pimath 0.0.126 → 0.0.128
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.idea/jsLibraryMappings.xml +6 -0
- package/{public/index.html → dist/demo/exercises.html} +2 -2
- package/dist/demo/matrices.html +39 -0
- package/dist/demo/playground.html +20 -0
- package/dist/demo.css +3 -0
- package/dist/pimath.js +4239 -7819
- package/dist/pimath.umd.cjs +15 -0
- package/index.html +15 -0
- package/package.json +16 -8
- package/public/demo/exercises.html +283 -0
- package/public/demo/matrices.html +39 -0
- package/public/demo/playground.html +20 -0
- package/src/demo/exercises.ts +0 -0
- package/src/demo/matrices.ts +61 -0
- package/src/demo/playground.ts +153 -0
- package/src/{index.ts → main.ts} +1 -1
- package/src/maths/algebra/polynom.ts +9 -16
- package/src/maths/algebra/rational.ts +8 -4
- package/src/maths/geometry/line.ts +22 -25
- package/src/maths/geometry/point.ts +43 -29
- package/src/maths/randomization/random.ts +7 -0
- package/src/maths/randomization/rndGeometryCircle.ts +50 -0
- package/src/maths/randomization/rndTypes.ts +10 -4
- package/tests/algebra/polynom.test.ts +10 -0
- package/tests/geometry/circle.test.ts +222 -1
- package/tests/numeric.test.ts +19 -3
- package/tsconfig.json +15 -4
- package/vite.config.js +23 -0
- package/webpack-production.config.js +22 -22
- package/webpack.config.js +22 -22
- package/dev/pimath.js +0 -7945
- package/dev/pimath.js.map +0 -1
- package/dist/pimath.js.map +0 -1
- package/dist/pimath.min.js +0 -2
- package/dist/pimath.min.js.map +0 -1
- package/esm/index.d.ts +0 -38
- package/esm/index.js +0 -44
- package/esm/index.js.map +0 -1
- package/esm/maths/algebra/equation.d.ts +0 -119
- package/esm/maths/algebra/equation.js +0 -797
- package/esm/maths/algebra/equation.js.map +0 -1
- package/esm/maths/algebra/linearSystem.d.ts +0 -39
- package/esm/maths/algebra/linearSystem.js +0 -279
- package/esm/maths/algebra/linearSystem.js.map +0 -1
- package/esm/maths/algebra/logicalset.d.ts +0 -28
- package/esm/maths/algebra/logicalset.js +0 -158
- package/esm/maths/algebra/logicalset.js.map +0 -1
- package/esm/maths/algebra/monom.d.ts +0 -206
- package/esm/maths/algebra/monom.js +0 -909
- package/esm/maths/algebra/monom.js.map +0 -1
- package/esm/maths/algebra/polynom.d.ts +0 -157
- package/esm/maths/algebra/polynom.js +0 -1305
- package/esm/maths/algebra/polynom.js.map +0 -1
- package/esm/maths/algebra/rational.d.ts +0 -46
- package/esm/maths/algebra/rational.js +0 -195
- package/esm/maths/algebra/rational.js.map +0 -1
- package/esm/maths/algebra/study/rationalStudy.d.ts +0 -28
- package/esm/maths/algebra/study/rationalStudy.js +0 -244
- package/esm/maths/algebra/study/rationalStudy.js.map +0 -1
- package/esm/maths/algebra/study.d.ts +0 -143
- package/esm/maths/algebra/study.js +0 -380
- package/esm/maths/algebra/study.js.map +0 -1
- package/esm/maths/coefficients/fraction.d.ts +0 -90
- package/esm/maths/coefficients/fraction.js +0 -517
- package/esm/maths/coefficients/fraction.js.map +0 -1
- package/esm/maths/coefficients/nthRoot.d.ts +0 -23
- package/esm/maths/coefficients/nthRoot.js +0 -137
- package/esm/maths/coefficients/nthRoot.js.map +0 -1
- package/esm/maths/geometry/circle.d.ts +0 -45
- package/esm/maths/geometry/circle.js +0 -324
- package/esm/maths/geometry/circle.js.map +0 -1
- package/esm/maths/geometry/line.d.ts +0 -99
- package/esm/maths/geometry/line.js +0 -485
- package/esm/maths/geometry/line.js.map +0 -1
- package/esm/maths/geometry/point.d.ts +0 -34
- package/esm/maths/geometry/point.js +0 -167
- package/esm/maths/geometry/point.js.map +0 -1
- package/esm/maths/geometry/triangle.d.ts +0 -91
- package/esm/maths/geometry/triangle.js +0 -276
- package/esm/maths/geometry/triangle.js.map +0 -1
- package/esm/maths/geometry/vector.d.ts +0 -41
- package/esm/maths/geometry/vector.js +0 -198
- package/esm/maths/geometry/vector.js.map +0 -1
- package/esm/maths/numeric.d.ts +0 -28
- package/esm/maths/numeric.js +0 -136
- package/esm/maths/numeric.js.map +0 -1
- package/esm/maths/numexp.d.ts +0 -19
- package/esm/maths/numexp.js +0 -186
- package/esm/maths/numexp.js.map +0 -1
- package/esm/maths/randomization/random.d.ts +0 -23
- package/esm/maths/randomization/random.js +0 -79
- package/esm/maths/randomization/random.js.map +0 -1
- package/esm/maths/randomization/randomCore.d.ts +0 -7
- package/esm/maths/randomization/randomCore.js +0 -22
- package/esm/maths/randomization/randomCore.js.map +0 -1
- package/esm/maths/randomization/rndFraction.d.ts +0 -12
- package/esm/maths/randomization/rndFraction.js +0 -44
- package/esm/maths/randomization/rndFraction.js.map +0 -1
- package/esm/maths/randomization/rndGeometryLine.d.ts +0 -12
- package/esm/maths/randomization/rndGeometryLine.js +0 -46
- package/esm/maths/randomization/rndGeometryLine.js.map +0 -1
- package/esm/maths/randomization/rndGeometryPoint.d.ts +0 -12
- package/esm/maths/randomization/rndGeometryPoint.js +0 -61
- package/esm/maths/randomization/rndGeometryPoint.js.map +0 -1
- package/esm/maths/randomization/rndHelpers.d.ts +0 -23
- package/esm/maths/randomization/rndHelpers.js +0 -98
- package/esm/maths/randomization/rndHelpers.js.map +0 -1
- package/esm/maths/randomization/rndMonom.d.ts +0 -12
- package/esm/maths/randomization/rndMonom.js +0 -53
- package/esm/maths/randomization/rndMonom.js.map +0 -1
- package/esm/maths/randomization/rndPolynom.d.ts +0 -13
- package/esm/maths/randomization/rndPolynom.js +0 -75
- package/esm/maths/randomization/rndPolynom.js.map +0 -1
- package/esm/maths/randomization/rndTypes.d.ts +0 -34
- package/esm/maths/randomization/rndTypes.js +0 -3
- package/esm/maths/randomization/rndTypes.js.map +0 -1
- package/esm/maths/shutingyard.d.ts +0 -59
- package/esm/maths/shutingyard.js +0 -443
- package/esm/maths/shutingyard.js.map +0 -1
- package/public/matrices.html +0 -100
- package/public/playground.html +0 -168
|
@@ -1,485 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
/**
|
|
3
|
-
* This class works for 2d line in a plane.
|
|
4
|
-
*/
|
|
5
|
-
Object.defineProperty(exports, "__esModule", { value: true });
|
|
6
|
-
exports.Line = exports.LinePropriety = void 0;
|
|
7
|
-
const vector_1 = require("./vector");
|
|
8
|
-
const point_1 = require("./point");
|
|
9
|
-
const numeric_1 = require("../numeric");
|
|
10
|
-
const fraction_1 = require("../coefficients/fraction");
|
|
11
|
-
const equation_1 = require("../algebra/equation");
|
|
12
|
-
const polynom_1 = require("../algebra/polynom");
|
|
13
|
-
const random_1 = require("../randomization/random");
|
|
14
|
-
const monom_1 = require("../algebra/monom");
|
|
15
|
-
var LinePropriety;
|
|
16
|
-
(function (LinePropriety) {
|
|
17
|
-
LinePropriety[LinePropriety["None"] = 0] = "None";
|
|
18
|
-
LinePropriety["Parallel"] = "parallel";
|
|
19
|
-
LinePropriety["Perpendicular"] = "perpendicular";
|
|
20
|
-
LinePropriety["Tangent"] = "tangent";
|
|
21
|
-
})(LinePropriety || (exports.LinePropriety = LinePropriety = {}));
|
|
22
|
-
class Line {
|
|
23
|
-
constructor(...values) {
|
|
24
|
-
this.randomPoint = (k) => {
|
|
25
|
-
// Return a random point on the line.
|
|
26
|
-
return this._d
|
|
27
|
-
.clone()
|
|
28
|
-
.multiplyByScalar(random_1.Random.numberSym((k === undefined || k <= 1) ? 3 : k, false))
|
|
29
|
-
.add(this._OA.asVector)
|
|
30
|
-
.asPoint;
|
|
31
|
-
};
|
|
32
|
-
this.randomNearPoint = (k) => {
|
|
33
|
-
let pt = this.randomPoint(k);
|
|
34
|
-
let maxIterationTest = 10;
|
|
35
|
-
while (this.isOnLine(pt) && maxIterationTest > 0) {
|
|
36
|
-
pt.x.add(random_1.Random.numberSym(1, false));
|
|
37
|
-
pt.y.add(random_1.Random.numberSym(1, false));
|
|
38
|
-
maxIterationTest--;
|
|
39
|
-
}
|
|
40
|
-
return pt;
|
|
41
|
-
};
|
|
42
|
-
// ------------------------------------------
|
|
43
|
-
// Creation / parsing functions
|
|
44
|
-
// ------------------------------------------
|
|
45
|
-
/**
|
|
46
|
-
* Parse data to a line
|
|
47
|
-
* @param {any} values
|
|
48
|
-
* @returns {Line}
|
|
49
|
-
*/
|
|
50
|
-
this.parse = (...values) => {
|
|
51
|
-
this._exists = false;
|
|
52
|
-
// Nothing is given...
|
|
53
|
-
if (values.length === 0) {
|
|
54
|
-
return this;
|
|
55
|
-
}
|
|
56
|
-
// One value only: already a line (clone it), an Equation, a string (as Equation)
|
|
57
|
-
if (values.length === 1) {
|
|
58
|
-
if (values[0] instanceof Line) {
|
|
59
|
-
// Already a Line
|
|
60
|
-
return values[0].clone();
|
|
61
|
-
}
|
|
62
|
-
else if (values[0] instanceof equation_1.Equation) {
|
|
63
|
-
// It's an Equation
|
|
64
|
-
return this.parseEquation(values[0]);
|
|
65
|
-
}
|
|
66
|
-
else if (typeof values[0] === "string") {
|
|
67
|
-
// It's a string - create an Equation from it.
|
|
68
|
-
try {
|
|
69
|
-
let E = new equation_1.Equation(values[0]);
|
|
70
|
-
return this.parse(E);
|
|
71
|
-
}
|
|
72
|
-
catch (e) {
|
|
73
|
-
return this;
|
|
74
|
-
}
|
|
75
|
-
}
|
|
76
|
-
}
|
|
77
|
-
if (values.length === 2) {
|
|
78
|
-
if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
|
|
79
|
-
return this.parseByPointAndVector(values[0], values[1]);
|
|
80
|
-
}
|
|
81
|
-
else if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
|
|
82
|
-
return this.parseByPointAndVector(values[0], new vector_1.Vector(values[0], values[1]));
|
|
83
|
-
}
|
|
84
|
-
else if (values[0] instanceof vector_1.Vector && values[1] instanceof point_1.Point) {
|
|
85
|
-
return this.parseByPointAndNormal(values[1], values[0]);
|
|
86
|
-
}
|
|
87
|
-
}
|
|
88
|
-
if (values.length === 3) {
|
|
89
|
-
if ((values[0] instanceof fraction_1.Fraction || typeof values[0] === 'number')
|
|
90
|
-
&&
|
|
91
|
-
(values[1] instanceof fraction_1.Fraction || typeof values[1] === 'number')
|
|
92
|
-
&&
|
|
93
|
-
(values[2] instanceof fraction_1.Fraction || typeof values[2] === 'number')) {
|
|
94
|
-
return this.parseByCoefficient(values[0], values[1], values[2]);
|
|
95
|
-
}
|
|
96
|
-
else if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
|
|
97
|
-
if (values[2] === LinePropriety.Perpendicular) {
|
|
98
|
-
return this.parseByPointAndNormal(values[0], values[1]);
|
|
99
|
-
}
|
|
100
|
-
else if (values[2] === LinePropriety.Parallel) {
|
|
101
|
-
return this.parseByPointAndVector(values[0], values[1]);
|
|
102
|
-
}
|
|
103
|
-
}
|
|
104
|
-
else if (values[0] instanceof point_1.Point && values[1] instanceof Line) {
|
|
105
|
-
if (values[2] === LinePropriety.Parallel || values[2] === null) {
|
|
106
|
-
return this.parseByPointAndLine(values[0], values[1], LinePropriety.Parallel);
|
|
107
|
-
}
|
|
108
|
-
else {
|
|
109
|
-
return this.parseByPointAndLine(values[0], values[1], LinePropriety.Perpendicular);
|
|
110
|
-
}
|
|
111
|
-
}
|
|
112
|
-
}
|
|
113
|
-
// TODO: Add the ability to create line from a normal vector
|
|
114
|
-
console.log('Someting wrong happend while creating the line');
|
|
115
|
-
return this;
|
|
116
|
-
};
|
|
117
|
-
this.parseEquation = (equ) => {
|
|
118
|
-
// Reorder the eequation
|
|
119
|
-
equ.reorder(true);
|
|
120
|
-
// It must contain either x, y or both.
|
|
121
|
-
let letters = new Set(equ.letters());
|
|
122
|
-
// No 'x', no 'y' in the equations
|
|
123
|
-
if (!(letters.has('x') || letters.has('y'))) {
|
|
124
|
-
return this;
|
|
125
|
-
}
|
|
126
|
-
// Another letter in the equation ?
|
|
127
|
-
for (let elem of ['x', 'y']) {
|
|
128
|
-
if (letters.has(elem)) {
|
|
129
|
-
letters.delete(elem);
|
|
130
|
-
}
|
|
131
|
-
}
|
|
132
|
-
if (letters.size > 0) {
|
|
133
|
-
return this;
|
|
134
|
-
}
|
|
135
|
-
// Everything should be ok now...
|
|
136
|
-
return this.parseByCoefficient(equ.left.monomByLetter('x').coefficient, equ.left.monomByLetter('y').coefficient, equ.left.monomByDegree(0).coefficient);
|
|
137
|
-
};
|
|
138
|
-
this.parseByCoefficient = (a, b, c) => {
|
|
139
|
-
this._a = new fraction_1.Fraction(a);
|
|
140
|
-
this._b = new fraction_1.Fraction(b);
|
|
141
|
-
this._c = new fraction_1.Fraction(c);
|
|
142
|
-
this._d = new vector_1.Vector(this._b.clone(), this._a.clone().opposed());
|
|
143
|
-
this._OA = new point_1.Point(new fraction_1.Fraction().zero(), this._c.clone());
|
|
144
|
-
this._n = this._d.clone().normal();
|
|
145
|
-
this._exists = true;
|
|
146
|
-
return this;
|
|
147
|
-
};
|
|
148
|
-
this.parseByPointAndVector = (P, d) => {
|
|
149
|
-
// OX = OP + k*d
|
|
150
|
-
// x = px + kdx * dy
|
|
151
|
-
// y = py + kdy * dx
|
|
152
|
-
// ------------------
|
|
153
|
-
// dy * x = px * dy + kdxdy
|
|
154
|
-
// dx * y = py * dx + kdxdy
|
|
155
|
-
// ------------------
|
|
156
|
-
// dy * x - dx * y = px * dy - py * dx
|
|
157
|
-
// dy * x - dx * y - (px * dy - py * dx) = 0
|
|
158
|
-
this.parseByCoefficient(d.y, d.x.clone().opposed(), P.x.clone().multiply(d.y).subtract(P.y.clone().multiply(d.x)).opposed());
|
|
159
|
-
// Choose the current values as point and direction vector instead of the automatic version.
|
|
160
|
-
this._OA = P.clone();
|
|
161
|
-
this._d = d.clone();
|
|
162
|
-
this._n = this._d.clone().normal();
|
|
163
|
-
this._exists = true;
|
|
164
|
-
return this;
|
|
165
|
-
};
|
|
166
|
-
this.parseByPointAndNormal = (P, n) => {
|
|
167
|
-
return this.parseByCoefficient(n.x, n.y, P.x.clone().multiply(n.x)
|
|
168
|
-
.add(P.y.clone().multiply(n.y)).opposed());
|
|
169
|
-
};
|
|
170
|
-
this.parseByPointAndLine = (P, L, orientation) => {
|
|
171
|
-
if (orientation === undefined) {
|
|
172
|
-
orientation = LinePropriety.Parallel;
|
|
173
|
-
}
|
|
174
|
-
if (orientation === LinePropriety.Parallel) {
|
|
175
|
-
return this.parseByPointAndNormal(P, L.normal);
|
|
176
|
-
}
|
|
177
|
-
else if (orientation === LinePropriety.Perpendicular) {
|
|
178
|
-
return this.parseByPointAndNormal(P, L.director);
|
|
179
|
-
}
|
|
180
|
-
this._exists = false;
|
|
181
|
-
return this;
|
|
182
|
-
};
|
|
183
|
-
this.clone = () => {
|
|
184
|
-
this._a = this._a.clone();
|
|
185
|
-
this._b = this._b.clone();
|
|
186
|
-
this._c = this._c.clone();
|
|
187
|
-
this._d = this._d.clone();
|
|
188
|
-
this._OA = this._OA.clone();
|
|
189
|
-
this._n = this._n.clone();
|
|
190
|
-
this._exists = this.exists;
|
|
191
|
-
return this;
|
|
192
|
-
};
|
|
193
|
-
// ------------------------------------------
|
|
194
|
-
// Mathematical operations
|
|
195
|
-
// ------------------------------------------
|
|
196
|
-
this.isOnLine = (pt) => {
|
|
197
|
-
return this._a.clone()
|
|
198
|
-
.multiply(pt.x)
|
|
199
|
-
.add(this._b.clone()
|
|
200
|
-
.multiply(pt.y))
|
|
201
|
-
.add(this._c)
|
|
202
|
-
.isZero();
|
|
203
|
-
};
|
|
204
|
-
this.isParallelTo = (line) => {
|
|
205
|
-
// Do they have the isSame direction ?
|
|
206
|
-
return this.slope.isEqual(line.slope) && this.height.isNotEqual(line.height);
|
|
207
|
-
};
|
|
208
|
-
this.isSameAs = (line) => {
|
|
209
|
-
return this.slope.isEqual(line.slope) && this.height.isEqual(line.height);
|
|
210
|
-
};
|
|
211
|
-
this.isPerpendicularTo = (line) => {
|
|
212
|
-
return this.d.isNormalTo(line.d);
|
|
213
|
-
};
|
|
214
|
-
this.isVertical = () => {
|
|
215
|
-
return this.slope.isInfinity();
|
|
216
|
-
};
|
|
217
|
-
this.simplify = () => {
|
|
218
|
-
let lcm = numeric_1.Numeric.lcm(this._a.denominator, this._b.denominator, this._c.denominator), gcd = numeric_1.Numeric.gcd(this._a.numerator, this._b.numerator, this._c.numerator);
|
|
219
|
-
this.parseByCoefficient(this._a.clone().multiply(lcm).divide(gcd), this._b.clone().multiply(lcm).divide(gcd), this._c.clone().multiply(lcm).divide(gcd));
|
|
220
|
-
return this;
|
|
221
|
-
};
|
|
222
|
-
this.simplifyDirection = () => {
|
|
223
|
-
this._d.simplifyDirection();
|
|
224
|
-
return this;
|
|
225
|
-
};
|
|
226
|
-
this.intersection = (line) => {
|
|
227
|
-
let Pt = new point_1.Point(), isParallel = false, isSame = false, hasIntersection = true;
|
|
228
|
-
// this => ax+by+c = 0
|
|
229
|
-
// line => dx+ey+f = 0
|
|
230
|
-
//
|
|
231
|
-
// aex + bey + ce = 0
|
|
232
|
-
// dbx + bey + bf = 0
|
|
233
|
-
// (ae-db)x + ce-bf = 0
|
|
234
|
-
//
|
|
235
|
-
// adx + bdy + cd = 0
|
|
236
|
-
// adx + aey + af = 0
|
|
237
|
-
// (bd-ae)y + (cd-af)
|
|
238
|
-
//
|
|
239
|
-
// x = (bf-ce)/(ae-db)
|
|
240
|
-
// y = (af-cd)/(bd-ae)
|
|
241
|
-
// Theres is no 'y'
|
|
242
|
-
if (this._b.isZero() || line.b.isZero()) {
|
|
243
|
-
// TODO : handle no y in the line canonical form
|
|
244
|
-
}
|
|
245
|
-
if (this.isParallelTo(line)) {
|
|
246
|
-
Pt.x = null;
|
|
247
|
-
Pt.y = null;
|
|
248
|
-
isParallel = true;
|
|
249
|
-
}
|
|
250
|
-
else if (this.isSameAs(line)) {
|
|
251
|
-
Pt.x = null;
|
|
252
|
-
Pt.y = null;
|
|
253
|
-
isSame = true;
|
|
254
|
-
}
|
|
255
|
-
else {
|
|
256
|
-
Pt.x = this._b.clone().multiply(line.c).subtract(this._c.clone().multiply(line.b))
|
|
257
|
-
.divide(this._a.clone().multiply(line.b).subtract(this._b.clone().multiply(line.a)));
|
|
258
|
-
Pt.y = this._a.clone().multiply(line.c).subtract(this._c.clone().multiply(line.a))
|
|
259
|
-
.divide(this._b.clone().multiply(line.a).subtract(this._a.clone().multiply(line.b)));
|
|
260
|
-
}
|
|
261
|
-
return {
|
|
262
|
-
point: Pt,
|
|
263
|
-
hasIntersection: !(isParallel || isSame),
|
|
264
|
-
isParallel,
|
|
265
|
-
isSame
|
|
266
|
-
};
|
|
267
|
-
};
|
|
268
|
-
this.getValueAtX = (value) => {
|
|
269
|
-
const equ = this.equation.clone().isolate('y'), F = new fraction_1.Fraction(value);
|
|
270
|
-
if (equ instanceof equation_1.Equation) {
|
|
271
|
-
return equ.right.evaluate({ x: F });
|
|
272
|
-
}
|
|
273
|
-
return;
|
|
274
|
-
};
|
|
275
|
-
this.getValueAtY = (value) => {
|
|
276
|
-
const equ = this.equation.clone().isolate('x'), F = new fraction_1.Fraction(value);
|
|
277
|
-
if (equ instanceof equation_1.Equation) {
|
|
278
|
-
return equ.right.evaluate({ y: F });
|
|
279
|
-
}
|
|
280
|
-
return;
|
|
281
|
-
};
|
|
282
|
-
this._exists = false;
|
|
283
|
-
this._reduceBeforeDisplay = true;
|
|
284
|
-
if (values.length > 0) {
|
|
285
|
-
this.parse(...values);
|
|
286
|
-
}
|
|
287
|
-
return this;
|
|
288
|
-
}
|
|
289
|
-
get a() {
|
|
290
|
-
return this._a;
|
|
291
|
-
}
|
|
292
|
-
set a(value) {
|
|
293
|
-
this._a = value;
|
|
294
|
-
}
|
|
295
|
-
get b() {
|
|
296
|
-
return this._b;
|
|
297
|
-
}
|
|
298
|
-
set b(value) {
|
|
299
|
-
this._b = value;
|
|
300
|
-
}
|
|
301
|
-
get c() {
|
|
302
|
-
return this._c;
|
|
303
|
-
}
|
|
304
|
-
// ------------------------------------------
|
|
305
|
-
// Getter and setter
|
|
306
|
-
set c(value) {
|
|
307
|
-
this._c = value;
|
|
308
|
-
}
|
|
309
|
-
get OA() {
|
|
310
|
-
return this._OA;
|
|
311
|
-
}
|
|
312
|
-
set OA(value) {
|
|
313
|
-
this._OA = value;
|
|
314
|
-
}
|
|
315
|
-
get d() {
|
|
316
|
-
return this._d;
|
|
317
|
-
}
|
|
318
|
-
set d(value) {
|
|
319
|
-
this._d = value;
|
|
320
|
-
}
|
|
321
|
-
get n() {
|
|
322
|
-
return this._n;
|
|
323
|
-
}
|
|
324
|
-
get exists() {
|
|
325
|
-
return this._exists;
|
|
326
|
-
}
|
|
327
|
-
// ------------------------------------------
|
|
328
|
-
get equation() {
|
|
329
|
-
let equ = new equation_1.Equation(new polynom_1.Polynom().parse('xy', this._a, this._b, this._c), new polynom_1.Polynom('0'));
|
|
330
|
-
if (this._reduceBeforeDisplay) {
|
|
331
|
-
return equ.simplify();
|
|
332
|
-
}
|
|
333
|
-
else {
|
|
334
|
-
return equ;
|
|
335
|
-
}
|
|
336
|
-
}
|
|
337
|
-
get system() {
|
|
338
|
-
let e1 = new equation_1.Equation(new polynom_1.Polynom('x'), new polynom_1.Polynom(this._OA.x)
|
|
339
|
-
.add(new monom_1.Monom('k').multiplyByNumber(this._d.x))), e2 = new equation_1.Equation(new polynom_1.Polynom('y'), new polynom_1.Polynom(this._OA.y)
|
|
340
|
-
.add(new monom_1.Monom('k').multiplyByNumber(this._d.y)));
|
|
341
|
-
return { x: e1, y: e2 };
|
|
342
|
-
}
|
|
343
|
-
get tex() {
|
|
344
|
-
// canonical => ax + by + c = 0
|
|
345
|
-
// mxh => y = -a/b x - c/b
|
|
346
|
-
// parametric => (xy) = OA + k*d
|
|
347
|
-
// equation => ax + by = -c
|
|
348
|
-
let canonical = this.equation.clone().reorder(true);
|
|
349
|
-
// Make sur the first item is positive.
|
|
350
|
-
if (this._a.isNegative()) {
|
|
351
|
-
canonical.multiply(-1);
|
|
352
|
-
}
|
|
353
|
-
let d = this._d.clone();
|
|
354
|
-
if (this._reduceBeforeDisplay) {
|
|
355
|
-
d.simplifyDirection();
|
|
356
|
-
}
|
|
357
|
-
return {
|
|
358
|
-
canonical: canonical.tex,
|
|
359
|
-
equation: canonical.clone().reorder().tex,
|
|
360
|
-
mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.tex : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).tex,
|
|
361
|
-
parametric: `${point_1.Point.pmatrix('x', 'y')} = ${point_1.Point.pmatrix(this._OA.x, this._OA.y)} + k\\cdot ${point_1.Point.pmatrix(d.x, d.y)}`,
|
|
362
|
-
system: `\\left\\{\\begin{aligned}
|
|
363
|
-
x &= ${(new polynom_1.Polynom(this._OA.x)
|
|
364
|
-
.add(new monom_1.Monom(this._d.x).multiply(new monom_1.Monom('k'))))
|
|
365
|
-
.reorder('k', true)
|
|
366
|
-
.tex}\\\\\
|
|
367
|
-
y &= ${(new polynom_1.Polynom(this._OA.y)
|
|
368
|
-
.add(new monom_1.Monom(this._d.y).multiply(new monom_1.Monom('k'))))
|
|
369
|
-
.reorder('k', true)
|
|
370
|
-
.tex}
|
|
371
|
-
\\end{aligned}\\right.`
|
|
372
|
-
};
|
|
373
|
-
}
|
|
374
|
-
get reduceBeforeDisplay() {
|
|
375
|
-
return this._reduceBeforeDisplay;
|
|
376
|
-
}
|
|
377
|
-
set reduceBeforeDisplay(value) {
|
|
378
|
-
this._reduceBeforeDisplay = value;
|
|
379
|
-
}
|
|
380
|
-
get display() {
|
|
381
|
-
// canonical => ax + by + c = 0
|
|
382
|
-
// mxh => y = -a/b x - c/b
|
|
383
|
-
// parametric => (xy) = OA + k*d // not relevant in display mode.
|
|
384
|
-
let canonical = this.equation;
|
|
385
|
-
// Make sur the first item is positive.
|
|
386
|
-
if (this._a.isNegative()) {
|
|
387
|
-
canonical.multiply(-1);
|
|
388
|
-
}
|
|
389
|
-
return {
|
|
390
|
-
canonical: canonical.display,
|
|
391
|
-
mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.display : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).display,
|
|
392
|
-
parametric: ""
|
|
393
|
-
};
|
|
394
|
-
}
|
|
395
|
-
get normal() {
|
|
396
|
-
return new vector_1.Vector(this._a, this._b);
|
|
397
|
-
}
|
|
398
|
-
get director() {
|
|
399
|
-
return this._d.clone();
|
|
400
|
-
}
|
|
401
|
-
get slope() {
|
|
402
|
-
return this._a.clone().opposed().divide(this._b);
|
|
403
|
-
}
|
|
404
|
-
get height() {
|
|
405
|
-
return this._c.clone().opposed().divide(this._b);
|
|
406
|
-
}
|
|
407
|
-
distanceTo(pt) {
|
|
408
|
-
let numerator = pt.x.clone().multiply(this._a)
|
|
409
|
-
.add(pt.y.clone().multiply(this._b))
|
|
410
|
-
.add(this._c).abs(), d2 = this.normal.normSquare;
|
|
411
|
-
// The denominator is null - shouldn't be possible
|
|
412
|
-
if (d2.isZero()) {
|
|
413
|
-
return {
|
|
414
|
-
value: NaN,
|
|
415
|
-
tex: 'Not a line',
|
|
416
|
-
fraction: new fraction_1.Fraction().infinite()
|
|
417
|
-
};
|
|
418
|
-
}
|
|
419
|
-
// The denominator is a perfect square - simplify the tex result
|
|
420
|
-
let value = numerator.value / Math.sqrt(d2.value), F = numerator.clone().divide(d2.clone().sqrt());
|
|
421
|
-
// The denominator is a perfect square.
|
|
422
|
-
if (d2.isSquare()) {
|
|
423
|
-
return {
|
|
424
|
-
value,
|
|
425
|
-
tex: F.tex,
|
|
426
|
-
fraction: F
|
|
427
|
-
};
|
|
428
|
-
}
|
|
429
|
-
// Complete answer...
|
|
430
|
-
return {
|
|
431
|
-
value,
|
|
432
|
-
tex: `\\frac{${numerator.tex}}{\\sqrt{${d2.tex}}}`,
|
|
433
|
-
fraction: F
|
|
434
|
-
};
|
|
435
|
-
}
|
|
436
|
-
hitSegment(A, B) {
|
|
437
|
-
let iPt = this.intersection(new Line(A, B));
|
|
438
|
-
// There is an intersection point
|
|
439
|
-
if (iPt.hasIntersection) {
|
|
440
|
-
return iPt.point.x.value >= Math.min(A.x.value, B.x.value)
|
|
441
|
-
&& iPt.point.x.value <= Math.max(A.x.value, B.x.value)
|
|
442
|
-
&& iPt.point.y.value >= Math.min(A.y.value, B.y.value)
|
|
443
|
-
&& iPt.point.y.value <= Math.max(A.y.value, B.y.value);
|
|
444
|
-
}
|
|
445
|
-
return false;
|
|
446
|
-
}
|
|
447
|
-
// ------------------------------------------
|
|
448
|
-
// Special functions
|
|
449
|
-
// ------------------------------------------
|
|
450
|
-
canonicalAsFloatCoefficient(decimals) {
|
|
451
|
-
if (decimals === undefined) {
|
|
452
|
-
decimals = 2;
|
|
453
|
-
}
|
|
454
|
-
let ca = this._a.value, cb = this._b.value, cc = this._c.value, canonical = '';
|
|
455
|
-
if (!this._a.isZero()) {
|
|
456
|
-
if (this._a.isOne()) {
|
|
457
|
-
canonical = 'x';
|
|
458
|
-
}
|
|
459
|
-
else if (this._a.clone().opposed().isOne()) {
|
|
460
|
-
canonical = '-x';
|
|
461
|
-
}
|
|
462
|
-
else {
|
|
463
|
-
canonical = this._a.value.toFixed(decimals) + 'x';
|
|
464
|
-
}
|
|
465
|
-
}
|
|
466
|
-
if (!this._b.isZero()) {
|
|
467
|
-
if (this._b.isPositive()) {
|
|
468
|
-
canonical += '+';
|
|
469
|
-
}
|
|
470
|
-
canonical += this._b.value.toFixed(decimals) + 'y';
|
|
471
|
-
}
|
|
472
|
-
if (!this._c.isZero()) {
|
|
473
|
-
if (this._c.isPositive()) {
|
|
474
|
-
canonical += '+';
|
|
475
|
-
}
|
|
476
|
-
canonical += this._c.value.toFixed(decimals);
|
|
477
|
-
}
|
|
478
|
-
return canonical + '=0';
|
|
479
|
-
}
|
|
480
|
-
}
|
|
481
|
-
exports.Line = Line;
|
|
482
|
-
// A line is defined as the canonical form
|
|
483
|
-
Line.PERPENDICULAR = LinePropriety.Perpendicular;
|
|
484
|
-
Line.PARALLEL = LinePropriety.Parallel;
|
|
485
|
-
//# sourceMappingURL=line.js.map
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
{"version":3,"file":"line.js","sourceRoot":"","sources":["../../../src/maths/geometry/line.ts"],"names":[],"mappings":";AAAA;;GAEG;;;AAEH,qCAAgC;AAChC,mCAA8B;AAC9B,wCAAmC;AACnC,uDAAkD;AAClD,kDAA6C;AAC7C,gDAA2C;AAC3C,oDAA+C;AAE/C,4CAAuC;AAEvC,IAAY,aAKX;AALD,WAAY,aAAa;IACrB,iDAAI,CAAA;IACJ,sCAAqB,CAAA;IACrB,gDAA+B,CAAA;IAC/B,oCAAmB,CAAA;AACvB,CAAC,EALW,aAAa,6BAAb,aAAa,QAKxB;AAED,MAAa,IAAI;IAQb,YAAY,GAAG,MAAiB;QAoLhC,gBAAW,GAAG,CAAC,CAAU,EAAS,EAAE;YAChC,qCAAqC;YACrC,OAAO,IAAI,CAAC,EAAE;iBACT,KAAK,EAAE;iBACP,gBAAgB,CAAC,eAAM,CAAC,SAAS,CAAC,CAAC,CAAC,KAAK,SAAS,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC;iBAC9E,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC;iBACtB,OAAO,CAAA;QAChB,CAAC,CAAA;QACD,oBAAe,GAAG,CAAC,CAAU,EAAS,EAAE;YACpC,IAAI,EAAE,GAAG,IAAI,CAAC,WAAW,CAAC,CAAC,CAAC,CAAA;YAE5B,IAAI,gBAAgB,GAAG,EAAE,CAAA;YACzB,OAAO,IAAI,CAAC,QAAQ,CAAC,EAAE,CAAC,IAAI,gBAAgB,GAAG,CAAC,EAAE;gBAC9C,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,eAAM,CAAC,SAAS,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,CAAA;gBACpC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,eAAM,CAAC,SAAS,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,CAAA;gBACpC,gBAAgB,EAAE,CAAA;aAErB;YACD,OAAO,EAAE,CAAA;QACb,CAAC,CAAA;QAEL,6CAA6C;QACzC,+BAA+B;QAE/B,6CAA6C;QAC7C;;;;WAIG;QACH,UAAK,GAAG,CAAC,GAAG,MAAiB,EAAQ,EAAE;YACnC,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;YAErB,sBAAsB;YACtB,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAA;aACd;YAED,iFAAiF;YACjF,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,IAAI,EAAE;oBAC3B,iBAAiB;oBACjB,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;iBAC3B;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,EAAE;oBACtC,mBAAmB;oBACnB,OAAO,IAAI,CAAC,aAAa,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACvC;qBAAM,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,EAAE;oBACtC,8CAA8C;oBAC9C,IAAI;wBACA,IAAI,CAAC,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;wBAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAA;qBACvB;oBAAC,OAAO,CAAC,EAAE;wBACR,OAAO,IAAI,CAAA;qBACd;iBACJ;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAAE;oBAC3D,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;iBAC3D;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBACjE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,eAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;iBAClF;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBAClE,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBAC1D;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IACI,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;wBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC;;wBAEhE,CAAC,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC,EAClE;oBACE,OAAO,IAAI,CAAC,kBAAkB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;iBACnE;qBAAM,IACH,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,eAAM,EAC3D;oBACE,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,aAAa,EAAE;wBAC3C,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;qBAC1D;yBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,QAAQ,EAAE;wBAC7C,OAAO,IAAI,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;qBAC1D;iBACJ;qBAAM,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,IAAI,EAAE;oBAChE,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,QAAQ,IAAI,MAAM,CAAC,CAAC,CAAC,KAAK,IAAI,EAAE;wBAC5D,OAAO,IAAI,CAAC,mBAAmB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,aAAa,CAAC,QAAQ,CAAC,CAAA;qBAChF;yBAAM;wBACH,OAAO,IAAI,CAAC,mBAAmB,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,aAAa,CAAC,aAAa,CAAC,CAAA;qBACrF;iBACJ;aACJ;YAED,4DAA4D;YAC5D,OAAO,CAAC,GAAG,CAAC,gDAAgD,CAAC,CAAA;YAC7D,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,kBAAa,GAAG,CAAC,GAAa,EAAQ,EAAE;YACpC,wBAAwB;YACxB,GAAG,CAAC,OAAO,CAAC,IAAI,CAAC,CAAA;YAEjB,uCAAuC;YACvC,IAAI,OAAO,GAAG,IAAI,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,CAAC,CAAC;YAErC,kCAAkC;YAClC,IAAI,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE;gBACzC,OAAO,IAAI,CAAA;aACd;YAED,mCAAmC;YACnC,KAAK,IAAI,IAAI,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE;gBACzB,IAAI,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE;oBACnB,OAAO,CAAC,MAAM,CAAC,IAAI,CAAC,CAAA;iBACvB;aACJ;YAED,IAAI,OAAO,CAAC,IAAI,GAAG,CAAC,EAAE;gBAClB,OAAO,IAAI,CAAA;aACd;YAED,iCAAiC;YACjC,OAAO,IAAI,CAAC,kBAAkB,CAAC,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,GAAG,CAAC,CAAC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,CAAA;QAC3J,CAAC,CAAA;QACD,uBAAkB,GAAG,CAAC,CAAoB,EAAE,CAAoB,EAAE,CAAoB,EAAQ,EAAE;YAC5F,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAC;YACjE,IAAI,CAAC,GAAG,GAAG,IAAI,aAAK,CAAC,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,CAAC;YAC7D,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;YAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;YACpB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;YAClD,gBAAgB;YAChB,wBAAwB;YACxB,wBAAwB;YACxB,qBAAqB;YACrB,2BAA2B;YAC3B,2BAA2B;YAC3B,qBAAqB;YACrB,sCAAsC;YACtC,4CAA4C;YAC5C,IAAI,CAAC,kBAAkB,CACnB,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,EACrB,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAC1E,CAAA;YAED,4FAA4F;YAC5F,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;YACrB,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,EAAE,CAAC;YACpB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,CAAC;YAEnC,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC;YACpB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAQ,EAAE,CAAS,EAAQ,EAAE;YAClD,OAAO,IAAI,CAAC,kBAAkB,CAC1B,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,EACH,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;iBACpB,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAChD,CAAA;QACL,CAAC,CAAA;QAED,wBAAmB,GAAG,CAAC,CAAQ,EAAE,CAAO,EAAE,WAA2B,EAAQ,EAAE;YAE3E,IAAI,WAAW,KAAK,SAAS,EAAE;gBAC3B,WAAW,GAAG,aAAa,CAAC,QAAQ,CAAA;aACvC;YAED,IAAI,WAAW,KAAK,aAAa,CAAC,QAAQ,EAAE;gBACxC,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,MAAM,CAAC,CAAA;aACjD;iBAAM,IAAI,WAAW,KAAK,aAAa,CAAC,aAAa,EAAE;gBACpD,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,EAAE,CAAC,CAAC,QAAQ,CAAC,CAAA;aACnD;YAED,IAAI,CAAC,OAAO,GAAG,KAAK,CAAA;YACpB,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,UAAK,GAAG,GAAS,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAE1B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAC1B,IAAI,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,EAAE,CAAC;YAC5B,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;YAE1B,IAAI,CAAC,OAAO,GAAG,IAAI,CAAC,MAAM,CAAA;YAC1B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,6CAA6C;QAC7C,0BAA0B;QAC1B,6CAA6C;QAC7C,aAAQ,GAAG,CAAC,EAAS,EAAW,EAAE;YAC9B,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE;iBACjB,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC;iBACd,GAAG,CACA,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE;iBACV,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CACtB;iBACA,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC;iBACZ,MAAM,EAAE,CAAA;QACjB,CAAC,CAAA;QAED,iBAAY,GAAG,CAAC,IAAU,EAAW,EAAE;YACnC,sCAAsC;YACtC,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;QACjF,CAAC,CAAA;QACD,aAAQ,GAAG,CAAC,IAAU,EAAW,EAAE;YAC/B,OAAO,IAAI,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;QAC9E,CAAC,CAAA;QACD,sBAAiB,GAAG,CAAC,IAAU,EAAW,EAAE;YACxC,OAAO,IAAI,CAAC,CAAC,CAAC,UAAU,CAAC,IAAI,CAAC,CAAC,CAAC,CAAA;QACpC,CAAC,CAAA;QACD,eAAU,GAAG,GAAY,EAAE;YACvB,OAAO,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAA;QAClC,CAAC,CAAA;QACD,aAAQ,GAAG,GAAS,EAAE;YAClB,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,EAChF,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,CAAC;YAE/E,IAAI,CAAC,kBAAkB,CACnB,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,EACzC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAC5C,CAAA;YAED,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,sBAAiB,GAAG,GAAS,EAAE;YAC3B,IAAI,CAAC,EAAE,CAAC,iBAAiB,EAAE,CAAA;YAC3B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QACD,iBAAY,GAAG,CAAC,IAAU,EAAoF,EAAE;YAC5G,IAAI,EAAE,GAAG,IAAI,aAAK,EAAE,EAAE,UAAU,GAAG,KAAK,EAAE,MAAM,GAAG,KAAK,EAAE,eAAe,GAAG,IAAI,CAAC;YAEjF,8BAA8B;YAC9B,8BAA8B;YAC9B,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YACtB,uBAAuB;YACvB,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YACtB,qBAAqB;YACrB,EAAE;YACF,sBAAsB;YACtB,sBAAsB;YAGtB,mBAAmB;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,IAAI,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,EAAE;gBACrC,gDAAgD;aACnD;YAED,IAAI,IAAI,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE;gBACzB,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,UAAU,GAAG,IAAI,CAAC;aACrB;iBAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE;gBAC5B,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC;gBACZ,MAAM,GAAG,IAAI,CAAC;aACjB;iBAAM;gBACH,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;qBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACzF,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;qBAC7E,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;aAC5F;YAED,OAAO;gBACH,KAAK,EAAE,EAAE;gBACT,eAAe,EAAE,CAAC,CAAC,UAAU,IAAI,MAAM,CAAC;gBACxC,UAAU;gBACV,MAAM;aACT,CAAC;QACN,CAAC,CAAA;QAmDD,gBAAW,GAAG,CAAC,KAAwB,EAAY,EAAE;YACjD,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAA;YAE3B,IAAI,GAAG,YAAY,mBAAQ,EAAE;gBACzB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;aACpC;YACD,OAAM;QACV,CAAC,CAAA;QACD,gBAAW,GAAG,CAAC,KAAwB,EAAY,EAAE;YACjD,MAAM,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,GAAG,CAAC,EAC1C,CAAC,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAA;YAE3B,IAAI,GAAG,YAAY,mBAAQ,EAAE;gBACzB,OAAO,GAAG,CAAC,KAAK,CAAC,QAAQ,CAAC,EAAC,CAAC,EAAE,CAAC,EAAC,CAAC,CAAA;aACpC;YACD,OAAM;QACV,CAAC,CAAA;QArhBG,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;QACrB,IAAI,CAAC,oBAAoB,GAAG,IAAI,CAAA;QAEhC,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC,EAAE;YACnB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;QAED,OAAO,IAAI,CAAC;IAChB,CAAC;IAKD,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,6CAA6C;IAC7C,oBAAoB;IAEpB,IAAI,CAAC,CAAC,KAAe;QACjB,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,GAAG,CAAC;IACpB,CAAC;IAED,IAAI,EAAE,CAAC,KAAY;QACf,IAAI,CAAC,GAAG,GAAG,KAAK,CAAC;IACrB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAAa;QACf,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC;IACpB,CAAC;IAID,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAID,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,OAAO,CAAC;IACxB,CAAC;IAED,6CAA6C;IAC7C,IAAI,QAAQ;QACR,IAAI,GAAG,GAAG,IAAI,mBAAQ,CAAC,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,IAAI,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,EAAE,IAAI,iBAAO,CAAC,GAAG,CAAC,CAAC,CAAA;QAC9F,IAAG,IAAI,CAAC,oBAAoB,EAAE;YAC1B,OAAO,GAAG,CAAC,QAAQ,EAAE,CAAC;SACzB;aAAI;YACD,OAAO,GAAG,CAAA;SACb;IACL,CAAC;IAED,IAAI,MAAM;QACN,IAAI,EAAE,GAAG,IAAI,mBAAQ,CACjB,IAAI,iBAAO,CAAC,GAAG,CAAC,EAChB,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;aAClB,GAAG,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CACvD,EACG,EAAE,GAAG,IAAI,mBAAQ,CACb,IAAI,iBAAO,CAAC,GAAG,CAAC,EAChB,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;aAClB,GAAG,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CACvD,CAAA;QAEL,OAAO,EAAC,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAC,CAAA;IACzB,CAAC;IAED,IAAI,GAAG;QACH,mCAAmC;QACnC,oCAAoC;QACpC,mCAAmC;QACnC,+BAA+B;QAE/B,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,OAAO,CAAC,IAAI,CAAC,CAAC;QACpD,uCAAuC;QACvC,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;YACtB,SAAS,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;SAC1B;QAED,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;QACvB,IAAI,IAAI,CAAC,oBAAoB,EAAE;YAC3B,CAAC,CAAC,iBAAiB,EAAE,CAAA;SACxB;QAED,OAAO;YACH,SAAS,EAAE,SAAS,CAAC,GAAG;YACxB,QAAQ,EAAE,SAAS,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,GAAG;YACzC,GAAG,EAAE,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG;YAClH,UAAU,EAAE,GAAG,aAAK,CAAC,OAAO,CAAC,GAAG,EAAE,GAAG,CAAC,MAAM,aAAK,CAAC,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,cAAc,aAAK,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE;YACxH,MAAM,EAAE;mBACD,CAAC,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;iBAC1B,GAAG,CAAC,IAAI,aAAK,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;iBACnD,OAAO,CAAC,GAAG,EAAE,IAAI,CAAC;iBAClB,GAAG;mBACD,CAAC,IAAI,iBAAO,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;iBAC1B,GAAG,CAAC,IAAI,aAAK,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,aAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;iBACnD,OAAO,CAAC,GAAG,EAAE,IAAI,CAAC;iBAClB,GAAG;mCACe;SAC1B,CAAA;IACL,CAAC;IAED,IAAI,mBAAmB;QACnB,OAAO,IAAI,CAAC,oBAAoB,CAAC;IACrC,CAAC;IAED,IAAI,mBAAmB,CAAC,KAAc;QAClC,IAAI,CAAC,oBAAoB,GAAG,KAAK,CAAC;IACtC,CAAC;IAED,IAAI,OAAO;QACP,mCAAmC;QACnC,oCAAoC;QACpC,oEAAoE;QAEpE,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC9B,uCAAuC;QACvC,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;YACtB,SAAS,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;SAC1B;QAED,OAAO;YACH,SAAS,EAAE,SAAS,CAAC,OAAO;YAC5B,GAAG,EAAE,IAAI,CAAC,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,iBAAO,EAAE,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,OAAO;YAC1H,UAAU,EAAE,EAAE;SACjB,CAAA;IACL,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,eAAM,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IACxC,CAAC;IAED,IAAI,QAAQ;QACR,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAA;IAC1B,CAAC;IAED,IAAI,KAAK;QACL,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IAED,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IACrD,CAAC;IAmSD,UAAU,CAAC,EAAS;QAChB,IAAI,SAAS,GAAG,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC;aACrC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;aACnC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,EACvB,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,UAAU,CAAC;QAEhC,kDAAkD;QAClD,IAAI,EAAE,CAAC,MAAM,EAAE,EAAE;YACb,OAAO;gBACH,KAAK,EAAE,GAAG;gBACV,GAAG,EAAE,YAAY;gBACjB,QAAQ,EAAE,IAAI,mBAAQ,EAAE,CAAC,QAAQ,EAAE;aACtC,CAAA;SACJ;QACD,gEAAgE;QAChE,IAAI,KAAK,GAAG,SAAS,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,EAC7C,CAAC,GAAG,SAAS,CAAC,KAAK,EAAE,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC,CAAC;QAEpD,uCAAuC;QACvC,IAAI,EAAE,CAAC,QAAQ,EAAE,EAAE;YACf,OAAO;gBACH,KAAK;gBACL,GAAG,EAAE,CAAC,CAAC,GAAG;gBACV,QAAQ,EAAE,CAAC;aACd,CAAA;SACJ;QACD,qBAAqB;QACrB,OAAO;YACH,KAAK;YACL,GAAG,EAAE,UAAU,SAAS,CAAC,GAAG,YAAY,EAAE,CAAC,GAAG,IAAI;YAClD,QAAQ,EAAE,CAAC;SACd,CAAC;IACN,CAAC;IAED,UAAU,CAAC,CAAQ,EAAE,CAAQ;QACzB,IAAI,GAAG,GAAG,IAAI,CAAC,YAAY,CACvB,IAAI,IAAI,CAAC,CAAC,EAAE,CAAC,CAAC,CACjB,CAAA;QAED,iCAAiC;QACjC,IAAI,GAAG,CAAC,eAAe,EAAE;YACrB,OAAO,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC;mBACnD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAA;SAC7D;QACD,OAAO,KAAK,CAAC;IACjB,CAAC;IAqBD,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,2BAA2B,CAAC,QAAgB;QACxC,IAAI,QAAQ,KAAK,SAAS,EAAE;YACxB,QAAQ,GAAG,CAAC,CAAC;SAChB;QAED,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAClB,SAAS,GAAG,EAAE,CAAC;QAEnB,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,EAAE;gBACjB,SAAS,GAAG,GAAG,CAAA;aAClB;iBAAM,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,KAAK,EAAE,EAAE;gBAC1C,SAAS,GAAG,IAAI,CAAA;aACnB;iBAAM;gBACH,SAAS,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;aACpD;SACJ;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,GAAG,GAAG,CAAA;SACrD;QAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,MAAM,EAAE,EAAE;YACnB,IAAI,IAAI,CAAC,EAAE,CAAC,UAAU,EAAE,EAAE;gBACtB,SAAS,IAAI,GAAG,CAAA;aACnB;YACD,SAAS,IAAI,IAAI,CAAC,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,QAAQ,CAAC,CAAA;SAC/C;QAGD,OAAO,SAAS,GAAG,IAAI,CAAC;IAC5B,CAAC;;AAxkBL,oBAykBC;AAxkBG,0CAA0C;AACnC,kBAAa,GAAG,aAAa,CAAC,aAAa,AAA9B,CAA8B;AAC3C,aAAQ,GAAG,aAAa,CAAC,QAAQ,AAAzB,CAAyB"}
|
|
@@ -1,34 +0,0 @@
|
|
|
1
|
-
/**
|
|
2
|
-
* Vector module contains everything necessary to handle 2d or 3d vectors.
|
|
3
|
-
* @module Vector
|
|
4
|
-
*/
|
|
5
|
-
import { Line } from "./line";
|
|
6
|
-
import { Vector } from "./vector";
|
|
7
|
-
import { Fraction } from "../coefficients/fraction";
|
|
8
|
-
export declare class Point {
|
|
9
|
-
private _x;
|
|
10
|
-
private _y;
|
|
11
|
-
private _exist;
|
|
12
|
-
constructor(...values: unknown[]);
|
|
13
|
-
get x(): Fraction;
|
|
14
|
-
set x(value: Fraction);
|
|
15
|
-
get y(): Fraction;
|
|
16
|
-
set y(value: Fraction);
|
|
17
|
-
get tex(): string;
|
|
18
|
-
get display(): string;
|
|
19
|
-
get asVector(): Vector;
|
|
20
|
-
parse: (...values: unknown[]) => Point;
|
|
21
|
-
clone: () => Point;
|
|
22
|
-
zero: () => Point;
|
|
23
|
-
origin: () => Point;
|
|
24
|
-
middleOf: (P1: Point, P2: Point) => Point;
|
|
25
|
-
texValues: (numberOfDigits: number) => string;
|
|
26
|
-
static pmatrix: (a: any, b: any, c?: any) => string;
|
|
27
|
-
distanceTo: (item: Point | Line) => {
|
|
28
|
-
value: number;
|
|
29
|
-
fraction: Fraction;
|
|
30
|
-
tex: string;
|
|
31
|
-
};
|
|
32
|
-
get key(): string;
|
|
33
|
-
isInListOfPoints: (list: Point[]) => boolean;
|
|
34
|
-
}
|