pimath 0.0.126 → 0.0.128

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (121) hide show
  1. package/.idea/jsLibraryMappings.xml +6 -0
  2. package/{public/index.html → dist/demo/exercises.html} +2 -2
  3. package/dist/demo/matrices.html +39 -0
  4. package/dist/demo/playground.html +20 -0
  5. package/dist/demo.css +3 -0
  6. package/dist/pimath.js +4239 -7819
  7. package/dist/pimath.umd.cjs +15 -0
  8. package/index.html +15 -0
  9. package/package.json +16 -8
  10. package/public/demo/exercises.html +283 -0
  11. package/public/demo/matrices.html +39 -0
  12. package/public/demo/playground.html +20 -0
  13. package/src/demo/exercises.ts +0 -0
  14. package/src/demo/matrices.ts +61 -0
  15. package/src/demo/playground.ts +153 -0
  16. package/src/{index.ts → main.ts} +1 -1
  17. package/src/maths/algebra/polynom.ts +9 -16
  18. package/src/maths/algebra/rational.ts +8 -4
  19. package/src/maths/geometry/line.ts +22 -25
  20. package/src/maths/geometry/point.ts +43 -29
  21. package/src/maths/randomization/random.ts +7 -0
  22. package/src/maths/randomization/rndGeometryCircle.ts +50 -0
  23. package/src/maths/randomization/rndTypes.ts +10 -4
  24. package/tests/algebra/polynom.test.ts +10 -0
  25. package/tests/geometry/circle.test.ts +222 -1
  26. package/tests/numeric.test.ts +19 -3
  27. package/tsconfig.json +15 -4
  28. package/vite.config.js +23 -0
  29. package/webpack-production.config.js +22 -22
  30. package/webpack.config.js +22 -22
  31. package/dev/pimath.js +0 -7945
  32. package/dev/pimath.js.map +0 -1
  33. package/dist/pimath.js.map +0 -1
  34. package/dist/pimath.min.js +0 -2
  35. package/dist/pimath.min.js.map +0 -1
  36. package/esm/index.d.ts +0 -38
  37. package/esm/index.js +0 -44
  38. package/esm/index.js.map +0 -1
  39. package/esm/maths/algebra/equation.d.ts +0 -119
  40. package/esm/maths/algebra/equation.js +0 -797
  41. package/esm/maths/algebra/equation.js.map +0 -1
  42. package/esm/maths/algebra/linearSystem.d.ts +0 -39
  43. package/esm/maths/algebra/linearSystem.js +0 -279
  44. package/esm/maths/algebra/linearSystem.js.map +0 -1
  45. package/esm/maths/algebra/logicalset.d.ts +0 -28
  46. package/esm/maths/algebra/logicalset.js +0 -158
  47. package/esm/maths/algebra/logicalset.js.map +0 -1
  48. package/esm/maths/algebra/monom.d.ts +0 -206
  49. package/esm/maths/algebra/monom.js +0 -909
  50. package/esm/maths/algebra/monom.js.map +0 -1
  51. package/esm/maths/algebra/polynom.d.ts +0 -157
  52. package/esm/maths/algebra/polynom.js +0 -1305
  53. package/esm/maths/algebra/polynom.js.map +0 -1
  54. package/esm/maths/algebra/rational.d.ts +0 -46
  55. package/esm/maths/algebra/rational.js +0 -195
  56. package/esm/maths/algebra/rational.js.map +0 -1
  57. package/esm/maths/algebra/study/rationalStudy.d.ts +0 -28
  58. package/esm/maths/algebra/study/rationalStudy.js +0 -244
  59. package/esm/maths/algebra/study/rationalStudy.js.map +0 -1
  60. package/esm/maths/algebra/study.d.ts +0 -143
  61. package/esm/maths/algebra/study.js +0 -380
  62. package/esm/maths/algebra/study.js.map +0 -1
  63. package/esm/maths/coefficients/fraction.d.ts +0 -90
  64. package/esm/maths/coefficients/fraction.js +0 -517
  65. package/esm/maths/coefficients/fraction.js.map +0 -1
  66. package/esm/maths/coefficients/nthRoot.d.ts +0 -23
  67. package/esm/maths/coefficients/nthRoot.js +0 -137
  68. package/esm/maths/coefficients/nthRoot.js.map +0 -1
  69. package/esm/maths/geometry/circle.d.ts +0 -45
  70. package/esm/maths/geometry/circle.js +0 -324
  71. package/esm/maths/geometry/circle.js.map +0 -1
  72. package/esm/maths/geometry/line.d.ts +0 -99
  73. package/esm/maths/geometry/line.js +0 -485
  74. package/esm/maths/geometry/line.js.map +0 -1
  75. package/esm/maths/geometry/point.d.ts +0 -34
  76. package/esm/maths/geometry/point.js +0 -167
  77. package/esm/maths/geometry/point.js.map +0 -1
  78. package/esm/maths/geometry/triangle.d.ts +0 -91
  79. package/esm/maths/geometry/triangle.js +0 -276
  80. package/esm/maths/geometry/triangle.js.map +0 -1
  81. package/esm/maths/geometry/vector.d.ts +0 -41
  82. package/esm/maths/geometry/vector.js +0 -198
  83. package/esm/maths/geometry/vector.js.map +0 -1
  84. package/esm/maths/numeric.d.ts +0 -28
  85. package/esm/maths/numeric.js +0 -136
  86. package/esm/maths/numeric.js.map +0 -1
  87. package/esm/maths/numexp.d.ts +0 -19
  88. package/esm/maths/numexp.js +0 -186
  89. package/esm/maths/numexp.js.map +0 -1
  90. package/esm/maths/randomization/random.d.ts +0 -23
  91. package/esm/maths/randomization/random.js +0 -79
  92. package/esm/maths/randomization/random.js.map +0 -1
  93. package/esm/maths/randomization/randomCore.d.ts +0 -7
  94. package/esm/maths/randomization/randomCore.js +0 -22
  95. package/esm/maths/randomization/randomCore.js.map +0 -1
  96. package/esm/maths/randomization/rndFraction.d.ts +0 -12
  97. package/esm/maths/randomization/rndFraction.js +0 -44
  98. package/esm/maths/randomization/rndFraction.js.map +0 -1
  99. package/esm/maths/randomization/rndGeometryLine.d.ts +0 -12
  100. package/esm/maths/randomization/rndGeometryLine.js +0 -46
  101. package/esm/maths/randomization/rndGeometryLine.js.map +0 -1
  102. package/esm/maths/randomization/rndGeometryPoint.d.ts +0 -12
  103. package/esm/maths/randomization/rndGeometryPoint.js +0 -61
  104. package/esm/maths/randomization/rndGeometryPoint.js.map +0 -1
  105. package/esm/maths/randomization/rndHelpers.d.ts +0 -23
  106. package/esm/maths/randomization/rndHelpers.js +0 -98
  107. package/esm/maths/randomization/rndHelpers.js.map +0 -1
  108. package/esm/maths/randomization/rndMonom.d.ts +0 -12
  109. package/esm/maths/randomization/rndMonom.js +0 -53
  110. package/esm/maths/randomization/rndMonom.js.map +0 -1
  111. package/esm/maths/randomization/rndPolynom.d.ts +0 -13
  112. package/esm/maths/randomization/rndPolynom.js +0 -75
  113. package/esm/maths/randomization/rndPolynom.js.map +0 -1
  114. package/esm/maths/randomization/rndTypes.d.ts +0 -34
  115. package/esm/maths/randomization/rndTypes.js +0 -3
  116. package/esm/maths/randomization/rndTypes.js.map +0 -1
  117. package/esm/maths/shutingyard.d.ts +0 -59
  118. package/esm/maths/shutingyard.js +0 -443
  119. package/esm/maths/shutingyard.js.map +0 -1
  120. package/public/matrices.html +0 -100
  121. package/public/playground.html +0 -168
@@ -1,485 +0,0 @@
1
- "use strict";
2
- /**
3
- * This class works for 2d line in a plane.
4
- */
5
- Object.defineProperty(exports, "__esModule", { value: true });
6
- exports.Line = exports.LinePropriety = void 0;
7
- const vector_1 = require("./vector");
8
- const point_1 = require("./point");
9
- const numeric_1 = require("../numeric");
10
- const fraction_1 = require("../coefficients/fraction");
11
- const equation_1 = require("../algebra/equation");
12
- const polynom_1 = require("../algebra/polynom");
13
- const random_1 = require("../randomization/random");
14
- const monom_1 = require("../algebra/monom");
15
- var LinePropriety;
16
- (function (LinePropriety) {
17
- LinePropriety[LinePropriety["None"] = 0] = "None";
18
- LinePropriety["Parallel"] = "parallel";
19
- LinePropriety["Perpendicular"] = "perpendicular";
20
- LinePropriety["Tangent"] = "tangent";
21
- })(LinePropriety || (exports.LinePropriety = LinePropriety = {}));
22
- class Line {
23
- constructor(...values) {
24
- this.randomPoint = (k) => {
25
- // Return a random point on the line.
26
- return this._d
27
- .clone()
28
- .multiplyByScalar(random_1.Random.numberSym((k === undefined || k <= 1) ? 3 : k, false))
29
- .add(this._OA.asVector)
30
- .asPoint;
31
- };
32
- this.randomNearPoint = (k) => {
33
- let pt = this.randomPoint(k);
34
- let maxIterationTest = 10;
35
- while (this.isOnLine(pt) && maxIterationTest > 0) {
36
- pt.x.add(random_1.Random.numberSym(1, false));
37
- pt.y.add(random_1.Random.numberSym(1, false));
38
- maxIterationTest--;
39
- }
40
- return pt;
41
- };
42
- // ------------------------------------------
43
- // Creation / parsing functions
44
- // ------------------------------------------
45
- /**
46
- * Parse data to a line
47
- * @param {any} values
48
- * @returns {Line}
49
- */
50
- this.parse = (...values) => {
51
- this._exists = false;
52
- // Nothing is given...
53
- if (values.length === 0) {
54
- return this;
55
- }
56
- // One value only: already a line (clone it), an Equation, a string (as Equation)
57
- if (values.length === 1) {
58
- if (values[0] instanceof Line) {
59
- // Already a Line
60
- return values[0].clone();
61
- }
62
- else if (values[0] instanceof equation_1.Equation) {
63
- // It's an Equation
64
- return this.parseEquation(values[0]);
65
- }
66
- else if (typeof values[0] === "string") {
67
- // It's a string - create an Equation from it.
68
- try {
69
- let E = new equation_1.Equation(values[0]);
70
- return this.parse(E);
71
- }
72
- catch (e) {
73
- return this;
74
- }
75
- }
76
- }
77
- if (values.length === 2) {
78
- if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
79
- return this.parseByPointAndVector(values[0], values[1]);
80
- }
81
- else if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
82
- return this.parseByPointAndVector(values[0], new vector_1.Vector(values[0], values[1]));
83
- }
84
- else if (values[0] instanceof vector_1.Vector && values[1] instanceof point_1.Point) {
85
- return this.parseByPointAndNormal(values[1], values[0]);
86
- }
87
- }
88
- if (values.length === 3) {
89
- if ((values[0] instanceof fraction_1.Fraction || typeof values[0] === 'number')
90
- &&
91
- (values[1] instanceof fraction_1.Fraction || typeof values[1] === 'number')
92
- &&
93
- (values[2] instanceof fraction_1.Fraction || typeof values[2] === 'number')) {
94
- return this.parseByCoefficient(values[0], values[1], values[2]);
95
- }
96
- else if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
97
- if (values[2] === LinePropriety.Perpendicular) {
98
- return this.parseByPointAndNormal(values[0], values[1]);
99
- }
100
- else if (values[2] === LinePropriety.Parallel) {
101
- return this.parseByPointAndVector(values[0], values[1]);
102
- }
103
- }
104
- else if (values[0] instanceof point_1.Point && values[1] instanceof Line) {
105
- if (values[2] === LinePropriety.Parallel || values[2] === null) {
106
- return this.parseByPointAndLine(values[0], values[1], LinePropriety.Parallel);
107
- }
108
- else {
109
- return this.parseByPointAndLine(values[0], values[1], LinePropriety.Perpendicular);
110
- }
111
- }
112
- }
113
- // TODO: Add the ability to create line from a normal vector
114
- console.log('Someting wrong happend while creating the line');
115
- return this;
116
- };
117
- this.parseEquation = (equ) => {
118
- // Reorder the eequation
119
- equ.reorder(true);
120
- // It must contain either x, y or both.
121
- let letters = new Set(equ.letters());
122
- // No 'x', no 'y' in the equations
123
- if (!(letters.has('x') || letters.has('y'))) {
124
- return this;
125
- }
126
- // Another letter in the equation ?
127
- for (let elem of ['x', 'y']) {
128
- if (letters.has(elem)) {
129
- letters.delete(elem);
130
- }
131
- }
132
- if (letters.size > 0) {
133
- return this;
134
- }
135
- // Everything should be ok now...
136
- return this.parseByCoefficient(equ.left.monomByLetter('x').coefficient, equ.left.monomByLetter('y').coefficient, equ.left.monomByDegree(0).coefficient);
137
- };
138
- this.parseByCoefficient = (a, b, c) => {
139
- this._a = new fraction_1.Fraction(a);
140
- this._b = new fraction_1.Fraction(b);
141
- this._c = new fraction_1.Fraction(c);
142
- this._d = new vector_1.Vector(this._b.clone(), this._a.clone().opposed());
143
- this._OA = new point_1.Point(new fraction_1.Fraction().zero(), this._c.clone());
144
- this._n = this._d.clone().normal();
145
- this._exists = true;
146
- return this;
147
- };
148
- this.parseByPointAndVector = (P, d) => {
149
- // OX = OP + k*d
150
- // x = px + kdx * dy
151
- // y = py + kdy * dx
152
- // ------------------
153
- // dy * x = px * dy + kdxdy
154
- // dx * y = py * dx + kdxdy
155
- // ------------------
156
- // dy * x - dx * y = px * dy - py * dx
157
- // dy * x - dx * y - (px * dy - py * dx) = 0
158
- this.parseByCoefficient(d.y, d.x.clone().opposed(), P.x.clone().multiply(d.y).subtract(P.y.clone().multiply(d.x)).opposed());
159
- // Choose the current values as point and direction vector instead of the automatic version.
160
- this._OA = P.clone();
161
- this._d = d.clone();
162
- this._n = this._d.clone().normal();
163
- this._exists = true;
164
- return this;
165
- };
166
- this.parseByPointAndNormal = (P, n) => {
167
- return this.parseByCoefficient(n.x, n.y, P.x.clone().multiply(n.x)
168
- .add(P.y.clone().multiply(n.y)).opposed());
169
- };
170
- this.parseByPointAndLine = (P, L, orientation) => {
171
- if (orientation === undefined) {
172
- orientation = LinePropriety.Parallel;
173
- }
174
- if (orientation === LinePropriety.Parallel) {
175
- return this.parseByPointAndNormal(P, L.normal);
176
- }
177
- else if (orientation === LinePropriety.Perpendicular) {
178
- return this.parseByPointAndNormal(P, L.director);
179
- }
180
- this._exists = false;
181
- return this;
182
- };
183
- this.clone = () => {
184
- this._a = this._a.clone();
185
- this._b = this._b.clone();
186
- this._c = this._c.clone();
187
- this._d = this._d.clone();
188
- this._OA = this._OA.clone();
189
- this._n = this._n.clone();
190
- this._exists = this.exists;
191
- return this;
192
- };
193
- // ------------------------------------------
194
- // Mathematical operations
195
- // ------------------------------------------
196
- this.isOnLine = (pt) => {
197
- return this._a.clone()
198
- .multiply(pt.x)
199
- .add(this._b.clone()
200
- .multiply(pt.y))
201
- .add(this._c)
202
- .isZero();
203
- };
204
- this.isParallelTo = (line) => {
205
- // Do they have the isSame direction ?
206
- return this.slope.isEqual(line.slope) && this.height.isNotEqual(line.height);
207
- };
208
- this.isSameAs = (line) => {
209
- return this.slope.isEqual(line.slope) && this.height.isEqual(line.height);
210
- };
211
- this.isPerpendicularTo = (line) => {
212
- return this.d.isNormalTo(line.d);
213
- };
214
- this.isVertical = () => {
215
- return this.slope.isInfinity();
216
- };
217
- this.simplify = () => {
218
- let lcm = numeric_1.Numeric.lcm(this._a.denominator, this._b.denominator, this._c.denominator), gcd = numeric_1.Numeric.gcd(this._a.numerator, this._b.numerator, this._c.numerator);
219
- this.parseByCoefficient(this._a.clone().multiply(lcm).divide(gcd), this._b.clone().multiply(lcm).divide(gcd), this._c.clone().multiply(lcm).divide(gcd));
220
- return this;
221
- };
222
- this.simplifyDirection = () => {
223
- this._d.simplifyDirection();
224
- return this;
225
- };
226
- this.intersection = (line) => {
227
- let Pt = new point_1.Point(), isParallel = false, isSame = false, hasIntersection = true;
228
- // this => ax+by+c = 0
229
- // line => dx+ey+f = 0
230
- //
231
- // aex + bey + ce = 0
232
- // dbx + bey + bf = 0
233
- // (ae-db)x + ce-bf = 0
234
- //
235
- // adx + bdy + cd = 0
236
- // adx + aey + af = 0
237
- // (bd-ae)y + (cd-af)
238
- //
239
- // x = (bf-ce)/(ae-db)
240
- // y = (af-cd)/(bd-ae)
241
- // Theres is no 'y'
242
- if (this._b.isZero() || line.b.isZero()) {
243
- // TODO : handle no y in the line canonical form
244
- }
245
- if (this.isParallelTo(line)) {
246
- Pt.x = null;
247
- Pt.y = null;
248
- isParallel = true;
249
- }
250
- else if (this.isSameAs(line)) {
251
- Pt.x = null;
252
- Pt.y = null;
253
- isSame = true;
254
- }
255
- else {
256
- Pt.x = this._b.clone().multiply(line.c).subtract(this._c.clone().multiply(line.b))
257
- .divide(this._a.clone().multiply(line.b).subtract(this._b.clone().multiply(line.a)));
258
- Pt.y = this._a.clone().multiply(line.c).subtract(this._c.clone().multiply(line.a))
259
- .divide(this._b.clone().multiply(line.a).subtract(this._a.clone().multiply(line.b)));
260
- }
261
- return {
262
- point: Pt,
263
- hasIntersection: !(isParallel || isSame),
264
- isParallel,
265
- isSame
266
- };
267
- };
268
- this.getValueAtX = (value) => {
269
- const equ = this.equation.clone().isolate('y'), F = new fraction_1.Fraction(value);
270
- if (equ instanceof equation_1.Equation) {
271
- return equ.right.evaluate({ x: F });
272
- }
273
- return;
274
- };
275
- this.getValueAtY = (value) => {
276
- const equ = this.equation.clone().isolate('x'), F = new fraction_1.Fraction(value);
277
- if (equ instanceof equation_1.Equation) {
278
- return equ.right.evaluate({ y: F });
279
- }
280
- return;
281
- };
282
- this._exists = false;
283
- this._reduceBeforeDisplay = true;
284
- if (values.length > 0) {
285
- this.parse(...values);
286
- }
287
- return this;
288
- }
289
- get a() {
290
- return this._a;
291
- }
292
- set a(value) {
293
- this._a = value;
294
- }
295
- get b() {
296
- return this._b;
297
- }
298
- set b(value) {
299
- this._b = value;
300
- }
301
- get c() {
302
- return this._c;
303
- }
304
- // ------------------------------------------
305
- // Getter and setter
306
- set c(value) {
307
- this._c = value;
308
- }
309
- get OA() {
310
- return this._OA;
311
- }
312
- set OA(value) {
313
- this._OA = value;
314
- }
315
- get d() {
316
- return this._d;
317
- }
318
- set d(value) {
319
- this._d = value;
320
- }
321
- get n() {
322
- return this._n;
323
- }
324
- get exists() {
325
- return this._exists;
326
- }
327
- // ------------------------------------------
328
- get equation() {
329
- let equ = new equation_1.Equation(new polynom_1.Polynom().parse('xy', this._a, this._b, this._c), new polynom_1.Polynom('0'));
330
- if (this._reduceBeforeDisplay) {
331
- return equ.simplify();
332
- }
333
- else {
334
- return equ;
335
- }
336
- }
337
- get system() {
338
- let e1 = new equation_1.Equation(new polynom_1.Polynom('x'), new polynom_1.Polynom(this._OA.x)
339
- .add(new monom_1.Monom('k').multiplyByNumber(this._d.x))), e2 = new equation_1.Equation(new polynom_1.Polynom('y'), new polynom_1.Polynom(this._OA.y)
340
- .add(new monom_1.Monom('k').multiplyByNumber(this._d.y)));
341
- return { x: e1, y: e2 };
342
- }
343
- get tex() {
344
- // canonical => ax + by + c = 0
345
- // mxh => y = -a/b x - c/b
346
- // parametric => (xy) = OA + k*d
347
- // equation => ax + by = -c
348
- let canonical = this.equation.clone().reorder(true);
349
- // Make sur the first item is positive.
350
- if (this._a.isNegative()) {
351
- canonical.multiply(-1);
352
- }
353
- let d = this._d.clone();
354
- if (this._reduceBeforeDisplay) {
355
- d.simplifyDirection();
356
- }
357
- return {
358
- canonical: canonical.tex,
359
- equation: canonical.clone().reorder().tex,
360
- mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.tex : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).tex,
361
- parametric: `${point_1.Point.pmatrix('x', 'y')} = ${point_1.Point.pmatrix(this._OA.x, this._OA.y)} + k\\cdot ${point_1.Point.pmatrix(d.x, d.y)}`,
362
- system: `\\left\\{\\begin{aligned}
363
- x &= ${(new polynom_1.Polynom(this._OA.x)
364
- .add(new monom_1.Monom(this._d.x).multiply(new monom_1.Monom('k'))))
365
- .reorder('k', true)
366
- .tex}\\\\\
367
- y &= ${(new polynom_1.Polynom(this._OA.y)
368
- .add(new monom_1.Monom(this._d.y).multiply(new monom_1.Monom('k'))))
369
- .reorder('k', true)
370
- .tex}
371
- \\end{aligned}\\right.`
372
- };
373
- }
374
- get reduceBeforeDisplay() {
375
- return this._reduceBeforeDisplay;
376
- }
377
- set reduceBeforeDisplay(value) {
378
- this._reduceBeforeDisplay = value;
379
- }
380
- get display() {
381
- // canonical => ax + by + c = 0
382
- // mxh => y = -a/b x - c/b
383
- // parametric => (xy) = OA + k*d // not relevant in display mode.
384
- let canonical = this.equation;
385
- // Make sur the first item is positive.
386
- if (this._a.isNegative()) {
387
- canonical.multiply(-1);
388
- }
389
- return {
390
- canonical: canonical.display,
391
- mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.display : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).display,
392
- parametric: ""
393
- };
394
- }
395
- get normal() {
396
- return new vector_1.Vector(this._a, this._b);
397
- }
398
- get director() {
399
- return this._d.clone();
400
- }
401
- get slope() {
402
- return this._a.clone().opposed().divide(this._b);
403
- }
404
- get height() {
405
- return this._c.clone().opposed().divide(this._b);
406
- }
407
- distanceTo(pt) {
408
- let numerator = pt.x.clone().multiply(this._a)
409
- .add(pt.y.clone().multiply(this._b))
410
- .add(this._c).abs(), d2 = this.normal.normSquare;
411
- // The denominator is null - shouldn't be possible
412
- if (d2.isZero()) {
413
- return {
414
- value: NaN,
415
- tex: 'Not a line',
416
- fraction: new fraction_1.Fraction().infinite()
417
- };
418
- }
419
- // The denominator is a perfect square - simplify the tex result
420
- let value = numerator.value / Math.sqrt(d2.value), F = numerator.clone().divide(d2.clone().sqrt());
421
- // The denominator is a perfect square.
422
- if (d2.isSquare()) {
423
- return {
424
- value,
425
- tex: F.tex,
426
- fraction: F
427
- };
428
- }
429
- // Complete answer...
430
- return {
431
- value,
432
- tex: `\\frac{${numerator.tex}}{\\sqrt{${d2.tex}}}`,
433
- fraction: F
434
- };
435
- }
436
- hitSegment(A, B) {
437
- let iPt = this.intersection(new Line(A, B));
438
- // There is an intersection point
439
- if (iPt.hasIntersection) {
440
- return iPt.point.x.value >= Math.min(A.x.value, B.x.value)
441
- && iPt.point.x.value <= Math.max(A.x.value, B.x.value)
442
- && iPt.point.y.value >= Math.min(A.y.value, B.y.value)
443
- && iPt.point.y.value <= Math.max(A.y.value, B.y.value);
444
- }
445
- return false;
446
- }
447
- // ------------------------------------------
448
- // Special functions
449
- // ------------------------------------------
450
- canonicalAsFloatCoefficient(decimals) {
451
- if (decimals === undefined) {
452
- decimals = 2;
453
- }
454
- let ca = this._a.value, cb = this._b.value, cc = this._c.value, canonical = '';
455
- if (!this._a.isZero()) {
456
- if (this._a.isOne()) {
457
- canonical = 'x';
458
- }
459
- else if (this._a.clone().opposed().isOne()) {
460
- canonical = '-x';
461
- }
462
- else {
463
- canonical = this._a.value.toFixed(decimals) + 'x';
464
- }
465
- }
466
- if (!this._b.isZero()) {
467
- if (this._b.isPositive()) {
468
- canonical += '+';
469
- }
470
- canonical += this._b.value.toFixed(decimals) + 'y';
471
- }
472
- if (!this._c.isZero()) {
473
- if (this._c.isPositive()) {
474
- canonical += '+';
475
- }
476
- canonical += this._c.value.toFixed(decimals);
477
- }
478
- return canonical + '=0';
479
- }
480
- }
481
- exports.Line = Line;
482
- // A line is defined as the canonical form
483
- Line.PERPENDICULAR = LinePropriety.Perpendicular;
484
- Line.PARALLEL = LinePropriety.Parallel;
485
- //# sourceMappingURL=line.js.map
@@ -1 +0,0 @@
1
- {"version":3,"file":"line.js","sourceRoot":"","sources":["../../../src/maths/geometry/line.ts"],"names":[],"mappings":";AAAA;;GAEG;;;AAEH,qCAAgC;AAChC,mCAA8B;AAC9B,wCAAmC;AACnC,uDAAkD;AAClD,kDAA6C;AAC7C,gDAA2C;AAC3C,oDAA+C;AAE/C,4CAAuC;AAEvC,IAAY,aAKX;AALD,WAAY,aAAa;IACrB,iDAAI,CAAA;IACJ,sCAAqB,CAAA;IACrB,gDAA+B,CAAA;IAC/B,oCAAmB,CAAA;AACvB,CAAC,EALW,aAAa,6BAAb,aAAa,QAKxB;AAED,MAAa,IAAI;IAQb,YAAY,GAAG,MAAiB;QAoLhC,gBAAW,GAAG,CAAC,CAAU,EAAS,EAAE;YAChC,qCAAqC;YACrC,OAAO,IAAI,CAAC,EAAE;iBACT,KAAK,EAAE;iBACP,gBAAgB,CAAC,eAAM,CAAC,SAAS,CAAC,CAAC,CAAC,KAAK,SAAS,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC;iBAC9E,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC;iBACtB,OAAO,CAAA;QAChB,CAAC,CAAA;QACD,oBAAe,GAAG,CAAC,CAAU,EAAS,EAAE;YACpC,IAAI,EAAE,GAAG,IAAI,CAAC,WAAW,CAAC,CAAC,CAAC,CAAA;YAE5B,IAAI,gBAAgB,GAAG,EAAE,CAAA;YACzB,OAAO,IAAI,CAAC,QAAQ,CAAC,EAAE,CAAC,IAAI,gBAAgB,GAAG,CAAC,EAAE;gBAC9C,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,eAAM,CAAC,SAAS,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,CAAA;gBACpC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,eAAM,CAAC,SAAS,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,CAAA;gBACpC,gBAAgB,EAAE,CAAA;aAErB;YACD,OAAO,EAAE,CAAA;QACb,CAAC,CAAA;QAEL,6CAA6C;QACzC,+BAA+B;QAE/B,6CAA6C;QAC7C;;;;WAIG;QACH,UAAK,GAAG,CAAC,GAAG,MAAiB,EAAQ,EAAE;YACnC,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;YAErB,sBAAsB;YACtB,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAA;aACd;YAED,iFAAiF;YACjF,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,IAAI,EAAE;oBAC3B,iBAAiB;oBACjB,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;iBAC3B;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,EAAE;oBACtC,mBAAmB;oBACnB,OAAO,IAAI,CAAC,aAAa,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACvC;qBAAM,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,EAAE;oBACtC,8CAA8C;oBAC9C,IAAI;wBACA,IAAI,CAAC,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;wBAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAA;qBACvB;oBAAC,OAAO,CAAC,EAAE;wBACR,OAAO,IAAI,CAAA;qBACd;iBACJ;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAAE;oBAC3D,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;iBAC3D;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBACjE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,eAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;iBAClF;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBAClE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBAC1D;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IACI,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;wBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;wBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC,EAClE;oBACE,OAAO,IAAI,CAAC,kBAAkB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;iBACnE;qBAAM,IACH,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAC3D;oBACE,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,aAAa,EAAE;wBAC3C,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;qBAC1D;yBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,QAAQ,EAAE;wBAC7C,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;qBAC1D;iBACJ;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,IAAI,EAAE;oBAChE,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,QAAQ,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,IAAI,EAAE;wBAC5D,OAAO,IAAI,CAAC,mBAAmB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,aAAa,CAAC,QAAQ,CAAC,CAAA;qBAChF;yBAAM;wBACH,OAAO,IAAI,CAAC,mBAAmB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,aAAa,CAAC,aAAa,CAAC,CAAA;qBACrF;iBACJ;aACJ;YAED,4DAA4D;YAC5D,OAAO,CAAC,GAAG,CAAC,gDAAgD,CAAC,CAAA;YAC7D,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,kBAAa,GAAG,CAAC,GAAa,EAAQ,EAAE;YACpC,wBAAwB;YACxB,GAAG,CAAC,OAAO,CAAC,IAAI,CAAC,CAAA;YAEjB,uCAAuC;YACvC,IAAI,OAAO,GAAG,IAAI,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,CAAC,CAAC;YAErC,kCAAkC;YAClC,IAAI,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE;gBACzC,OAAO,IAAI,CAAA;aACd;YAED,mCAAmC;YACnC,KAAK,IAAI,IAAI,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE;gBACzB,IAAI,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE;oBACnB,OAAO,CAAC,MAAM,CAAC,IAAI,CAAC,CAAA;iBACvB;aACJ;YAED,IAAI,OAAO,CAAC,IAAI,GAAG,CAAC,EAAE;gBAClB,OAAO,IAAI,CAAA;aACd;YAED,iCAAiC;YACjC,OAAO,IAAI,CAAC,kBAAkB,CAAC,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,CAAA;QAC3J,CAAC,CAAA;QACD,uBAAkB,GAAG,CAAC,CAAoB,EAAE,CAAoB,EAAE,CAAoB,EAAQ,EAAE;YAC5F,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAC;YACjE,IAAI,CAAC,GAAG,GAAG,IAAI,aAAK,CAAC,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,CAAC;YAC7D,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;YAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;YACpB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;YAClD,gBAAgB;YAChB,wBAAwB;YACxB,wBAAwB;YACxB,qBAAqB;YACrB,2BAA2B;YAC3B,2BAA2B;YAC3B,qBAAqB;YACrB,sCAAsC;YACtC,4CAA4C;YAC5C,IAAI,CAAC,kBAAkB,CACnB,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,EACrB,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAC1E,CAAA;YAED,4FAA4F;YAC5F,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;YACrB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;YACpB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;YAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;YACpB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;YAClD,OAAO,IAAI,CAAC,kBAAkB,CAC1B,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;iBACpB,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAChD,CAAA;QACL,CAAC,CAAA;QAED,wBAAmB,GAAG,CAAC,CAAQ,EAAE,CAAO,EAAE,WAA2B,EAAQ,EAAE;YAE3E,IAAI,WAAW,KAAK,SAAS,EAAE;gBAC3B,WAAW,GAAG,aAAa,CAAC,QAAQ,CAAA;aACvC;YAED,IAAI,WAAW,KAAK,aAAa,CAAC,QAAQ,EAAE;gBACxC,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,MAAM,CAAC,CAAA;aACjD;iBAAM,IAAI,WAAW,KAAK,aAAa,CAAC,aAAa,EAAE;gBACpD,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,QAAQ,CAAC,CAAA;aACnD;YAED,IAAI,CAAC,OAAO,GAAG,KAAK,CAAA;YACpB,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,UAAK,GAAG,GAAS,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,EAAE,CAAC;YAC5B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAE1B,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC,MAAM,CAAA;YAC1B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,6CAA6C;QAC7C,0BAA0B;QAC1B,6CAA6C;QAC7C,aAAQ,GAAG,CAAC,EAAS,EAAW,EAAE;YAC9B,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE;iBACjB,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC;iBACd,GAAG,CACA,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE;iBACV,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CACtB;iBACA,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC;iBACZ,MAAM,EAAE,CAAA;QACjB,CAAC,CAAA;QAED,iBAAY,GAAG,CAAC,IAAU,EAAW,EAAE;YACnC,sCAAsC;YACtC,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;QACjF,CAAC,CAAA;QACD,aAAQ,GAAG,CAAC,IAAU,EAAW,EAAE;YAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;QAC9E,CAAC,CAAA;QACD,sBAAiB,GAAG,CAAC,IAAU,EAAW,EAAE;YACxC,OAAO,IAAI,CAAC,CAAC,CAAC,UAAU,CAAC,IAAI,CAAC,CAAC,CAAC,CAAA;QACpC,CAAC,CAAA;QACD,eAAU,GAAG,GAAY,EAAE;YACvB,OAAO,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAA;QAClC,CAAC,CAAA;QACD,aAAQ,GAAG,GAAS,EAAE;YAClB,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,EAChF,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,CAAC;YAE/E,IAAI,CAAC,kBAAkB,CACnB,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAC5C,CAAA;YAED,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,sBAAiB,GAAG,GAAS,EAAE;YAC3B,IAAI,CAAC,EAAE,CAAC,iBAAiB,EAAE,CAAA;YAC3B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,iBAAY,GAAG,CAAC,IAAU,EAAoF,EAAE;YAC5G,IAAI,EAAE,GAAG,IAAI,aAAK,EAAE,EAAE,UAAU,GAAG,KAAK,EAAE,MAAM,GAAG,KAAK,EAAE,eAAe,GAAG,IAAI,CAAC;YAEjF,8BAA8B;YAC9B,8BAA8B;YAC9B,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YACtB,uBAAuB;YACvB,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YACtB,qBAAqB;YACrB,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YAGtB,mBAAmB;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,IAAI,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,EAAE;gBACrC,gDAAgD;aACnD;YAED,IAAI,IAAI,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE;gBACzB,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,UAAU,GAAG,IAAI,CAAC;aACrB;iBAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE;gBAC5B,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,MAAM,GAAG,IAAI,CAAC;aACjB;iBAAM;gBACH,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;qBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACzF,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;qBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;aAC5F;YAED,OAAO;gBACH,KAAK,EAAE,EAAE;gBACT,eAAe,EAAE,CAAC,CAAC,UAAU,IAAI,MAAM,CAAC;gBACxC,UAAU;gBACV,MAAM;aACT,CAAC;QACN,CAAC,CAAA;QAmDD,gBAAW,GAAG,CAAC,KAAwB,EAAY,EAAE;YACjD,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAA;YAE3B,IAAI,GAAG,YAAY,mBAAQ,EAAE;gBACzB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;aACpC;YACD,OAAM;QACV,CAAC,CAAA;QACD,gBAAW,GAAG,CAAC,KAAwB,EAAY,EAAE;YACjD,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAA;YAE3B,IAAI,GAAG,YAAY,mBAAQ,EAAE;gBACzB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;aACpC;YACD,OAAM;QACV,CAAC,CAAA;QArhBG,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;QACrB,IAAI,CAAC,oBAAoB,GAAG,IAAI,CAAA;QAEhC,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC,EAAE;YACnB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QAED,OAAO,IAAI,CAAC;IAChB,CAAC;IAKD,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,6CAA6C;IAC7C,oBAAoB;IAEpB,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,GAAG,CAAC;IACpB,CAAC;IAED,IAAI,EAAE,CAAC,KAAY;QACf,IAAI,CAAC,GAAG,GAAG,KAAK,CAAC;IACrB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAa;QACf,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAID,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,OAAO,CAAC;IACxB,CAAC;IAED,6CAA6C;IAC7C,IAAI,QAAQ;QACR,IAAI,GAAG,GAAG,IAAI,mBAAQ,CAAC,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,IAAI,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,EAAE,IAAI,iBAAO,CAAC,GAAG,CAAC,CAAC,CAAA;QAC9F,IAAG,IAAI,CAAC,oBAAoB,EAAE;YAC1B,OAAO,GAAG,CAAC,QAAQ,EAAE,CAAC;SACzB;aAAI;YACD,OAAO,GAAG,CAAA;SACb;IACL,CAAC;IAED,IAAI,MAAM;QACN,IAAI,EAAE,GAAG,IAAI,mBAAQ,CACjB,IAAI,iBAAO,CAAC,GAAG,CAAC,EAChB,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;aAClB,GAAG,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CACvD,EACG,EAAE,GAAG,IAAI,mBAAQ,CACb,IAAI,iBAAO,CAAC,GAAG,CAAC,EAChB,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;aAClB,GAAG,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CACvD,CAAA;QAEL,OAAO,EAAC,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAC,CAAA;IACzB,CAAC;IAED,IAAI,GAAG;QACH,mCAAmC;QACnC,oCAAoC;QACpC,mCAAmC;QACnC,+BAA+B;QAE/B,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,IAAI,CAAC,CAAC;QACpD,uCAAuC;QACvC,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;YACtB,SAAS,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;SAC1B;QAED,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;QACvB,IAAI,IAAI,CAAC,oBAAoB,EAAE;YAC3B,CAAC,CAAC,iBAAiB,EAAE,CAAA;SACxB;QAED,OAAO;YACH,SAAS,EAAE,SAAS,CAAC,GAAG;YACxB,QAAQ,EAAE,SAAS,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,GAAG;YACzC,GAAG,EAAE,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG;YAClH,UAAU,EAAE,GAAG,aAAK,CAAC,OAAO,CAAC,GAAG,EAAE,GAAG,CAAC,MAAM,aAAK,CAAC,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,cAAc,aAAK,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE;YACxH,MAAM,EAAE;mBACD,CAAC,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;iBAC1B,GAAG,CAAC,IAAI,aAAK,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;iBACnD,OAAO,CAAC,GAAG,EAAE,IAAI,CAAC;iBAClB,GAAG;mBACD,CAAC,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;iBAC1B,GAAG,CAAC,IAAI,aAAK,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;iBACnD,OAAO,CAAC,GAAG,EAAE,IAAI,CAAC;iBAClB,GAAG;mCACe;SAC1B,CAAA;IACL,CAAC;IAED,IAAI,mBAAmB;QACnB,OAAO,IAAI,CAAC,oBAAoB,CAAC;IACrC,CAAC;IAED,IAAI,mBAAmB,CAAC,KAAc;QAClC,IAAI,CAAC,oBAAoB,GAAG,KAAK,CAAC;IACtC,CAAC;IAED,IAAI,OAAO;QACP,mCAAmC;QACnC,oCAAoC;QACpC,oEAAoE;QAEpE,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC9B,uCAAuC;QACvC,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;YACtB,SAAS,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;SAC1B;QAED,OAAO;YACH,SAAS,EAAE,SAAS,CAAC,OAAO;YAC5B,GAAG,EAAE,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,OAAO;YAC1H,UAAU,EAAE,EAAE;SACjB,CAAA;IACL,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IACxC,CAAC;IAED,IAAI,QAAQ;QACR,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;IAC1B,CAAC;IAED,IAAI,KAAK;QACL,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IAmSD,UAAU,CAAC,EAAS;QAChB,IAAI,SAAS,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC;aACrC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;aACnC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,EACvB,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC;QAEhC,kDAAkD;QAClD,IAAI,EAAE,CAAC,MAAM,EAAE,EAAE;YACb,OAAO;gBACH,KAAK,EAAE,GAAG;gBACV,GAAG,EAAE,YAAY;gBACjB,QAAQ,EAAE,IAAI,mBAAQ,EAAE,CAAC,QAAQ,EAAE;aACtC,CAAA;SACJ;QACD,gEAAgE;QAChE,IAAI,KAAK,GAAG,SAAS,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,EAC7C,CAAC,GAAG,SAAS,CAAC,KAAK,EAAE,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC,CAAC;QAEpD,uCAAuC;QACvC,IAAI,EAAE,CAAC,QAAQ,EAAE,EAAE;YACf,OAAO;gBACH,KAAK;gBACL,GAAG,EAAE,CAAC,CAAC,GAAG;gBACV,QAAQ,EAAE,CAAC;aACd,CAAA;SACJ;QACD,qBAAqB;QACrB,OAAO;YACH,KAAK;YACL,GAAG,EAAE,UAAU,SAAS,CAAC,GAAG,YAAY,EAAE,CAAC,GAAG,IAAI;YAClD,QAAQ,EAAE,CAAC;SACd,CAAC;IACN,CAAC;IAED,UAAU,CAAC,CAAQ,EAAE,CAAQ;QACzB,IAAI,GAAG,GAAG,IAAI,CAAC,YAAY,CACvB,IAAI,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CACjB,CAAA;QAED,iCAAiC;QACjC,IAAI,GAAG,CAAC,eAAe,EAAE;YACrB,OAAO,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAA;SAC7D;QACD,OAAO,KAAK,CAAC;IACjB,CAAC;IAqBD,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,2BAA2B,CAAC,QAAgB;QACxC,IAAI,QAAQ,KAAK,SAAS,EAAE;YACxB,QAAQ,GAAG,CAAC,CAAC;SAChB;QAED,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,SAAS,GAAG,EAAE,CAAC;QAEnB,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE;gBACjB,SAAS,GAAG,GAAG,CAAA;aAClB;iBAAM,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,KAAK,EAAE,EAAE;gBAC1C,SAAS,GAAG,IAAI,CAAA;aACnB;iBAAM;gBACH,SAAS,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;aACpD;SACJ;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;SACrD;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,CAAA;SAC/C;QAGD,OAAO,SAAS,GAAG,IAAI,CAAC;IAC5B,CAAC;;AAxkBL,oBAykBC;AAxkBG,0CAA0C;AACnC,kBAAa,GAAG,aAAa,CAAC,aAAa,AAA9B,CAA8B;AAC3C,aAAQ,GAAG,aAAa,CAAC,QAAQ,AAAzB,CAAyB"}
@@ -1,34 +0,0 @@
1
- /**
2
- * Vector module contains everything necessary to handle 2d or 3d vectors.
3
- * @module Vector
4
- */
5
- import { Line } from "./line";
6
- import { Vector } from "./vector";
7
- import { Fraction } from "../coefficients/fraction";
8
- export declare class Point {
9
- private _x;
10
- private _y;
11
- private _exist;
12
- constructor(...values: unknown[]);
13
- get x(): Fraction;
14
- set x(value: Fraction);
15
- get y(): Fraction;
16
- set y(value: Fraction);
17
- get tex(): string;
18
- get display(): string;
19
- get asVector(): Vector;
20
- parse: (...values: unknown[]) => Point;
21
- clone: () => Point;
22
- zero: () => Point;
23
- origin: () => Point;
24
- middleOf: (P1: Point, P2: Point) => Point;
25
- texValues: (numberOfDigits: number) => string;
26
- static pmatrix: (a: any, b: any, c?: any) => string;
27
- distanceTo: (item: Point | Line) => {
28
- value: number;
29
- fraction: Fraction;
30
- tex: string;
31
- };
32
- get key(): string;
33
- isInListOfPoints: (list: Point[]) => boolean;
34
- }