -16
- package/esm/maths/random/rndFraction.js.map +1 -1
- package/esm/maths/random/rndHelpers.d.ts +17 -0
- package/esm/maths/random/rndHelpers.js +20 -0
- package/esm/maths/random/rndHelpers.js.map +1 -1
- package/esm/maths/random/rndMonom.d.ts +3 -0
- package/esm/maths/random/rndMonom.js +33 -26
- package/esm/maths/random/rndMonom.js.map +1 -1
- package/esm/maths/random/rndPolynom.d.ts +3 -0
- package/esm/maths/random/rndPolynom.js +49 -37
- package/esm/maths/random/rndPolynom.js.map +1 -1
- package/esm/maths/shutingyard.d.ts +21 -0
- package/esm/maths/shutingyard.js +86 -9
- package/esm/maths/shutingyard.js.map +1 -1
- package/package.json +2 -2
- package/public/index.html +47 -0
- package/src/maths/algebra/equation.ts +142 -128
- package/src/maths/algebra/monom.ts +6 -2
- package/src/maths/algebra/polynom.ts +2 -7
- package/src/maths/geometry/circle.ts +168 -75
- package/src/maths/geometry/line.ts +1 -1
- package/src/maths/geometry/point.ts +25 -2
- package/src/maths/numeric.ts +15 -0
- package/tests/algebra/polynom.test.ts +7 -0
- package/tests/geometry/circle.test.ts +33 -0
- package/tsconfig.json +2 -2
- package/webpack-production-min.config.js +26 -0
- package/webpack-production.config.js +1 -1
- package/dev/pi.js +0 -5392
- package/dev/pi.js.map +0 -1
- package/esm/maths/numexp.d.ts +0 -16
- package/esm/maths/numexp.js +0 -119
- package/esm/maths/numexp.js.map +0 -1
|
@@ -1,6 +1,9 @@
|
|
|
1
1
|
"use strict";
|
|
2
|
+
/**
|
|
3
|
+
* This class works for 2d line in a plane.
|
|
4
|
+
*/
|
|
2
5
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
exports.Line = void 0;
|
|
6
|
+
exports.Line = exports.LinePropriety = void 0;
|
|
4
7
|
const coefficients_1 = require("../coefficients");
|
|
5
8
|
const vector_1 = require("./vector");
|
|
6
9
|
const point_1 = require("./point");
|
|
@@ -12,20 +15,232 @@ var LinePropriety;
|
|
|
12
15
|
LinePropriety["Parallel"] = "parallel";
|
|
13
16
|
LinePropriety["Perpendicular"] = "perpendicular";
|
|
14
17
|
LinePropriety["Tangent"] = "tangent";
|
|
15
|
-
})(LinePropriety || (LinePropriety = {}));
|
|
18
|
+
})(LinePropriety = exports.LinePropriety || (exports.LinePropriety = {}));
|
|
16
19
|
class Line {
|
|
17
|
-
_a;
|
|
18
|
-
_b;
|
|
19
|
-
_c;
|
|
20
|
-
_OA;
|
|
21
|
-
_d;
|
|
22
|
-
_n;
|
|
23
|
-
_exists;
|
|
24
|
-
_referencePropriety;
|
|
25
|
-
_referenceLine;
|
|
26
|
-
static PERPENDICULAR = LinePropriety.Perpendicular;
|
|
27
|
-
static PARALLEL = LinePropriety.Parallel;
|
|
28
20
|
constructor(...values) {
|
|
21
|
+
// ------------------------------------------
|
|
22
|
+
// Creation / parsing functions
|
|
23
|
+
// ------------------------------------------
|
|
24
|
+
/**
|
|
25
|
+
* Parse data to a line
|
|
26
|
+
* @param {any} values
|
|
27
|
+
* @returns {Line}
|
|
28
|
+
*/
|
|
29
|
+
this.parse = (...values) => {
|
|
30
|
+
this._exists = false;
|
|
31
|
+
// Nothing is given...
|
|
32
|
+
if (values.length === 0) {
|
|
33
|
+
return this;
|
|
34
|
+
}
|
|
35
|
+
// One value only: already a line (clone it), an Equation, a string (as Equation)
|
|
36
|
+
if (values.length === 1) {
|
|
37
|
+
if (values[0] instanceof Line) {
|
|
38
|
+
// Already a Line
|
|
39
|
+
return values[0].clone();
|
|
40
|
+
}
|
|
41
|
+
else if (values[0] instanceof algebra_1.Equation) {
|
|
42
|
+
// It's an Equation
|
|
43
|
+
return this.parseEquation(values[0]);
|
|
44
|
+
}
|
|
45
|
+
else if (typeof values[0] === "string") {
|
|
46
|
+
// It's a string - create an Equation from it.
|
|
47
|
+
try {
|
|
48
|
+
let E = new algebra_1.Equation(values[0]);
|
|
49
|
+
return this.parse(E);
|
|
50
|
+
}
|
|
51
|
+
catch (e) {
|
|
52
|
+
return this;
|
|
53
|
+
}
|
|
54
|
+
}
|
|
55
|
+
}
|
|
56
|
+
if (values.length === 2) {
|
|
57
|
+
if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
|
|
58
|
+
return this.parseByPointAndVector(values[0], values[1]);
|
|
59
|
+
}
|
|
60
|
+
else if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
|
|
61
|
+
return this.parseByPointAndVector(values[0], new vector_1.Vector(values[0], values[1]));
|
|
62
|
+
}
|
|
63
|
+
else if (values[0] instanceof vector_1.Vector && values[1] instanceof point_1.Point) {
|
|
64
|
+
return this.parseByPointAndNormal(values[1], values[0]);
|
|
65
|
+
}
|
|
66
|
+
}
|
|
67
|
+
if (values.length === 3) {
|
|
68
|
+
if ((values[0] instanceof coefficients_1.Fraction || typeof values[0] === 'number')
|
|
69
|
+
&&
|
|
70
|
+
(values[1] instanceof coefficients_1.Fraction || typeof values[1] === 'number')
|
|
71
|
+
&&
|
|
72
|
+
(values[2] instanceof coefficients_1.Fraction || typeof values[2] === 'number')) {
|
|
73
|
+
return this.parseByCoefficient(values[0], values[1], values[2]);
|
|
74
|
+
}
|
|
75
|
+
else if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
|
|
76
|
+
if (values[2] === LinePropriety.Perpendicular) {
|
|
77
|
+
return this.parseByPointAndNormal(values[0], values[1]);
|
|
78
|
+
}
|
|
79
|
+
else if (values[2] === LinePropriety.Parallel) {
|
|
80
|
+
return this.parseByPointAndVector(values[0], values[1]);
|
|
81
|
+
}
|
|
82
|
+
}
|
|
83
|
+
}
|
|
84
|
+
// TODO: Add the ability to create line from a normal vector
|
|
85
|
+
console.log('Someting wrong happend while creating the line');
|
|
86
|
+
return this;
|
|
87
|
+
};
|
|
88
|
+
this.parseEquation = (equ) => {
|
|
89
|
+
// Reorder the eequation
|
|
90
|
+
equ.reorder(true);
|
|
91
|
+
// It must contain either x, y or both.
|
|
92
|
+
let letters = new Set(equ.letters());
|
|
93
|
+
// No 'x', no 'y' in the equations
|
|
94
|
+
if (!(letters.has('x') || letters.has('y'))) {
|
|
95
|
+
return this;
|
|
96
|
+
}
|
|
97
|
+
// Another letter in the equation ?
|
|
98
|
+
for (let elem of ['x', 'y']) {
|
|
99
|
+
if (letters.has(elem)) {
|
|
100
|
+
letters.delete(elem);
|
|
101
|
+
}
|
|
102
|
+
}
|
|
103
|
+
if (letters.size > 0) {
|
|
104
|
+
return this;
|
|
105
|
+
}
|
|
106
|
+
// Everything should be ok now...
|
|
107
|
+
return this.parseByCoefficient(equ.left.monomByLetter('x').coefficient, equ.left.monomByLetter('y').coefficient, equ.left.monomByDegree(0).coefficient);
|
|
108
|
+
};
|
|
109
|
+
this.parseByCoefficient = (a, b, c) => {
|
|
110
|
+
this._a = new coefficients_1.Fraction(a);
|
|
111
|
+
this._b = new coefficients_1.Fraction(b);
|
|
112
|
+
this._c = new coefficients_1.Fraction(c);
|
|
113
|
+
this._d = new vector_1.Vector(this._b.clone(), this._a.clone().opposed());
|
|
114
|
+
this._OA = new point_1.Point(new coefficients_1.Fraction().zero(), this._c.clone());
|
|
115
|
+
this._n = this._d.clone().normal();
|
|
116
|
+
this._exists = true;
|
|
117
|
+
return this;
|
|
118
|
+
};
|
|
119
|
+
this.parseByPointAndVector = (P, d) => {
|
|
120
|
+
// OX = OP + k*d
|
|
121
|
+
// x = px + kdx * dy
|
|
122
|
+
// y = py + kdy * dx
|
|
123
|
+
// ------------------
|
|
124
|
+
// dy * x = px * dy + kdxdy
|
|
125
|
+
// dx * y = py * dx + kdxdy
|
|
126
|
+
// ------------------
|
|
127
|
+
// dy * x - dx * y = px * dy - py * dx
|
|
128
|
+
// dy * x - dx * y - (px * dy - py * dx) = 0
|
|
129
|
+
this.parseByCoefficient(d.y, d.x.clone().opposed(), P.x.clone().multiply(d.y).subtract(P.y.clone().multiply(d.x)).opposed());
|
|
130
|
+
// Choose the current values as point and direction vector instead of the automatic version.
|
|
131
|
+
this._OA = P.clone();
|
|
132
|
+
this._d = d.clone();
|
|
133
|
+
this._n = this._d.clone().normal();
|
|
134
|
+
this._exists = true;
|
|
135
|
+
return this;
|
|
136
|
+
};
|
|
137
|
+
this.parseByPointAndNormal = (P, n) => {
|
|
138
|
+
return this.parseByCoefficient(n.x, n.y, P.x.clone().multiply(n.x)
|
|
139
|
+
.add(P.y.clone().multiply(n.y)).opposed());
|
|
140
|
+
};
|
|
141
|
+
this.parseByPointAndLine = (P, L, orientation) => {
|
|
142
|
+
if (orientation === undefined) {
|
|
143
|
+
orientation = LinePropriety.Parallel;
|
|
144
|
+
}
|
|
145
|
+
if (orientation === LinePropriety.Parallel) {
|
|
146
|
+
return this.parseByPointAndNormal(P, L.normal);
|
|
147
|
+
}
|
|
148
|
+
else if (orientation === LinePropriety.Perpendicular) {
|
|
149
|
+
return this.parseByPointAndNormal(P, L.director);
|
|
150
|
+
}
|
|
151
|
+
this._exists = false;
|
|
152
|
+
return this;
|
|
153
|
+
};
|
|
154
|
+
this.clone = () => {
|
|
155
|
+
this._a = this._a.clone();
|
|
156
|
+
this._b = this._b.clone();
|
|
157
|
+
this._c = this._c.clone();
|
|
158
|
+
this._d = this._d.clone();
|
|
159
|
+
this._OA = this._OA.clone();
|
|
160
|
+
this._n = this._n.clone();
|
|
161
|
+
this._exists = this.exists;
|
|
162
|
+
return this;
|
|
163
|
+
};
|
|
164
|
+
// ------------------------------------------
|
|
165
|
+
// Mathematical operations
|
|
166
|
+
// ------------------------------------------
|
|
167
|
+
this.isParellelTo = (line) => {
|
|
168
|
+
// Do they have the isSame direction ?
|
|
169
|
+
return this.slope.isEqual(line.slope) && this.height.isNotEqual(line.height);
|
|
170
|
+
};
|
|
171
|
+
this.isSameAs = (line) => {
|
|
172
|
+
return this.slope.isEqual(line.slope) && this.height.isEqual(line.height);
|
|
173
|
+
};
|
|
174
|
+
this.isVertical = () => {
|
|
175
|
+
return this.slope.isInfinity();
|
|
176
|
+
};
|
|
177
|
+
this.simplify = () => {
|
|
178
|
+
let lcm = numeric_1.Numeric.lcm(this._a.denominator, this._b.denominator, this._c.denominator), gcd = numeric_1.Numeric.gcd(this._a.numerator, this._b.numerator, this._c.numerator);
|
|
179
|
+
this.parseByCoefficient(this._a.clone().multiply(lcm).divide(gcd), this._b.clone().multiply(lcm).divide(gcd), this._c.clone().multiply(lcm).divide(gcd));
|
|
180
|
+
return this;
|
|
181
|
+
};
|
|
182
|
+
this.simplifyDirection = () => {
|
|
183
|
+
let lcm = numeric_1.Numeric.lcm(this._d.x.denominator, this._d.y.denominator), gcd = numeric_1.Numeric.gcd(this._d.x.numerator, this._d.y.numerator);
|
|
184
|
+
this._d.x.multiply(lcm).divide(gcd);
|
|
185
|
+
this._d.y.multiply(lcm).divide(gcd);
|
|
186
|
+
return this;
|
|
187
|
+
};
|
|
188
|
+
this.intersection = (line) => {
|
|
189
|
+
let Pt = new point_1.Point(), isParallel = false, isSame = false, hasIntersection = true;
|
|
190
|
+
// this => ax+by+c = 0
|
|
191
|
+
// line => dx+ey+f = 0
|
|
192
|
+
//
|
|
193
|
+
// aex + bey + ce = 0
|
|
194
|
+
// dbx + bey + bf = 0
|
|
195
|
+
// (ae-db)x + ce-bf = 0
|
|
196
|
+
//
|
|
197
|
+
// adx + bdy + cd = 0
|
|
198
|
+
// adx + aey + af = 0
|
|
199
|
+
// (bd-ae)y + (cd-af)
|
|
200
|
+
//
|
|
201
|
+
// x = (bf-ce)/(ae-db)
|
|
202
|
+
// y = (af-cd)/(bd-ae)
|
|
203
|
+
// Theres is no 'y'
|
|
204
|
+
if (this._b.isZero() || line.b.isZero()) {
|
|
205
|
+
// TODO : handle no y in the line canonical form
|
|
206
|
+
}
|
|
207
|
+
if (this.isParellelTo(line)) {
|
|
208
|
+
Pt.x = null;
|
|
209
|
+
Pt.y = null;
|
|
210
|
+
isParallel = true;
|
|
211
|
+
}
|
|
212
|
+
else if (this.isSameAs(line)) {
|
|
213
|
+
Pt.x = null;
|
|
214
|
+
Pt.y = null;
|
|
215
|
+
isSame = true;
|
|
216
|
+
}
|
|
217
|
+
else {
|
|
218
|
+
Pt.x = this._b.clone().multiply(line.c).subtract(this._c.clone().multiply(line.b))
|
|
219
|
+
.divide(this._a.clone().multiply(line.b).subtract(this._b.clone().multiply(line.a)));
|
|
220
|
+
Pt.y = this._a.clone().multiply(line.c).subtract(this._c.clone().multiply(line.a))
|
|
221
|
+
.divide(this._b.clone().multiply(line.a).subtract(this._a.clone().multiply(line.b)));
|
|
222
|
+
}
|
|
223
|
+
return {
|
|
224
|
+
point: Pt,
|
|
225
|
+
hasIntersection: !(isParallel || isSame),
|
|
226
|
+
isParallel,
|
|
227
|
+
isSame
|
|
228
|
+
};
|
|
229
|
+
};
|
|
230
|
+
this.getValueAtX = (value) => {
|
|
231
|
+
const equ = this.equation.clone().isolate('y'), F = new coefficients_1.Fraction(value);
|
|
232
|
+
if (equ instanceof algebra_1.Equation) {
|
|
233
|
+
return equ.right.evaluate({ x: F });
|
|
234
|
+
}
|
|
235
|
+
return;
|
|
236
|
+
};
|
|
237
|
+
this.getValueAtY = (value) => {
|
|
238
|
+
const equ = this.equation.clone().isolate('x'), F = new coefficients_1.Fraction(value);
|
|
239
|
+
if (equ instanceof algebra_1.Equation) {
|
|
240
|
+
return equ.right.evaluate({ y: F });
|
|
241
|
+
}
|
|
242
|
+
return;
|
|
243
|
+
};
|
|
29
244
|
this._exists = false;
|
|
30
245
|
if (values.length > 0) {
|
|
31
246
|
this.parse(...values);
|
|
@@ -35,11 +250,18 @@ class Line {
|
|
|
35
250
|
get exists() {
|
|
36
251
|
return this._exists;
|
|
37
252
|
}
|
|
253
|
+
// ------------------------------------------
|
|
254
|
+
// Getter and setter
|
|
255
|
+
// ------------------------------------------
|
|
38
256
|
get equation() {
|
|
39
257
|
return new algebra_1.Equation(new algebra_1.Polynom().parse('xy', this._a, this._b, this._c), new algebra_1.Polynom('0')).simplify();
|
|
40
258
|
}
|
|
41
259
|
get tex() {
|
|
260
|
+
// canonical => ax + by + c = 0
|
|
261
|
+
// mxh => y = -a/b x - c/b
|
|
262
|
+
// parametric => (xy) = OA + k*d
|
|
42
263
|
let canonical = this.equation;
|
|
264
|
+
// Make sur the first item is positive.
|
|
43
265
|
if (this._a.isNegative()) {
|
|
44
266
|
canonical.multiply(-1);
|
|
45
267
|
}
|
|
@@ -94,171 +316,11 @@ class Line {
|
|
|
94
316
|
get height() {
|
|
95
317
|
return this._c.clone().opposed().divide(this._b);
|
|
96
318
|
}
|
|
97
|
-
parse = (...values) => {
|
|
98
|
-
this._exists = false;
|
|
99
|
-
if (values.length === 0) {
|
|
100
|
-
return this;
|
|
101
|
-
}
|
|
102
|
-
if (values.length === 1) {
|
|
103
|
-
if (values[0] instanceof Line) {
|
|
104
|
-
return values[0].clone();
|
|
105
|
-
}
|
|
106
|
-
else if (values[0] instanceof algebra_1.Equation) {
|
|
107
|
-
return this.parseEquation(values[0]);
|
|
108
|
-
}
|
|
109
|
-
else if (typeof values[0] === "string") {
|
|
110
|
-
try {
|
|
111
|
-
let E = new algebra_1.Equation(values[0]);
|
|
112
|
-
return this.parse(E);
|
|
113
|
-
}
|
|
114
|
-
catch (e) {
|
|
115
|
-
return this;
|
|
116
|
-
}
|
|
117
|
-
}
|
|
118
|
-
}
|
|
119
|
-
if (values.length === 2) {
|
|
120
|
-
if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
|
|
121
|
-
return this.parseByPointAndVector(values[0], values[1]);
|
|
122
|
-
}
|
|
123
|
-
else if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
|
|
124
|
-
return this.parseByPointAndVector(values[0], new vector_1.Vector(values[0], values[1]));
|
|
125
|
-
}
|
|
126
|
-
else if (values[0] instanceof vector_1.Vector && values[1] instanceof point_1.Point) {
|
|
127
|
-
return this.parseByPointAndNormal(values[1], values[0]);
|
|
128
|
-
}
|
|
129
|
-
}
|
|
130
|
-
if (values.length === 3) {
|
|
131
|
-
if ((values[0] instanceof coefficients_1.Fraction || typeof values[0] === 'number')
|
|
132
|
-
&&
|
|
133
|
-
(values[1] instanceof coefficients_1.Fraction || typeof values[1] === 'number')
|
|
134
|
-
&&
|
|
135
|
-
(values[2] instanceof coefficients_1.Fraction || typeof values[2] === 'number')) {
|
|
136
|
-
return this.parseByCoefficient(values[0], values[1], values[2]);
|
|
137
|
-
}
|
|
138
|
-
else if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
|
|
139
|
-
if (values[2] === LinePropriety.Perpendicular) {
|
|
140
|
-
return this.parseByPointAndNormal(values[0], values[1]);
|
|
141
|
-
}
|
|
142
|
-
else if (values[2] === LinePropriety.Parallel) {
|
|
143
|
-
return this.parseByPointAndVector(values[0], values[1]);
|
|
144
|
-
}
|
|
145
|
-
}
|
|
146
|
-
}
|
|
147
|
-
console.log('Someting wrong happend while creating the line');
|
|
148
|
-
return this;
|
|
149
|
-
};
|
|
150
|
-
parseEquation = (equ) => {
|
|
151
|
-
equ.reorder(true);
|
|
152
|
-
let letters = new Set(equ.letters());
|
|
153
|
-
if (!(letters.has('x') || letters.has('y'))) {
|
|
154
|
-
return this;
|
|
155
|
-
}
|
|
156
|
-
for (let elem of ['x', 'y']) {
|
|
157
|
-
if (letters.has(elem)) {
|
|
158
|
-
letters.delete(elem);
|
|
159
|
-
}
|
|
160
|
-
}
|
|
161
|
-
if (letters.size > 0) {
|
|
162
|
-
return this;
|
|
163
|
-
}
|
|
164
|
-
return this.parseByCoefficient(equ.left.monomByLetter('x').coefficient, equ.left.monomByLetter('y').coefficient, equ.left.monomByDegree(0).coefficient);
|
|
165
|
-
};
|
|
166
|
-
parseByCoefficient = (a, b, c) => {
|
|
167
|
-
this._a = new coefficients_1.Fraction(a);
|
|
168
|
-
this._b = new coefficients_1.Fraction(b);
|
|
169
|
-
this._c = new coefficients_1.Fraction(c);
|
|
170
|
-
this._d = new vector_1.Vector(this._b.clone(), this._a.clone().opposed());
|
|
171
|
-
this._OA = new point_1.Point(new coefficients_1.Fraction().zero(), this._c.clone());
|
|
172
|
-
this._n = this._d.clone().normal();
|
|
173
|
-
this._exists = true;
|
|
174
|
-
return this;
|
|
175
|
-
};
|
|
176
|
-
parseByPointAndVector = (P, d) => {
|
|
177
|
-
this.parseByCoefficient(d.y, d.x.clone().opposed(), P.x.clone().multiply(d.y).subtract(P.y.clone().multiply(d.x)).opposed());
|
|
178
|
-
this._OA = P.clone();
|
|
179
|
-
this._d = d.clone();
|
|
180
|
-
this._n = this._d.clone().normal();
|
|
181
|
-
this._exists = true;
|
|
182
|
-
return this;
|
|
183
|
-
};
|
|
184
|
-
parseByPointAndNormal = (P, n) => {
|
|
185
|
-
return this.parseByCoefficient(n.x, n.y, P.x.clone().multiply(n.x)
|
|
186
|
-
.add(P.y.clone().multiply(n.y)).opposed());
|
|
187
|
-
};
|
|
188
|
-
parseByPointAndLine = (P, L, orientation) => {
|
|
189
|
-
if (orientation === undefined) {
|
|
190
|
-
orientation = LinePropriety.Parallel;
|
|
191
|
-
}
|
|
192
|
-
if (orientation === LinePropriety.Parallel) {
|
|
193
|
-
return this.parseByPointAndNormal(P, L.normal);
|
|
194
|
-
}
|
|
195
|
-
else if (orientation === LinePropriety.Perpendicular) {
|
|
196
|
-
return this.parseByPointAndNormal(P, L.director);
|
|
197
|
-
}
|
|
198
|
-
this._exists = false;
|
|
199
|
-
return this;
|
|
200
|
-
};
|
|
201
|
-
clone = () => {
|
|
202
|
-
this._a = this._a.clone();
|
|
203
|
-
this._b = this._b.clone();
|
|
204
|
-
this._c = this._c.clone();
|
|
205
|
-
this._d = this._d.clone();
|
|
206
|
-
this._OA = this._OA.clone();
|
|
207
|
-
this._n = this._n.clone();
|
|
208
|
-
this._exists = this.exists;
|
|
209
|
-
return this;
|
|
210
|
-
};
|
|
211
|
-
isParellelTo = (line) => {
|
|
212
|
-
return this.slope.isEqual(line.slope) && this.height.isNotEqual(line.height);
|
|
213
|
-
};
|
|
214
|
-
isSameAs = (line) => {
|
|
215
|
-
return this.slope.isEqual(line.slope) && this.height.isEqual(line.height);
|
|
216
|
-
};
|
|
217
|
-
isVertical = () => {
|
|
218
|
-
return this.slope.isInfinity();
|
|
219
|
-
};
|
|
220
|
-
simplify = () => {
|
|
221
|
-
let lcm = numeric_1.Numeric.lcm(this._a.denominator, this._b.denominator, this._c.denominator), gcd = numeric_1.Numeric.gcd(this._a.numerator, this._b.numerator, this._c.numerator);
|
|
222
|
-
this.parseByCoefficient(this._a.clone().multiply(lcm).divide(gcd), this._b.clone().multiply(lcm).divide(gcd), this._c.clone().multiply(lcm).divide(gcd));
|
|
223
|
-
return this;
|
|
224
|
-
};
|
|
225
|
-
simplifyDirection = () => {
|
|
226
|
-
let lcm = numeric_1.Numeric.lcm(this._d.x.denominator, this._d.y.denominator), gcd = numeric_1.Numeric.gcd(this._d.x.numerator, this._d.y.numerator);
|
|
227
|
-
this._d.x.multiply(lcm).divide(gcd);
|
|
228
|
-
this._d.y.multiply(lcm).divide(gcd);
|
|
229
|
-
return this;
|
|
230
|
-
};
|
|
231
|
-
intersection = (line) => {
|
|
232
|
-
let Pt = new point_1.Point(), isParallel = false, isSame = false, hasIntersection = true;
|
|
233
|
-
if (this._b.isZero() || line.b.isZero()) {
|
|
234
|
-
}
|
|
235
|
-
if (this.isParellelTo(line)) {
|
|
236
|
-
Pt.x = null;
|
|
237
|
-
Pt.y = null;
|
|
238
|
-
isParallel = true;
|
|
239
|
-
}
|
|
240
|
-
else if (this.isSameAs(line)) {
|
|
241
|
-
Pt.x = null;
|
|
242
|
-
Pt.y = null;
|
|
243
|
-
isSame = true;
|
|
244
|
-
}
|
|
245
|
-
else {
|
|
246
|
-
Pt.x = this._b.clone().multiply(line.c).subtract(this._c.clone().multiply(line.b))
|
|
247
|
-
.divide(this._a.clone().multiply(line.b).subtract(this._b.clone().multiply(line.a)));
|
|
248
|
-
Pt.y = this._a.clone().multiply(line.c).subtract(this._c.clone().multiply(line.a))
|
|
249
|
-
.divide(this._b.clone().multiply(line.a).subtract(this._a.clone().multiply(line.b)));
|
|
250
|
-
}
|
|
251
|
-
return {
|
|
252
|
-
point: Pt,
|
|
253
|
-
hasIntersection: !(isParallel || isSame),
|
|
254
|
-
isParallel,
|
|
255
|
-
isSame
|
|
256
|
-
};
|
|
257
|
-
};
|
|
258
319
|
distanceTo(pt) {
|
|
259
320
|
let numerator = pt.x.clone().multiply(this._a)
|
|
260
321
|
.add(pt.y.clone().multiply(this._b))
|
|
261
322
|
.add(this._c).abs(), d2 = this.normal.normSquare;
|
|
323
|
+
// The denominator is null - shouldn't be possible
|
|
262
324
|
if (d2.isZero()) {
|
|
263
325
|
return {
|
|
264
326
|
value: NaN,
|
|
@@ -266,7 +328,9 @@ class Line {
|
|
|
266
328
|
fraction: new coefficients_1.Fraction().infinite()
|
|
267
329
|
};
|
|
268
330
|
}
|
|
331
|
+
// The denominator is a perfect square - simplify the tex result
|
|
269
332
|
let value = numerator.value / Math.sqrt(d2.value), F = numerator.clone().divide(d2.clone().sqrt());
|
|
333
|
+
// The denominator is a perfect square.
|
|
270
334
|
if (d2.isSquare()) {
|
|
271
335
|
return {
|
|
272
336
|
value,
|
|
@@ -274,6 +338,7 @@ class Line {
|
|
|
274
338
|
fraction: F
|
|
275
339
|
};
|
|
276
340
|
}
|
|
341
|
+
// Complete answer...
|
|
277
342
|
return {
|
|
278
343
|
value,
|
|
279
344
|
tex: `\\frac{${numerator.tex}}{\\sqrt{${d2.tex}}}`,
|
|
@@ -282,6 +347,7 @@ class Line {
|
|
|
282
347
|
}
|
|
283
348
|
hitSegment(A, B) {
|
|
284
349
|
let iPt = this.intersection(new Line(A, B));
|
|
350
|
+
// There is an intersection point
|
|
285
351
|
if (iPt.hasIntersection) {
|
|
286
352
|
return iPt.point.x.value >= Math.min(A.x.value, B.x.value)
|
|
287
353
|
&& iPt.point.x.value <= Math.max(A.x.value, B.x.value)
|
|
@@ -290,20 +356,9 @@ class Line {
|
|
|
290
356
|
}
|
|
291
357
|
return false;
|
|
292
358
|
}
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
return equ.right.evaluate({ x: F });
|
|
297
|
-
}
|
|
298
|
-
return;
|
|
299
|
-
};
|
|
300
|
-
getValueAtY = (value) => {
|
|
301
|
-
const equ = this.equation.clone().isolate('x'), F = new coefficients_1.Fraction(value);
|
|
302
|
-
if (equ instanceof algebra_1.Equation) {
|
|
303
|
-
return equ.right.evaluate({ y: F });
|
|
304
|
-
}
|
|
305
|
-
return;
|
|
306
|
-
};
|
|
359
|
+
// ------------------------------------------
|
|
360
|
+
// Special functions
|
|
361
|
+
// ------------------------------------------
|
|
307
362
|
canonicalAsFloatCoefficient(decimals) {
|
|
308
363
|
if (decimals === undefined) {
|
|
309
364
|
decimals = 2;
|
|
@@ -336,4 +391,6 @@ class Line {
|
|
|
336
391
|
}
|
|
337
392
|
}
|
|
338
393
|
exports.Line = Line;
|
|
394
|
+
Line.PERPENDICULAR = LinePropriety.Perpendicular;
|
|
395
|
+
Line.PARALLEL = LinePropriety.Parallel;
|
|
339
396
|
//# sourceMappingURL=line.js.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"line.js","sourceRoot":"","sources":["../../../src/maths/geometry/line.ts"],"names":[],"mappings":";;;AAIA,kDAAyC;AACzC,qCAAgC;AAChC,mCAA8B;AAC9B,wCAA6C;AAC7C,wCAAmC;AAEnC,IAAK,aAKJ;AALD,WAAK,aAAa;IACd,iDAAI,CAAA;IACJ,sCAAmB,CAAA;IACnB,gDAA+B,CAAA;IAC/B,oCAAmB,CAAA;AACvB,CAAC,EALI,aAAa,KAAb,aAAa,QAKjB;AAED,MAAa,IAAI;IAGL,EAAE,CAAW;IACb,EAAE,CAAW;IACb,EAAE,CAAW;IACb,GAAG,CAAQ;IACX,EAAE,CAAS;IACX,EAAE,CAAS;IACX,OAAO,CAAS;IAEhB,mBAAmB,CAAe;IAClC,cAAc,CAAM;IAE5B,MAAM,CAAC,aAAa,GAAG,aAAa,CAAC,aAAa,CAAA;IAClD,MAAM,CAAC,QAAQ,GAAG,aAAa,CAAC,QAAQ,CAAA;IAExC,YAAY,GAAG,MAAiB;QAE5B,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;QAErB,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC,EAAE;YACnB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QAED,OAAO,IAAI,CAAC;IAChB,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,OAAO,CAAC;IACxB,CAAC;IAKD,IAAI,QAAQ;QACR,OAAO,IAAI,kBAAQ,CAAC,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,IAAI,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,EAAE,IAAI,iBAAO,CAAC,GAAG,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC;IAC3G,CAAC;IAED,IAAI,GAAG;QAKH,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC;QAE9B,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;YACtB,SAAS,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;SAC1B;QAED,OAAO;YACH,SAAS,EAAE,SAAS,CAAC,GAAG;YACxB,GAAG,EAAE,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG;YAClH,UAAU,EAAE,GAAG,aAAK,CAAC,OAAO,CAAC,GAAG,EAAE,GAAG,CAAC,MAAM,aAAK,CAAC,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,cAAc,aAAK,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE;SACvI,CAAA;IACL,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,GAAG,CAAC;IACpB,CAAC;IAED,IAAI,EAAE,CAAC,KAAY;QACf,IAAI,CAAC,GAAG,GAAG,KAAK,CAAC;IACrB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IACxC,CAAC;IAED,IAAI,QAAQ;QACR,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;IAC1B,CAAC;IAED,IAAI,CAAC,CAAC,KAAa;QACf,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,KAAK;QACL,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IAUD,KAAK,GAAG,CAAC,GAAG,MAAiB,EAAQ,EAAE;QACnC,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;QAGrB,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;YACrB,OAAO,IAAI,CAAA;SACd;QAGD,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;YACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,IAAI,EAAE;gBAE3B,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;aAC3B;iBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,kBAAQ,EAAE;gBAEtC,OAAO,IAAI,CAAC,aAAa,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;aACvC;iBAAM,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,EAAE;gBAEtC,IAAI;oBACA,IAAI,CAAC,GAAG,IAAI,kBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;oBAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAA;iBACvB;gBAAC,OAAO,CAAC,EAAE;oBACR,OAAO,IAAI,CAAA;iBACd;aACJ;SACJ;QAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;YACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAAE;gBAC3D,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;aAC3D;iBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;gBACjE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,eAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;aAClF;iBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;gBAClE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;aAC1D;SACJ;QAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;YACrB,IACI,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,uBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;oBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,uBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;oBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,uBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC,EAClE;gBACE,OAAO,IAAI,CAAC,kBAAkB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;aACnE;iBAAK,IACF,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAC5D;gBACG,IAAG,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,aAAa,EAAC;oBACzC,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBAC1D;qBAAK,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,QAAQ,EAAC;oBAC3C,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBAC1D;aACJ;SACJ;QAGD,OAAO,CAAC,GAAG,CAAC,gDAAgD,CAAC,CAAA;QAC7D,OAAO,IAAI,CAAC;IAChB,CAAC,CAAA;IAED,aAAa,GAAG,CAAC,GAAa,EAAQ,EAAE;QAEpC,GAAG,CAAC,OAAO,CAAC,IAAI,CAAC,CAAA;QAGjB,IAAI,OAAO,GAAG,IAAI,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,CAAC,CAAC;QAGrC,IAAI,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE;YACzC,OAAO,IAAI,CAAA;SACd;QAGD,KAAK,IAAI,IAAI,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE;YACzB,IAAI,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE;gBACnB,OAAO,CAAC,MAAM,CAAC,IAAI,CAAC,CAAA;aACvB;SACJ;QAED,IAAI,OAAO,CAAC,IAAI,GAAG,CAAC,EAAE;YAClB,OAAO,IAAI,CAAA;SACd;QAGD,OAAO,IAAI,CAAC,kBAAkB,CAAC,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,CAAA;IAC3J,CAAC,CAAA;IACD,kBAAkB,GAAG,CAAC,CAAoB,EAAE,CAAoB,EAAE,CAAoB,EAAQ,EAAE;QAC5F,IAAI,CAAC,EAAE,GAAG,IAAI,uBAAQ,CAAC,CAAC,CAAC,CAAC;QAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,uBAAQ,CAAC,CAAC,CAAC,CAAC;QAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,uBAAQ,CAAC,CAAC,CAAC,CAAC;QAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAC;QACjE,IAAI,CAAC,GAAG,GAAG,IAAI,aAAK,CAAC,IAAI,uBAAQ,EAAE,CAAC,IAAI,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,CAAC;QAC7D,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;QAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;QACpB,OAAO,IAAI,CAAC;IAChB,CAAC,CAAA;IAED,qBAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;QAUlD,IAAI,CAAC,kBAAkB,CACnB,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,EACrB,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAC1E,CAAA;QAGD,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;QACrB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;QACpB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;QAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;QACpB,OAAO,IAAI,CAAC;IAChB,CAAC,CAAA;IAED,qBAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;QAClD,OAAO,IAAI,CAAC,kBAAkB,CAC1B,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;aACpB,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAChD,CAAA;IACL,CAAC,CAAA;IAED,mBAAmB,GAAG,CAAC,CAAQ,EAAE,CAAO,EAAE,WAA2B,EAAQ,EAAE;QAE3E,IAAI,WAAW,KAAK,SAAS,EAAE;YAC3B,WAAW,GAAG,aAAa,CAAC,QAAQ,CAAA;SACvC;QAED,IAAI,WAAW,KAAK,aAAa,CAAC,QAAQ,EAAE;YACxC,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,MAAM,CAAC,CAAA;SACjD;aAAM,IAAI,WAAW,KAAK,aAAa,CAAC,aAAa,EAAE;YACpD,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,QAAQ,CAAC,CAAA;SACnD;QAED,IAAI,CAAC,OAAO,GAAG,KAAK,CAAA;QACpB,OAAO,IAAI,CAAA;IACf,CAAC,CAAA;IAED,KAAK,GAAG,GAAS,EAAE;QACf,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;QAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;QAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;QAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;QAC1B,IAAI,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,EAAE,CAAC;QAC5B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;QAE1B,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC,MAAM,CAAA;QAC1B,OAAO,IAAI,CAAC;IAChB,CAAC,CAAA;IAID,YAAY,GAAG,CAAC,IAAU,EAAW,EAAE;QAEnC,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;IACjF,CAAC,CAAA;IACD,QAAQ,GAAG,CAAC,IAAU,EAAW,EAAE;QAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;IAC9E,CAAC,CAAA;IACD,UAAU,GAAG,GAAY,EAAE;QACvB,OAAO,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAA;IAClC,CAAC,CAAA;IACD,QAAQ,GAAG,GAAS,EAAE;QAClB,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,EAChF,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,CAAC;QAE/E,IAAI,CAAC,kBAAkB,CACnB,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAC5C,CAAA;QAED,OAAO,IAAI,CAAA;IACf,CAAC,CAAA;IAED,iBAAiB,GAAG,GAAS,EAAE;QAC3B,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,WAAW,CAAC,EAC/D,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QAEhE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;QACpC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;QACpC,OAAO,IAAI,CAAC;IAChB,CAAC,CAAA;IACD,YAAY,GAAG,CAAC,IAAU,EAAoF,EAAE;QAC5G,IAAI,EAAE,GAAG,IAAI,aAAK,EAAE,EAAE,UAAU,GAAG,KAAK,EAAE,MAAM,GAAG,KAAK,EAAE,eAAe,GAAG,IAAI,CAAC;QAkBjF,IAAI,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,IAAI,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,EAAE;SAExC;QAED,IAAI,IAAI,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE;YACzB,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;YACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;YACZ,UAAU,GAAG,IAAI,CAAC;SACrB;aAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE;YAC5B,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;YACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;YACZ,MAAM,GAAG,IAAI,CAAC;SACjB;aAAM;YACH,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;iBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YACzF,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;iBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;SAC5F;QAED,OAAO;YACH,KAAK,EAAE,EAAE;YACT,eAAe,EAAE,CAAC,CAAC,UAAU,IAAI,MAAM,CAAC;YACxC,UAAU;YACV,MAAM;SACT,CAAC;IACN,CAAC,CAAA;IAED,UAAU,CAAC,EAAS;QAChB,IAAI,SAAS,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC;aACrC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;aACnC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,EACvB,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC;QAGhC,IAAI,EAAE,CAAC,MAAM,EAAE,EAAE;YACb,OAAO;gBACH,KAAK,EAAE,GAAG;gBACV,GAAG,EAAE,YAAY;gBACjB,QAAQ,EAAE,IAAI,uBAAQ,EAAE,CAAC,QAAQ,EAAE;aACtC,CAAA;SACJ;QAED,IAAI,KAAK,GAAG,SAAS,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,EAC7C,CAAC,GAAG,SAAS,CAAC,KAAK,EAAE,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC,CAAC;QAGpD,IAAI,EAAE,CAAC,QAAQ,EAAE,EAAE;YACf,OAAO;gBACH,KAAK;gBACL,GAAG,EAAE,CAAC,CAAC,GAAG;gBACV,QAAQ,EAAE,CAAC;aACd,CAAA;SACJ;QAED,OAAO;YACH,KAAK;YACL,GAAG,EAAE,UAAU,SAAS,CAAC,GAAG,YAAY,EAAE,CAAC,GAAG,IAAI;YAClD,QAAQ,EAAE,CAAC;SACd,CAAC;IACN,CAAC;IAED,UAAU,CAAC,CAAQ,EAAE,CAAQ;QACzB,IAAI,GAAG,GAAG,IAAI,CAAC,YAAY,CACvB,IAAI,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CACjB,CAAA;QAGD,IAAI,GAAG,CAAC,eAAe,EAAE;YACrB,OAAO,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAA;SAC7D;QACD,OAAO,KAAK,CAAC;IACjB,CAAC;IAED,WAAW,GAAG,CAAC,KAAsB,EAAY,EAAE;QAE/C,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,uBAAQ,CAAC,KAAK,CAAC,CAAA;QAE3B,IAAG,GAAG,YAAY,kBAAQ,EAAC;YACvB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;SACpC;QACD,OAAM;IACV,CAAC,CAAA;IACD,WAAW,GAAG,CAAC,KAAsB,EAAY,EAAE;QAC/C,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,uBAAQ,CAAC,KAAK,CAAC,CAAA;QAE3B,IAAG,GAAG,YAAY,kBAAQ,EAAC;YACvB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;SACpC;QACD,OAAM;IACV,CAAC,CAAA;IAKD,2BAA2B,CAAC,QAAgB;QACxC,IAAI,QAAQ,KAAK,SAAS,EAAE;YACxB,QAAQ,GAAG,CAAC,CAAC;SAChB;QAED,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,SAAS,GAAG,EAAE,CAAC;QAEnB,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE;gBACjB,SAAS,GAAG,GAAG,CAAA;aAClB;iBAAM,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,KAAK,EAAE,EAAE;gBAC1C,SAAS,GAAG,IAAI,CAAA;aACnB;iBAAM;gBACH,SAAS,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;aACpD;SACJ;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;SACrD;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,CAAA;SAC/C;QAGD,OAAO,SAAS,GAAG,IAAI,CAAC;IAC5B,CAAC;;AA5dL,oBA6dC"}
|
|
1
|
+
{"version":3,"file":"line.js","sourceRoot":"","sources":["../../../src/maths/geometry/line.ts"],"names":[],"mappings":";AAAA;;GAEG;;;AAEH,kDAAyC;AACzC,qCAAgC;AAChC,mCAA8B;AAC9B,wCAA6C;AAC7C,wCAAmC;AAEnC,IAAY,aAKX;AALD,WAAY,aAAa;IACrB,iDAAI,CAAA;IACJ,sCAAmB,CAAA;IACnB,gDAA+B,CAAA;IAC/B,oCAAmB,CAAA;AACvB,CAAC,EALW,aAAa,GAAb,qBAAa,KAAb,qBAAa,QAKxB;AAED,MAAa,IAAI;IAiBb,YAAY,GAAG,MAAiB;QAoGpC,6CAA6C;QACzC,+BAA+B;QAC/B,6CAA6C;QAC7C;;;;WAIG;QACH,UAAK,GAAG,CAAC,GAAG,MAAiB,EAAQ,EAAE;YACnC,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;YAErB,sBAAsB;YACtB,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAA;aACd;YAED,iFAAiF;YACjF,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,IAAI,EAAE;oBAC3B,iBAAiB;oBACjB,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;iBAC3B;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,kBAAQ,EAAE;oBACtC,mBAAmB;oBACnB,OAAO,IAAI,CAAC,aAAa,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACvC;qBAAM,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,EAAE;oBACtC,8CAA8C;oBAC9C,IAAI;wBACA,IAAI,CAAC,GAAG,IAAI,kBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;wBAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAA;qBACvB;oBAAC,OAAO,CAAC,EAAE;wBACR,OAAO,IAAI,CAAA;qBACd;iBACJ;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAAE;oBAC3D,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;iBAC3D;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBACjE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,eAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;iBAClF;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBAClE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBAC1D;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IACI,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,uBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;wBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,uBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;wBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,uBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC,EAClE;oBACE,OAAO,IAAI,CAAC,kBAAkB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;iBACnE;qBAAK,IACF,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAC5D;oBACG,IAAG,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,aAAa,EAAC;wBACzC,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;qBAC1D;yBAAK,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,QAAQ,EAAC;wBAC3C,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;qBAC1D;iBACJ;aACJ;YAED,4DAA4D;YAC5D,OAAO,CAAC,GAAG,CAAC,gDAAgD,CAAC,CAAA;YAC7D,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,kBAAa,GAAG,CAAC,GAAa,EAAQ,EAAE;YACpC,wBAAwB;YACxB,GAAG,CAAC,OAAO,CAAC,IAAI,CAAC,CAAA;YAEjB,uCAAuC;YACvC,IAAI,OAAO,GAAG,IAAI,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,CAAC,CAAC;YAErC,kCAAkC;YAClC,IAAI,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE;gBACzC,OAAO,IAAI,CAAA;aACd;YAED,mCAAmC;YACnC,KAAK,IAAI,IAAI,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE;gBACzB,IAAI,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE;oBACnB,OAAO,CAAC,MAAM,CAAC,IAAI,CAAC,CAAA;iBACvB;aACJ;YAED,IAAI,OAAO,CAAC,IAAI,GAAG,CAAC,EAAE;gBAClB,OAAO,IAAI,CAAA;aACd;YAED,iCAAiC;YACjC,OAAO,IAAI,CAAC,kBAAkB,CAAC,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,CAAA;QAC3J,CAAC,CAAA;QACD,uBAAkB,GAAG,CAAC,CAAoB,EAAE,CAAoB,EAAE,CAAoB,EAAQ,EAAE;YAC5F,IAAI,CAAC,EAAE,GAAG,IAAI,uBAAQ,CAAC,CAAC,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,uBAAQ,CAAC,CAAC,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,uBAAQ,CAAC,CAAC,CAAC,CAAC;YAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAC;YACjE,IAAI,CAAC,GAAG,GAAG,IAAI,aAAK,CAAC,IAAI,uBAAQ,EAAE,CAAC,IAAI,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,CAAC;YAC7D,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;YAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;YACpB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;YAClD,gBAAgB;YAChB,wBAAwB;YACxB,wBAAwB;YACxB,qBAAqB;YACrB,2BAA2B;YAC3B,2BAA2B;YAC3B,qBAAqB;YACrB,sCAAsC;YACtC,4CAA4C;YAC5C,IAAI,CAAC,kBAAkB,CACnB,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,EACrB,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAC1E,CAAA;YAED,4FAA4F;YAC5F,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;YACrB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;YACpB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;YAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;YACpB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;YAClD,OAAO,IAAI,CAAC,kBAAkB,CAC1B,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;iBACpB,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAChD,CAAA;QACL,CAAC,CAAA;QAED,wBAAmB,GAAG,CAAC,CAAQ,EAAE,CAAO,EAAE,WAA2B,EAAQ,EAAE;YAE3E,IAAI,WAAW,KAAK,SAAS,EAAE;gBAC3B,WAAW,GAAG,aAAa,CAAC,QAAQ,CAAA;aACvC;YAED,IAAI,WAAW,KAAK,aAAa,CAAC,QAAQ,EAAE;gBACxC,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,MAAM,CAAC,CAAA;aACjD;iBAAM,IAAI,WAAW,KAAK,aAAa,CAAC,aAAa,EAAE;gBACpD,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,QAAQ,CAAC,CAAA;aACnD;YAED,IAAI,CAAC,OAAO,GAAG,KAAK,CAAA;YACpB,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,UAAK,GAAG,GAAS,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,EAAE,CAAC;YAC5B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAE1B,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC,MAAM,CAAA;YAC1B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,6CAA6C;QAC7C,0BAA0B;QAC1B,6CAA6C;QAC7C,iBAAY,GAAG,CAAC,IAAU,EAAW,EAAE;YACnC,sCAAsC;YACtC,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;QACjF,CAAC,CAAA;QACD,aAAQ,GAAG,CAAC,IAAU,EAAW,EAAE;YAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;QAC9E,CAAC,CAAA;QACD,eAAU,GAAG,GAAY,EAAE;YACvB,OAAO,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAA;QAClC,CAAC,CAAA;QACD,aAAQ,GAAG,GAAS,EAAE;YAClB,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,EAChF,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,CAAC;YAE/E,IAAI,CAAC,kBAAkB,CACnB,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAC5C,CAAA;YAED,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,sBAAiB,GAAG,GAAS,EAAE;YAC3B,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,WAAW,CAAC,EAC/D,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;YAEhE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;YACpC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;YACpC,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,iBAAY,GAAG,CAAC,IAAU,EAAoF,EAAE;YAC5G,IAAI,EAAE,GAAG,IAAI,aAAK,EAAE,EAAE,UAAU,GAAG,KAAK,EAAE,MAAM,GAAG,KAAK,EAAE,eAAe,GAAG,IAAI,CAAC;YAEjF,8BAA8B;YAC9B,8BAA8B;YAC9B,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YACtB,uBAAuB;YACvB,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YACtB,qBAAqB;YACrB,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YAGtB,mBAAmB;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,IAAI,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,EAAE;gBACrC,gDAAgD;aACnD;YAED,IAAI,IAAI,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE;gBACzB,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,UAAU,GAAG,IAAI,CAAC;aACrB;iBAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE;gBAC5B,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,MAAM,GAAG,IAAI,CAAC;aACjB;iBAAM;gBACH,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;qBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACzF,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;qBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;aAC5F;YAED,OAAO;gBACH,KAAK,EAAE,EAAE;gBACT,eAAe,EAAE,CAAC,CAAC,UAAU,IAAI,MAAM,CAAC;gBACxC,UAAU;gBACV,MAAM;aACT,CAAC;QACN,CAAC,CAAA;QAmDD,gBAAW,GAAG,CAAC,KAAsB,EAAY,EAAE;YAE/C,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,uBAAQ,CAAC,KAAK,CAAC,CAAA;YAE3B,IAAG,GAAG,YAAY,kBAAQ,EAAC;gBACvB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;aACpC;YACD,OAAM;QACV,CAAC,CAAA;QACD,gBAAW,GAAG,CAAC,KAAsB,EAAY,EAAE;YAC/C,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,uBAAQ,CAAC,KAAK,CAAC,CAAA;YAE3B,IAAG,GAAG,YAAY,kBAAQ,EAAC;gBACvB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;aACpC;YACD,OAAM;QACV,CAAC,CAAA;QAhaG,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;QAErB,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC,EAAE;YACnB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QAED,OAAO,IAAI,CAAC;IAChB,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,OAAO,CAAC;IACxB,CAAC;IAED,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,IAAI,QAAQ;QACR,OAAO,IAAI,kBAAQ,CAAC,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,IAAI,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,EAAE,IAAI,iBAAO,CAAC,GAAG,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC;IAC3G,CAAC;IAED,IAAI,GAAG;QACH,mCAAmC;QACnC,oCAAoC;QACpC,mCAAmC;QAEnC,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC9B,uCAAuC;QACvC,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;YACtB,SAAS,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;SAC1B;QAED,OAAO;YACH,SAAS,EAAE,SAAS,CAAC,GAAG;YACxB,GAAG,EAAE,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG;YAClH,UAAU,EAAE,GAAG,aAAK,CAAC,OAAO,CAAC,GAAG,EAAE,GAAG,CAAC,MAAM,aAAK,CAAC,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,cAAc,aAAK,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE;SACvI,CAAA;IACL,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,GAAG,CAAC;IACpB,CAAC;IAED,IAAI,EAAE,CAAC,KAAY;QACf,IAAI,CAAC,GAAG,GAAG,KAAK,CAAC;IACrB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IACxC,CAAC;IAED,IAAI,QAAQ;QACR,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;IAC1B,CAAC;IAED,IAAI,CAAC,CAAC,KAAa;QACf,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,KAAK;QACL,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IA6PD,UAAU,CAAC,EAAS;QAChB,IAAI,SAAS,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC;aACrC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;aACnC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,EACvB,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC;QAEhC,kDAAkD;QAClD,IAAI,EAAE,CAAC,MAAM,EAAE,EAAE;YACb,OAAO;gBACH,KAAK,EAAE,GAAG;gBACV,GAAG,EAAE,YAAY;gBACjB,QAAQ,EAAE,IAAI,uBAAQ,EAAE,CAAC,QAAQ,EAAE;aACtC,CAAA;SACJ;QACD,gEAAgE;QAChE,IAAI,KAAK,GAAG,SAAS,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,EAC7C,CAAC,GAAG,SAAS,CAAC,KAAK,EAAE,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC,CAAC;QAEpD,uCAAuC;QACvC,IAAI,EAAE,CAAC,QAAQ,EAAE,EAAE;YACf,OAAO;gBACH,KAAK;gBACL,GAAG,EAAE,CAAC,CAAC,GAAG;gBACV,QAAQ,EAAE,CAAC;aACd,CAAA;SACJ;QACD,qBAAqB;QACrB,OAAO;YACH,KAAK;YACL,GAAG,EAAE,UAAU,SAAS,CAAC,GAAG,YAAY,EAAE,CAAC,GAAG,IAAI;YAClD,QAAQ,EAAE,CAAC;SACd,CAAC;IACN,CAAC;IAED,UAAU,CAAC,CAAQ,EAAE,CAAQ;QACzB,IAAI,GAAG,GAAG,IAAI,CAAC,YAAY,CACvB,IAAI,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CACjB,CAAA;QAED,iCAAiC;QACjC,IAAI,GAAG,CAAC,eAAe,EAAE;YACrB,OAAO,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAA;SAC7D;QACD,OAAO,KAAK,CAAC;IACjB,CAAC;IAsBD,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,2BAA2B,CAAC,QAAgB;QACxC,IAAI,QAAQ,KAAK,SAAS,EAAE;YACxB,QAAQ,GAAG,CAAC,CAAC;SAChB;QAED,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,SAAS,GAAG,EAAE,CAAC;QAEnB,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE;gBACjB,SAAS,GAAG,GAAG,CAAA;aAClB;iBAAM,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,KAAK,EAAE,EAAE;gBAC1C,SAAS,GAAG,IAAI,CAAA;aACnB;iBAAM;gBACH,SAAS,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;aACpD;SACJ;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;SACrD;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,CAAA;SAC/C;QAGD,OAAO,SAAS,GAAG,IAAI,CAAC;IAC5B,CAAC;;AA5dL,oBA6dC;AA/cU,kBAAa,GAAG,aAAa,CAAC,aAAa,CAAA;AAC3C,aAAQ,GAAG,aAAa,CAAC,QAAQ,CAAA"}
|
|
@@ -1,4 +1,9 @@
|
|
|
1
|
+
/**
|
|
2
|
+
* Vector module contains everything necessary to handle 2d or 3d vectors.
|
|
3
|
+
* @module Vector
|
|
4
|
+
*/
|
|
1
5
|
import { Fraction } from "../coefficients";
|
|
6
|
+
import { Line } from "./line";
|
|
2
7
|
export declare class Point {
|
|
3
8
|
private _x;
|
|
4
9
|
private _y;
|
|
@@ -17,4 +22,11 @@ export declare class Point {
|
|
|
17
22
|
middleOf: (P1: Point, P2: Point) => Point;
|
|
18
23
|
texValues: (numberOfDigits: number) => string;
|
|
19
24
|
static pmatrix: (a: any, b: any, c?: any) => string;
|
|
25
|
+
distanceTo: (item: Point | Line) => {
|
|
26
|
+
value: number;
|
|
27
|
+
fraction: Fraction;
|
|
28
|
+
tex: string;
|
|
29
|
+
};
|
|
30
|
+
get key(): string;
|
|
31
|
+
isInListOfPoints: (list: Point[]) => boolean;
|
|
20
32
|
}
|