pimath 0.0.120 → 0.0.122

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. package/.idea/PI.iml +7 -1
  2. package/.idea/shelf/Uncommitted_changes_before_Update_at_24_07_2023_15_31_[Default_Changelist]/shelved.patch +90 -0
  3. package/.idea/shelf/Uncommitted_changes_before_Update_at_24_07_2023_15_31_[Default_Changelist]1/shelved.patch +107 -0
  4. package/.idea/shelf/Uncommitted_changes_before_Update_at_24_07_2023_15_31__Default_Changelist_.xml +4 -0
  5. package/.idea/shelf/Uncommitted_changes_before_Update_at_24_07_2023_15_31__Default_Changelist_1.xml +4 -0
  6. package/LICENSE.md +1 -1
  7. package/dev/pimath.js +7929 -0
  8. package/dev/pimath.js.map +1 -0
  9. package/dist/{pi.js → pimath.js} +7613 -7840
  10. package/dist/pimath.js.map +1 -0
  11. package/dist/pimath.min.js +2 -0
  12. package/dist/pimath.min.js.map +1 -0
  13. package/docs/assets/main.js +58 -58
  14. package/docs/assets/search.js +1 -1
  15. package/docs/assets/style.css +1367 -1280
  16. package/docs/classes/Logicalset.Logicalset.html +221 -212
  17. package/docs/classes/Polynom.Rational.html +391 -388
  18. package/docs/classes/Vector-1.Vector.html +494 -448
  19. package/docs/classes/Vector.Point.html +341 -342
  20. package/docs/classes/algebra_equation.Equation.html +796 -753
  21. package/docs/classes/algebra_linearSystem.LinearSystem.html +408 -397
  22. package/docs/classes/algebra_monom.Monom.html +967 -910
  23. package/docs/classes/algebra_polynom.Polynom.html +1281 -1260
  24. package/docs/classes/coefficients_fraction.Fraction.html +939 -931
  25. package/docs/classes/geometry_circle.Circle.html +476 -476
  26. package/docs/classes/geometry_line.Line.html +779 -719
  27. package/docs/classes/geometry_triangle.Triangle.html +429 -420
  28. package/docs/classes/numeric.Numeric.html +269 -263
  29. package/docs/classes/shutingyard.Shutingyard.html +259 -248
  30. package/docs/enums/algebra_equation.PARTICULAR_SOLUTION.html +89 -88
  31. package/docs/enums/geometry_line.LinePropriety.html +102 -102
  32. package/docs/enums/shutingyard.ShutingyardMode.html +106 -102
  33. package/docs/enums/shutingyard.ShutingyardType.html +120 -116
  34. package/docs/index.html +63 -65
  35. package/docs/interfaces/algebra_equation.ISolution.html +111 -109
  36. package/docs/interfaces/algebra_polynom.IEuclidian.html +93 -92
  37. package/docs/interfaces/geometry_triangle.remarquableLines.html +150 -150
  38. package/docs/modules/Logicalset.html +69 -74
  39. package/docs/modules/Polynom.html +69 -74
  40. package/docs/modules/Vector-1.html +69 -74
  41. package/docs/modules/Vector.html +69 -74
  42. package/docs/modules/algebra_equation.html +75 -81
  43. package/docs/modules/algebra_linearSystem.html +65 -71
  44. package/docs/modules/algebra_monom.html +70 -76
  45. package/docs/modules/algebra_polynom.html +75 -81
  46. package/docs/modules/coefficients_fraction.html +70 -76
  47. package/docs/modules/geometry_circle.html +65 -71
  48. package/docs/modules/geometry_line.html +70 -76
  49. package/docs/modules/geometry_triangle.html +70 -76
  50. package/docs/modules/numeric.html +65 -71
  51. package/docs/modules/shutingyard.html +84 -90
  52. package/docs/types/algebra_monom.literalType.html +66 -70
  53. package/docs/types/algebra_polynom.PolynomParsingType.html +62 -66
  54. package/docs/types/coefficients_fraction.FractionParsingType.html +61 -65
  55. package/docs/types/shutingyard.Token.html +72 -76
  56. package/docs/types/shutingyard.tokenType.html +77 -81
  57. package/docs/variables/shutingyard.tokenConstant.html +70 -74
  58. package/esm/index.d.ts +38 -41
  59. package/esm/index.js +43 -46
  60. package/esm/index.js.map +1 -1
  61. package/esm/maths/algebra/equation.d.ts +119 -117
  62. package/esm/maths/algebra/equation.js +796 -785
  63. package/esm/maths/algebra/equation.js.map +1 -1
  64. package/esm/maths/algebra/linearSystem.d.ts +39 -38
  65. package/esm/maths/algebra/linearSystem.js +278 -262
  66. package/esm/maths/algebra/linearSystem.js.map +1 -1
  67. package/esm/maths/algebra/logicalset.d.ts +28 -28
  68. package/esm/maths/algebra/logicalset.js +157 -157
  69. package/esm/maths/algebra/monom.d.ts +206 -206
  70. package/esm/maths/algebra/monom.js +908 -908
  71. package/esm/maths/algebra/monom.js.map +1 -1
  72. package/esm/maths/algebra/polynom.d.ts +157 -157
  73. package/esm/maths/algebra/polynom.js +1277 -1277
  74. package/esm/maths/algebra/rational.d.ts +45 -45
  75. package/esm/maths/algebra/rational.js +183 -183
  76. package/esm/maths/algebra/study/rationalStudy.d.ts +28 -28
  77. package/esm/maths/algebra/study/rationalStudy.js +243 -243
  78. package/esm/maths/algebra/study.d.ts +143 -142
  79. package/esm/maths/algebra/study.js +378 -377
  80. package/esm/maths/algebra/study.js.map +1 -1
  81. package/esm/maths/coefficients/fraction.d.ts +90 -90
  82. package/esm/maths/coefficients/fraction.js +516 -516
  83. package/esm/maths/coefficients/fraction.js.map +1 -1
  84. package/esm/maths/coefficients/nthRoot.d.ts +23 -23
  85. package/esm/maths/coefficients/nthRoot.js +136 -136
  86. package/esm/maths/geometry/circle.d.ts +45 -45
  87. package/esm/maths/geometry/circle.js +323 -323
  88. package/esm/maths/geometry/line.d.ts +99 -99
  89. package/esm/maths/geometry/line.js +481 -481
  90. package/esm/maths/geometry/line.js.map +1 -1
  91. package/esm/maths/geometry/point.d.ts +34 -34
  92. package/esm/maths/geometry/point.js +166 -166
  93. package/esm/maths/geometry/point.js.map +1 -1
  94. package/esm/maths/geometry/triangle.d.ts +85 -85
  95. package/esm/maths/geometry/triangle.js +268 -268
  96. package/esm/maths/geometry/vector.d.ts +41 -41
  97. package/esm/maths/geometry/vector.js +197 -197
  98. package/esm/maths/geometry/vector.js.map +1 -1
  99. package/esm/maths/numeric.d.ts +28 -28
  100. package/esm/maths/numeric.js +180 -180
  101. package/esm/maths/numexp.d.ts +19 -0
  102. package/esm/maths/numexp.js +186 -0
  103. package/esm/maths/numexp.js.map +1 -0
  104. package/esm/maths/randomization/random.d.ts +23 -23
  105. package/esm/maths/randomization/random.js +78 -78
  106. package/esm/maths/randomization/random.js.map +1 -1
  107. package/esm/maths/randomization/randomCore.d.ts +7 -7
  108. package/esm/maths/randomization/randomCore.js +21 -21
  109. package/esm/maths/randomization/rndFraction.d.ts +12 -12
  110. package/esm/maths/randomization/rndFraction.js +43 -43
  111. package/esm/maths/randomization/rndGeometryLine.d.ts +12 -12
  112. package/esm/maths/randomization/rndGeometryLine.js +45 -45
  113. package/esm/maths/randomization/rndGeometryPoint.d.ts +12 -12
  114. package/esm/maths/randomization/rndGeometryPoint.js +60 -60
  115. package/esm/maths/randomization/rndHelpers.d.ts +23 -23
  116. package/esm/maths/randomization/rndHelpers.js +76 -76
  117. package/esm/maths/randomization/rndMonom.d.ts +12 -12
  118. package/esm/maths/randomization/rndMonom.js +52 -52
  119. package/esm/maths/randomization/rndPolynom.d.ts +13 -13
  120. package/esm/maths/randomization/rndPolynom.js +74 -74
  121. package/esm/maths/randomization/rndTypes.d.ts +34 -34
  122. package/esm/maths/randomization/rndTypes.js +2 -2
  123. package/esm/maths/shutingyard.d.ts +59 -59
  124. package/esm/maths/shutingyard.js +442 -442
  125. package/esm/maths/shutingyard.js.map +1 -1
  126. package/package.json +11 -11
  127. package/public/index.html +50 -81
  128. package/public/playground.html +7 -8
  129. package/src/index.ts +1 -4
  130. package/src/maths/algebra/equation.ts +16 -0
  131. package/src/maths/algebra/linearSystem.ts +20 -0
  132. package/src/maths/algebra/study.ts +12 -10
  133. package/src/maths/{expressions/numexp.ts → numexp.ts} +2 -2
  134. package/tests/algebra/equation.test.ts +19 -5
  135. package/tests/algebra/linear.test.ts +3 -11
  136. package/tests/algebra/polynom.test.ts +7 -8
  137. package/tests/algebra/rationnal.test.ts +1 -1
  138. package/tests/algebra/study.test.ts +2 -9
  139. package/tests/coefficients/fraction.test.ts +8 -8
  140. package/tests/custom.test.ts +33 -37
  141. package/tests/numeric.test.ts +1 -2
  142. package/tests/numexp.test.ts +13 -5
  143. package/tests/shutingyard.test.ts +3 -3
  144. package/webpack-production-min.config.js +1 -1
  145. package/webpack-production.config.js +1 -1
  146. package/webpack.config.js +1 -1
  147. package/dist/pi.js.map +0 -1
  148. package/dist/pi.min.js +0 -2
  149. package/dist/pi.min.js.map +0 -1
  150. package/docs/classes/expressions_numexp.NumExp.html +0 -236
  151. package/docs/classes/expressions_polynomexp.PolynomExpFactor.html +0 -317
  152. package/docs/classes/expressions_polynomexp.PolynomExpProduct.html +0 -285
  153. package/docs/modules/expressions_numexp.html +0 -71
  154. package/docs/modules/expressions_polynomexp.html +0 -73
  155. package/docs/modules.html +0 -76
  156. package/graph.svg +0 -1033
  157. package/src/maths/expressions/ExpressionTree.ts +0 -172
  158. package/src/maths/expressions/expression.ts +0 -286
  159. package/src/maths/expressions/expressionFactor.ts +0 -190
  160. package/src/maths/expressions/expressionMember.ts +0 -233
  161. package/src/maths/expressions/expressionOperators.ts +0 -49
  162. package/src/maths/expressions/expressionParser.ts +0 -295
  163. package/src/maths/expressions/factors/ExpFactor.ts +0 -39
  164. package/src/maths/expressions/factors/ExpFactorConstant.ts +0 -60
  165. package/src/maths/expressions/factors/ExpFactorExponential.ts +0 -26
  166. package/src/maths/expressions/factors/ExpFactorNumber.ts +0 -72
  167. package/src/maths/expressions/factors/ExpFactorPower.ts +0 -42
  168. package/src/maths/expressions/factors/ExpFactorTrigo.ts +0 -53
  169. package/src/maths/expressions/factors/ExpFactorVariable.ts +0 -45
  170. package/src/maths/expressions/internals.ts +0 -14
  171. package/src/maths/expressions/polynomexp.bkp.ts +0 -221
  172. package/src/maths/expressions/polynomexp.ts +0 -310
  173. package/tests/expressions/expressions.test.ts +0 -145
  174. package/tests/expressions/expressiontree.test.ts +0 -11
  175. package/tests/polynomexp.test.ts +0 -12
@@ -1,198 +1,198 @@
1
- "use strict";
2
- Object.defineProperty(exports, "__esModule", { value: true });
3
- exports.Vector = void 0;
4
- /**
5
- * Vector module contains everything necessary to handle 2d or 3d vectors.
6
- * @module Vector
7
- */
8
- const fraction_1 = require("../coefficients/fraction");
9
- const numeric_1 = require("../numeric");
10
- const point_1 = require("./point");
11
- class Vector {
12
- constructor(...values) {
13
- // ------------------------------------------
14
- // Creation / parsing functions
15
- // ------------------------------------------
16
- this.parse = (...values) => {
17
- // TODO: Must be more strict about what is given and limit to two dimensional vectors.p
18
- // Maybe more than one value was given...
19
- // Initialize the vector
20
- this.zero();
21
- if (values.length === 0) {
22
- return this;
23
- }
24
- if (values.length === 1) {
25
- if (values[0] instanceof Vector) {
26
- return values[0].clone();
27
- }
28
- else {
29
- return this._parseString(values[0]);
30
- }
31
- }
32
- if (values.length >= 2) {
33
- // Two points are given - skip the third value.
34
- if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
35
- this._x = values[1].x.clone().subtract(values[0].x);
36
- this._y = values[1].y.clone().subtract(values[0].y);
37
- return this;
38
- }
39
- // Fractions or a number are give
40
- if (values[0] instanceof fraction_1.Fraction || !isNaN(values[0])) {
41
- this._x = new fraction_1.Fraction(values[0]);
42
- }
43
- if (values[1] instanceof fraction_1.Fraction || !isNaN(values[1])) {
44
- this._y = new fraction_1.Fraction(values[1]);
45
- }
46
- if ((typeof values[0] === 'object' && !isNaN(values[0].x) && !isNaN(values[0].x)) &&
47
- (typeof values[1] === 'object' && !isNaN(values[1].x) && !isNaN(values[1].x))) {
48
- this._x = new fraction_1.Fraction(+values[1].x - values[0].x);
49
- this._y = new fraction_1.Fraction(+values[1].y - values[0].y);
50
- }
51
- }
52
- return this;
53
- };
54
- this.clone = () => {
55
- let V = new Vector();
56
- if (this._x !== null) {
57
- V.x = this._x.clone();
58
- }
59
- if (this._y !== null) {
60
- V.y = this._y.clone();
61
- }
62
- return V;
63
- };
64
- this.reset = () => {
65
- this._x = null;
66
- this._y = null;
67
- return this;
68
- };
69
- this.zero = () => {
70
- this.reset();
71
- this._x = new fraction_1.Fraction(null);
72
- this._y = new fraction_1.Fraction(null);
73
- return this;
74
- };
75
- this.one = () => {
76
- this._x = new fraction_1.Fraction();
77
- this._y = new fraction_1.Fraction();
78
- return this;
79
- };
80
- this._parseString = (value) => {
81
- // Split comma, semi colon or single space.
82
- let components = value.split(/[,;\s]/g);
83
- // Validate the fraction values.
84
- this.x = new fraction_1.Fraction(components[0] || null);
85
- this.y = new fraction_1.Fraction(components[1] || null);
86
- return this;
87
- };
88
- // ------------------------------------------
89
- // Mathematical operations
90
- // ------------------------------------------
91
- this.opposed = () => {
92
- this._x.opposed();
93
- this._y.opposed();
94
- return this;
95
- };
96
- this.add = (V) => {
97
- this._x.add(V.x);
98
- this._y.add(V.y);
99
- return this;
100
- };
101
- this.subtract = (V) => {
102
- return this.add(V.clone().opposed());
103
- };
104
- this.scalarProductWithVector = (V) => {
105
- return Vector.scalarProduct(this, V);
106
- // return this._x.clone().multiply(V.x).add(this._y.clone().multiply(V.y));
107
- };
108
- this.determinantWithVector = (V) => {
109
- return Vector.determinant(this, V);
110
- };
111
- this.normal = () => {
112
- let x = this.x.clone().opposed(), y = this.y.clone();
113
- this._x = y;
114
- this._y = x;
115
- return this;
116
- };
117
- this.isColinearTo = (v) => {
118
- return this.determinantWithVector(v).isZero();
119
- };
120
- this.isNormalTo = (v) => {
121
- return this.scalarProductWithVector(v).isZero();
122
- };
123
- this.multiplyByScalar = (k) => {
124
- let scalar = new fraction_1.Fraction(k);
125
- this._x.multiply(scalar);
126
- this._y.multiply(scalar);
127
- return this;
128
- };
129
- this.divideByScalar = (k) => {
130
- return this.multiplyByScalar(new fraction_1.Fraction(k).invert());
131
- };
132
- // ------------------------------------------
133
- // Vector functions
134
- // ------------------------------------------
135
- this.simplify = () => {
136
- // Multiply by the lcm of denominators.
137
- return this.multiplyByScalar(numeric_1.Numeric.lcm(this._x.denominator, this._y.denominator))
138
- .divideByScalar(numeric_1.Numeric.gcd(this._x.numerator, this._y.numerator));
139
- };
140
- this.simplifyDirection = () => {
141
- let lcm = numeric_1.Numeric.lcm(this.x.denominator, this.y.denominator), gcd = numeric_1.Numeric.gcd(this.x.numerator, this.y.numerator);
142
- this.x.multiply(lcm).divide(gcd);
143
- this.y.multiply(lcm).divide(gcd);
144
- return this;
145
- };
146
- this.angleWith = (V, sharp, radian) => {
147
- let scalar = this.scalarProductWithVector(V).value, toDegree = radian ? 1 : 180 / Math.PI;
148
- if (sharp) {
149
- scalar = Math.abs(scalar);
150
- }
151
- return toDegree * Math.acos(scalar / (this.norm * V.norm));
152
- };
153
- this._x = new fraction_1.Fraction().zero();
154
- this._y = new fraction_1.Fraction().zero();
155
- if (values !== undefined) {
156
- this.parse(...values);
157
- }
158
- }
159
- ;
160
- // ------------------------------------------
161
- // Getter and setter
162
- // ------------------------------------------
163
- get x() {
164
- return this._x;
165
- }
166
- set x(value) {
167
- this._x = new fraction_1.Fraction(value);
168
- }
169
- get y() {
170
- return this._y;
171
- }
172
- set y(value) {
173
- this._y = new fraction_1.Fraction(value);
174
- }
175
- get normSquare() {
176
- return this._x.clone().pow(2).add(this._y.clone().pow(2));
177
- }
178
- get norm() {
179
- return Math.sqrt(this.normSquare.value);
180
- }
181
- get tex() {
182
- return `\\begin{pmatrix}${this._x.tex} \\\\\ ${this._y.tex} \\end{pmatrix}`;
183
- }
184
- get asPoint() {
185
- return new point_1.Point(this.x, this.y);
186
- }
187
- get isNull() {
188
- return this.x.isZero() && this.y.isZero();
189
- }
190
- }
191
- exports.Vector = Vector;
192
- Vector.scalarProduct = (v1, v2) => {
193
- return v1.x.clone().multiply(v2.x).add(v1.y.clone().multiply(v2.y));
194
- };
195
- Vector.determinant = (v1, v2) => {
196
- return v1.x.clone().multiply(v2.y).subtract(v1.y.clone().multiply(v2.x));
197
- };
1
+ "use strict";
2
+ Object.defineProperty(exports, "__esModule", { value: true });
3
+ exports.Vector = void 0;
4
+ /**
5
+ * Vector module contains everything necessary to handle 2d or 3d vectors.
6
+ * @module Vector
7
+ */
8
+ const fraction_1 = require("../coefficients/fraction");
9
+ const numeric_1 = require("../numeric");
10
+ const point_1 = require("./point");
11
+ class Vector {
12
+ constructor(...values) {
13
+ // ------------------------------------------
14
+ // Creation / parsing functions
15
+ // ------------------------------------------
16
+ this.parse = (...values) => {
17
+ // TODO: Must be more strict about what is given and limit to two dimensional vectors.p
18
+ // Maybe more than one value was given...
19
+ // Initialize the vector
20
+ this.zero();
21
+ if (values.length === 0) {
22
+ return this;
23
+ }
24
+ if (values.length === 1) {
25
+ if (values[0] instanceof Vector) {
26
+ return values[0].clone();
27
+ }
28
+ else {
29
+ return this._parseString(values[0]);
30
+ }
31
+ }
32
+ if (values.length >= 2) {
33
+ // Two points are given - skip the third value.
34
+ if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
35
+ this._x = values[1].x.clone().subtract(values[0].x);
36
+ this._y = values[1].y.clone().subtract(values[0].y);
37
+ return this;
38
+ }
39
+ // Fractions or a number are give
40
+ if (values[0] instanceof fraction_1.Fraction || !isNaN(values[0])) {
41
+ this._x = new fraction_1.Fraction(values[0]);
42
+ }
43
+ if (values[1] instanceof fraction_1.Fraction || !isNaN(values[1])) {
44
+ this._y = new fraction_1.Fraction(values[1]);
45
+ }
46
+ if ((typeof values[0] === 'object' && !isNaN(values[0].x) && !isNaN(values[0].x)) &&
47
+ (typeof values[1] === 'object' && !isNaN(values[1].x) && !isNaN(values[1].x))) {
48
+ this._x = new fraction_1.Fraction(+values[1].x - values[0].x);
49
+ this._y = new fraction_1.Fraction(+values[1].y - values[0].y);
50
+ }
51
+ }
52
+ return this;
53
+ };
54
+ this.clone = () => {
55
+ let V = new Vector();
56
+ if (this._x !== null) {
57
+ V.x = this._x.clone();
58
+ }
59
+ if (this._y !== null) {
60
+ V.y = this._y.clone();
61
+ }
62
+ return V;
63
+ };
64
+ this.reset = () => {
65
+ this._x = null;
66
+ this._y = null;
67
+ return this;
68
+ };
69
+ this.zero = () => {
70
+ this.reset();
71
+ this._x = new fraction_1.Fraction(null);
72
+ this._y = new fraction_1.Fraction(null);
73
+ return this;
74
+ };
75
+ this.one = () => {
76
+ this._x = new fraction_1.Fraction();
77
+ this._y = new fraction_1.Fraction();
78
+ return this;
79
+ };
80
+ this._parseString = (value) => {
81
+ // Split comma, semi colon or single space.
82
+ let components = value.split(/[,;\s]/g);
83
+ // Validate the fraction values.
84
+ this.x = new fraction_1.Fraction(components[0] || null);
85
+ this.y = new fraction_1.Fraction(components[1] || null);
86
+ return this;
87
+ };
88
+ // ------------------------------------------
89
+ // Mathematical operations
90
+ // ------------------------------------------
91
+ this.opposed = () => {
92
+ this._x.opposed();
93
+ this._y.opposed();
94
+ return this;
95
+ };
96
+ this.add = (V) => {
97
+ this._x.add(V.x);
98
+ this._y.add(V.y);
99
+ return this;
100
+ };
101
+ this.subtract = (V) => {
102
+ return this.add(V.clone().opposed());
103
+ };
104
+ this.scalarProductWithVector = (V) => {
105
+ return Vector.scalarProduct(this, V);
106
+ // return this._x.clone().multiply(V.x).add(this._y.clone().multiply(V.y));
107
+ };
108
+ this.determinantWithVector = (V) => {
109
+ return Vector.determinant(this, V);
110
+ };
111
+ this.normal = () => {
112
+ let x = this.x.clone().opposed(), y = this.y.clone();
113
+ this._x = y;
114
+ this._y = x;
115
+ return this;
116
+ };
117
+ this.isColinearTo = (v) => {
118
+ return this.determinantWithVector(v).isZero();
119
+ };
120
+ this.isNormalTo = (v) => {
121
+ return this.scalarProductWithVector(v).isZero();
122
+ };
123
+ this.multiplyByScalar = (k) => {
124
+ let scalar = new fraction_1.Fraction(k);
125
+ this._x.multiply(scalar);
126
+ this._y.multiply(scalar);
127
+ return this;
128
+ };
129
+ this.divideByScalar = (k) => {
130
+ return this.multiplyByScalar(new fraction_1.Fraction(k).invert());
131
+ };
132
+ // ------------------------------------------
133
+ // Vector functions
134
+ // ------------------------------------------
135
+ this.simplify = () => {
136
+ // Multiply by the lcm of denominators.
137
+ return this.multiplyByScalar(numeric_1.Numeric.lcm(this._x.denominator, this._y.denominator))
138
+ .divideByScalar(numeric_1.Numeric.gcd(this._x.numerator, this._y.numerator));
139
+ };
140
+ this.simplifyDirection = () => {
141
+ let lcm = numeric_1.Numeric.lcm(this.x.denominator, this.y.denominator), gcd = numeric_1.Numeric.gcd(this.x.numerator, this.y.numerator);
142
+ this.x.multiply(lcm).divide(gcd);
143
+ this.y.multiply(lcm).divide(gcd);
144
+ return this;
145
+ };
146
+ this.angleWith = (V, sharp, radian) => {
147
+ let scalar = this.scalarProductWithVector(V).value, toDegree = radian ? 1 : 180 / Math.PI;
148
+ if (sharp) {
149
+ scalar = Math.abs(scalar);
150
+ }
151
+ return toDegree * Math.acos(scalar / (this.norm * V.norm));
152
+ };
153
+ this._x = new fraction_1.Fraction().zero();
154
+ this._y = new fraction_1.Fraction().zero();
155
+ if (values !== undefined) {
156
+ this.parse(...values);
157
+ }
158
+ }
159
+ ;
160
+ // ------------------------------------------
161
+ // Getter and setter
162
+ // ------------------------------------------
163
+ get x() {
164
+ return this._x;
165
+ }
166
+ set x(value) {
167
+ this._x = new fraction_1.Fraction(value);
168
+ }
169
+ get y() {
170
+ return this._y;
171
+ }
172
+ set y(value) {
173
+ this._y = new fraction_1.Fraction(value);
174
+ }
175
+ get normSquare() {
176
+ return this._x.clone().pow(2).add(this._y.clone().pow(2));
177
+ }
178
+ get norm() {
179
+ return Math.sqrt(this.normSquare.value);
180
+ }
181
+ get tex() {
182
+ return `\\begin{pmatrix}${this._x.tex} \\\\\ ${this._y.tex} \\end{pmatrix}`;
183
+ }
184
+ get asPoint() {
185
+ return new point_1.Point(this.x, this.y);
186
+ }
187
+ get isNull() {
188
+ return this.x.isZero() && this.y.isZero();
189
+ }
190
+ }
191
+ exports.Vector = Vector;
192
+ Vector.scalarProduct = (v1, v2) => {
193
+ return v1.x.clone().multiply(v2.x).add(v1.y.clone().multiply(v2.y));
194
+ };
195
+ Vector.determinant = (v1, v2) => {
196
+ return v1.x.clone().multiply(v2.y).subtract(v1.y.clone().multiply(v2.x));
197
+ };
198
198
  //# sourceMappingURL=vector.js.map
@@ -1 +1 @@
1
- {"version":3,"file":"vector.js","sourceRoot":"","sources":["../../../src/maths/geometry/vector.ts"],"names":[],"mappings":";;;AAAA;;;GAGG;AACH,uDAAkD;AAClD,wCAAmC;AACnC,mCAA8B;AAE9B,MAAa,MAAM;IAIf,YAAY,GAAG,MAAiB;QA4ChC,6CAA6C;QAC7C,+BAA+B;QAC/B,6CAA6C;QAE7C,UAAK,GAAG,CAAC,GAAG,MAAW,EAAU,EAAE;YAC/B,uFAAuF;YACvF,yCAAyC;YACzC,wBAAwB;YACxB,IAAI,CAAC,IAAI,EAAE,CAAC;YAEZ,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAC;aACf;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,MAAM,EAAE;oBAC7B,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;iBAC3B;qBAAM;oBACH,OAAO,IAAI,CAAC,YAAY,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACtC;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,IAAI,CAAC,EAAE;gBACpB,+CAA+C;gBAC/C,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBAC1D,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;oBACnD,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;oBACnD,OAAO,IAAI,CAAC;iBACf;gBAED,iCAAiC;gBACjC,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE;oBACpD,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACpC;gBACD,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE;oBACpD,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACpC;gBAED,IACI,CAAC,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;oBAC7E,CAAC,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAChF;oBACG,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;oBAChD,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;iBACnD;aACJ;YAED,OAAO,IAAI,CAAC;QAChB,CAAC,CAAC;QAEF,UAAK,GAAG,GAAW,EAAE;YACjB,IAAI,CAAC,GAAG,IAAI,MAAM,EAAE,CAAC;YAErB,IAAI,IAAI,CAAC,EAAE,KAAK,IAAI,EAAE;gBAClB,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;aACzB;YACD,IAAI,IAAI,CAAC,EAAE,KAAK,IAAI,EAAE;gBAClB,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;aACzB;YACD,OAAO,CAAC,CAAC;QACb,CAAC,CAAA;QAED,UAAK,GAAG,GAAW,EAAE;YACjB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC;YACf,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,SAAI,GAAG,GAAW,EAAE;YAChB,IAAI,CAAC,KAAK,EAAE,CAAC;YACb,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,QAAG,GAAG,GAAW,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC;YACzB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC;YACzB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAEO,iBAAY,GAAG,CAAC,KAAa,EAAU,EAAE;YAC7C,2CAA2C;YAC3C,IAAI,UAAU,GAAG,KAAK,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC;YAExC,gCAAgC;YAChC,IAAI,CAAC,CAAC,GAAG,IAAI,mBAAQ,CAAC,UAAU,CAAC,CAAC,CAAC,IAAI,IAAI,CAAC,CAAC;YAC7C,IAAI,CAAC,CAAC,GAAG,IAAI,mBAAQ,CAAC,UAAU,CAAC,CAAC,CAAC,IAAI,IAAI,CAAC,CAAC;YAC7C,OAAO,IAAI,CAAC;QAChB,CAAC,CAAC;QAEF,6CAA6C;QAC7C,0BAA0B;QAC1B,6CAA6C;QAC7C,YAAO,GAAG,GAAW,EAAE;YACnB,IAAI,CAAC,EAAE,CAAC,OAAO,EAAE,CAAC;YAClB,IAAI,CAAC,EAAE,CAAC,OAAO,EAAE,CAAC;YAClB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,QAAG,GAAG,CAAC,CAAS,EAAU,EAAE;YACxB,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YACjB,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YAEjB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,CAAS,EAAU,EAAE;YAC7B,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAC;QACzC,CAAC,CAAA;QAED,4BAAuB,GAAG,CAAC,CAAS,EAAY,EAAE;YAC9C,OAAO,MAAM,CAAC,aAAa,CAAC,IAAI,EAAE,CAAC,CAAC,CAAA;YACpC,2EAA2E;QAC/E,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAS,EAAY,EAAE;YAC5C,OAAO,MAAM,CAAC,WAAW,CAAC,IAAI,EAAE,CAAC,CAAC,CAAA;QACtC,CAAC,CAAA;QAUD,WAAM,GAAG,GAAW,EAAE;YAClB,IAAI,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC;YACrD,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,iBAAY,GAAG,CAAC,CAAS,EAAW,EAAE;YAClC,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;QACjD,CAAC,CAAA;QAED,eAAU,GAAG,CAAC,CAAS,EAAW,EAAE;YAChC,OAAO,IAAI,CAAC,uBAAuB,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;QACnD,CAAC,CAAA;QAMD,qBAAgB,GAAG,CAAC,CAAM,EAAU,EAAE;YAClC,IAAI,MAAM,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAC7B,IAAI,CAAC,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC;YACzB,IAAI,CAAC,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC;YACzB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,mBAAc,GAAG,CAAC,CAAM,EAAU,EAAE;YAChC,OAAO,IAAI,CAAC,gBAAgB,CAAC,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,CAAC;QAC3D,CAAC,CAAA;QACD,6CAA6C;QAC7C,mBAAmB;QACnB,6CAA6C;QAE7C,aAAQ,GAAG,GAAW,EAAE;YACpB,uCAAuC;YACvC,OAAO,IAAI,CAAC,gBAAgB,CAAC,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,CAAC;iBAC9E,cAAc,CAAC,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,CAAC,CAAC;QAC3E,CAAC,CAAA;QAED,sBAAiB,GAAG,GAAW,EAAE;YAC7B,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,WAAW,EAAE,IAAI,CAAC,CAAC,CAAC,WAAW,CAAC,EACzD,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,SAAS,EAAE,IAAI,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;YAE1D,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;YACjC,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;YACjC,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,cAAS,GAAG,CAAC,CAAS,EAAE,KAAe,EAAE,MAAgB,EAAU,EAAE;YACjE,IAAI,MAAM,GAAG,IAAI,CAAC,uBAAuB,CAAC,CAAC,CAAC,CAAC,KAAK,EAC9C,QAAQ,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;YAC1C,IAAI,KAAK,EAAE;gBACP,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,CAAC;aAC7B;YAED,OAAO,QAAQ,GAAG,IAAI,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC;QAC/D,CAAC,CAAA;QAnOG,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAEhC,IAAI,MAAM,KAAK,SAAS,EAAE;YACtB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;IACL,CAAC;IAAA,CAAC;IAEF,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAA6B;QAC/B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC;IAClC,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAA6B;QAC/B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC;IAClC,CAAC;IAED,IAAI,UAAU;QACV,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IAC9D,CAAC;IAED,IAAI,IAAI;QACJ,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,UAAU,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IAED,IAAI,GAAG;QACH,OAAO,mBAAmB,IAAI,CAAC,EAAE,CAAC,GAAG,UAAU,IAAI,CAAC,EAAE,CAAC,GAAG,iBAAiB,CAAA;IAC/E,CAAC;IAED,IAAI,OAAO;QACP,OAAO,IAAI,aAAK,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAA;IACpC,CAAC;IAiJD,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,IAAI,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;IAC7C,CAAC;;AAjML,wBAyOC;AAjEU,oBAAa,GAAG,CAAC,EAAU,EAAE,EAAU,EAAY,EAAE;IACxD,OAAO,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;AACxE,CAAC,CAAC;AAEK,kBAAW,GAAG,CAAC,EAAU,EAAE,EAAU,EAAY,EAAE;IACtD,OAAO,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAA;AAC5E,CAAC,CAAA"}
1
+ {"version":3,"file":"vector.js","sourceRoot":"","sources":["../../../src/maths/geometry/vector.ts"],"names":[],"mappings":";;;AAAA;;;GAGG;AACH,uDAAkD;AAClD,wCAAmC;AACnC,mCAA8B;AAE9B,MAAa,MAAM;IAIf,YAAY,GAAG,MAAiB;QA4ChC,6CAA6C;QAC7C,+BAA+B;QAC/B,6CAA6C;QAE7C,UAAK,GAAG,CAAC,GAAG,MAAW,EAAU,EAAE;YAC/B,uFAAuF;YACvF,yCAAyC;YACzC,wBAAwB;YACxB,IAAI,CAAC,IAAI,EAAE,CAAC;YAEZ,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,OAAO,IAAI,CAAC;aACf;YAED,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC,EAAE;gBACrB,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,MAAM,EAAE;oBAC7B,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAA;iBAC3B;qBAAM;oBACH,OAAO,IAAI,CAAC,YAAY,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACtC;aACJ;YAED,IAAI,MAAM,CAAC,MAAM,IAAI,CAAC,EAAE;gBACpB,+CAA+C;gBAC/C,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,aAAK,EAAE;oBAC1D,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;oBACnD,IAAI,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;oBACnD,OAAO,IAAI,CAAC;iBACf;gBAED,iCAAiC;gBACjC,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE;oBACpD,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACpC;gBACD,IAAI,MAAM,CAAC,CAAC,CAAC,YAAY,mBAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE;oBACpD,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;iBACpC;gBAED,IACI,CAAC,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;oBAC7E,CAAC,OAAO,MAAM,CAAC,CAAC,CAAC,KAAK,QAAQ,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAChF;oBACG,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;oBAChD,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;iBACnD;aACJ;YAED,OAAO,IAAI,CAAC;QAChB,CAAC,CAAC;QAEF,UAAK,GAAG,GAAW,EAAE;YACjB,IAAI,CAAC,GAAG,IAAI,MAAM,EAAE,CAAC;YAErB,IAAI,IAAI,CAAC,EAAE,KAAK,IAAI,EAAE;gBAClB,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;aACzB;YACD,IAAI,IAAI,CAAC,EAAE,KAAK,IAAI,EAAE;gBAClB,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC;aACzB;YACD,OAAO,CAAC,CAAC;QACb,CAAC,CAAA;QAED,UAAK,GAAG,GAAW,EAAE;YACjB,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC;YACf,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,SAAI,GAAG,GAAW,EAAE;YAChB,IAAI,CAAC,KAAK,EAAE,CAAC;YACb,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,IAAI,CAAC,CAAC;YAC7B,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,QAAG,GAAG,GAAW,EAAE;YACf,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC;YACzB,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC;YACzB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAEO,iBAAY,GAAG,CAAC,KAAa,EAAU,EAAE;YAC7C,2CAA2C;YAC3C,IAAI,UAAU,GAAG,KAAK,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC;YAExC,gCAAgC;YAChC,IAAI,CAAC,CAAC,GAAG,IAAI,mBAAQ,CAAC,UAAU,CAAC,CAAC,CAAC,IAAI,IAAI,CAAC,CAAC;YAC7C,IAAI,CAAC,CAAC,GAAG,IAAI,mBAAQ,CAAC,UAAU,CAAC,CAAC,CAAC,IAAI,IAAI,CAAC,CAAC;YAC7C,OAAO,IAAI,CAAC;QAChB,CAAC,CAAC;QAEF,6CAA6C;QAC7C,0BAA0B;QAC1B,6CAA6C;QAC7C,YAAO,GAAG,GAAW,EAAE;YACnB,IAAI,CAAC,EAAE,CAAC,OAAO,EAAE,CAAC;YAClB,IAAI,CAAC,EAAE,CAAC,OAAO,EAAE,CAAC;YAClB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,QAAG,GAAG,CAAC,CAAS,EAAU,EAAE;YACxB,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YACjB,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YAEjB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,aAAQ,GAAG,CAAC,CAAS,EAAU,EAAE;YAC7B,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,CAAC,CAAC;QACzC,CAAC,CAAA;QAED,4BAAuB,GAAG,CAAC,CAAS,EAAY,EAAE;YAC9C,OAAO,MAAM,CAAC,aAAa,CAAC,IAAI,EAAE,CAAC,CAAC,CAAA;YACpC,2EAA2E;QAC/E,CAAC,CAAA;QAED,0BAAqB,GAAG,CAAC,CAAS,EAAY,EAAE;YAC5C,OAAO,MAAM,CAAC,WAAW,CAAC,IAAI,EAAE,CAAC,CAAC,CAAA;QACtC,CAAC,CAAA;QAUD,WAAM,GAAG,GAAW,EAAE;YAClB,IAAI,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC;YACrD,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC;YACZ,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,iBAAY,GAAG,CAAC,CAAS,EAAW,EAAE;YAClC,OAAO,IAAI,CAAC,qBAAqB,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;QACjD,CAAC,CAAA;QAED,eAAU,GAAG,CAAC,CAAS,EAAW,EAAE;YAChC,OAAO,IAAI,CAAC,uBAAuB,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;QACnD,CAAC,CAAA;QAMD,qBAAgB,GAAG,CAAC,CAAM,EAAU,EAAE;YAClC,IAAI,MAAM,GAAG,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC;YAC7B,IAAI,CAAC,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC;YACzB,IAAI,CAAC,EAAE,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC;YACzB,OAAO,IAAI,CAAC;QAChB,CAAC,CAAA;QAED,mBAAc,GAAG,CAAC,CAAM,EAAU,EAAE;YAChC,OAAO,IAAI,CAAC,gBAAgB,CAAC,IAAI,mBAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,CAAC;QAC3D,CAAC,CAAA;QACD,6CAA6C;QAC7C,mBAAmB;QACnB,6CAA6C;QAE7C,aAAQ,GAAG,GAAW,EAAE;YACpB,uCAAuC;YACvC,OAAO,IAAI,CAAC,gBAAgB,CAAC,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,WAAW,EAAE,IAAI,CAAC,EAAE,CAAC,WAAW,CAAC,CAAC;iBAC9E,cAAc,CAAC,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC,EAAE,CAAC,SAAS,CAAC,CAAC,CAAC;QAC3E,CAAC,CAAA;QAED,sBAAiB,GAAG,GAAW,EAAE;YAC7B,IAAI,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,WAAW,EAAE,IAAI,CAAC,CAAC,CAAC,WAAW,CAAC,EACzD,GAAG,GAAG,iBAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,SAAS,EAAE,IAAI,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;YAE1D,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;YACjC,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC;YACjC,OAAO,IAAI,CAAA;QACf,CAAC,CAAA;QAED,cAAS,GAAG,CAAC,CAAS,EAAE,KAAe,EAAE,MAAgB,EAAU,EAAE;YACjE,IAAI,MAAM,GAAG,IAAI,CAAC,uBAAuB,CAAC,CAAC,CAAC,CAAC,KAAK,EAC9C,QAAQ,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,CAAC,EAAE,CAAC;YAC1C,IAAI,KAAK,EAAE;gBACP,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,CAAC,CAAC;aAC7B;YAED,OAAO,QAAQ,GAAG,IAAI,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC;QAC/D,CAAC,CAAA;QAnOG,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAChC,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,EAAE,CAAC,IAAI,EAAE,CAAC;QAEhC,IAAI,MAAM,KAAK,SAAS,EAAE;YACtB,IAAI,CAAC,KAAK,CAAC,GAAG,MAAM,CAAC,CAAC;SACzB;IACL,CAAC;IAAA,CAAC;IAEF,6CAA6C;IAC7C,oBAAoB;IACpB,6CAA6C;IAC7C,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAA6B;QAC/B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC;IAClC,CAAC;IAED,IAAI,CAAC;QACD,OAAO,IAAI,CAAC,EAAE,CAAC;IACnB,CAAC;IAED,IAAI,CAAC,CAAC,KAA6B;QAC/B,IAAI,CAAC,EAAE,GAAG,IAAI,mBAAQ,CAAC,KAAK,CAAC,CAAC;IAClC,CAAC;IAED,IAAI,UAAU;QACV,OAAO,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IAC9D,CAAC;IAED,IAAI,IAAI;QACJ,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,UAAU,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IAED,IAAI,GAAG;QACH,OAAO,mBAAmB,IAAI,CAAC,EAAE,CAAC,GAAG,UAAU,IAAI,CAAC,EAAE,CAAC,GAAG,iBAAiB,CAAA;IAC/E,CAAC;IAED,IAAI,OAAO;QACP,OAAO,IAAI,aAAK,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAA;IACpC,CAAC;IAiJD,IAAI,MAAM;QACN,OAAO,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,IAAI,IAAI,CAAC,CAAC,CAAC,MAAM,EAAE,CAAA;IAC7C,CAAC;;AAjML,wBAyOC;AAjEU,oBAAa,GAAG,CAAC,EAAU,EAAE,EAAU,EAAY,EAAE;IACxD,OAAO,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;AACxE,CAAC,AAFmB,CAElB;AAEK,kBAAW,GAAG,CAAC,EAAU,EAAE,EAAU,EAAY,EAAE;IACtD,OAAO,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAA;AAC5E,CAAC,AAFiB,CAEjB"}
@@ -1,28 +1,28 @@
1
- export declare class Numeric {
2
- static round(value: number, decimals?: number): number;
3
- /**
4
- * Get the list of the nth first prime numbers.
5
- * @param nb : number of primes to choose from
6
- */
7
- static primes(nb?: number): number[];
8
- /**
9
- * Get the list of all dividers of a number.
10
- * @param value
11
- */
12
- static dividers(value: number): number[];
13
- /**
14
- * Great Common Divisor
15
- * @param values : number values
16
- */
17
- static gcd(...values: number[]): number;
18
- static divideNumbersByGCD(...values: number[]): number[];
19
- /**
20
- * Least Common Multiple
21
- * @param values: list of numbers
22
- */
23
- static lcm(...values: number[]): number;
24
- static pythagoricianTripletsWithTarget(target: number, targetIsSquare?: boolean): number[][];
25
- static numberCorrection(value: number, epsilonDigit?: number, epsilonNumberOfDigits?: number, number_of_digits?: number): number;
26
- static periodic(value: number): number;
27
- static decompose(value: number): number[][];
28
- }
1
+ export declare class Numeric {
2
+ static round(value: number, decimals?: number): number;
3
+ /**
4
+ * Get the list of the nth first prime numbers.
5
+ * @param nb : number of primes to choose from
6
+ */
7
+ static primes(nb?: number): number[];
8
+ /**
9
+ * Get the list of all dividers of a number.
10
+ * @param value
11
+ */
12
+ static dividers(value: number): number[];
13
+ /**
14
+ * Great Common Divisor
15
+ * @param values : number values
16
+ */
17
+ static gcd(...values: number[]): number;
18
+ static divideNumbersByGCD(...values: number[]): number[];
19
+ /**
20
+ * Least Common Multiple
21
+ * @param values: list of numbers
22
+ */
23
+ static lcm(...values: number[]): number;
24
+ static pythagoricianTripletsWithTarget(target: number, targetIsSquare?: boolean): number[][];
25
+ static numberCorrection(value: number, epsilonDigit?: number, epsilonNumberOfDigits?: number, number_of_digits?: number): number;
26
+ static periodic(value: number): number;
27
+ static decompose(value: number): number[][];
28
+ }