pimath 0.0.124 → 0.0.126
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.idea/inspectionProfiles/Project_Default.xml +6 -0
- package/.idea/shelf/Uncommitted_changes_before_Checkout_at_07_11_2023_08_30_[Default_Changelist]/shelved.patch +192 -0
- package/.idea/shelf/Uncommitted_changes_before_Checkout_at_07_11_2023_08_30_[Default_Changelist]1/shelved.patch +0 -0
- package/.idea/shelf/Uncommitted_changes_before_Checkout_at_07_11_2023_08_30__Default_Changelist_.xml +4 -0
- package/.idea/shelf/Uncommitted_changes_before_Checkout_at_09_11_2023_10_43_[Default_Changelist]/shelved.patch +2404 -0
- package/.idea/shelf/Uncommitted_changes_before_Checkout_at_09_11_2023_10_43__Default_Changelist_.xml +4 -0
- package/.idea/shelf/Uncommitted_changes_before_Checkout_at_09_11_2023_11_01_[Default_Changelist]/shelved.patch +1362 -0
- package/.idea/shelf/Uncommitted_changes_before_Checkout_at_09_11_2023_11_01__Default_Changelist_.xml +4 -0
- package/dev/pimath.js +7940 -7930
- package/dev/pimath.js.map +1 -1
- package/dist/pimath.js +219 -227
- package/dist/pimath.js.map +1 -1
- package/dist/pimath.min.js +1 -1
- package/dist/pimath.min.js.map +1 -1
- package/docs/assets/main.js +59 -58
- package/docs/assets/navigation.js +1 -0
- package/docs/assets/search.js +1 -1
- package/docs/assets/style.css +1383 -1367
- package/docs/classes/Logicalset.Logicalset.html +217 -221
- package/docs/classes/Polynom.Rational.html +397 -391
- package/docs/classes/Vector-1.Vector.html +490 -494
- package/docs/classes/Vector.Point.html +337 -341
- package/docs/classes/algebra_equation.Equation.html +790 -796
- package/docs/classes/algebra_linearSystem.LinearSystem.html +404 -408
- package/docs/classes/algebra_monom.Monom.html +962 -967
- package/docs/classes/algebra_polynom.Polynom.html +1275 -1281
- package/docs/classes/coefficients_fraction.Fraction.html +934 -939
- package/docs/classes/geometry_circle.Circle.html +472 -476
- package/docs/classes/geometry_line.Line.html +774 -779
- package/docs/classes/geometry_triangle.Triangle.html +429 -429
- package/docs/classes/numeric.Numeric.html +265 -269
- package/docs/classes/shutingyard.Shutingyard.html +250 -259
- package/docs/enums/algebra_equation.PARTICULAR_SOLUTION.html +83 -89
- package/docs/enums/geometry_line.LinePropriety.html +97 -102
- package/docs/enums/shutingyard.ShutingyardMode.html +97 -106
- package/docs/enums/shutingyard.ShutingyardType.html +111 -120
- package/docs/index.html +63 -63
- package/docs/interfaces/algebra_equation.ISolution.html +105 -111
- package/docs/interfaces/algebra_polynom.IEuclidian.html +87 -93
- package/docs/interfaces/geometry_triangle.remarquableLines.html +163 -150
- package/docs/modules/Logicalset.html +65 -69
- package/docs/modules/Polynom.html +65 -69
- package/docs/modules/Vector-1.html +65 -69
- package/docs/modules/Vector.html +65 -69
- package/docs/modules/algebra_equation.html +69 -75
- package/docs/modules/algebra_linearSystem.html +61 -65
- package/docs/modules/algebra_monom.html +65 -70
- package/docs/modules/algebra_polynom.html +69 -75
- package/docs/modules/coefficients_fraction.html +65 -70
- package/docs/modules/geometry_circle.html +61 -65
- package/docs/modules/geometry_line.html +65 -70
- package/docs/modules/geometry_triangle.html +65 -70
- package/docs/modules/numeric.html +61 -65
- package/docs/modules/shutingyard.html +75 -84
- package/docs/types/algebra_monom.literalType.html +61 -66
- package/docs/types/algebra_polynom.PolynomParsingType.html +56 -62
- package/docs/types/coefficients_fraction.FractionParsingType.html +56 -61
- package/docs/types/shutingyard.Token.html +63 -72
- package/docs/types/shutingyard.tokenType.html +68 -77
- package/docs/variables/shutingyard.tokenConstant.html +61 -70
- package/esm/index.js +1 -1
- package/esm/index.js.map +1 -1
- package/esm/maths/algebra/monom.d.ts +19 -19
- package/esm/maths/algebra/monom.js +66 -66
- package/esm/maths/algebra/monom.js.map +1 -1
- package/esm/maths/algebra/polynom.d.ts +14 -14
- package/esm/maths/algebra/polynom.js +72 -50
- package/esm/maths/algebra/polynom.js.map +1 -1
- package/esm/maths/numeric.js +3 -48
- package/esm/maths/numeric.js.map +1 -1
- package/esm/maths/randomization/random.d.ts +1 -1
- package/esm/maths/randomization/random.js +2 -2
- package/esm/maths/randomization/random.js.map +1 -1
- package/esm/maths/randomization/rndHelpers.d.ts +1 -1
- package/esm/maths/randomization/rndHelpers.js +25 -4
- package/esm/maths/randomization/rndHelpers.js.map +1 -1
- package/package.json +1 -1
- package/src/index.ts +1 -1
- package/src/maths/algebra/monom.ts +138 -130
- package/src/maths/algebra/polynom.ts +107 -85
- package/src/maths/numeric.ts +61 -90
- package/src/maths/randomization/random.ts +2 -2
- package/src/maths/randomization/rndHelpers.ts +49 -18
- package/tests/algebra/linear.test.ts +1 -1
- package/tests/algebra/polynom.test.ts +152 -1
- package/tests/algebra/study.test.ts +1 -0
- package/tests/geometry/circle.test.ts +124 -25
- package/tests/geometry/line.test.ts +8 -17
- package/tests/numexp.test.ts +10 -2
- package/esm/maths/expressions/ExpressionTree.d.ts +0 -17
- package/esm/maths/expressions/ExpressionTree.js +0 -150
- package/esm/maths/expressions/ExpressionTree.js.map +0 -1
- package/esm/maths/expressions/expression.d.ts +0 -27
- package/esm/maths/expressions/expression.js +0 -239
- package/esm/maths/expressions/expression.js.map +0 -1
- package/esm/maths/expressions/expressionFactor.d.ts +0 -36
- package/esm/maths/expressions/expressionFactor.js +0 -156
- package/esm/maths/expressions/expressionFactor.js.map +0 -1
- package/esm/maths/expressions/expressionMember.d.ts +0 -27
- package/esm/maths/expressions/expressionMember.js +0 -199
- package/esm/maths/expressions/expressionMember.js.map +0 -1
- package/esm/maths/expressions/expressionOperators.d.ts +0 -8
- package/esm/maths/expressions/expressionOperators.js +0 -42
- package/esm/maths/expressions/expressionOperators.js.map +0 -1
- package/esm/maths/expressions/expressionParser.d.ts +0 -14
- package/esm/maths/expressions/expressionParser.js +0 -259
- package/esm/maths/expressions/expressionParser.js.map +0 -1
- package/esm/maths/expressions/factors/ExpFactor.d.ts +0 -7
- package/esm/maths/expressions/factors/ExpFactor.js +0 -34
- package/esm/maths/expressions/factors/ExpFactor.js.map +0 -1
- package/esm/maths/expressions/factors/ExpFactorConstant.d.ts +0 -14
- package/esm/maths/expressions/factors/ExpFactorConstant.js +0 -52
- package/esm/maths/expressions/factors/ExpFactorConstant.js.map +0 -1
- package/esm/maths/expressions/factors/ExpFactorExponential.d.ts +0 -8
- package/esm/maths/expressions/factors/ExpFactorExponential.js +0 -22
- package/esm/maths/expressions/factors/ExpFactorExponential.js.map +0 -1
- package/esm/maths/expressions/factors/ExpFactorNumber.d.ts +0 -14
- package/esm/maths/expressions/factors/ExpFactorNumber.js +0 -59
- package/esm/maths/expressions/factors/ExpFactorNumber.js.map +0 -1
- package/esm/maths/expressions/factors/ExpFactorPower.d.ts +0 -13
- package/esm/maths/expressions/factors/ExpFactorPower.js +0 -35
- package/esm/maths/expressions/factors/ExpFactorPower.js.map +0 -1
- package/esm/maths/expressions/factors/ExpFactorTrigo.d.ts +0 -20
- package/esm/maths/expressions/factors/ExpFactorTrigo.js +0 -48
- package/esm/maths/expressions/factors/ExpFactorTrigo.js.map +0 -1
- package/esm/maths/expressions/factors/ExpFactorVariable.d.ts +0 -13
- package/esm/maths/expressions/factors/ExpFactorVariable.js +0 -36
- package/esm/maths/expressions/factors/ExpFactorVariable.js.map +0 -1
- package/esm/maths/expressions/internals.d.ts +0 -12
- package/esm/maths/expressions/internals.js +0 -29
- package/esm/maths/expressions/internals.js.map +0 -1
- package/esm/maths/expressions/numexp.d.ts +0 -19
- package/esm/maths/expressions/numexp.js +0 -186
- package/esm/maths/expressions/numexp.js.map +0 -1
- package/esm/maths/expressions/polynomexp.bkp.d.ts +0 -33
- package/esm/maths/expressions/polynomexp.bkp.js +0 -184
- package/esm/maths/expressions/polynomexp.bkp.js.map +0 -1
- package/esm/maths/expressions/polynomexp.d.ts +0 -52
- package/esm/maths/expressions/polynomexp.js +0 -246
- package/esm/maths/expressions/polynomexp.js.map +0 -1
|
@@ -1,184 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
exports.PolynomExp = exports.PolynomExpFactor = exports.isFactor = void 0;
|
|
4
|
-
const polynom_1 = require("../algebra/polynom");
|
|
5
|
-
const fraction_1 = require("../coefficients/fraction");
|
|
6
|
-
function isFactor(value) {
|
|
7
|
-
return value && 'polynom' in value && 'degree' in value;
|
|
8
|
-
}
|
|
9
|
-
exports.isFactor = isFactor;
|
|
10
|
-
class PolynomExpFactor {
|
|
11
|
-
constructor(...values) {
|
|
12
|
-
this.addFactor = (value) => {
|
|
13
|
-
this._factors.push({
|
|
14
|
-
polynom: new polynom_1.Polynom(value.polynom),
|
|
15
|
-
degree: new fraction_1.Fraction(value.degree)
|
|
16
|
-
});
|
|
17
|
-
return this;
|
|
18
|
-
};
|
|
19
|
-
this.multiply = (value) => {
|
|
20
|
-
for (const k of value.factors) {
|
|
21
|
-
this.addFactor(k);
|
|
22
|
-
}
|
|
23
|
-
return this;
|
|
24
|
-
};
|
|
25
|
-
this.divide = (value) => {
|
|
26
|
-
for (const k of value.factors) {
|
|
27
|
-
this.addFactor({
|
|
28
|
-
polynom: k.polynom,
|
|
29
|
-
degree: k.degree.clone().opposed()
|
|
30
|
-
});
|
|
31
|
-
}
|
|
32
|
-
return this;
|
|
33
|
-
};
|
|
34
|
-
this.derivative = (letter) => {
|
|
35
|
-
// A*B*C*D =
|
|
36
|
-
// Basic version
|
|
37
|
-
// TODO: create derivative with more than only two factors.
|
|
38
|
-
if (this._factors.length === 2) {
|
|
39
|
-
const A = this._factors[0], B = this._factors[1], P = new PolynomExp();
|
|
40
|
-
let Ad = this._factorDerivative(A), Bd = this._factorDerivative(B);
|
|
41
|
-
P.add(new PolynomExpFactor({
|
|
42
|
-
polynom: A.polynom.derivative(letter),
|
|
43
|
-
}));
|
|
44
|
-
}
|
|
45
|
-
return;
|
|
46
|
-
};
|
|
47
|
-
this._factorDerivative = (factor, letter) => {
|
|
48
|
-
let derivativeExpression = new PolynomExpFactor();
|
|
49
|
-
derivativeExpression.addFactor({ polynom: new polynom_1.Polynom(factor.degree), degree: new fraction_1.Fraction().one() });
|
|
50
|
-
derivativeExpression.addFactor({ polynom: factor.polynom, degree: factor.degree.subtract(1) });
|
|
51
|
-
derivativeExpression.addFactor({
|
|
52
|
-
polynom: factor.polynom.clone().derivative(letter),
|
|
53
|
-
degree: new fraction_1.Fraction().one()
|
|
54
|
-
});
|
|
55
|
-
return derivativeExpression;
|
|
56
|
-
};
|
|
57
|
-
this._factorAsTex = (factor, withParenthesis) => {
|
|
58
|
-
let tex = '';
|
|
59
|
-
if (factor.degree.isOne()) {
|
|
60
|
-
if (withParenthesis === undefined || withParenthesis) {
|
|
61
|
-
tex = `\\left(${factor.polynom.tex}\\right)`;
|
|
62
|
-
}
|
|
63
|
-
else {
|
|
64
|
-
tex = factor.polynom.tex;
|
|
65
|
-
}
|
|
66
|
-
}
|
|
67
|
-
else if (factor.degree.isNatural()) {
|
|
68
|
-
tex = `\\left(${factor.polynom.tex}\\right)^{ ${factor.degree.tex} }`;
|
|
69
|
-
}
|
|
70
|
-
else {
|
|
71
|
-
if (this._powerAsInteger) {
|
|
72
|
-
if (factor.degree.denominator === 2) {
|
|
73
|
-
tex = `\\sqrt{${factor.polynom.tex}}`;
|
|
74
|
-
}
|
|
75
|
-
else {
|
|
76
|
-
tex = `\\sqrt[${factor.degree.denominator}]{${factor.polynom.tex}}`;
|
|
77
|
-
}
|
|
78
|
-
if (factor.degree.numerator !== 1) {
|
|
79
|
-
tex += `^{ ${factor.degree.numerator} }`;
|
|
80
|
-
}
|
|
81
|
-
}
|
|
82
|
-
else {
|
|
83
|
-
tex = `\\left(${factor.polynom.tex}\\right)^{ ${factor.degree.tex} }`;
|
|
84
|
-
}
|
|
85
|
-
}
|
|
86
|
-
return tex;
|
|
87
|
-
};
|
|
88
|
-
this._powerAsInteger = true;
|
|
89
|
-
this._factors = [];
|
|
90
|
-
for (let factor of values) {
|
|
91
|
-
if (isFactor(factor)) {
|
|
92
|
-
this.addFactor({
|
|
93
|
-
polynom: factor.polynom,
|
|
94
|
-
degree: factor.degree
|
|
95
|
-
});
|
|
96
|
-
}
|
|
97
|
-
}
|
|
98
|
-
}
|
|
99
|
-
get factors() {
|
|
100
|
-
return this._factors;
|
|
101
|
-
}
|
|
102
|
-
get powerAsInteger() {
|
|
103
|
-
return this._powerAsInteger;
|
|
104
|
-
}
|
|
105
|
-
set powerAsInteger(value) {
|
|
106
|
-
this._powerAsInteger = value;
|
|
107
|
-
}
|
|
108
|
-
get tex() {
|
|
109
|
-
// group positive and negative degrees.
|
|
110
|
-
const numerators = [], denominators = [];
|
|
111
|
-
for (const k of this._factors) {
|
|
112
|
-
if (k.degree.isPositive()) {
|
|
113
|
-
numerators.push(this._factorAsTex(k));
|
|
114
|
-
}
|
|
115
|
-
else {
|
|
116
|
-
denominators.push(this._factorAsTex({
|
|
117
|
-
polynom: k.polynom,
|
|
118
|
-
degree: k.degree.clone().opposed()
|
|
119
|
-
}));
|
|
120
|
-
}
|
|
121
|
-
}
|
|
122
|
-
if (denominators.length > 0) {
|
|
123
|
-
return `\\frac{ ${numerators.length > 0 ? numerators.join('') : 1} }{ ${denominators.join('')} }`;
|
|
124
|
-
}
|
|
125
|
-
else {
|
|
126
|
-
return numerators.join('');
|
|
127
|
-
}
|
|
128
|
-
}
|
|
129
|
-
}
|
|
130
|
-
exports.PolynomExpFactor = PolynomExpFactor;
|
|
131
|
-
class PolynomExp {
|
|
132
|
-
constructor(...values) {
|
|
133
|
-
this.add = (value) => {
|
|
134
|
-
value.powerAsInteger = this._powerAsInteger;
|
|
135
|
-
this._factors.push({
|
|
136
|
-
factors: value,
|
|
137
|
-
positive: true
|
|
138
|
-
});
|
|
139
|
-
return this;
|
|
140
|
-
};
|
|
141
|
-
this.subtract = (value) => {
|
|
142
|
-
value.powerAsInteger = this._powerAsInteger;
|
|
143
|
-
this._factors.push({
|
|
144
|
-
factors: value,
|
|
145
|
-
positive: false
|
|
146
|
-
});
|
|
147
|
-
return this;
|
|
148
|
-
};
|
|
149
|
-
this._factors = [];
|
|
150
|
-
if (values !== undefined) {
|
|
151
|
-
for (const factor of values) {
|
|
152
|
-
this._factors.push({
|
|
153
|
-
factors: factor,
|
|
154
|
-
positive: true
|
|
155
|
-
});
|
|
156
|
-
}
|
|
157
|
-
}
|
|
158
|
-
this._powerAsInteger = true;
|
|
159
|
-
}
|
|
160
|
-
get powerAsInteger() {
|
|
161
|
-
return this._powerAsInteger;
|
|
162
|
-
}
|
|
163
|
-
set powerAsInteger(value) {
|
|
164
|
-
for (const factor of this._factors) {
|
|
165
|
-
factor.factors.powerAsInteger = value;
|
|
166
|
-
}
|
|
167
|
-
this._powerAsInteger = value;
|
|
168
|
-
}
|
|
169
|
-
get tex() {
|
|
170
|
-
let tex = '';
|
|
171
|
-
for (const factor of this._factors) {
|
|
172
|
-
if (factor.factors.tex === '') {
|
|
173
|
-
continue;
|
|
174
|
-
}
|
|
175
|
-
if (tex !== '' || !factor.positive) {
|
|
176
|
-
tex += factor.positive ? '+' : '-';
|
|
177
|
-
}
|
|
178
|
-
tex += factor.factors.tex;
|
|
179
|
-
}
|
|
180
|
-
return tex;
|
|
181
|
-
}
|
|
182
|
-
}
|
|
183
|
-
exports.PolynomExp = PolynomExp;
|
|
184
|
-
//# sourceMappingURL=polynomexp.bkp.js.map
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
{"version":3,"file":"polynomexp.bkp.js","sourceRoot":"","sources":["../../../src/maths/expressions/polynomexp.bkp.ts"],"names":[],"mappings":";;;AAAA,gDAA2C;AAC3C,uDAAkD;AAOlD,SAAgB,QAAQ,CAAC,KAAU;IAC/B,OAAO,KAAK,IAAI,SAAS,IAAI,KAAK,IAAI,QAAQ,IAAI,KAAK,CAAA;AAC3D,CAAC;AAFD,4BAEC;AAED,MAAa,gBAAgB;IACzB,YAAY,GAAG,MAAiB;QAqDhC,cAAS,GAAG,CAAC,KAAa,EAAoB,EAAE;YAC5C,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC;gBACf,OAAO,EAAE,IAAI,iBAAO,CAAC,KAAK,CAAC,OAAO,CAAC;gBACnC,MAAM,EAAE,IAAI,mBAAQ,CAAC,KAAK,CAAC,MAAM,CAAC;aACrC,CAAC,CAAA;YAEF,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,KAAuB,EAAoB,EAAE;YACrD,KAAK,MAAM,CAAC,IAAI,KAAK,CAAC,OAAO,EAAE;gBAC3B,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAA;aACpB;YACD,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,WAAM,GAAG,CAAC,KAAuB,EAAoB,EAAE;YACnD,KAAK,MAAM,CAAC,IAAI,KAAK,CAAC,OAAO,EAAE;gBAC3B,IAAI,CAAC,SAAS,CAAC;oBACX,OAAO,EAAE,CAAC,CAAC,OAAO;oBAClB,MAAM,EAAE,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE;iBACrC,CAAC,CAAA;aACL;YACD,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,eAAU,GAAG,CAAC,MAAc,EAAc,EAAE;YACxC,YAAY;YAEZ,gBAAgB;YAChB,2DAA2D;YAC3D,IAAI,IAAI,CAAC,QAAQ,CAAC,MAAM,KAAK,CAAC,EAAE;gBAC5B,MAAM,CAAC,GAAG,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,EAC5C,CAAC,GAAG,IAAI,UAAU,EAAE,CAAA;gBACxB,IAAI,EAAE,GAAG,IAAI,CAAC,iBAAiB,CAAC,CAAC,CAAC,EAC9B,EAAE,GAAG,IAAI,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAA;gBAElC,CAAC,CAAC,GAAG,CACD,IAAI,gBAAgB,CAChB;oBACI,OAAO,EAAE,CAAC,CAAC,OAAO,CAAC,UAAU,CAAC,MAAM,CAAC;iBACxC,CACJ,CACJ,CAAA;aACJ;YACD,OAAM;QACV,CAAC,CAAA;QAEO,sBAAiB,GAAG,CAAC,MAAc,EAAE,MAAe,EAAoB,EAAE;YAC9E,IAAI,oBAAoB,GAAG,IAAI,gBAAgB,EAAE,CAAA;YACjD,oBAAoB,CAAC,SAAS,CAAC,EAAC,OAAO,EAAE,IAAI,iBAAO,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,MAAM,EAAE,IAAI,mBAAQ,EAAE,CAAC,GAAG,EAAE,EAAC,CAAC,CAAA;YACnG,oBAAoB,CAAC,SAAS,CAAC,EAAC,OAAO,EAAE,MAAM,CAAC,OAAO,EAAE,MAAM,EAAE,MAAM,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAC,CAAC,EAAC,CAAC,CAAA;YAC5F,oBAAoB,CAAC,SAAS,CAAC;gBAC3B,OAAO,EAAE,MAAM,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC;gBAClD,MAAM,EAAE,IAAI,mBAAQ,EAAE,CAAC,GAAG,EAAE;aAC/B,CAAC,CAAA;YAEF,OAAO,oBAAoB,CAAA;QAE/B,CAAC,CAAA;QAEO,iBAAY,GAAG,CAAC,MAAc,EAAE,eAAyB,EAAU,EAAE;YACzE,IAAI,GAAG,GAAW,EAAE,CAAA;YAEpB,IAAI,MAAM,CAAC,MAAM,CAAC,KAAK,EAAE,EAAE;gBACvB,IAAI,eAAe,KAAK,SAAS,IAAI,eAAe,EAAE;oBAClD,GAAG,GAAG,UAAU,MAAM,CAAC,OAAO,CAAC,GAAG,UAAU,CAAA;iBAC/C;qBAAM;oBACH,GAAG,GAAG,MAAM,CAAC,OAAO,CAAC,GAAG,CAAA;iBAC3B;aACJ;iBAAM,IAAI,MAAM,CAAC,MAAM,CAAC,SAAS,EAAE,EAAE;gBAClC,GAAG,GAAG,UAAU,MAAM,CAAC,OAAO,CAAC,GAAG,cAAc,MAAM,CAAC,MAAM,CAAC,GAAG,IAAI,CAAA;aACxE;iBAAM;gBACH,IAAI,IAAI,CAAC,eAAe,EAAE;oBACtB,IAAI,MAAM,CAAC,MAAM,CAAC,WAAW,KAAK,CAAC,EAAE;wBACjC,GAAG,GAAG,UAAU,MAAM,CAAC,OAAO,CAAC,GAAG,GAAG,CAAA;qBACxC;yBAAM;wBACH,GAAG,GAAG,UAAU,MAAM,CAAC,MAAM,CAAC,WAAW,KAAK,MAAM,CAAC,OAAO,CAAC,GAAG,GAAG,CAAA;qBACtE;oBAED,IAAI,MAAM,CAAC,MAAM,CAAC,SAAS,KAAK,CAAC,EAAE;wBAC/B,GAAG,IAAI,MAAM,MAAM,CAAC,MAAM,CAAC,SAAS,IAAI,CAAA;qBAC3C;iBACJ;qBAAM;oBACH,GAAG,GAAG,UAAU,MAAM,CAAC,OAAO,CAAC,GAAG,cAAc,MAAM,CAAC,MAAM,CAAC,GAAG,IAAI,CAAA;iBACxE;aACJ;YACD,OAAO,GAAG,CAAA;QACd,CAAC,CAAA;QA5IG,IAAI,CAAC,eAAe,GAAG,IAAI,CAAA;QAC3B,IAAI,CAAC,QAAQ,GAAG,EAAE,CAAA;QAElB,KAAK,IAAI,MAAM,IAAI,MAAM,EAAE;YACvB,IAAI,QAAQ,CAAC,MAAM,CAAC,EAAE;gBAClB,IAAI,CAAC,SAAS,CAAC;oBACX,OAAO,EAAE,MAAM,CAAC,OAAO;oBACvB,MAAM,EAAE,MAAM,CAAC,MAAM;iBACxB,CAAC,CAAA;aACL;SACJ;IACL,CAAC;IAID,IAAI,OAAO;QACP,OAAO,IAAI,CAAC,QAAQ,CAAC;IACzB,CAAC;IAID,IAAI,cAAc;QACd,OAAO,IAAI,CAAC,eAAe,CAAC;IAChC,CAAC;IAED,IAAI,cAAc,CAAC,KAAc;QAC7B,IAAI,CAAC,eAAe,GAAG,KAAK,CAAC;IACjC,CAAC;IAED,IAAI,GAAG;QACH,uCAAuC;QACvC,MAAM,UAAU,GAAa,EAAE,EAC3B,YAAY,GAAa,EAAE,CAAA;QAE/B,KAAK,MAAM,CAAC,IAAI,IAAI,CAAC,QAAQ,EAAE;YAC3B,IAAI,CAAC,CAAC,MAAM,CAAC,UAAU,EAAE,EAAE;gBACvB,UAAU,CAAC,IAAI,CAAC,IAAI,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC,CAAA;aACxC;iBAAM;gBACH,YAAY,CAAC,IAAI,CAAC,IAAI,CAAC,YAAY,CAAC;oBAChC,OAAO,EAAE,CAAC,CAAC,OAAO;oBAClB,MAAM,EAAE,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE;iBACrC,CAAC,CAAC,CAAA;aACN;SACJ;QAED,IAAI,YAAY,CAAC,MAAM,GAAG,CAAC,EAAE;YACzB,OAAO,WAAW,UAAU,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC,UAAU,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,CAAA;SACpG;aAAM;YACH,OAAO,UAAU,CAAC,IAAI,CAAC,EAAE,CAAC,CAAA;SAC7B;IACL,CAAC;CA2FJ;AA/ID,4CA+IC;AAED,MAAa,UAAU;IAGnB,YAAY,GAAG,MAA0B;QA2CzC,QAAG,GAAG,CAAC,KAAuB,EAAc,EAAE;YAC1C,KAAK,CAAC,cAAc,GAAG,IAAI,CAAC,eAAe,CAAA;YAC3C,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC;gBACf,OAAO,EAAE,KAAK;gBACd,QAAQ,EAAE,IAAI;aACjB,CAAC,CAAA;YACF,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,KAAuB,EAAc,EAAE;YAC/C,KAAK,CAAC,cAAc,GAAG,IAAI,CAAC,eAAe,CAAA;YAC3C,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC;gBACf,OAAO,EAAE,KAAK;gBACd,QAAQ,EAAE,KAAK;aAClB,CAAC,CAAA;YACF,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QA1DG,IAAI,CAAC,QAAQ,GAAG,EAAE,CAAA;QAClB,IAAI,MAAM,KAAK,SAAS,EAAE;YACtB,KAAK,MAAM,MAAM,IAAI,MAAM,EAAE;gBACzB,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC;oBACf,OAAO,EAAE,MAAM;oBACf,QAAQ,EAAE,IAAI;iBACjB,CAAC,CAAA;aACL;SACJ;QACD,IAAI,CAAC,eAAe,GAAG,IAAI,CAAA;IAC/B,CAAC;IAID,IAAI,cAAc;QACd,OAAO,IAAI,CAAC,eAAe,CAAC;IAChC,CAAC;IAED,IAAI,cAAc,CAAC,KAAc;QAC7B,KAAK,MAAM,MAAM,IAAI,IAAI,CAAC,QAAQ,EAAE;YAChC,MAAM,CAAC,OAAO,CAAC,cAAc,GAAG,KAAK,CAAA;SACxC;QACD,IAAI,CAAC,eAAe,GAAG,KAAK,CAAC;IACjC,CAAC;IAED,IAAI,GAAG;QACH,IAAI,GAAG,GAAG,EAAE,CAAA;QAEZ,KAAK,MAAM,MAAM,IAAI,IAAI,CAAC,QAAQ,EAAE;YAChC,IAAI,MAAM,CAAC,OAAO,CAAC,GAAG,KAAK,EAAE,EAAE;gBAC3B,SAAQ;aACX;YACD,IAAI,GAAG,KAAK,EAAE,IAAI,CAAC,MAAM,CAAC,QAAQ,EAAE;gBAChC,GAAG,IAAI,MAAM,CAAC,QAAQ,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAA;aACrC;YACD,GAAG,IAAI,MAAM,CAAC,OAAO,CAAC,GAAG,CAAA;SAC5B;QAGD,OAAO,GAAG,CAAA;IACd,CAAC;CAmBJ;AA/DD,gCA+DC"}
|
|
@@ -1,52 +0,0 @@
|
|
|
1
|
-
import { Polynom, PolynomParsingType } from "../algebra/polynom";
|
|
2
|
-
import { Fraction, FractionParsingType } from "../coefficients/fraction";
|
|
3
|
-
type PolynomExpMathFunctionType = {
|
|
4
|
-
name: string;
|
|
5
|
-
fn: Function;
|
|
6
|
-
tex: string;
|
|
7
|
-
};
|
|
8
|
-
export declare class PolynomExpFactor {
|
|
9
|
-
constructor(polynom: PolynomParsingType, degree?: FractionParsingType, mathFunction?: PolynomExpMathFunctionType);
|
|
10
|
-
private _forceParenthesis;
|
|
11
|
-
get forceParenthesis(): boolean;
|
|
12
|
-
set forceParenthesis(value: boolean);
|
|
13
|
-
private _fn;
|
|
14
|
-
get fn(): PolynomExpMathFunctionType;
|
|
15
|
-
set fn(value: PolynomExpMathFunctionType);
|
|
16
|
-
private _powerAsInteger;
|
|
17
|
-
get powerAsInteger(): boolean;
|
|
18
|
-
set powerAsInteger(value: boolean);
|
|
19
|
-
private _polynom;
|
|
20
|
-
get polynom(): Polynom;
|
|
21
|
-
set polynom(value: Polynom);
|
|
22
|
-
private _degree;
|
|
23
|
-
get degree(): Fraction;
|
|
24
|
-
set degree(value: Fraction);
|
|
25
|
-
get tex(): string;
|
|
26
|
-
get isCoefficient(): boolean;
|
|
27
|
-
get firstCoefficient(): Fraction;
|
|
28
|
-
private get _texDegree();
|
|
29
|
-
setForceParenthesis(value?: boolean): PolynomExpFactor;
|
|
30
|
-
derivative(letter?: string): PolynomExpProduct;
|
|
31
|
-
}
|
|
32
|
-
export declare class PolynomExpProduct {
|
|
33
|
-
constructor(...values: PolynomExpFactor[]);
|
|
34
|
-
private _fn;
|
|
35
|
-
get fn(): PolynomExpMathFunctionType;
|
|
36
|
-
set fn(value: PolynomExpMathFunctionType);
|
|
37
|
-
private _factors;
|
|
38
|
-
get factors(): PolynomExpFactor[];
|
|
39
|
-
set factors(value: PolynomExpFactor[]);
|
|
40
|
-
private _positive;
|
|
41
|
-
get positive(): boolean;
|
|
42
|
-
set positive(value: boolean);
|
|
43
|
-
private _asPositiveDegree;
|
|
44
|
-
get asPositiveDegree(): boolean;
|
|
45
|
-
set asPositiveDegree(value: boolean);
|
|
46
|
-
get tex(): string;
|
|
47
|
-
reduce(): PolynomExpProduct;
|
|
48
|
-
integrate(letter?: string): PolynomExpProduct;
|
|
49
|
-
applyMathFunction(mathFn: PolynomExpMathFunctionType): PolynomExpProduct;
|
|
50
|
-
private _integrateWithInternalDerivative;
|
|
51
|
-
}
|
|
52
|
-
export {};
|
|
@@ -1,246 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
exports.PolynomExpProduct = exports.PolynomExpFactor = void 0;
|
|
4
|
-
const polynom_1 = require("../algebra/polynom");
|
|
5
|
-
const fraction_1 = require("../coefficients/fraction");
|
|
6
|
-
class PolynomExpFactor {
|
|
7
|
-
constructor(polynom, degree, mathFunction) {
|
|
8
|
-
this._polynom = new polynom_1.Polynom(polynom);
|
|
9
|
-
this._degree = new fraction_1.Fraction(degree === undefined ? 1 : degree);
|
|
10
|
-
this._fn = mathFunction;
|
|
11
|
-
this._powerAsInteger = true;
|
|
12
|
-
this._forceParenthesis = true;
|
|
13
|
-
}
|
|
14
|
-
get forceParenthesis() {
|
|
15
|
-
return this._forceParenthesis;
|
|
16
|
-
}
|
|
17
|
-
set forceParenthesis(value) {
|
|
18
|
-
this._forceParenthesis = value;
|
|
19
|
-
}
|
|
20
|
-
get fn() {
|
|
21
|
-
return this._fn;
|
|
22
|
-
}
|
|
23
|
-
set fn(value) {
|
|
24
|
-
this._fn = value;
|
|
25
|
-
}
|
|
26
|
-
get powerAsInteger() {
|
|
27
|
-
return this._powerAsInteger;
|
|
28
|
-
}
|
|
29
|
-
set powerAsInteger(value) {
|
|
30
|
-
this._powerAsInteger = value;
|
|
31
|
-
}
|
|
32
|
-
get polynom() {
|
|
33
|
-
return this._polynom;
|
|
34
|
-
}
|
|
35
|
-
set polynom(value) {
|
|
36
|
-
this._polynom = value;
|
|
37
|
-
}
|
|
38
|
-
get degree() {
|
|
39
|
-
return this._degree;
|
|
40
|
-
}
|
|
41
|
-
set degree(value) {
|
|
42
|
-
this._degree = value;
|
|
43
|
-
}
|
|
44
|
-
get tex() {
|
|
45
|
-
let tex;
|
|
46
|
-
if (this._degree.isOne() && (this._fn !== undefined || !this._forceParenthesis)) {
|
|
47
|
-
// If degree is one, no need to add the parenthesis.
|
|
48
|
-
tex = this._polynom.tex;
|
|
49
|
-
}
|
|
50
|
-
else {
|
|
51
|
-
// the degree is not one, add the parenthesis.
|
|
52
|
-
if (this._powerAsInteger && !this._degree.isRelative()) {
|
|
53
|
-
// the degree is a fraction and we want natural powers => use sqrt.
|
|
54
|
-
tex = `\\sqrt${this._degree.denominator !== 2 ? `[ ${this._degree.denominator} ]` : ''}{ ${this._polynom.tex} }^{ ${this._degree.numerator} }`;
|
|
55
|
-
}
|
|
56
|
-
else if (this.isCoefficient && this.firstCoefficient.isNatural()) {
|
|
57
|
-
// the value is a natural number (eg 3, 7, ...)
|
|
58
|
-
tex = this._polynom.tex + this._texDegree;
|
|
59
|
-
}
|
|
60
|
-
else {
|
|
61
|
-
// In any other case, add the parenthesis by default
|
|
62
|
-
tex = `\\left( ${this._polynom.tex} \\right)${this._texDegree}`;
|
|
63
|
-
}
|
|
64
|
-
}
|
|
65
|
-
if (this._fn !== undefined && this._fn.tex !== undefined) {
|
|
66
|
-
tex = `${this._fn.tex}\\left( ${tex} \\right)`;
|
|
67
|
-
}
|
|
68
|
-
return tex;
|
|
69
|
-
}
|
|
70
|
-
get isCoefficient() {
|
|
71
|
-
// TODO: Maybe reduce the coefficient if it isn't of degree one.
|
|
72
|
-
return this._polynom.degree().isZero();
|
|
73
|
-
}
|
|
74
|
-
get firstCoefficient() {
|
|
75
|
-
return this._polynom.monomByDegree().coefficient;
|
|
76
|
-
}
|
|
77
|
-
get _texDegree() {
|
|
78
|
-
if (this._degree.isOne()) {
|
|
79
|
-
return '';
|
|
80
|
-
}
|
|
81
|
-
else {
|
|
82
|
-
return `^{ ${this._degree.tfrac} }`;
|
|
83
|
-
}
|
|
84
|
-
}
|
|
85
|
-
setForceParenthesis(value) {
|
|
86
|
-
this._forceParenthesis = value === undefined || value;
|
|
87
|
-
return this;
|
|
88
|
-
}
|
|
89
|
-
derivative(letter) {
|
|
90
|
-
if (this._degree.isOne()) {
|
|
91
|
-
return new PolynomExpProduct(new PolynomExpFactor(this._polynom.clone().derivative(letter)));
|
|
92
|
-
}
|
|
93
|
-
else {
|
|
94
|
-
return new PolynomExpProduct(new PolynomExpFactor(this._degree.clone()), new PolynomExpFactor(this._polynom.clone().derivative(letter)), new PolynomExpFactor(this._polynom.clone(), this._degree.clone().subtract(1)));
|
|
95
|
-
}
|
|
96
|
-
}
|
|
97
|
-
}
|
|
98
|
-
exports.PolynomExpFactor = PolynomExpFactor;
|
|
99
|
-
class PolynomExpProduct {
|
|
100
|
-
constructor(...values) {
|
|
101
|
-
this._factors = values || [];
|
|
102
|
-
this._positive = true;
|
|
103
|
-
this._asPositiveDegree = true;
|
|
104
|
-
}
|
|
105
|
-
get fn() {
|
|
106
|
-
return this._fn;
|
|
107
|
-
}
|
|
108
|
-
set fn(value) {
|
|
109
|
-
this._fn = value;
|
|
110
|
-
}
|
|
111
|
-
get factors() {
|
|
112
|
-
return this._factors;
|
|
113
|
-
}
|
|
114
|
-
set factors(value) {
|
|
115
|
-
this._factors = value;
|
|
116
|
-
}
|
|
117
|
-
get positive() {
|
|
118
|
-
return this._positive;
|
|
119
|
-
}
|
|
120
|
-
set positive(value) {
|
|
121
|
-
this._positive = value;
|
|
122
|
-
}
|
|
123
|
-
get asPositiveDegree() {
|
|
124
|
-
return this._asPositiveDegree;
|
|
125
|
-
}
|
|
126
|
-
set asPositiveDegree(value) {
|
|
127
|
-
this._asPositiveDegree = value;
|
|
128
|
-
}
|
|
129
|
-
get tex() {
|
|
130
|
-
let parenthesis = this._factors.length > 1;
|
|
131
|
-
// Default value
|
|
132
|
-
let tex = this._factors.map(factor => factor.setForceParenthesis(parenthesis).tex).join(' \\cdot ');
|
|
133
|
-
// Change the value in some cases...
|
|
134
|
-
if (this._asPositiveDegree) {
|
|
135
|
-
const numerators = this._factors.filter(x => x.degree.isPositive()), denominators = this._factors.filter(x => x.degree.isNegative());
|
|
136
|
-
let numeratorsAsTex, denominatorsAsTex;
|
|
137
|
-
if (denominators.length > 0) {
|
|
138
|
-
if (numerators.length === 0) {
|
|
139
|
-
numeratorsAsTex = [1];
|
|
140
|
-
}
|
|
141
|
-
else if (numerators.length === 1) {
|
|
142
|
-
numeratorsAsTex = [numerators[0].setForceParenthesis(false).tex];
|
|
143
|
-
}
|
|
144
|
-
else {
|
|
145
|
-
parenthesis = numerators.length > 1;
|
|
146
|
-
numeratorsAsTex = numerators.map(factor => factor.setForceParenthesis(parenthesis).tex);
|
|
147
|
-
}
|
|
148
|
-
// Change all denominators degrees to positive.
|
|
149
|
-
denominators.map(x => x.degree.opposed());
|
|
150
|
-
if (denominators.length === 1) {
|
|
151
|
-
denominatorsAsTex = [denominators[0].setForceParenthesis(false).tex];
|
|
152
|
-
}
|
|
153
|
-
else {
|
|
154
|
-
parenthesis = denominators.length > 1;
|
|
155
|
-
denominatorsAsTex = denominators.map(factor => factor.setForceParenthesis(parenthesis).tex);
|
|
156
|
-
}
|
|
157
|
-
// restore all degrees to negative again.
|
|
158
|
-
denominators.map(x => x.degree.opposed());
|
|
159
|
-
tex = `\\frac{ ${numeratorsAsTex.join(' \\cdot ')} }{ ${denominatorsAsTex.join(' \\cdot ')} }`;
|
|
160
|
-
}
|
|
161
|
-
}
|
|
162
|
-
// Apply the modification
|
|
163
|
-
if (this._fn !== undefined && this._fn.name !== undefined && this._fn.name !== '') {
|
|
164
|
-
tex = `${this._fn.tex}\\left( ${tex} \\right)`;
|
|
165
|
-
}
|
|
166
|
-
return tex;
|
|
167
|
-
}
|
|
168
|
-
reduce() {
|
|
169
|
-
let coefficients = this._factors.filter(factor => factor.isCoefficient), polynoms = this._factors.filter(factor => !factor.isCoefficient);
|
|
170
|
-
let result = new fraction_1.Fraction().one();
|
|
171
|
-
if (coefficients.length > 1) {
|
|
172
|
-
for (const factor of coefficients) {
|
|
173
|
-
if (factor.degree.isPositive()) {
|
|
174
|
-
result.multiply(factor.polynom.monoms[0].coefficient.pow(factor.degree));
|
|
175
|
-
}
|
|
176
|
-
else {
|
|
177
|
-
result.divide(factor.polynom.monoms[0].coefficient.pow(factor.degree.clone().abs()));
|
|
178
|
-
}
|
|
179
|
-
}
|
|
180
|
-
}
|
|
181
|
-
else if (coefficients.length === 1) {
|
|
182
|
-
result = coefficients[0].polynom.monoms[0].coefficient;
|
|
183
|
-
}
|
|
184
|
-
if (result.isOne()) {
|
|
185
|
-
this._factors = [...polynoms];
|
|
186
|
-
}
|
|
187
|
-
else if (!result.isRelative()) {
|
|
188
|
-
this._factors = [
|
|
189
|
-
new PolynomExpFactor(result.numerator),
|
|
190
|
-
new PolynomExpFactor(result.denominator, -1),
|
|
191
|
-
...polynoms
|
|
192
|
-
];
|
|
193
|
-
}
|
|
194
|
-
else {
|
|
195
|
-
this._factors = [
|
|
196
|
-
new PolynomExpFactor(result),
|
|
197
|
-
...polynoms
|
|
198
|
-
];
|
|
199
|
-
}
|
|
200
|
-
return this;
|
|
201
|
-
}
|
|
202
|
-
integrate(letter) {
|
|
203
|
-
// Handle this kind of case:
|
|
204
|
-
// A * f' * F^n
|
|
205
|
-
// A * f' / F^n, n != 1
|
|
206
|
-
// A * f_1 * f_2 * f_3, where (f_1 * f_2)' = f_3
|
|
207
|
-
if (this._factors.length === 2) {
|
|
208
|
-
// Check polynoms degree: one must of one degree less than the other.
|
|
209
|
-
let d1 = this._factors[0].polynom.degree(letter).value, d2 = this._factors[1].polynom.degree(letter).value;
|
|
210
|
-
if (d1 === d2 + 1) {
|
|
211
|
-
return this._integrateWithInternalDerivative(this._factors[0], this._factors[1], letter);
|
|
212
|
-
}
|
|
213
|
-
else if (d1 + 1 === d2) {
|
|
214
|
-
return this._integrateWithInternalDerivative(this._factors[1], this._factors[0], letter);
|
|
215
|
-
}
|
|
216
|
-
}
|
|
217
|
-
return;
|
|
218
|
-
}
|
|
219
|
-
applyMathFunction(mathFn) {
|
|
220
|
-
this._fn = mathFn;
|
|
221
|
-
return this;
|
|
222
|
-
}
|
|
223
|
-
_integrateWithInternalDerivative(P, Pinternal, letter) {
|
|
224
|
-
// Get the internal derivative
|
|
225
|
-
let internalDerivative = P.polynom.clone().derivative(letter);
|
|
226
|
-
// Get the factor.
|
|
227
|
-
let { quotient, reminder } = Pinternal.polynom.clone().euclidian(internalDerivative);
|
|
228
|
-
if (reminder.isZero() && quotient.degree(letter).isZero()) {
|
|
229
|
-
// All the conditions are done. Actual situation is
|
|
230
|
-
// (4x-10)(x^2-5x+7)^9
|
|
231
|
-
// P1 = (x^2-5x+7), P2 = (2x-5)
|
|
232
|
-
// => 1/10 * quotient * (x^2-5x+7)^10
|
|
233
|
-
if (P.degree.isEqual(-1)) {
|
|
234
|
-
return (new PolynomExpProduct(new PolynomExpFactor(quotient, 1), new PolynomExpFactor(P.polynom.clone(), 1, {
|
|
235
|
-
name: 'ln', tex: '\\ln', fn: (x) => Math.log(x)
|
|
236
|
-
})));
|
|
237
|
-
}
|
|
238
|
-
else {
|
|
239
|
-
return new PolynomExpProduct(new PolynomExpFactor(P.degree.clone().add(1).invert(), 1), new PolynomExpFactor(quotient, 1), new PolynomExpFactor(P.polynom.clone(), P.degree.clone().add(1)));
|
|
240
|
-
}
|
|
241
|
-
}
|
|
242
|
-
return;
|
|
243
|
-
}
|
|
244
|
-
}
|
|
245
|
-
exports.PolynomExpProduct = PolynomExpProduct;
|
|
246
|
-
//# sourceMappingURL=polynomexp.js.map
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
{"version":3,"file":"polynomexp.js","sourceRoot":"","sources":["../../../src/maths/expressions/polynomexp.ts"],"names":[],"mappings":";;;AAAA,gDAA+D;AAC/D,uDAAuE;AAIvE,MAAa,gBAAgB;IACzB,YAAY,OAA2B,EAAE,MAA4B,EAAE,YAAyC;QAC5G,IAAI,CAAC,QAAQ,GAAG,IAAI,iBAAO,CAAC,OAAO,CAAC,CAAA;QACpC,IAAI,CAAC,OAAO,GAAG,IAAI,mBAAQ,CAAC,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAA;QAC9D,IAAI,CAAC,GAAG,GAAG,YAAY,CAAA;QACvB,IAAI,CAAC,eAAe,GAAG,IAAI,CAAA;QAC3B,IAAI,CAAC,iBAAiB,GAAG,IAAI,CAAA;IAEjC,CAAC;IAID,IAAI,gBAAgB;QAChB,OAAO,IAAI,CAAC,iBAAiB,CAAC;IAClC,CAAC;IAED,IAAI,gBAAgB,CAAC,KAAc;QAC/B,IAAI,CAAC,iBAAiB,GAAG,KAAK,CAAC;IACnC,CAAC;IAID,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,GAAG,CAAC;IACpB,CAAC;IAED,IAAI,EAAE,CAAC,KAAiC;QACpC,IAAI,CAAC,GAAG,GAAG,KAAK,CAAC;IACrB,CAAC;IAID,IAAI,cAAc;QACd,OAAO,IAAI,CAAC,eAAe,CAAC;IAChC,CAAC;IAED,IAAI,cAAc,CAAC,KAAc;QAC7B,IAAI,CAAC,eAAe,GAAG,KAAK,CAAC;IACjC,CAAC;IAID,IAAI,OAAO;QACP,OAAO,IAAI,CAAC,QAAQ,CAAC;IACzB,CAAC;IAED,IAAI,OAAO,CAAC,KAAc;QACtB,IAAI,CAAC,QAAQ,GAAG,KAAK,CAAC;IAC1B,CAAC;IAID,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,OAAO,CAAC;IACxB,CAAC;IAED,IAAI,MAAM,CAAC,KAAe;QACtB,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;IACzB,CAAC;IAED,IAAI,GAAG;QACH,IAAI,GAAG,CAAA;QAEP,IAAI,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,IAAI,CAAC,IAAI,CAAC,GAAG,KAAK,SAAS,IAAI,CAAC,IAAI,CAAC,iBAAiB,CAAC,EAAE;YAC7E,oDAAoD;YACpD,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAA;SAC1B;aAAM;YACH,8CAA8C;YAC9C,IAAI,IAAI,CAAC,eAAe,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,UAAU,EAAE,EAAE;gBACpD,mEAAmE;gBACnE,GAAG,GAAG,SAAS,IAAI,CAAC,OAAO,CAAC,WAAW,KAAK,CAAC,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,OAAO,CAAC,WAAW,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,IAAI,CAAC,QAAQ,CAAC,GAAG,QAAQ,IAAI,CAAC,OAAO,CAAC,SAAS,IAAI,CAAA;aACjJ;iBAAM,IAAI,IAAI,CAAC,aAAa,IAAI,IAAI,CAAC,gBAAgB,CAAC,SAAS,EAAE,EAAE;gBAChE,+CAA+C;gBAC/C,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,GAAG,IAAI,CAAC,UAAU,CAAA;aAC5C;iBAAM;gBACH,oDAAoD;gBACpD,GAAG,GAAG,WAAW,IAAI,CAAC,QAAQ,CAAC,GAAG,YAAY,IAAI,CAAC,UAAU,EAAE,CAAA;aAClE;SACJ;QAED,IAAI,IAAI,CAAC,GAAG,KAAK,SAAS,IAAI,IAAI,CAAC,GAAG,CAAC,GAAG,KAAK,SAAS,EAAE;YACtD,GAAG,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,WAAW,GAAG,WAAW,CAAA;SACjD;QACD,OAAO,GAAG,CAAA;IACd,CAAC;IAED,IAAI,aAAa;QACb,gEAAgE;QAChE,OAAO,IAAI,CAAC,QAAQ,CAAC,MAAM,EAAE,CAAC,MAAM,EAAE,CAAC;IAE3C,CAAC;IAED,IAAI,gBAAgB;QAChB,OAAO,IAAI,CAAC,QAAQ,CAAC,aAAa,EAAE,CAAC,WAAW,CAAA;IACpD,CAAC;IAED,IAAY,UAAU;QAClB,IAAI,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,EAAE;YACtB,OAAO,EAAE,CAAA;SACZ;aAAM;YACH,OAAO,MAAM,IAAI,CAAC,OAAO,CAAC,KAAK,IAAI,CAAA;SACtC;IACL,CAAC;IAED,mBAAmB,CAAC,KAAe;QAC/B,IAAI,CAAC,iBAAiB,GAAG,KAAK,KAAK,SAAS,IAAI,KAAK,CAAA;QACrD,OAAO,IAAI,CAAA;IACf,CAAC;IAED,UAAU,CAAC,MAAe;QACtB,IAAI,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,EAAE;YACtB,OAAO,IAAI,iBAAiB,CACxB,IAAI,gBAAgB,CAAC,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC,CACjE,CAAA;SACJ;aAAM;YACH,OAAO,IAAI,iBAAiB,CACxB,IAAI,gBAAgB,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC,EAC1C,IAAI,gBAAgB,CAAC,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC,EAC9D,IAAI,gBAAgB,CAAC,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAChF,CAAA;SACJ;IACL,CAAC;CACJ;AA1HD,4CA0HC;AAED,MAAa,iBAAiB;IAC1B,YAAY,GAAG,MAA0B;QACrC,IAAI,CAAC,QAAQ,GAAG,MAAM,IAAI,EAAE,CAAA;QAC5B,IAAI,CAAC,SAAS,GAAG,IAAI,CAAA;QACrB,IAAI,CAAC,iBAAiB,GAAG,IAAI,CAAA;IACjC,CAAC;IAID,IAAI,EAAE;QACF,OAAO,IAAI,CAAC,GAAG,CAAC;IACpB,CAAC;IAED,IAAI,EAAE,CAAC,KAAiC;QACpC,IAAI,CAAC,GAAG,GAAG,KAAK,CAAC;IACrB,CAAC;IAID,IAAI,OAAO;QACP,OAAO,IAAI,CAAC,QAAQ,CAAC;IACzB,CAAC;IAED,IAAI,OAAO,CAAC,KAAyB;QACjC,IAAI,CAAC,QAAQ,GAAG,KAAK,CAAC;IAC1B,CAAC;IAID,IAAI,QAAQ;QACR,OAAO,IAAI,CAAC,SAAS,CAAC;IAC1B,CAAC;IAED,IAAI,QAAQ,CAAC,KAAc;QACvB,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC;IAC3B,CAAC;IAID,IAAI,gBAAgB;QAChB,OAAO,IAAI,CAAC,iBAAiB,CAAC;IAClC,CAAC;IAED,IAAI,gBAAgB,CAAC,KAAc;QAC/B,IAAI,CAAC,iBAAiB,GAAG,KAAK,CAAC;IACnC,CAAC;IAED,IAAI,GAAG;QACH,IAAI,WAAW,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,GAAC,CAAC,CAAA;QACxC,gBAAgB;QAChB,IAAI,GAAG,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,MAAM,CAAC,EAAE,CAAC,MAAM,CAAC,mBAAmB,CAAC,WAAW,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,UAAU,CAAC,CAAA;QAEnG,oCAAoC;QACpC,IAAI,IAAI,CAAC,iBAAiB,EAAE;YACxB,MAAM,UAAU,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,UAAU,EAAE,CAAC,EAC/D,YAAY,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,UAAU,EAAE,CAAC,CAAA;YAEnE,IAAI,eAAe,EAAE,iBAAiB,CAAA;YAEtC,IAAI,YAAY,CAAC,MAAM,GAAG,CAAC,EAAE;gBACzB,IAAI,UAAU,CAAC,MAAM,KAAK,CAAC,EAAE;oBACzB,eAAe,GAAG,CAAC,CAAC,CAAC,CAAA;iBACxB;qBAAM,IAAI,UAAU,CAAC,MAAM,KAAK,CAAC,EAAE;oBAChC,eAAe,GAAG,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,mBAAmB,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAA;iBACnE;qBAAM;oBACH,WAAW,GAAG,UAAU,CAAC,MAAM,GAAC,CAAC,CAAA;oBACjC,eAAe,GAAG,UAAU,CAAC,GAAG,CAAC,MAAM,CAAC,EAAE,CAAC,MAAM,CAAC,mBAAmB,CAAC,WAAW,CAAC,CAAC,GAAG,CAAC,CAAA;iBAC1F;gBAED,+CAA+C;gBAC/C,YAAY,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAC,CAAA;gBACzC,IAAI,YAAY,CAAC,MAAM,KAAK,CAAC,EAAE;oBAC3B,iBAAiB,GAAG,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC,mBAAmB,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAA;iBACvE;qBAAM;oBACH,WAAW,GAAG,YAAY,CAAC,MAAM,GAAC,CAAC,CAAA;oBACnC,iBAAiB,GAAG,YAAY,CAAC,GAAG,CAAC,MAAM,CAAC,EAAE,CAAC,MAAM,CAAC,mBAAmB,CAAC,WAAW,CAAC,CAAC,GAAG,CAAC,CAAA;iBAC9F;gBACD,yCAAyC;gBACzC,YAAY,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAC,CAAA;gBAEzC,GAAG,GAAG,WAAW,eAAe,CAAC,IAAI,CAAC,UAAU,CAAC,OAAO,iBAAiB,CAAC,IAAI,CAAC,UAAU,CAAC,IAAI,CAAA;aACjG;SACJ;QAED,yBAAyB;QACzB,IAAI,IAAI,CAAC,GAAG,KAAK,SAAS,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,KAAK,SAAS,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,KAAK,EAAE,EAAE;YAC/E,GAAG,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,WAAW,GAAG,WAAW,CAAA;SACjD;QACD,OAAO,GAAG,CAAA;IACd,CAAC;IAED,MAAM;QACF,IAAI,YAAY,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,MAAM,CAAC,aAAa,CAAC,EACnE,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,MAAM,CAAC,aAAa,CAAC,CAAA;QAEpE,IAAI,MAAM,GAAG,IAAI,mBAAQ,EAAE,CAAC,GAAG,EAAE,CAAA;QAEjC,IAAI,YAAY,CAAC,MAAM,GAAG,CAAC,EAAE;YACzB,KAAK,MAAM,MAAM,IAAI,YAAY,EAAE;gBAC/B,IAAI,MAAM,CAAC,MAAM,CAAC,UAAU,EAAE,EAAE;oBAC5B,MAAM,CAAC,QAAQ,CAAC,MAAM,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,GAAG,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,CAAA;iBAC3E;qBAAM;oBACH,MAAM,CAAC,MAAM,CAAC,MAAM,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,GAAG,CAAC,MAAM,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC,CAAA;iBACvF;aACJ;SACJ;aAAM,IAAI,YAAY,CAAC,MAAM,KAAK,CAAC,EAAE;YAClC,MAAM,GAAG,YAAY,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,WAAW,CAAA;SACzD;QAED,IAAI,MAAM,CAAC,KAAK,EAAE,EAAE;YAChB,IAAI,CAAC,QAAQ,GAAG,CAAC,GAAG,QAAQ,CAAC,CAAA;SAChC;aAAM,IAAI,CAAC,MAAM,CAAC,UAAU,EAAE,EAAE;YAC7B,IAAI,CAAC,QAAQ,GAAG;gBACZ,IAAI,gBAAgB,CAAC,MAAM,CAAC,SAAS,CAAC;gBACtC,IAAI,gBAAgB,CAAC,MAAM,CAAC,WAAW,EAAE,CAAC,CAAC,CAAC;gBAC5C,GAAG,QAAQ;aACd,CAAA;SACJ;aAAM;YACH,IAAI,CAAC,QAAQ,GAAG;gBACZ,IAAI,gBAAgB,CAAC,MAAM,CAAC;gBAC5B,GAAG,QAAQ;aACd,CAAA;SACJ;QACD,OAAO,IAAI,CAAA;IACf,CAAC;IAED,SAAS,CAAC,MAAe;QACrB,4BAA4B;QAC5B,eAAe;QACf,uBAAuB;QACvB,gDAAgD;QAChD,IAAI,IAAI,CAAC,QAAQ,CAAC,MAAM,KAAK,CAAC,EAAE;YAC5B,qEAAqE;YACrE,IAAI,EAAE,GAAG,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,KAAK,EAClD,EAAE,GAAG,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,KAAK,CAAA;YAEtD,IAAI,EAAE,KAAK,EAAE,GAAG,CAAC,EAAE;gBACf,OAAO,IAAI,CAAC,gCAAgC,CAAC,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAA;aAC3F;iBAAM,IAAI,EAAE,GAAG,CAAC,KAAK,EAAE,EAAE;gBACtB,OAAO,IAAI,CAAC,gCAAgC,CAAC,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAA;aAC3F;SACJ;QACD,OAAM;IACV,CAAC;IAEM,iBAAiB,CAAC,MAAkC;QACvD,IAAI,CAAC,GAAG,GAAG,MAAM,CAAA;QACjB,OAAO,IAAI,CAAA;IACf,CAAC;IAEO,gCAAgC,CAAC,CAAmB,EAAE,SAA2B,EAAE,MAAe;QACtG,8BAA8B;QAC9B,IAAI,kBAAkB,GAAY,CAAC,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC,UAAU,CAAC,MAAM,CAAC,CAAA;QAEtE,kBAAkB;QAClB,IAAI,EAAC,QAAQ,EAAE,QAAQ,EAAC,GAAG,SAAS,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC,SAAS,CAAC,kBAAkB,CAAC,CAAA;QAElF,IAAI,QAAQ,CAAC,MAAM,EAAE,IAAI,QAAQ,CAAC,MAAM,CAAC,MAAM,CAAC,CAAC,MAAM,EAAE,EAAE;YACvD,mDAAmD;YACnD,sBAAsB;YACtB,+BAA+B;YAC/B,qCAAqC;YAErC,IAAI,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,EAAE;gBACtB,OAAO,CAAC,IAAI,iBAAiB,CACzB,IAAI,gBAAgB,CAAC,QAAQ,EAAE,CAAC,CAAC,EACjC,IAAI,gBAAgB,CAAC,CAAC,CAAC,OAAO,CAAC,KAAK,EAAE,EAAE,CAAC,EAAE;oBACvC,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,CAAS,EAAE,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;iBAC1D,CAAC,CACL,CAAC,CAAA;aACL;iBAAM;gBACH,OAAO,IAAI,iBAAiB,CACxB,IAAI,gBAAgB,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,EAAE,CAAC,CAAC,EACzD,IAAI,gBAAgB,CAAC,QAAQ,EAAE,CAAC,CAAC,EACjC,IAAI,gBAAgB,CAAC,CAAC,CAAC,OAAO,CAAC,KAAK,EAAE,EAAE,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CACnE,CAAA;aACJ;SACJ;QACD,OAAM;IACV,CAAC;CACJ;AApLD,8CAoLC"}
|