pimath 0.0.127 → 0.0.128
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.idea/jsLibraryMappings.xml +6 -0
- package/{public/index.html → dist/demo/exercises.html} +2 -2
- package/dist/demo/matrices.html +39 -0
- package/dist/demo/playground.html +20 -0
- package/dist/demo.css +3 -0
- package/dist/pimath.js +4239 -7819
- package/dist/pimath.umd.cjs +15 -0
- package/index.html +15 -0
- package/package.json +16 -8
- package/public/demo/exercises.html +283 -0
- package/public/demo/matrices.html +39 -0
- package/public/demo/playground.html +20 -0
- package/src/demo/exercises.ts +0 -0
- package/src/demo/matrices.ts +61 -0
- package/src/demo/playground.ts +153 -0
- package/src/{index.ts → main.ts} +1 -1
- package/src/maths/algebra/rational.ts +8 -4
- package/tsconfig.json +15 -4
- package/vite.config.js +23 -0
- package/webpack-production.config.js +22 -22
- package/webpack.config.js +22 -22
- package/dev/pimath.js +0 -7945
- package/dev/pimath.js.map +0 -1
- package/dist/pimath.js.map +0 -1
- package/dist/pimath.min.js +0 -2
- package/dist/pimath.min.js.map +0 -1
- package/esm/index.d.ts +0 -38
- package/esm/index.js +0 -44
- package/esm/index.js.map +0 -1
- package/esm/maths/algebra/equation.d.ts +0 -119
- package/esm/maths/algebra/equation.js +0 -797
- package/esm/maths/algebra/equation.js.map +0 -1
- package/esm/maths/algebra/linearSystem.d.ts +0 -39
- package/esm/maths/algebra/linearSystem.js +0 -279
- package/esm/maths/algebra/linearSystem.js.map +0 -1
- package/esm/maths/algebra/logicalset.d.ts +0 -28
- package/esm/maths/algebra/logicalset.js +0 -158
- package/esm/maths/algebra/logicalset.js.map +0 -1
- package/esm/maths/algebra/monom.d.ts +0 -206
- package/esm/maths/algebra/monom.js +0 -909
- package/esm/maths/algebra/monom.js.map +0 -1
- package/esm/maths/algebra/polynom.d.ts +0 -157
- package/esm/maths/algebra/polynom.js +0 -1305
- package/esm/maths/algebra/polynom.js.map +0 -1
- package/esm/maths/algebra/rational.d.ts +0 -46
- package/esm/maths/algebra/rational.js +0 -195
- package/esm/maths/algebra/rational.js.map +0 -1
- package/esm/maths/algebra/study/rationalStudy.d.ts +0 -28
- package/esm/maths/algebra/study/rationalStudy.js +0 -244
- package/esm/maths/algebra/study/rationalStudy.js.map +0 -1
- package/esm/maths/algebra/study.d.ts +0 -143
- package/esm/maths/algebra/study.js +0 -380
- package/esm/maths/algebra/study.js.map +0 -1
- package/esm/maths/coefficients/fraction.d.ts +0 -90
- package/esm/maths/coefficients/fraction.js +0 -517
- package/esm/maths/coefficients/fraction.js.map +0 -1
- package/esm/maths/coefficients/nthRoot.d.ts +0 -23
- package/esm/maths/coefficients/nthRoot.js +0 -137
- package/esm/maths/coefficients/nthRoot.js.map +0 -1
- package/esm/maths/geometry/circle.d.ts +0 -45
- package/esm/maths/geometry/circle.js +0 -324
- package/esm/maths/geometry/circle.js.map +0 -1
- package/esm/maths/geometry/line.d.ts +0 -99
- package/esm/maths/geometry/line.js +0 -485
- package/esm/maths/geometry/line.js.map +0 -1
- package/esm/maths/geometry/point.d.ts +0 -34
- package/esm/maths/geometry/point.js +0 -167
- package/esm/maths/geometry/point.js.map +0 -1
- package/esm/maths/geometry/triangle.d.ts +0 -91
- package/esm/maths/geometry/triangle.js +0 -276
- package/esm/maths/geometry/triangle.js.map +0 -1
- package/esm/maths/geometry/vector.d.ts +0 -41
- package/esm/maths/geometry/vector.js +0 -198
- package/esm/maths/geometry/vector.js.map +0 -1
- package/esm/maths/numeric.d.ts +0 -28
- package/esm/maths/numeric.js +0 -136
- package/esm/maths/numeric.js.map +0 -1
- package/esm/maths/numexp.d.ts +0 -19
- package/esm/maths/numexp.js +0 -186
- package/esm/maths/numexp.js.map +0 -1
- package/esm/maths/randomization/random.d.ts +0 -23
- package/esm/maths/randomization/random.js +0 -79
- package/esm/maths/randomization/random.js.map +0 -1
- package/esm/maths/randomization/randomCore.d.ts +0 -7
- package/esm/maths/randomization/randomCore.js +0 -22
- package/esm/maths/randomization/randomCore.js.map +0 -1
- package/esm/maths/randomization/rndFraction.d.ts +0 -12
- package/esm/maths/randomization/rndFraction.js +0 -44
- package/esm/maths/randomization/rndFraction.js.map +0 -1
- package/esm/maths/randomization/rndGeometryLine.d.ts +0 -12
- package/esm/maths/randomization/rndGeometryLine.js +0 -46
- package/esm/maths/randomization/rndGeometryLine.js.map +0 -1
- package/esm/maths/randomization/rndGeometryPoint.d.ts +0 -12
- package/esm/maths/randomization/rndGeometryPoint.js +0 -61
- package/esm/maths/randomization/rndGeometryPoint.js.map +0 -1
- package/esm/maths/randomization/rndHelpers.d.ts +0 -23
- package/esm/maths/randomization/rndHelpers.js +0 -98
- package/esm/maths/randomization/rndHelpers.js.map +0 -1
- package/esm/maths/randomization/rndMonom.d.ts +0 -12
- package/esm/maths/randomization/rndMonom.js +0 -53
- package/esm/maths/randomization/rndMonom.js.map +0 -1
- package/esm/maths/randomization/rndPolynom.d.ts +0 -13
- package/esm/maths/randomization/rndPolynom.js +0 -75
- package/esm/maths/randomization/rndPolynom.js.map +0 -1
- package/esm/maths/randomization/rndTypes.d.ts +0 -34
- package/esm/maths/randomization/rndTypes.js +0 -3
- package/esm/maths/randomization/rndTypes.js.map +0 -1
- package/esm/maths/shutingyard.d.ts +0 -59
- package/esm/maths/shutingyard.js +0 -443
- package/esm/maths/shutingyard.js.map +0 -1
- package/public/matrices.html +0 -100
- package/public/playground.html +0 -168
|
@@ -1,167 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
exports.Point = void 0;
|
|
4
|
-
/**
|
|
5
|
-
* Vector module contains everything necessary to handle 2d or 3d vectors.
|
|
6
|
-
* @module Vector
|
|
7
|
-
*/
|
|
8
|
-
const line_1 = require("./line");
|
|
9
|
-
const vector_1 = require("./vector");
|
|
10
|
-
const fraction_1 = require("../coefficients/fraction");
|
|
11
|
-
/**
|
|
12
|
-
* Helper class - a way to identify an object {x: number, y: number}
|
|
13
|
-
*/
|
|
14
|
-
class PointXY {
|
|
15
|
-
}
|
|
16
|
-
class Point {
|
|
17
|
-
constructor(...values) {
|
|
18
|
-
// ------------------------------------------
|
|
19
|
-
// Creation / parsing functions
|
|
20
|
-
// ------------------------------------------
|
|
21
|
-
this.parse = (...values) => {
|
|
22
|
-
// Initialize the value.
|
|
23
|
-
this.zero();
|
|
24
|
-
// Nothing is given
|
|
25
|
-
if (values.length === 0) {
|
|
26
|
-
return this;
|
|
27
|
-
}
|
|
28
|
-
// One element is given - might be already a point !
|
|
29
|
-
if (values.length === 1) {
|
|
30
|
-
// it's already a point - clone it
|
|
31
|
-
if (values[0] instanceof Point) {
|
|
32
|
-
this._x = values[0].x.clone();
|
|
33
|
-
this._y = values[0].y.clone();
|
|
34
|
-
return this;
|
|
35
|
-
}
|
|
36
|
-
// Value is given as string, comma separated.
|
|
37
|
-
if (typeof values[0] === 'string') {
|
|
38
|
-
let xy = values[0].split(',');
|
|
39
|
-
if (xy.length === 2) {
|
|
40
|
-
this._x = new fraction_1.Fraction(xy[0]).reduce();
|
|
41
|
-
this._y = new fraction_1.Fraction(xy[1]).reduce();
|
|
42
|
-
return this;
|
|
43
|
-
}
|
|
44
|
-
}
|
|
45
|
-
// Value given as an object with {x: value, y: value}
|
|
46
|
-
if (values[0] instanceof PointXY) {
|
|
47
|
-
this._x = new fraction_1.Fraction(values[0].x).reduce();
|
|
48
|
-
this._y = new fraction_1.Fraction(values[0].y).reduce();
|
|
49
|
-
return this;
|
|
50
|
-
}
|
|
51
|
-
else {
|
|
52
|
-
return this.zero();
|
|
53
|
-
}
|
|
54
|
-
}
|
|
55
|
-
if (values.length === 2) {
|
|
56
|
-
this._x = new fraction_1.Fraction(values[0]).reduce();
|
|
57
|
-
this._y = new fraction_1.Fraction(values[1]).reduce();
|
|
58
|
-
return this;
|
|
59
|
-
}
|
|
60
|
-
return this;
|
|
61
|
-
};
|
|
62
|
-
this.clone = () => {
|
|
63
|
-
this._x = this._x.clone();
|
|
64
|
-
this._y = this._y.clone();
|
|
65
|
-
return this;
|
|
66
|
-
};
|
|
67
|
-
this.zero = () => {
|
|
68
|
-
this._x = new fraction_1.Fraction(null);
|
|
69
|
-
this._y = new fraction_1.Fraction(null);
|
|
70
|
-
return this;
|
|
71
|
-
};
|
|
72
|
-
this.origin = () => {
|
|
73
|
-
this.zero();
|
|
74
|
-
return this;
|
|
75
|
-
};
|
|
76
|
-
this.middleOf = (P1, P2) => {
|
|
77
|
-
this._x = P1.x.clone().add(P2.x).divide(2);
|
|
78
|
-
this._y = P1.y.clone().add(P2.y).divide(2);
|
|
79
|
-
return this;
|
|
80
|
-
};
|
|
81
|
-
// ------------------------------------------
|
|
82
|
-
// Display functions
|
|
83
|
-
// ------------------------------------------
|
|
84
|
-
this.texValues = (numberOfDigits) => {
|
|
85
|
-
let pts = [];
|
|
86
|
-
pts.push(this._x.value.toFixed(numberOfDigits === undefined ? 2 : numberOfDigits));
|
|
87
|
-
pts.push(this._y.value.toFixed(numberOfDigits === undefined ? 2 : numberOfDigits));
|
|
88
|
-
return `\\left(${pts.join(';')}\\right)`;
|
|
89
|
-
};
|
|
90
|
-
this.distanceTo = (item) => {
|
|
91
|
-
let value = 0, fraction = new fraction_1.Fraction(), tex = '';
|
|
92
|
-
if (item instanceof line_1.Line) {
|
|
93
|
-
return item.distanceTo(this);
|
|
94
|
-
}
|
|
95
|
-
else if (item instanceof Point) {
|
|
96
|
-
let V = new vector_1.Vector(this, item);
|
|
97
|
-
value = V.norm;
|
|
98
|
-
fraction = V.normSquare.sqrt();
|
|
99
|
-
tex = V.normSquare.isSquare() ? fraction.tex : `\\sqrt{\\frac{ ${V.normSquare.numerator} }{ ${V.normSquare.denominator} }}`;
|
|
100
|
-
}
|
|
101
|
-
return { value, fraction, tex };
|
|
102
|
-
};
|
|
103
|
-
this.isInListOfPoints = (list) => {
|
|
104
|
-
const keyList = list.map(x => x.key);
|
|
105
|
-
return keyList.includes(this.key);
|
|
106
|
-
};
|
|
107
|
-
this._x = new fraction_1.Fraction().zero();
|
|
108
|
-
this._y = new fraction_1.Fraction().zero();
|
|
109
|
-
if (values !== undefined) {
|
|
110
|
-
this.parse(...values);
|
|
111
|
-
}
|
|
112
|
-
return this;
|
|
113
|
-
}
|
|
114
|
-
;
|
|
115
|
-
// ------------------------------------------
|
|
116
|
-
// Getter and setter
|
|
117
|
-
// ------------------------------------------
|
|
118
|
-
get x() {
|
|
119
|
-
return this._x;
|
|
120
|
-
}
|
|
121
|
-
set x(value) {
|
|
122
|
-
this._x = value;
|
|
123
|
-
}
|
|
124
|
-
get y() {
|
|
125
|
-
return this._y;
|
|
126
|
-
}
|
|
127
|
-
set y(value) {
|
|
128
|
-
this._y = value;
|
|
129
|
-
}
|
|
130
|
-
get tex() {
|
|
131
|
-
let pts = [];
|
|
132
|
-
pts.push(this._x.tex);
|
|
133
|
-
pts.push(this._y.tex);
|
|
134
|
-
return `\\left(${pts.join(';')}\\right)`;
|
|
135
|
-
}
|
|
136
|
-
get display() {
|
|
137
|
-
let pts = [];
|
|
138
|
-
pts.push(this._x.tex);
|
|
139
|
-
pts.push(this._y.tex);
|
|
140
|
-
return `(${pts.join(';')})`;
|
|
141
|
-
}
|
|
142
|
-
get asVector() {
|
|
143
|
-
return new vector_1.Vector(this.x, this.y);
|
|
144
|
-
}
|
|
145
|
-
get key() {
|
|
146
|
-
return `${this.x.display};${this.y.display}`;
|
|
147
|
-
}
|
|
148
|
-
}
|
|
149
|
-
exports.Point = Point;
|
|
150
|
-
// ------------------------------------------
|
|
151
|
-
// Mathematical operations
|
|
152
|
-
// ------------------------------------------
|
|
153
|
-
// ------------------------------------------
|
|
154
|
-
// Vector functions
|
|
155
|
-
// ------------------------------------------
|
|
156
|
-
// ------------------------------------------
|
|
157
|
-
// Static functions
|
|
158
|
-
// ------------------------------------------
|
|
159
|
-
Point.pmatrix = (a, b, c) => {
|
|
160
|
-
if (c === undefined) {
|
|
161
|
-
return `\\begin{pmatrix} ${a.tex ? a.tex : a} \\\\ ${b.tex ? b.tex : b} \\end{pmatrix}`;
|
|
162
|
-
}
|
|
163
|
-
else {
|
|
164
|
-
return `\\begin{pmatrix} ${a.tex ? a.tex : a} \\\\ ${b.tex ? b.tex : b} \\\\ ${c.tex ? c.tex : c} \\end{pmatrix}`;
|
|
165
|
-
}
|
|
166
|
-
};
|
|
167
|
-
//# sourceMappingURL=point.js.map
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
{"version":3,"file":"point.js","sourceRoot":"","sources":["../../../src/maths/geometry/point.ts"],"names":[],"mappings":";;;AAAA;;;GAGG;AACH,iCAA4B;AAC5B,qCAAgC;AAChC,uDAAkD;AAElD;;GAEG;AACH,MAAM,OAAO;CAGZ;AAED,MAAa,KAAK;IAKd,YAAY,GAAG,MAAiB;QAoDhC,6CAA6C;QAC7C,+BAA+B;QAC/B,6CAA6C;QAC7C,UAAK,GAAG,CAAC,GAAG,MAAiB,EAAS,EAAE;YACpC,wBAAwB;YACxB,IAAI,CAAC,IAAI,EAAE,CAAC;YAEZ,mBAAmB;YACnB,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAC;aACf;YAED,oDAAoD;YACpD,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,kCAAkC;gBAClC,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,KAAK,EAAE;oBAC5B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;oBAC7B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;oBAC7B,OAAO,IAAI,CAAA;iBACd;gBAED,6CAA6C;gBAC7C,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,EAAE;oBAC/B,IAAI,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,GAAG,CAAC,CAAA;oBAC7B,IAAI,EAAE,CAAC,MAAM,KAAK,CAAC,EAAE;wBACjB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;wBACtC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;wBACtC,OAAO,IAAI,CAAA;qBACd;iBACJ;gBAED,qDAAqD;gBACrD,IAAG,MAAM,CAAC,CAAC,CAAC,YAAY,OAAO,EAAC;oBACxB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;oBAC5C,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;oBAChD,OAAO,IAAI,CAAA;iBACd;qBAAM;oBACH,OAAO,IAAI,CAAC,IAAI,EAAE,CAAA;iBACrB;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;gBAC1C,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;gBAC1C,OAAO,IAAI,CAAA;aACd;YAED,OAAO,IAAI,CAAC;QAChB,CAAC,CAAC;QAEF,UAAK,GAAG,GAAU,EAAE;YAChB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;YACzB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;YAEzB,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,SAAI,GAAG,GAAU,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,WAAM,GAAG,GAAU,EAAE;YACjB,IAAI,CAAC,IAAI,EAAE,CAAC;YACZ,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,EAAS,EAAE,EAAS,EAAS,EAAE;YACvC,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YAC3C,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YAE3C,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,6CAA6C;QAC7C,oBAAoB;QACpB,6CAA6C;QAC7C,cAAS,GAAG,CAAC,cAAsB,EAAU,EAAE;YAC3C,IAAI,GAAG,GAAG,EAAE,CAAC;YAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,cAAc,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,cAAc,CAAC,CAAC,CAAC;YACnF,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,cAAc,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,cAAc,CAAC,CAAC,CAAC;YAEnF,OAAO,UAAU,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,UAAU,CAAA;QAC5C,CAAC,CAAA;QAoBD,eAAU,GAAG,CAAC,IAAe,EAAsD,EAAE;YACjF,IAAI,KAAK,GAAG,CAAC,EAAE,QAAQ,GAAG,IAAI,mBAAQ,EAAE,EAAE,GAAG,GAAG,EAAE,CAAA;YAElD,IAAG,IAAI,YAAY,WAAI,EAAC;gBACpB,OAAO,IAAI,CAAC,UAAU,CAAC,IAAI,CAAC,CAAA;aAC/B;iBAAK,IAAG,IAAI,YAAY,KAAK,EAAC;gBAC3B,IAAI,CAAC,GAAG,IAAI,eAAM,CAAC,IAAI,EAAE,IAAI,CAAC,CAAA;gBAE9B,KAAK,GAAG,CAAC,CAAC,IAAI,CAAA;gBACd,QAAQ,GAAG,CAAC,CAAC,UAAU,CAAC,IAAI,EAAE,CAAA;gBAC9B,GAAG,GAAG,CAAC,CAAC,UAAU,CAAC,QAAQ,EAAE,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,CAAC,kBAAkB,CAAC,CAAC,UAAU,CAAC,SAAS,OAAO,CAAC,CAAC,UAAU,CAAC,WAAW,KAAK,CAAA;aAC9H;YACD,OAAO,EAAE,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,CAAA;QACnC,CAAC,CAAA;QAKD,qBAAgB,GAAG,CAAC,IAAa,EAAW,EAAE;YAC1C,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAA,EAAE,CAAA,CAAC,CAAC,GAAG,CAAC,CAAA;YAElC,OAAO,OAAO,CAAC,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;QACrC,CAAC,CAAA;QAjLG,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAEhC,IAAI,MAAM,KAAK,SAAS,EAAE;YACtB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QAED,OAAO,IAAI,CAAA;IACf,CAAC;IAAA,CAAC;IAEF,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAED,IAAI,GAAG;QACH,IAAI,GAAG,GAAG,EAAE,CAAC;QAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QAEtB,OAAO,UAAU,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,UAAU,CAAA;IAC5C,CAAC;IAED,IAAI,OAAO;QACP,IAAI,GAAG,GAAG,EAAE,CAAC;QAEb,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QAEtB,OAAO,IAAI,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,CAAA;IAC/B,CAAC;IAED,IAAI,QAAQ;QACR,OAAO,IAAI,eAAM,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAA;IACrC,CAAC;IAyHD,IAAI,GAAG;QACL,OAAO,GAAG,IAAI,CAAC,CAAC,CAAC,OAAO,IAAI,IAAI,CAAC,CAAC,CAAC,OAAO,EAAE,CAAA;IAClD,CAAC;;AAlLD,sBAwLC;AA1CG,6CAA6C;AAC7C,0BAA0B;AAC1B,6CAA6C;AAE7C,6CAA6C;AAC7C,mBAAmB;AACnB,6CAA6C;AAE7C,6CAA6C;AAC7C,mBAAmB;AACnB,6CAA6C;AACtC,aAAO,GAAG,CAAC,CAAM,EAAE,CAAM,EAAE,CAAO,EAAU,EAAE;IACjD,IAAI,CAAC,KAAK,SAAS,EAAE;QACjB,OAAO,oBAAoB,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC;KAC3F;SAAM;QACH,OAAO,oBAAoB,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC;KACrH;AACL,CAAC,AANa,CAMZ"}
|
|
@@ -1,91 +0,0 @@
|
|
|
1
|
-
import { Point } from "./point";
|
|
2
|
-
import { Vector } from "./vector";
|
|
3
|
-
import { Line } from "./line";
|
|
4
|
-
export interface remarquableLines {
|
|
5
|
-
'medians': {
|
|
6
|
-
'A': Line;
|
|
7
|
-
'B': Line;
|
|
8
|
-
'C': Line;
|
|
9
|
-
'intersection': Point;
|
|
10
|
-
};
|
|
11
|
-
'mediators': {
|
|
12
|
-
'AB': Line;
|
|
13
|
-
'AC': Line;
|
|
14
|
-
'BC': Line;
|
|
15
|
-
'intersection': Point;
|
|
16
|
-
};
|
|
17
|
-
'heights': {
|
|
18
|
-
'A': Line;
|
|
19
|
-
'B': Line;
|
|
20
|
-
'C': Line;
|
|
21
|
-
'intersection': Point;
|
|
22
|
-
};
|
|
23
|
-
'bisectors': {
|
|
24
|
-
'A': Line;
|
|
25
|
-
'B': Line;
|
|
26
|
-
'C': Line;
|
|
27
|
-
'intersection': Point;
|
|
28
|
-
};
|
|
29
|
-
externalBisectors: {
|
|
30
|
-
'A': Line;
|
|
31
|
-
'B': Line;
|
|
32
|
-
'C': Line;
|
|
33
|
-
'intersection': Point;
|
|
34
|
-
};
|
|
35
|
-
}
|
|
36
|
-
export declare class Triangle {
|
|
37
|
-
private _A;
|
|
38
|
-
private _B;
|
|
39
|
-
private _C;
|
|
40
|
-
private _lines;
|
|
41
|
-
private _middles;
|
|
42
|
-
private _remarquables;
|
|
43
|
-
constructor(...values: unknown[]);
|
|
44
|
-
get A(): Point;
|
|
45
|
-
get B(): Point;
|
|
46
|
-
get C(): Point;
|
|
47
|
-
get AB(): Vector;
|
|
48
|
-
get BA(): Vector;
|
|
49
|
-
get BC(): Vector;
|
|
50
|
-
get CB(): Vector;
|
|
51
|
-
get AC(): Vector;
|
|
52
|
-
get CA(): Vector;
|
|
53
|
-
get isRectangle(): boolean;
|
|
54
|
-
get isEquilateral(): boolean;
|
|
55
|
-
get isIsocele(): boolean;
|
|
56
|
-
get lines(): {
|
|
57
|
-
'AB': Line;
|
|
58
|
-
'BC': Line;
|
|
59
|
-
'AC': Line;
|
|
60
|
-
};
|
|
61
|
-
get remarquables(): remarquableLines;
|
|
62
|
-
/**
|
|
63
|
-
* Parse values to a triangle. Supported formats:
|
|
64
|
-
* Point, Point, Point
|
|
65
|
-
* x1, y1, x2, y2, x3, y3
|
|
66
|
-
* TODO: Something else ?
|
|
67
|
-
* @param values
|
|
68
|
-
*/
|
|
69
|
-
parse: (...values: any) => Triangle;
|
|
70
|
-
/**
|
|
71
|
-
* Clone the Triangle class
|
|
72
|
-
*/
|
|
73
|
-
clone: () => Triangle;
|
|
74
|
-
/**
|
|
75
|
-
* Generate the Line object for the three segments of the triangle
|
|
76
|
-
*/
|
|
77
|
-
private _updateTriangle;
|
|
78
|
-
/**
|
|
79
|
-
* Get the Point class for the given name
|
|
80
|
-
* @param ptName
|
|
81
|
-
*/
|
|
82
|
-
private getPointByName;
|
|
83
|
-
/**
|
|
84
|
-
* Get the vector for the segment given by name.
|
|
85
|
-
* @param ptName1
|
|
86
|
-
* @param ptName2
|
|
87
|
-
*/
|
|
88
|
-
private getSegment;
|
|
89
|
-
private _calculateRemarquableLines;
|
|
90
|
-
private _calculateBisectors;
|
|
91
|
-
}
|
|
@@ -1,276 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
exports.Triangle = void 0;
|
|
4
|
-
const point_1 = require("./point");
|
|
5
|
-
const fraction_1 = require("../coefficients/fraction");
|
|
6
|
-
const vector_1 = require("./vector");
|
|
7
|
-
const line_1 = require("./line");
|
|
8
|
-
const equation_1 = require("../algebra/equation");
|
|
9
|
-
class Triangle {
|
|
10
|
-
constructor(...values) {
|
|
11
|
-
// ------------------------------------------
|
|
12
|
-
// Creation / parsing functions
|
|
13
|
-
// ------------------------------------------
|
|
14
|
-
/**
|
|
15
|
-
* Parse values to a triangle. Supported formats:
|
|
16
|
-
* Point, Point, Point
|
|
17
|
-
* x1, y1, x2, y2, x3, y3
|
|
18
|
-
* TODO: Something else ?
|
|
19
|
-
* @param values
|
|
20
|
-
*/
|
|
21
|
-
this.parse = (...values) => {
|
|
22
|
-
if (values.length === 6) {
|
|
23
|
-
// Check if all values are number or fractions.
|
|
24
|
-
let v = values.map((x) => new fraction_1.Fraction(x));
|
|
25
|
-
return this.parse(new point_1.Point(v[0], v[1]), new point_1.Point(v[2], v[3]), new point_1.Point(v[4], v[5]));
|
|
26
|
-
}
|
|
27
|
-
else if (values.length === 3) {
|
|
28
|
-
// Possibilities:
|
|
29
|
-
// - Three points (or part of points, only dict for example, or array (TODO: Add the array syntax for point)
|
|
30
|
-
// - Three lines
|
|
31
|
-
// - Three lines as text.
|
|
32
|
-
if (values.filter((x) => typeof x === 'string').length === 3) {
|
|
33
|
-
return this.parse(...values.map((x) => new line_1.Line(x)));
|
|
34
|
-
}
|
|
35
|
-
else if (values.filter((x) => x instanceof line_1.Line).length === 3) {
|
|
36
|
-
// We have three lines
|
|
37
|
-
this._lines = {
|
|
38
|
-
'AB': values[0],
|
|
39
|
-
'BC': values[1],
|
|
40
|
-
'AC': values[2]
|
|
41
|
-
};
|
|
42
|
-
// Get the intersection points -> build the triangle using these intersection points.
|
|
43
|
-
let intersect = values[0].intersection(values[1]);
|
|
44
|
-
if (intersect.hasIntersection) {
|
|
45
|
-
this._B = intersect.point.clone();
|
|
46
|
-
}
|
|
47
|
-
else {
|
|
48
|
-
return this;
|
|
49
|
-
}
|
|
50
|
-
intersect = values[1].intersection(values[2]);
|
|
51
|
-
if (intersect.hasIntersection) {
|
|
52
|
-
this._C = intersect.point.clone();
|
|
53
|
-
}
|
|
54
|
-
else {
|
|
55
|
-
return this;
|
|
56
|
-
}
|
|
57
|
-
intersect = values[2].intersection(values[0]);
|
|
58
|
-
if (intersect.hasIntersection) {
|
|
59
|
-
this._A = intersect.point.clone();
|
|
60
|
-
}
|
|
61
|
-
else {
|
|
62
|
-
return this;
|
|
63
|
-
}
|
|
64
|
-
}
|
|
65
|
-
else {
|
|
66
|
-
// At least, one of the value is not a point.
|
|
67
|
-
if (values.filter((x) => (x instanceof point_1.Point)).length < 3) {
|
|
68
|
-
return this.parse(new point_1.Point(values[0]), new point_1.Point(values[1]), new point_1.Point(values[2]));
|
|
69
|
-
}
|
|
70
|
-
// We have three points.
|
|
71
|
-
this._A = values[0].clone();
|
|
72
|
-
this._B = values[1].clone();
|
|
73
|
-
this._C = values[2].clone();
|
|
74
|
-
this._lines = {
|
|
75
|
-
'AB': new line_1.Line(this._A, this._B),
|
|
76
|
-
'BC': new line_1.Line(this._B, this._C),
|
|
77
|
-
'AC': new line_1.Line(this._A, this._C)
|
|
78
|
-
};
|
|
79
|
-
}
|
|
80
|
-
}
|
|
81
|
-
else if (values.length === 1) {
|
|
82
|
-
if (values[0] instanceof Triangle) {
|
|
83
|
-
return values[0].clone();
|
|
84
|
-
}
|
|
85
|
-
}
|
|
86
|
-
this._updateTriangle();
|
|
87
|
-
return this;
|
|
88
|
-
};
|
|
89
|
-
/**
|
|
90
|
-
* Clone the Triangle class
|
|
91
|
-
*/
|
|
92
|
-
this.clone = () => {
|
|
93
|
-
this._A = this._A.clone();
|
|
94
|
-
this._B = this._B.clone();
|
|
95
|
-
this._C = this._C.clone();
|
|
96
|
-
this._lines = {
|
|
97
|
-
'AB': this._lines.AB.clone(),
|
|
98
|
-
'BC': this._lines.BC.clone(),
|
|
99
|
-
'AC': this._lines.AC.clone()
|
|
100
|
-
};
|
|
101
|
-
this._updateTriangle();
|
|
102
|
-
return this;
|
|
103
|
-
};
|
|
104
|
-
// ------------------------------------------
|
|
105
|
-
// Triangle operations and properties
|
|
106
|
-
// ------------------------------------------
|
|
107
|
-
/**
|
|
108
|
-
* Generate the Line object for the three segments of the triangle
|
|
109
|
-
*/
|
|
110
|
-
this._updateTriangle = () => {
|
|
111
|
-
this._middles = {
|
|
112
|
-
'AB': new point_1.Point().middleOf(this._A, this._B),
|
|
113
|
-
'AC': new point_1.Point().middleOf(this._A, this._C),
|
|
114
|
-
'BC': new point_1.Point().middleOf(this._B, this._C)
|
|
115
|
-
};
|
|
116
|
-
this._remarquables = this._calculateRemarquableLines();
|
|
117
|
-
};
|
|
118
|
-
/**
|
|
119
|
-
* Get the Point class for the given name
|
|
120
|
-
* @param ptName
|
|
121
|
-
*/
|
|
122
|
-
this.getPointByName = (ptName) => {
|
|
123
|
-
switch (ptName.toUpperCase()) {
|
|
124
|
-
case 'A':
|
|
125
|
-
return this._A;
|
|
126
|
-
case 'B':
|
|
127
|
-
return this._B;
|
|
128
|
-
case 'C':
|
|
129
|
-
return this._C;
|
|
130
|
-
}
|
|
131
|
-
// Something went wrong ! Return the first point
|
|
132
|
-
return this._A;
|
|
133
|
-
};
|
|
134
|
-
/**
|
|
135
|
-
* Get the vector for the segment given by name.
|
|
136
|
-
* @param ptName1
|
|
137
|
-
* @param ptName2
|
|
138
|
-
*/
|
|
139
|
-
this.getSegment = (ptName1, ptName2) => {
|
|
140
|
-
return new vector_1.Vector(this.getPointByName(ptName1), this.getPointByName(ptName2));
|
|
141
|
-
};
|
|
142
|
-
this._calculateRemarquableLines = () => {
|
|
143
|
-
const bA = this._calculateBisectors('A'), bB = this._calculateBisectors('B'), bC = this._calculateBisectors('C');
|
|
144
|
-
let remarquables = {
|
|
145
|
-
'medians': {
|
|
146
|
-
'A': new line_1.Line(this._A, this._middles.BC),
|
|
147
|
-
'B': new line_1.Line(this._B, this._middles.AC),
|
|
148
|
-
'C': new line_1.Line(this._C, this._middles.AB),
|
|
149
|
-
'intersection': null
|
|
150
|
-
},
|
|
151
|
-
'mediators': {
|
|
152
|
-
'AB': new line_1.Line(this._middles.AB, new vector_1.Vector(this._A, this._B).normal()),
|
|
153
|
-
'AC': new line_1.Line(this._middles.AC, new vector_1.Vector(this._A, this._C).normal()),
|
|
154
|
-
'BC': new line_1.Line(this._middles.BC, new vector_1.Vector(this._B, this._C).normal()),
|
|
155
|
-
'intersection': null
|
|
156
|
-
},
|
|
157
|
-
'heights': {
|
|
158
|
-
'A': new line_1.Line(this._A, new vector_1.Vector(this._B, this._C).normal()),
|
|
159
|
-
'B': new line_1.Line(this._B, new vector_1.Vector(this._A, this._C).normal()),
|
|
160
|
-
'C': new line_1.Line(this._C, new vector_1.Vector(this._A, this._B).normal()),
|
|
161
|
-
'intersection': null
|
|
162
|
-
},
|
|
163
|
-
'bisectors': {
|
|
164
|
-
'A': bA.internal,
|
|
165
|
-
'B': bB.internal,
|
|
166
|
-
'C': bB.internal,
|
|
167
|
-
'intersection': null
|
|
168
|
-
},
|
|
169
|
-
externalBisectors: {
|
|
170
|
-
'A': bA.external,
|
|
171
|
-
'B': bB.external,
|
|
172
|
-
'C': bC.external,
|
|
173
|
-
'intersection': null
|
|
174
|
-
}
|
|
175
|
-
};
|
|
176
|
-
// As it's a triangle, we assume the lines are intersecting and aren't parallel or superposed.
|
|
177
|
-
remarquables.medians.intersection = remarquables.medians.A.intersection(remarquables.medians.B).point;
|
|
178
|
-
remarquables.mediators.intersection = remarquables.mediators.AB.intersection(remarquables.mediators.BC).point;
|
|
179
|
-
remarquables.heights.intersection = remarquables.heights.A.intersection(remarquables.heights.B).point;
|
|
180
|
-
remarquables.bisectors.intersection = remarquables.bisectors.A.intersection(remarquables.bisectors.B).point;
|
|
181
|
-
// Everything was calculated for the remarquable lines.
|
|
182
|
-
return remarquables;
|
|
183
|
-
};
|
|
184
|
-
this._calculateBisectors = (pt) => {
|
|
185
|
-
let tlines = this.lines, d1, d2;
|
|
186
|
-
if (pt === 'A') {
|
|
187
|
-
d1 = tlines.AB;
|
|
188
|
-
d2 = tlines.AC;
|
|
189
|
-
}
|
|
190
|
-
else if (pt === 'B') {
|
|
191
|
-
d1 = tlines.AB;
|
|
192
|
-
d2 = tlines.BC;
|
|
193
|
-
}
|
|
194
|
-
else if (pt === 'C') {
|
|
195
|
-
d1 = tlines.BC;
|
|
196
|
-
d2 = tlines.AC;
|
|
197
|
-
}
|
|
198
|
-
let b1 = new line_1.Line(new equation_1.Equation(d1.equation.left.clone().multiply(d2.n.simplify().norm), d2.equation.left.clone().multiply(d1.n.simplify().norm)).reorder(true).simplify()), b2 = new line_1.Line(new equation_1.Equation(d1.equation.left.clone().multiply(d2.n.simplify().norm), d2.equation.left.clone().multiply(d1.n.simplify().norm).opposed()).reorder(true).simplify());
|
|
199
|
-
// Must determine which bisectors is in the triangle
|
|
200
|
-
if (pt === 'A') {
|
|
201
|
-
return b1.hitSegment(this.B, this.C) ? { internal: b1, external: b2 } : { internal: b2, external: b1 };
|
|
202
|
-
}
|
|
203
|
-
if (pt === 'B') {
|
|
204
|
-
return b1.hitSegment(this.A, this.C) ? { internal: b1, external: b2 } : { internal: b2, external: b1 };
|
|
205
|
-
}
|
|
206
|
-
if (pt === 'C') {
|
|
207
|
-
return b1.hitSegment(this.B, this.A) ? { internal: b1, external: b2 } : { internal: b2, external: b1 };
|
|
208
|
-
}
|
|
209
|
-
// Default returns the first bisector
|
|
210
|
-
return { internal: b1, external: b2 };
|
|
211
|
-
};
|
|
212
|
-
if (values.length > 0) {
|
|
213
|
-
this.parse(...values);
|
|
214
|
-
}
|
|
215
|
-
return this;
|
|
216
|
-
}
|
|
217
|
-
// ------------------------------------------
|
|
218
|
-
// Getter and setters
|
|
219
|
-
// ------------------------------------------
|
|
220
|
-
get A() {
|
|
221
|
-
return this._A;
|
|
222
|
-
}
|
|
223
|
-
get B() {
|
|
224
|
-
return this._B;
|
|
225
|
-
}
|
|
226
|
-
get C() {
|
|
227
|
-
return this._C;
|
|
228
|
-
}
|
|
229
|
-
get AB() {
|
|
230
|
-
return this.getSegment('A', 'B');
|
|
231
|
-
}
|
|
232
|
-
get BA() {
|
|
233
|
-
return this.getSegment('B', 'A');
|
|
234
|
-
}
|
|
235
|
-
get BC() {
|
|
236
|
-
return this.getSegment('B', 'C');
|
|
237
|
-
}
|
|
238
|
-
get CB() {
|
|
239
|
-
return this.getSegment('C', 'B');
|
|
240
|
-
}
|
|
241
|
-
get AC() {
|
|
242
|
-
return this.getSegment('A', 'C');
|
|
243
|
-
}
|
|
244
|
-
get CA() {
|
|
245
|
-
return this.getSegment('C', 'A');
|
|
246
|
-
}
|
|
247
|
-
get isRectangle() {
|
|
248
|
-
if (this.AB.isNormalTo(this.BC)) {
|
|
249
|
-
return true;
|
|
250
|
-
}
|
|
251
|
-
if (this.AB.isNormalTo(this.AC)) {
|
|
252
|
-
return true;
|
|
253
|
-
}
|
|
254
|
-
if (this.BC.isNormalTo(this.AC)) {
|
|
255
|
-
return true;
|
|
256
|
-
}
|
|
257
|
-
return false;
|
|
258
|
-
}
|
|
259
|
-
get isEquilateral() {
|
|
260
|
-
return this.AB.normSquare.isEqual(this.BC.normSquare) &&
|
|
261
|
-
this.AB.normSquare.isEqual(this.AC.normSquare);
|
|
262
|
-
}
|
|
263
|
-
get isIsocele() {
|
|
264
|
-
return this.AB.normSquare.isEqual(this.BC.normSquare) ||
|
|
265
|
-
this.AB.normSquare.isEqual(this.AC.normSquare) ||
|
|
266
|
-
this.BC.normSquare.isEqual(this.AC.normSquare);
|
|
267
|
-
}
|
|
268
|
-
get lines() {
|
|
269
|
-
return this._lines;
|
|
270
|
-
}
|
|
271
|
-
get remarquables() {
|
|
272
|
-
return this._remarquables;
|
|
273
|
-
}
|
|
274
|
-
}
|
|
275
|
-
exports.Triangle = Triangle;
|
|
276
|
-
//# sourceMappingURL=triangle.js.map
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
{"version":3,"file":"triangle.js","sourceRoot":"","sources":["../../../src/maths/geometry/triangle.ts"],"names":[],"mappings":";;;AAAA,mCAA8B;AAC9B,uDAAkD;AAClD,qCAAgC;AAChC,iCAA4B;AAC5B,kDAA6C;AAmC7C,MAAa,QAAQ;IAiBjB,YAAY,GAAG,MAAiB;QAiFhC,6CAA6C;QAC7C,+BAA+B;QAC/B,6CAA6C;QAE7C;;;;;;WAMG;QACH,UAAK,GAAG,CAAC,GAAG,MAAW,EAAY,EAAE;YACjC,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,+CAA+C;gBAC/C,IAAI,CAAC,GAAG,MAAM,CAAC,GAAG,CAAC,CAAC,CAAM,EAAE,EAAE,CAAC,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;gBAChD,OAAO,IAAI,CAAC,KAAK,CACb,IAAI,aAAK,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EACrB,IAAI,aAAK,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EACrB,IAAI,aAAK,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CACxB,CAAA;aACJ;iBAAM,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBAC5B,iBAAiB;gBACjB,4GAA4G;gBAC5G,gBAAgB;gBAChB,yBAAyB;gBACzB,IAAG,MAAM,CAAC,MAAM,CAAC,CAAC,CAAK,EAAE,EAAE,CAAC,OAAO,CAAC,KAAK,QAAQ,CAAC,CAAC,MAAM,KAAG,CAAC,EAAE;oBAC3D,OAAO,IAAI,CAAC,KAAK,CAAE,GAAG,MAAM,CAAC,GAAG,CAAC,CAAC,CAAQ,EAAE,EAAE,CAAC,IAAI,WAAI,CAAC,CAAC,CAAC,CAAC,CAAE,CAAA;iBAChE;qBAAK,IAAG,MAAM,CAAC,MAAM,CAAC,CAAC,CAAK,EAAE,EAAE,CAAC,CAAC,YAAY,WAAI,CAAC,CAAC,MAAM,KAAG,CAAC,EAAE;oBAC7D,sBAAsB;oBACtB,IAAI,CAAC,MAAM,GAAG;wBACV,IAAI,EAAE,MAAM,CAAC,CAAC,CAAC;wBACf,IAAI,EAAE,MAAM,CAAC,CAAC,CAAC;wBACf,IAAI,EAAE,MAAM,CAAC,CAAC,CAAC;qBAClB,CAAC;oBAEF,qFAAqF;oBACrF,IAAI,SAAS,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,YAAY,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;oBAClD,IAAI,SAAS,CAAC,eAAe,EAAE;wBAC3B,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,KAAK,CAAC,KAAK,EAAE,CAAC;qBACrC;yBAAM;wBACH,OAAO,IAAI,CAAC;qBACf;oBACD,SAAS,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,YAAY,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;oBAC9C,IAAI,SAAS,CAAC,eAAe,EAAE;wBAC3B,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,KAAK,CAAC,KAAK,EAAE,CAAC;qBACrC;yBAAM;wBACH,OAAO,IAAI,CAAC;qBACf;oBACD,SAAS,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,YAAY,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;oBAC9C,IAAI,SAAS,CAAC,eAAe,EAAE;wBAC3B,IAAI,CAAC,EAAE,GAAG,SAAS,CAAC,KAAK,CAAC,KAAK,EAAE,CAAC;qBACrC;yBAAM;wBACH,OAAO,IAAI,CAAC;qBACf;iBACJ;qBAAK;oBACF,6CAA6C;oBAC7C,IAAI,MAAM,CAAC,MAAM,CAAC,CAAC,CAAM,EAAE,EAAE,CAAC,CAAC,CAAC,YAAY,aAAK,CAAC,CAAC,CAAC,MAAM,GAAG,CAAC,EAAE;wBAC5D,OAAO,IAAI,CAAC,KAAK,CACb,IAAI,aAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EACpB,IAAI,aAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EACpB,IAAI,aAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CACvB,CAAA;qBACJ;oBAED,wBAAwB;oBACxB,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC;oBAC5B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC;oBAC5B,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC;oBAE5B,IAAI,CAAC,MAAM,GAAG;wBACV,IAAI,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;wBAChC,IAAI,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;wBAChC,IAAI,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;qBACnC,CAAC;iBACL;aACJ;iBAAM,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBAC5B,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,QAAQ,EAAE;oBAC/B,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC;iBAC5B;aACJ;YAED,IAAI,CAAC,eAAe,EAAE,CAAC;YACvB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED;;WAEG;QACH,UAAK,GAAG,GAAa,EAAE;YACnB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAE1B,IAAI,CAAC,MAAM,GAAG;gBACV,IAAI,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,EAAE;gBAC5B,IAAI,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,EAAE;gBAC5B,IAAI,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,EAAE;aAC/B,CAAA;YAED,IAAI,CAAC,eAAe,EAAE,CAAC;YACvB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAGD,6CAA6C;QAC7C,qCAAqC;QACrC,6CAA6C;QAE7C;;WAEG;QACK,oBAAe,GAAG,GAAG,EAAE;YAC3B,IAAI,CAAC,QAAQ,GAAG;gBACZ,IAAI,EAAE,IAAI,aAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;gBAC5C,IAAI,EAAE,IAAI,aAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;gBAC5C,IAAI,EAAE,IAAI,aAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;aAC/C,CAAA;YAED,IAAI,CAAC,aAAa,GAAG,IAAI,CAAC,0BAA0B,EAAE,CAAC;QAC3D,CAAC,CAAA;QAGD;;;WAGG;QACK,mBAAc,GAAG,CAAC,MAAc,EAAS,EAAE;YAC/C,QAAQ,MAAM,CAAC,WAAW,EAAE,EAAE;gBAC1B,KAAK,GAAG;oBACJ,OAAO,IAAI,CAAC,EAAE,CAAC;gBACnB,KAAK,GAAG;oBACJ,OAAO,IAAI,CAAC,EAAE,CAAC;gBACnB,KAAK,GAAG;oBACJ,OAAO,IAAI,CAAC,EAAE,CAAC;aACtB;YAED,gDAAgD;YAChD,OAAO,IAAI,CAAC,EAAE,CAAC;QACnB,CAAC,CAAA;QACD;;;;WAIG;QACK,eAAU,GAAG,CAAC,OAAe,EAAE,OAAe,EAAU,EAAE;YAC9D,OAAO,IAAI,eAAM,CACb,IAAI,CAAC,cAAc,CAAC,OAAO,CAAC,EAC5B,IAAI,CAAC,cAAc,CAAC,OAAO,CAAC,CAC/B,CAAC;QACN,CAAC,CAAA;QAEO,+BAA0B,GAAG,GAAqB,EAAE;YACxD,MAAO,EAAE,GAAE,IAAI,CAAC,mBAAmB,CAAC,GAAG,CAAC,EACpC,EAAE,GAAE,IAAI,CAAC,mBAAmB,CAAC,GAAG,CAAC,EACjC,EAAE,GAAE,IAAI,CAAC,mBAAmB,CAAC,GAAG,CAAC,CAAA;YAErC,IAAI,YAAY,GAAqB;gBACjC,SAAS,EAAE;oBACP,GAAG,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,QAAQ,CAAC,EAAE,CAAC;oBACxC,GAAG,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,QAAQ,CAAC,EAAE,CAAC;oBACxC,GAAG,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,QAAQ,CAAC,EAAE,CAAC;oBACxC,cAAc,EAAE,IAAI;iBACvB;gBACD,WAAW,EAAE;oBACT,IAAI,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,QAAQ,CAAC,EAAE,EAAE,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC;oBACvE,IAAI,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,QAAQ,CAAC,EAAE,EAAE,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC;oBACvE,IAAI,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,QAAQ,CAAC,EAAE,EAAE,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC;oBACvE,cAAc,EAAE,IAAI;iBACvB;gBACD,SAAS,EAAE;oBACP,GAAG,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC;oBAC7D,GAAG,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC;oBAC7D,GAAG,EAAE,IAAI,WAAI,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC;oBAC7D,cAAc,EAAE,IAAI;iBACvB;gBACD,WAAW,EAAE;oBACT,GAAG,EAAE,EAAE,CAAC,QAAQ;oBAChB,GAAG,EAAE,EAAE,CAAC,QAAQ;oBAChB,GAAG,EAAE,EAAE,CAAC,QAAQ;oBAChB,cAAc,EAAE,IAAI;iBACvB;gBACD,iBAAiB,EAAE;oBACf,GAAG,EAAE,EAAE,CAAC,QAAQ;oBAChB,GAAG,EAAE,EAAE,CAAC,QAAQ;oBAChB,GAAG,EAAE,EAAE,CAAC,QAAQ;oBAChB,cAAc,EAAE,IAAI;iBACvB;aACJ,CAAA;YAED,8FAA8F;YAC9F,YAAY,CAAC,OAAO,CAAC,YAAY,GAAG,YAAY,CAAC,OAAO,CAAC,CAAC,CAAC,YAAY,CAAC,YAAY,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;YACtG,YAAY,CAAC,SAAS,CAAC,YAAY,GAAG,YAAY,CAAC,SAAS,CAAC,EAAE,CAAC,YAAY,CAAC,YAAY,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC;YAC9G,YAAY,CAAC,OAAO,CAAC,YAAY,GAAG,YAAY,CAAC,OAAO,CAAC,CAAC,CAAC,YAAY,CAAC,YAAY,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;YACtG,YAAY,CAAC,SAAS,CAAC,YAAY,GAAG,YAAY,CAAC,SAAS,CAAC,CAAC,CAAC,YAAY,CAAC,YAAY,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;YAE5G,uDAAuD;YACvD,OAAO,YAAY,CAAC;QACxB,CAAC,CAAA;QAEO,wBAAmB,GAAG,CAAC,EAAU,EAAsC,EAAE;YAC7E,IAAI,MAAM,GAAG,IAAI,CAAC,KAAK,EAAE,EAAE,EAAE,EAAE,CAAC;YAEhC,IAAG,EAAE,KAAG,GAAG,EAAC;gBACR,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC;gBACf,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC;aAClB;iBAAK,IAAG,EAAE,KAAG,GAAG,EAAC;gBACd,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC;gBACf,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC;aAClB;iBAAK,IAAG,EAAE,KAAG,GAAG,EAAC;gBACd,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC;gBACf,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC;aAClB;YAED,IAAI,EAAE,GAAG,IAAI,WAAI,CAAC,IAAI,mBAAQ,CAAC,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC,IAAI,CAAC,CAAC,CAAC,OAAO,CAAC,IAAI,CAAC,CAAC,QAAQ,EAAE,CAAC,EACtK,EAAE,GAAG,IAAI,WAAI,CAAC,IAAI,mBAAQ,CAAC,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC,IAAI,CAAC,CAAC,OAAO,EAAE,CAAC,CAAC,OAAO,CAAC,IAAI,CAAC,CAAC,QAAQ,EAAE,CAAC,CAAC;YAErL,oDAAoD;YACpD,IAAG,EAAE,KAAG,GAAG,EAAC;gBACR,OAAO,EAAE,CAAC,UAAU,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAA,CAAC,CAAA,EAAC,QAAQ,EAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAC,CAAA,CAAC,CAAA,EAAC,QAAQ,EAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAC,CAAC;aAChG;YACD,IAAG,EAAE,KAAG,GAAG,EAAC;gBACR,OAAO,EAAE,CAAC,UAAU,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAA,CAAC,CAAA,EAAC,QAAQ,EAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAC,CAAA,CAAC,CAAA,EAAC,QAAQ,EAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAC,CAAC;aAChG;YACD,IAAG,EAAE,KAAG,GAAG,EAAC;gBACR,OAAO,EAAE,CAAC,UAAU,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAA,CAAC,CAAA,EAAC,QAAQ,EAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAC,CAAA,CAAC,CAAA,EAAC,QAAQ,EAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAC,CAAC;aAChG;YAED,qCAAqC;YACrC,OAAO,EAAC,QAAQ,EAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAC,CAAA;QACtC,CAAC,CAAA;QApTG,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC,EAAE;YACnB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QACD,OAAO,IAAI,CAAC;IAChB,CAAC;IAED,6CAA6C;IAC7C,qBAAqB;IACrB,6CAA6C;IAE7C,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,UAAU,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IACrC,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,UAAU,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IACrC,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,UAAU,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IACrC,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,UAAU,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IACrC,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,UAAU,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IACrC,CAAC;IAED,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,UAAU,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IACrC,CAAC;IAED,IAAI,WAAW;QACX,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE;YAC7B,OAAO,IAAI,CAAC;SACf;QACD,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE;YAC7B,OAAO,IAAI,CAAC;SACf;QACD,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE;YAC7B,OAAO,IAAI,CAAC;SACf;QAED,OAAO,KAAK,CAAC;IACjB,CAAC;IAED,IAAI,aAAa;QACb,OAAO,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC;YACjD,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,CAAC;IACvD,CAAC;IAED,IAAI,SAAS;QACT,OAAO,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC;YACjD,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC;YAC9C,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,OAAO,CAAC,IAAI,CAAC,EAAE,CAAC,UAAU,CAAC,CAAA;IACtD,CAAC;IAED,IAAI,KAAK;QACL,OAAO,IAAI,CAAC,MAAM,CAAC;IACvB,CAAC;IAED,IAAI,YAAY;QACZ,OAAO,IAAI,CAAC,aAAa,CAAC;IAC9B,CAAC;CAwOJ;AAxUD,4BAwUC"}
|
|
@@ -1,41 +0,0 @@
|
|
|
1
|
-
/**
|
|
2
|
-
* Vector module contains everything necessary to handle 2d or 3d vectors.
|
|
3
|
-
* @module Vector
|
|
4
|
-
*/
|
|
5
|
-
import { Fraction } from "../coefficients/fraction";
|
|
6
|
-
import { Point } from "./point";
|
|
7
|
-
export declare class Vector {
|
|
8
|
-
private _x;
|
|
9
|
-
private _y;
|
|
10
|
-
constructor(...values: unknown[]);
|
|
11
|
-
get x(): Fraction;
|
|
12
|
-
set x(value: Fraction | number | string);
|
|
13
|
-
get y(): Fraction;
|
|
14
|
-
set y(value: Fraction | number | string);
|
|
15
|
-
get normSquare(): Fraction;
|
|
16
|
-
get norm(): number;
|
|
17
|
-
get tex(): string;
|
|
18
|
-
get asPoint(): Point;
|
|
19
|
-
parse: (...values: any) => Vector;
|
|
20
|
-
clone: () => Vector;
|
|
21
|
-
reset: () => Vector;
|
|
22
|
-
zero: () => Vector;
|
|
23
|
-
one: () => Vector;
|
|
24
|
-
private _parseString;
|
|
25
|
-
opposed: () => Vector;
|
|
26
|
-
add: (V: Vector) => Vector;
|
|
27
|
-
subtract: (V: Vector) => Vector;
|
|
28
|
-
scalarProductWithVector: (V: Vector) => Fraction;
|
|
29
|
-
determinantWithVector: (V: Vector) => Fraction;
|
|
30
|
-
static scalarProduct: (v1: Vector, v2: Vector) => Fraction;
|
|
31
|
-
static determinant: (v1: Vector, v2: Vector) => Fraction;
|
|
32
|
-
normal: () => Vector;
|
|
33
|
-
isColinearTo: (v: Vector) => boolean;
|
|
34
|
-
isNormalTo: (v: Vector) => boolean;
|
|
35
|
-
get isNull(): boolean;
|
|
36
|
-
multiplyByScalar: (k: any) => Vector;
|
|
37
|
-
divideByScalar: (k: any) => Vector;
|
|
38
|
-
simplify: () => Vector;
|
|
39
|
-
simplifyDirection: () => Vector;
|
|
40
|
-
angleWith: (V: Vector, sharp?: Boolean, radian?: Boolean) => number;
|
|
41
|
-
}
|