pimath 0.0.119 → 0.0.121

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (173) hide show
  1. package/.eslintrc.js +23 -23
  2. package/.idea/PI.iml +7 -1
  3. package/dev/pimath.js +7929 -0
  4. package/dev/pimath.js.map +1 -0
  5. package/dist/{pi.js → pimath.js} +7612 -7829
  6. package/dist/pimath.js.map +1 -0
  7. package/dist/pimath.min.js +2 -0
  8. package/dist/pimath.min.js.map +1 -0
  9. package/docs/assets/main.js +3 -3
  10. package/docs/assets/search.js +1 -1
  11. package/docs/assets/style.css +450 -363
  12. package/docs/classes/Logicalset.Logicalset.html +119 -110
  13. package/docs/classes/Polynom.Rational.html +230 -227
  14. package/docs/classes/Vector-1.Vector.html +319 -273
  15. package/docs/classes/Vector.Point.html +189 -190
  16. package/docs/classes/algebra_equation.Equation.html +489 -446
  17. package/docs/classes/algebra_linearSystem.LinearSystem.html +228 -217
  18. package/docs/classes/algebra_monom.Monom.html +564 -507
  19. package/docs/classes/algebra_polynom.Polynom.html +774 -753
  20. package/docs/classes/coefficients_fraction.Fraction.html +573 -565
  21. package/docs/classes/geometry_circle.Circle.html +299 -299
  22. package/docs/classes/geometry_line.Line.html +511 -451
  23. package/docs/classes/geometry_triangle.Triangle.html +273 -264
  24. package/docs/classes/numeric.Numeric.html +138 -132
  25. package/docs/classes/shutingyard.Shutingyard.html +144 -133
  26. package/docs/enums/algebra_equation.PARTICULAR_SOLUTION.html +47 -46
  27. package/docs/enums/geometry_line.LinePropriety.html +58 -58
  28. package/docs/enums/shutingyard.ShutingyardMode.html +62 -58
  29. package/docs/enums/shutingyard.ShutingyardType.html +74 -70
  30. package/docs/index.html +31 -33
  31. package/docs/interfaces/algebra_equation.ISolution.html +61 -59
  32. package/docs/interfaces/algebra_polynom.IEuclidian.html +47 -46
  33. package/docs/interfaces/geometry_triangle.remarquableLines.html +74 -74
  34. package/docs/modules/Logicalset.html +33 -38
  35. package/docs/modules/Polynom.html +33 -38
  36. package/docs/modules/Vector-1.html +33 -38
  37. package/docs/modules/Vector.html +33 -38
  38. package/docs/modules/algebra_equation.html +35 -41
  39. package/docs/modules/algebra_linearSystem.html +31 -37
  40. package/docs/modules/algebra_monom.html +33 -39
  41. package/docs/modules/algebra_polynom.html +35 -41
  42. package/docs/modules/coefficients_fraction.html +33 -39
  43. package/docs/modules/geometry_circle.html +31 -37
  44. package/docs/modules/geometry_line.html +33 -39
  45. package/docs/modules/geometry_triangle.html +33 -39
  46. package/docs/modules/numeric.html +31 -37
  47. package/docs/modules/shutingyard.html +41 -47
  48. package/docs/types/algebra_monom.literalType.html +33 -37
  49. package/docs/types/algebra_polynom.PolynomParsingType.html +33 -37
  50. package/docs/types/coefficients_fraction.FractionParsingType.html +32 -36
  51. package/docs/types/shutingyard.Token.html +38 -42
  52. package/docs/types/shutingyard.tokenType.html +40 -44
  53. package/docs/variables/shutingyard.tokenConstant.html +37 -41
  54. package/esm/index.d.ts +38 -41
  55. package/esm/index.js +43 -46
  56. package/esm/index.js.map +1 -1
  57. package/esm/maths/algebra/equation.d.ts +119 -117
  58. package/esm/maths/algebra/equation.js +796 -785
  59. package/esm/maths/algebra/equation.js.map +1 -1
  60. package/esm/maths/algebra/linearSystem.d.ts +39 -38
  61. package/esm/maths/algebra/linearSystem.js +278 -262
  62. package/esm/maths/algebra/linearSystem.js.map +1 -1
  63. package/esm/maths/algebra/logicalset.d.ts +28 -28
  64. package/esm/maths/algebra/logicalset.js +157 -157
  65. package/esm/maths/algebra/monom.d.ts +206 -206
  66. package/esm/maths/algebra/monom.js +908 -908
  67. package/esm/maths/algebra/monom.js.map +1 -1
  68. package/esm/maths/algebra/polynom.d.ts +157 -157
  69. package/esm/maths/algebra/polynom.js +1277 -1277
  70. package/esm/maths/algebra/rational.d.ts +45 -45
  71. package/esm/maths/algebra/rational.js +183 -183
  72. package/esm/maths/algebra/study/rationalStudy.d.ts +28 -28
  73. package/esm/maths/algebra/study/rationalStudy.js +243 -243
  74. package/esm/maths/algebra/study.d.ts +142 -142
  75. package/esm/maths/algebra/study.js +377 -377
  76. package/esm/maths/algebra/study.js.map +1 -1
  77. package/esm/maths/coefficients/fraction.d.ts +90 -90
  78. package/esm/maths/coefficients/fraction.js +516 -516
  79. package/esm/maths/coefficients/fraction.js.map +1 -1
  80. package/esm/maths/coefficients/nthRoot.d.ts +23 -23
  81. package/esm/maths/coefficients/nthRoot.js +136 -136
  82. package/esm/maths/geometry/circle.d.ts +45 -45
  83. package/esm/maths/geometry/circle.js +323 -323
  84. package/esm/maths/geometry/line.d.ts +99 -99
  85. package/esm/maths/geometry/line.js +481 -481
  86. package/esm/maths/geometry/line.js.map +1 -1
  87. package/esm/maths/geometry/point.d.ts +34 -34
  88. package/esm/maths/geometry/point.js +166 -166
  89. package/esm/maths/geometry/point.js.map +1 -1
  90. package/esm/maths/geometry/triangle.d.ts +85 -85
  91. package/esm/maths/geometry/triangle.js +268 -268
  92. package/esm/maths/geometry/vector.d.ts +41 -41
  93. package/esm/maths/geometry/vector.js +197 -197
  94. package/esm/maths/geometry/vector.js.map +1 -1
  95. package/esm/maths/numeric.d.ts +28 -28
  96. package/esm/maths/numeric.js +180 -169
  97. package/esm/maths/numeric.js.map +1 -1
  98. package/esm/maths/numexp.d.ts +19 -0
  99. package/esm/maths/numexp.js +186 -0
  100. package/esm/maths/numexp.js.map +1 -0
  101. package/esm/maths/randomization/random.d.ts +23 -23
  102. package/esm/maths/randomization/random.js +78 -78
  103. package/esm/maths/randomization/random.js.map +1 -1
  104. package/esm/maths/randomization/randomCore.d.ts +7 -7
  105. package/esm/maths/randomization/randomCore.js +21 -21
  106. package/esm/maths/randomization/rndFraction.d.ts +12 -12
  107. package/esm/maths/randomization/rndFraction.js +43 -43
  108. package/esm/maths/randomization/rndGeometryLine.d.ts +12 -12
  109. package/esm/maths/randomization/rndGeometryLine.js +45 -45
  110. package/esm/maths/randomization/rndGeometryPoint.d.ts +12 -12
  111. package/esm/maths/randomization/rndGeometryPoint.js +60 -60
  112. package/esm/maths/randomization/rndHelpers.d.ts +23 -23
  113. package/esm/maths/randomization/rndHelpers.js +76 -76
  114. package/esm/maths/randomization/rndMonom.d.ts +12 -12
  115. package/esm/maths/randomization/rndMonom.js +52 -52
  116. package/esm/maths/randomization/rndPolynom.d.ts +13 -13
  117. package/esm/maths/randomization/rndPolynom.js +74 -74
  118. package/esm/maths/randomization/rndTypes.d.ts +34 -34
  119. package/esm/maths/randomization/rndTypes.js +2 -2
  120. package/esm/maths/shutingyard.d.ts +59 -59
  121. package/esm/maths/shutingyard.js +442 -442
  122. package/esm/maths/shutingyard.js.map +1 -1
  123. package/package.json +11 -11
  124. package/public/index.html +50 -81
  125. package/public/playground.html +7 -8
  126. package/src/index.ts +2 -5
  127. package/src/maths/algebra/equation.ts +16 -0
  128. package/src/maths/algebra/linearSystem.ts +20 -0
  129. package/src/maths/algebra/study.ts +1 -1
  130. package/src/maths/numeric.ts +49 -48
  131. package/src/maths/{expressions/numexp.ts → numexp.ts} +2 -2
  132. package/tests/algebra/equation.test.ts +19 -5
  133. package/tests/algebra/linear.test.ts +3 -11
  134. package/tests/algebra/polynom.test.ts +7 -8
  135. package/tests/algebra/rationnal.test.ts +1 -1
  136. package/tests/algebra/study.test.ts +2 -9
  137. package/tests/coefficients/fraction.test.ts +8 -8
  138. package/tests/custom.test.ts +33 -37
  139. package/tests/numeric.test.ts +1 -2
  140. package/tests/numexp.test.ts +1 -5
  141. package/tests/shutingyard.test.ts +3 -3
  142. package/webpack-production-min.config.js +1 -1
  143. package/webpack-production.config.js +1 -1
  144. package/webpack.config.js +1 -1
  145. package/dist/pi.js.map +0 -1
  146. package/dist/pi.min.js +0 -2
  147. package/dist/pi.min.js.map +0 -1
  148. package/docs/classes/expressions_numexp.NumExp.html +0 -236
  149. package/docs/classes/expressions_polynomexp.PolynomExpFactor.html +0 -317
  150. package/docs/classes/expressions_polynomexp.PolynomExpProduct.html +0 -285
  151. package/docs/modules/expressions_numexp.html +0 -71
  152. package/docs/modules/expressions_polynomexp.html +0 -73
  153. package/docs/modules.html +0 -76
  154. package/graph.svg +0 -1033
  155. package/src/maths/expressions/ExpressionTree.ts +0 -172
  156. package/src/maths/expressions/expression.ts +0 -286
  157. package/src/maths/expressions/expressionFactor.ts +0 -190
  158. package/src/maths/expressions/expressionMember.ts +0 -233
  159. package/src/maths/expressions/expressionOperators.ts +0 -49
  160. package/src/maths/expressions/expressionParser.ts +0 -295
  161. package/src/maths/expressions/factors/ExpFactor.ts +0 -39
  162. package/src/maths/expressions/factors/ExpFactorConstant.ts +0 -60
  163. package/src/maths/expressions/factors/ExpFactorExponential.ts +0 -26
  164. package/src/maths/expressions/factors/ExpFactorNumber.ts +0 -72
  165. package/src/maths/expressions/factors/ExpFactorPower.ts +0 -42
  166. package/src/maths/expressions/factors/ExpFactorTrigo.ts +0 -53
  167. package/src/maths/expressions/factors/ExpFactorVariable.ts +0 -45
  168. package/src/maths/expressions/internals.ts +0 -14
  169. package/src/maths/expressions/polynomexp.bkp.ts +0 -221
  170. package/src/maths/expressions/polynomexp.ts +0 -310
  171. package/tests/expressions/expressions.test.ts +0 -145
  172. package/tests/expressions/expressiontree.test.ts +0 -11
  173. package/tests/polynomexp.test.ts +0 -12
@@ -1,485 +1,485 @@
1
- "use strict";
2
- /**
3
- * This class works for 2d line in a plane.
4
- */
5
- Object.defineProperty(exports, "__esModule", { value: true });
6
- exports.Line = exports.LinePropriety = void 0;
7
- const vector_1 = require("./vector");
8
- const point_1 = require("./point");
9
- const numeric_1 = require("../numeric");
10
- const fraction_1 = require("../coefficients/fraction");
11
- const equation_1 = require("../algebra/equation");
12
- const polynom_1 = require("../algebra/polynom");
13
- const random_1 = require("../randomization/random");
14
- const monom_1 = require("../algebra/monom");
15
- var LinePropriety;
16
- (function (LinePropriety) {
17
- LinePropriety[LinePropriety["None"] = 0] = "None";
18
- LinePropriety["Parallel"] = "parallel";
19
- LinePropriety["Perpendicular"] = "perpendicular";
20
- LinePropriety["Tangent"] = "tangent";
21
- })(LinePropriety = exports.LinePropriety || (exports.LinePropriety = {}));
22
- class Line {
23
- constructor(...values) {
24
- this.randomPoint = (k) => {
25
- // Return a random point on the line.
26
- return this._d
27
- .clone()
28
- .multiplyByScalar(random_1.Random.numberSym((k === undefined || k <= 1) ? 3 : k, false))
29
- .add(this._OA.asVector)
30
- .asPoint;
31
- };
32
- this.randomNearPoint = (k) => {
33
- let pt = this.randomPoint(k);
34
- let maxIterationTest = 10;
35
- while (this.isOnLine(pt) && maxIterationTest > 0) {
36
- pt.x.add(random_1.Random.numberSym(1, false));
37
- pt.y.add(random_1.Random.numberSym(1, false));
38
- maxIterationTest--;
39
- }
40
- return pt;
41
- };
42
- // ------------------------------------------
43
- // Creation / parsing functions
44
- // ------------------------------------------
45
- /**
46
- * Parse data to a line
47
- * @param {any} values
48
- * @returns {Line}
49
- */
50
- this.parse = (...values) => {
51
- this._exists = false;
52
- // Nothing is given...
53
- if (values.length === 0) {
54
- return this;
55
- }
56
- // One value only: already a line (clone it), an Equation, a string (as Equation)
57
- if (values.length === 1) {
58
- if (values[0] instanceof Line) {
59
- // Already a Line
60
- return values[0].clone();
61
- }
62
- else if (values[0] instanceof equation_1.Equation) {
63
- // It's an Equation
64
- return this.parseEquation(values[0]);
65
- }
66
- else if (typeof values[0] === "string") {
67
- // It's a string - create an Equation from it.
68
- try {
69
- let E = new equation_1.Equation(values[0]);
70
- return this.parse(E);
71
- }
72
- catch (e) {
73
- return this;
74
- }
75
- }
76
- }
77
- if (values.length === 2) {
78
- if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
79
- return this.parseByPointAndVector(values[0], values[1]);
80
- }
81
- else if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
82
- return this.parseByPointAndVector(values[0], new vector_1.Vector(values[0], values[1]));
83
- }
84
- else if (values[0] instanceof vector_1.Vector && values[1] instanceof point_1.Point) {
85
- return this.parseByPointAndNormal(values[1], values[0]);
86
- }
87
- }
88
- if (values.length === 3) {
89
- if ((values[0] instanceof fraction_1.Fraction || typeof values[0] === 'number')
90
- &&
91
- (values[1] instanceof fraction_1.Fraction || typeof values[1] === 'number')
92
- &&
93
- (values[2] instanceof fraction_1.Fraction || typeof values[2] === 'number')) {
94
- return this.parseByCoefficient(values[0], values[1], values[2]);
95
- }
96
- else if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
97
- if (values[2] === LinePropriety.Perpendicular) {
98
- return this.parseByPointAndNormal(values[0], values[1]);
99
- }
100
- else if (values[2] === LinePropriety.Parallel) {
101
- return this.parseByPointAndVector(values[0], values[1]);
102
- }
103
- }
104
- else if (values[0] instanceof point_1.Point && values[1] instanceof Line) {
105
- if (values[2] === LinePropriety.Parallel || values[2] === null) {
106
- return this.parseByPointAndLine(values[0], values[1], LinePropriety.Parallel);
107
- }
108
- else {
109
- return this.parseByPointAndLine(values[0], values[1], LinePropriety.Perpendicular);
110
- }
111
- }
112
- }
113
- // TODO: Add the ability to create line from a normal vector
114
- console.log('Someting wrong happend while creating the line');
115
- return this;
116
- };
117
- this.parseEquation = (equ) => {
118
- // Reorder the eequation
119
- equ.reorder(true);
120
- // It must contain either x, y or both.
121
- let letters = new Set(equ.letters());
122
- // No 'x', no 'y' in the equations
123
- if (!(letters.has('x') || letters.has('y'))) {
124
- return this;
125
- }
126
- // Another letter in the equation ?
127
- for (let elem of ['x', 'y']) {
128
- if (letters.has(elem)) {
129
- letters.delete(elem);
130
- }
131
- }
132
- if (letters.size > 0) {
133
- return this;
134
- }
135
- // Everything should be ok now...
136
- return this.parseByCoefficient(equ.left.monomByLetter('x').coefficient, equ.left.monomByLetter('y').coefficient, equ.left.monomByDegree(0).coefficient);
137
- };
138
- this.parseByCoefficient = (a, b, c) => {
139
- this._a = new fraction_1.Fraction(a);
140
- this._b = new fraction_1.Fraction(b);
141
- this._c = new fraction_1.Fraction(c);
142
- this._d = new vector_1.Vector(this._b.clone(), this._a.clone().opposed());
143
- this._OA = new point_1.Point(new fraction_1.Fraction().zero(), this._c.clone());
144
- this._n = this._d.clone().normal();
145
- this._exists = true;
146
- return this;
147
- };
148
- this.parseByPointAndVector = (P, d) => {
149
- // OX = OP + k*d
150
- // x = px + kdx * dy
151
- // y = py + kdy * dx
152
- // ------------------
153
- // dy * x = px * dy + kdxdy
154
- // dx * y = py * dx + kdxdy
155
- // ------------------
156
- // dy * x - dx * y = px * dy - py * dx
157
- // dy * x - dx * y - (px * dy - py * dx) = 0
158
- this.parseByCoefficient(d.y, d.x.clone().opposed(), P.x.clone().multiply(d.y).subtract(P.y.clone().multiply(d.x)).opposed());
159
- // Choose the current values as point and direction vector instead of the automatic version.
160
- this._OA = P.clone();
161
- this._d = d.clone();
162
- this._n = this._d.clone().normal();
163
- this._exists = true;
164
- return this;
165
- };
166
- this.parseByPointAndNormal = (P, n) => {
167
- return this.parseByCoefficient(n.x, n.y, P.x.clone().multiply(n.x)
168
- .add(P.y.clone().multiply(n.y)).opposed());
169
- };
170
- this.parseByPointAndLine = (P, L, orientation) => {
171
- if (orientation === undefined) {
172
- orientation = LinePropriety.Parallel;
173
- }
174
- if (orientation === LinePropriety.Parallel) {
175
- return this.parseByPointAndNormal(P, L.normal);
176
- }
177
- else if (orientation === LinePropriety.Perpendicular) {
178
- return this.parseByPointAndNormal(P, L.director);
179
- }
180
- this._exists = false;
181
- return this;
182
- };
183
- this.clone = () => {
184
- this._a = this._a.clone();
185
- this._b = this._b.clone();
186
- this._c = this._c.clone();
187
- this._d = this._d.clone();
188
- this._OA = this._OA.clone();
189
- this._n = this._n.clone();
190
- this._exists = this.exists;
191
- return this;
192
- };
193
- // ------------------------------------------
194
- // Mathematical operations
195
- // ------------------------------------------
196
- this.isOnLine = (pt) => {
197
- return this._a.clone()
198
- .multiply(pt.x)
199
- .add(this._b.clone()
200
- .multiply(pt.y))
201
- .add(this._c)
202
- .isZero();
203
- };
204
- this.isParallelTo = (line) => {
205
- // Do they have the isSame direction ?
206
- return this.slope.isEqual(line.slope) && this.height.isNotEqual(line.height);
207
- };
208
- this.isSameAs = (line) => {
209
- return this.slope.isEqual(line.slope) && this.height.isEqual(line.height);
210
- };
211
- this.isPerpendicularTo = (line) => {
212
- return this.d.isNormalTo(line.d);
213
- };
214
- this.isVertical = () => {
215
- return this.slope.isInfinity();
216
- };
217
- this.simplify = () => {
218
- let lcm = numeric_1.Numeric.lcm(this._a.denominator, this._b.denominator, this._c.denominator), gcd = numeric_1.Numeric.gcd(this._a.numerator, this._b.numerator, this._c.numerator);
219
- this.parseByCoefficient(this._a.clone().multiply(lcm).divide(gcd), this._b.clone().multiply(lcm).divide(gcd), this._c.clone().multiply(lcm).divide(gcd));
220
- return this;
221
- };
222
- this.simplifyDirection = () => {
223
- this._d.simplifyDirection();
224
- return this;
225
- };
226
- this.intersection = (line) => {
227
- let Pt = new point_1.Point(), isParallel = false, isSame = false, hasIntersection = true;
228
- // this => ax+by+c = 0
229
- // line => dx+ey+f = 0
230
- //
231
- // aex + bey + ce = 0
232
- // dbx + bey + bf = 0
233
- // (ae-db)x + ce-bf = 0
234
- //
235
- // adx + bdy + cd = 0
236
- // adx + aey + af = 0
237
- // (bd-ae)y + (cd-af)
238
- //
239
- // x = (bf-ce)/(ae-db)
240
- // y = (af-cd)/(bd-ae)
241
- // Theres is no 'y'
242
- if (this._b.isZero() || line.b.isZero()) {
243
- // TODO : handle no y in the line canonical form
244
- }
245
- if (this.isParallelTo(line)) {
246
- Pt.x = null;
247
- Pt.y = null;
248
- isParallel = true;
249
- }
250
- else if (this.isSameAs(line)) {
251
- Pt.x = null;
252
- Pt.y = null;
253
- isSame = true;
254
- }
255
- else {
256
- Pt.x = this._b.clone().multiply(line.c).subtract(this._c.clone().multiply(line.b))
257
- .divide(this._a.clone().multiply(line.b).subtract(this._b.clone().multiply(line.a)));
258
- Pt.y = this._a.clone().multiply(line.c).subtract(this._c.clone().multiply(line.a))
259
- .divide(this._b.clone().multiply(line.a).subtract(this._a.clone().multiply(line.b)));
260
- }
261
- return {
262
- point: Pt,
263
- hasIntersection: !(isParallel || isSame),
264
- isParallel,
265
- isSame
266
- };
267
- };
268
- this.getValueAtX = (value) => {
269
- const equ = this.equation.clone().isolate('y'), F = new fraction_1.Fraction(value);
270
- if (equ instanceof equation_1.Equation) {
271
- return equ.right.evaluate({ x: F });
272
- }
273
- return;
274
- };
275
- this.getValueAtY = (value) => {
276
- const equ = this.equation.clone().isolate('x'), F = new fraction_1.Fraction(value);
277
- if (equ instanceof equation_1.Equation) {
278
- return equ.right.evaluate({ y: F });
279
- }
280
- return;
281
- };
282
- this._exists = false;
283
- this._reduceBeforeDisplay = true;
284
- if (values.length > 0) {
285
- this.parse(...values);
286
- }
287
- return this;
288
- }
289
- get a() {
290
- return this._a;
291
- }
292
- set a(value) {
293
- this._a = value;
294
- }
295
- get b() {
296
- return this._b;
297
- }
298
- set b(value) {
299
- this._b = value;
300
- }
301
- get c() {
302
- return this._c;
303
- }
304
- // ------------------------------------------
305
- // Getter and setter
306
- set c(value) {
307
- this._c = value;
308
- }
309
- get OA() {
310
- return this._OA;
311
- }
312
- set OA(value) {
313
- this._OA = value;
314
- }
315
- get d() {
316
- return this._d;
317
- }
318
- set d(value) {
319
- this._d = value;
320
- }
321
- get n() {
322
- return this._n;
323
- }
324
- get exists() {
325
- return this._exists;
326
- }
327
- // ------------------------------------------
328
- get equation() {
329
- let equ = new equation_1.Equation(new polynom_1.Polynom().parse('xy', this._a, this._b, this._c), new polynom_1.Polynom('0'));
330
- if (this._reduceBeforeDisplay) {
331
- return equ.simplify();
332
- }
333
- else {
334
- return equ;
335
- }
336
- }
337
- get system() {
338
- let e1 = new equation_1.Equation(new polynom_1.Polynom('x'), new polynom_1.Polynom(this._OA.x)
339
- .add(new monom_1.Monom('k').multiplyByNumber(this._d.x))), e2 = new equation_1.Equation(new polynom_1.Polynom('y'), new polynom_1.Polynom(this._OA.y)
340
- .add(new monom_1.Monom('k').multiplyByNumber(this._d.y)));
341
- return { x: e1, y: e2 };
342
- }
343
- get tex() {
344
- // canonical => ax + by + c = 0
345
- // mxh => y = -a/b x - c/b
346
- // parametric => (xy) = OA + k*d
347
- // equation => ax + by = -c
348
- let canonical = this.equation.clone().reorder(true);
349
- // Make sur the first item is positive.
350
- if (this._a.isNegative()) {
351
- canonical.multiply(-1);
352
- }
353
- let d = this._d.clone();
354
- if (this._reduceBeforeDisplay) {
355
- d.simplifyDirection();
356
- }
357
- return {
358
- canonical: canonical.tex,
359
- equation: canonical.clone().reorder().tex,
360
- mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.tex : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).tex,
361
- parametric: `${point_1.Point.pmatrix('x', 'y')} = ${point_1.Point.pmatrix(this._OA.x, this._OA.y)} + k\\cdot ${point_1.Point.pmatrix(d.x, d.y)}`,
1
+ "use strict";
2
+ /**
3
+ * This class works for 2d line in a plane.
4
+ */
5
+ Object.defineProperty(exports, "__esModule", { value: true });
6
+ exports.Line = exports.LinePropriety = void 0;
7
+ const vector_1 = require("./vector");
8
+ const point_1 = require("./point");
9
+ const numeric_1 = require("../numeric");
10
+ const fraction_1 = require("../coefficients/fraction");
11
+ const equation_1 = require("../algebra/equation");
12
+ const polynom_1 = require("../algebra/polynom");
13
+ const random_1 = require("../randomization/random");
14
+ const monom_1 = require("../algebra/monom");
15
+ var LinePropriety;
16
+ (function (LinePropriety) {
17
+ LinePropriety[LinePropriety["None"] = 0] = "None";
18
+ LinePropriety["Parallel"] = "parallel";
19
+ LinePropriety["Perpendicular"] = "perpendicular";
20
+ LinePropriety["Tangent"] = "tangent";
21
+ })(LinePropriety || (exports.LinePropriety = LinePropriety = {}));
22
+ class Line {
23
+ constructor(...values) {
24
+ this.randomPoint = (k) => {
25
+ // Return a random point on the line.
26
+ return this._d
27
+ .clone()
28
+ .multiplyByScalar(random_1.Random.numberSym((k === undefined || k <= 1) ? 3 : k, false))
29
+ .add(this._OA.asVector)
30
+ .asPoint;
31
+ };
32
+ this.randomNearPoint = (k) => {
33
+ let pt = this.randomPoint(k);
34
+ let maxIterationTest = 10;
35
+ while (this.isOnLine(pt) && maxIterationTest > 0) {
36
+ pt.x.add(random_1.Random.numberSym(1, false));
37
+ pt.y.add(random_1.Random.numberSym(1, false));
38
+ maxIterationTest--;
39
+ }
40
+ return pt;
41
+ };
42
+ // ------------------------------------------
43
+ // Creation / parsing functions
44
+ // ------------------------------------------
45
+ /**
46
+ * Parse data to a line
47
+ * @param {any} values
48
+ * @returns {Line}
49
+ */
50
+ this.parse = (...values) => {
51
+ this._exists = false;
52
+ // Nothing is given...
53
+ if (values.length === 0) {
54
+ return this;
55
+ }
56
+ // One value only: already a line (clone it), an Equation, a string (as Equation)
57
+ if (values.length === 1) {
58
+ if (values[0] instanceof Line) {
59
+ // Already a Line
60
+ return values[0].clone();
61
+ }
62
+ else if (values[0] instanceof equation_1.Equation) {
63
+ // It's an Equation
64
+ return this.parseEquation(values[0]);
65
+ }
66
+ else if (typeof values[0] === "string") {
67
+ // It's a string - create an Equation from it.
68
+ try {
69
+ let E = new equation_1.Equation(values[0]);
70
+ return this.parse(E);
71
+ }
72
+ catch (e) {
73
+ return this;
74
+ }
75
+ }
76
+ }
77
+ if (values.length === 2) {
78
+ if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
79
+ return this.parseByPointAndVector(values[0], values[1]);
80
+ }
81
+ else if (values[0] instanceof point_1.Point && values[1] instanceof point_1.Point) {
82
+ return this.parseByPointAndVector(values[0], new vector_1.Vector(values[0], values[1]));
83
+ }
84
+ else if (values[0] instanceof vector_1.Vector && values[1] instanceof point_1.Point) {
85
+ return this.parseByPointAndNormal(values[1], values[0]);
86
+ }
87
+ }
88
+ if (values.length === 3) {
89
+ if ((values[0] instanceof fraction_1.Fraction || typeof values[0] === 'number')
90
+ &&
91
+ (values[1] instanceof fraction_1.Fraction || typeof values[1] === 'number')
92
+ &&
93
+ (values[2] instanceof fraction_1.Fraction || typeof values[2] === 'number')) {
94
+ return this.parseByCoefficient(values[0], values[1], values[2]);
95
+ }
96
+ else if (values[0] instanceof point_1.Point && values[1] instanceof vector_1.Vector) {
97
+ if (values[2] === LinePropriety.Perpendicular) {
98
+ return this.parseByPointAndNormal(values[0], values[1]);
99
+ }
100
+ else if (values[2] === LinePropriety.Parallel) {
101
+ return this.parseByPointAndVector(values[0], values[1]);
102
+ }
103
+ }
104
+ else if (values[0] instanceof point_1.Point && values[1] instanceof Line) {
105
+ if (values[2] === LinePropriety.Parallel || values[2] === null) {
106
+ return this.parseByPointAndLine(values[0], values[1], LinePropriety.Parallel);
107
+ }
108
+ else {
109
+ return this.parseByPointAndLine(values[0], values[1], LinePropriety.Perpendicular);
110
+ }
111
+ }
112
+ }
113
+ // TODO: Add the ability to create line from a normal vector
114
+ console.log('Someting wrong happend while creating the line');
115
+ return this;
116
+ };
117
+ this.parseEquation = (equ) => {
118
+ // Reorder the eequation
119
+ equ.reorder(true);
120
+ // It must contain either x, y or both.
121
+ let letters = new Set(equ.letters());
122
+ // No 'x', no 'y' in the equations
123
+ if (!(letters.has('x') || letters.has('y'))) {
124
+ return this;
125
+ }
126
+ // Another letter in the equation ?
127
+ for (let elem of ['x', 'y']) {
128
+ if (letters.has(elem)) {
129
+ letters.delete(elem);
130
+ }
131
+ }
132
+ if (letters.size > 0) {
133
+ return this;
134
+ }
135
+ // Everything should be ok now...
136
+ return this.parseByCoefficient(equ.left.monomByLetter('x').coefficient, equ.left.monomByLetter('y').coefficient, equ.left.monomByDegree(0).coefficient);
137
+ };
138
+ this.parseByCoefficient = (a, b, c) => {
139
+ this._a = new fraction_1.Fraction(a);
140
+ this._b = new fraction_1.Fraction(b);
141
+ this._c = new fraction_1.Fraction(c);
142
+ this._d = new vector_1.Vector(this._b.clone(), this._a.clone().opposed());
143
+ this._OA = new point_1.Point(new fraction_1.Fraction().zero(), this._c.clone());
144
+ this._n = this._d.clone().normal();
145
+ this._exists = true;
146
+ return this;
147
+ };
148
+ this.parseByPointAndVector = (P, d) => {
149
+ // OX = OP + k*d
150
+ // x = px + kdx * dy
151
+ // y = py + kdy * dx
152
+ // ------------------
153
+ // dy * x = px * dy + kdxdy
154
+ // dx * y = py * dx + kdxdy
155
+ // ------------------
156
+ // dy * x - dx * y = px * dy - py * dx
157
+ // dy * x - dx * y - (px * dy - py * dx) = 0
158
+ this.parseByCoefficient(d.y, d.x.clone().opposed(), P.x.clone().multiply(d.y).subtract(P.y.clone().multiply(d.x)).opposed());
159
+ // Choose the current values as point and direction vector instead of the automatic version.
160
+ this._OA = P.clone();
161
+ this._d = d.clone();
162
+ this._n = this._d.clone().normal();
163
+ this._exists = true;
164
+ return this;
165
+ };
166
+ this.parseByPointAndNormal = (P, n) => {
167
+ return this.parseByCoefficient(n.x, n.y, P.x.clone().multiply(n.x)
168
+ .add(P.y.clone().multiply(n.y)).opposed());
169
+ };
170
+ this.parseByPointAndLine = (P, L, orientation) => {
171
+ if (orientation === undefined) {
172
+ orientation = LinePropriety.Parallel;
173
+ }
174
+ if (orientation === LinePropriety.Parallel) {
175
+ return this.parseByPointAndNormal(P, L.normal);
176
+ }
177
+ else if (orientation === LinePropriety.Perpendicular) {
178
+ return this.parseByPointAndNormal(P, L.director);
179
+ }
180
+ this._exists = false;
181
+ return this;
182
+ };
183
+ this.clone = () => {
184
+ this._a = this._a.clone();
185
+ this._b = this._b.clone();
186
+ this._c = this._c.clone();
187
+ this._d = this._d.clone();
188
+ this._OA = this._OA.clone();
189
+ this._n = this._n.clone();
190
+ this._exists = this.exists;
191
+ return this;
192
+ };
193
+ // ------------------------------------------
194
+ // Mathematical operations
195
+ // ------------------------------------------
196
+ this.isOnLine = (pt) => {
197
+ return this._a.clone()
198
+ .multiply(pt.x)
199
+ .add(this._b.clone()
200
+ .multiply(pt.y))
201
+ .add(this._c)
202
+ .isZero();
203
+ };
204
+ this.isParallelTo = (line) => {
205
+ // Do they have the isSame direction ?
206
+ return this.slope.isEqual(line.slope) && this.height.isNotEqual(line.height);
207
+ };
208
+ this.isSameAs = (line) => {
209
+ return this.slope.isEqual(line.slope) && this.height.isEqual(line.height);
210
+ };
211
+ this.isPerpendicularTo = (line) => {
212
+ return this.d.isNormalTo(line.d);
213
+ };
214
+ this.isVertical = () => {
215
+ return this.slope.isInfinity();
216
+ };
217
+ this.simplify = () => {
218
+ let lcm = numeric_1.Numeric.lcm(this._a.denominator, this._b.denominator, this._c.denominator), gcd = numeric_1.Numeric.gcd(this._a.numerator, this._b.numerator, this._c.numerator);
219
+ this.parseByCoefficient(this._a.clone().multiply(lcm).divide(gcd), this._b.clone().multiply(lcm).divide(gcd), this._c.clone().multiply(lcm).divide(gcd));
220
+ return this;
221
+ };
222
+ this.simplifyDirection = () => {
223
+ this._d.simplifyDirection();
224
+ return this;
225
+ };
226
+ this.intersection = (line) => {
227
+ let Pt = new point_1.Point(), isParallel = false, isSame = false, hasIntersection = true;
228
+ // this => ax+by+c = 0
229
+ // line => dx+ey+f = 0
230
+ //
231
+ // aex + bey + ce = 0
232
+ // dbx + bey + bf = 0
233
+ // (ae-db)x + ce-bf = 0
234
+ //
235
+ // adx + bdy + cd = 0
236
+ // adx + aey + af = 0
237
+ // (bd-ae)y + (cd-af)
238
+ //
239
+ // x = (bf-ce)/(ae-db)
240
+ // y = (af-cd)/(bd-ae)
241
+ // Theres is no 'y'
242
+ if (this._b.isZero() || line.b.isZero()) {
243
+ // TODO : handle no y in the line canonical form
244
+ }
245
+ if (this.isParallelTo(line)) {
246
+ Pt.x = null;
247
+ Pt.y = null;
248
+ isParallel = true;
249
+ }
250
+ else if (this.isSameAs(line)) {
251
+ Pt.x = null;
252
+ Pt.y = null;
253
+ isSame = true;
254
+ }
255
+ else {
256
+ Pt.x = this._b.clone().multiply(line.c).subtract(this._c.clone().multiply(line.b))
257
+ .divide(this._a.clone().multiply(line.b).subtract(this._b.clone().multiply(line.a)));
258
+ Pt.y = this._a.clone().multiply(line.c).subtract(this._c.clone().multiply(line.a))
259
+ .divide(this._b.clone().multiply(line.a).subtract(this._a.clone().multiply(line.b)));
260
+ }
261
+ return {
262
+ point: Pt,
263
+ hasIntersection: !(isParallel || isSame),
264
+ isParallel,
265
+ isSame
266
+ };
267
+ };
268
+ this.getValueAtX = (value) => {
269
+ const equ = this.equation.clone().isolate('y'), F = new fraction_1.Fraction(value);
270
+ if (equ instanceof equation_1.Equation) {
271
+ return equ.right.evaluate({ x: F });
272
+ }
273
+ return;
274
+ };
275
+ this.getValueAtY = (value) => {
276
+ const equ = this.equation.clone().isolate('x'), F = new fraction_1.Fraction(value);
277
+ if (equ instanceof equation_1.Equation) {
278
+ return equ.right.evaluate({ y: F });
279
+ }
280
+ return;
281
+ };
282
+ this._exists = false;
283
+ this._reduceBeforeDisplay = true;
284
+ if (values.length > 0) {
285
+ this.parse(...values);
286
+ }
287
+ return this;
288
+ }
289
+ get a() {
290
+ return this._a;
291
+ }
292
+ set a(value) {
293
+ this._a = value;
294
+ }
295
+ get b() {
296
+ return this._b;
297
+ }
298
+ set b(value) {
299
+ this._b = value;
300
+ }
301
+ get c() {
302
+ return this._c;
303
+ }
304
+ // ------------------------------------------
305
+ // Getter and setter
306
+ set c(value) {
307
+ this._c = value;
308
+ }
309
+ get OA() {
310
+ return this._OA;
311
+ }
312
+ set OA(value) {
313
+ this._OA = value;
314
+ }
315
+ get d() {
316
+ return this._d;
317
+ }
318
+ set d(value) {
319
+ this._d = value;
320
+ }
321
+ get n() {
322
+ return this._n;
323
+ }
324
+ get exists() {
325
+ return this._exists;
326
+ }
327
+ // ------------------------------------------
328
+ get equation() {
329
+ let equ = new equation_1.Equation(new polynom_1.Polynom().parse('xy', this._a, this._b, this._c), new polynom_1.Polynom('0'));
330
+ if (this._reduceBeforeDisplay) {
331
+ return equ.simplify();
332
+ }
333
+ else {
334
+ return equ;
335
+ }
336
+ }
337
+ get system() {
338
+ let e1 = new equation_1.Equation(new polynom_1.Polynom('x'), new polynom_1.Polynom(this._OA.x)
339
+ .add(new monom_1.Monom('k').multiplyByNumber(this._d.x))), e2 = new equation_1.Equation(new polynom_1.Polynom('y'), new polynom_1.Polynom(this._OA.y)
340
+ .add(new monom_1.Monom('k').multiplyByNumber(this._d.y)));
341
+ return { x: e1, y: e2 };
342
+ }
343
+ get tex() {
344
+ // canonical => ax + by + c = 0
345
+ // mxh => y = -a/b x - c/b
346
+ // parametric => (xy) = OA + k*d
347
+ // equation => ax + by = -c
348
+ let canonical = this.equation.clone().reorder(true);
349
+ // Make sur the first item is positive.
350
+ if (this._a.isNegative()) {
351
+ canonical.multiply(-1);
352
+ }
353
+ let d = this._d.clone();
354
+ if (this._reduceBeforeDisplay) {
355
+ d.simplifyDirection();
356
+ }
357
+ return {
358
+ canonical: canonical.tex,
359
+ equation: canonical.clone().reorder().tex,
360
+ mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.tex : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).tex,
361
+ parametric: `${point_1.Point.pmatrix('x', 'y')} = ${point_1.Point.pmatrix(this._OA.x, this._OA.y)} + k\\cdot ${point_1.Point.pmatrix(d.x, d.y)}`,
362
362
  system: `\\left\\{\\begin{aligned}
363
- x &= ${(new polynom_1.Polynom(this._OA.x)
364
- .add(new monom_1.Monom(this._d.x).multiply(new monom_1.Monom('k'))))
365
- .reorder('k', true)
363
+ x &= ${(new polynom_1.Polynom(this._OA.x)
364
+ .add(new monom_1.Monom(this._d.x).multiply(new monom_1.Monom('k'))))
365
+ .reorder('k', true)
366
366
  .tex}\\\\\
367
- y &= ${(new polynom_1.Polynom(this._OA.y)
368
- .add(new monom_1.Monom(this._d.y).multiply(new monom_1.Monom('k'))))
369
- .reorder('k', true)
367
+ y &= ${(new polynom_1.Polynom(this._OA.y)
368
+ .add(new monom_1.Monom(this._d.y).multiply(new monom_1.Monom('k'))))
369
+ .reorder('k', true)
370
370
  .tex}
371
- \\end{aligned}\\right.`
372
- };
373
- }
374
- get reduceBeforeDisplay() {
375
- return this._reduceBeforeDisplay;
376
- }
377
- set reduceBeforeDisplay(value) {
378
- this._reduceBeforeDisplay = value;
379
- }
380
- get display() {
381
- // canonical => ax + by + c = 0
382
- // mxh => y = -a/b x - c/b
383
- // parametric => (xy) = OA + k*d // not relevant in display mode.
384
- let canonical = this.equation;
385
- // Make sur the first item is positive.
386
- if (this._a.isNegative()) {
387
- canonical.multiply(-1);
388
- }
389
- return {
390
- canonical: canonical.display,
391
- mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.display : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).display,
392
- parametric: ""
393
- };
394
- }
395
- get normal() {
396
- return new vector_1.Vector(this._a, this._b);
397
- }
398
- get director() {
399
- return this._d.clone();
400
- }
401
- get slope() {
402
- return this._a.clone().opposed().divide(this._b);
403
- }
404
- get height() {
405
- return this._c.clone().opposed().divide(this._b);
406
- }
407
- distanceTo(pt) {
408
- let numerator = pt.x.clone().multiply(this._a)
409
- .add(pt.y.clone().multiply(this._b))
410
- .add(this._c).abs(), d2 = this.normal.normSquare;
411
- // The denominator is null - shouldn't be possible
412
- if (d2.isZero()) {
413
- return {
414
- value: NaN,
415
- tex: 'Not a line',
416
- fraction: new fraction_1.Fraction().infinite()
417
- };
418
- }
419
- // The denominator is a perfect square - simplify the tex result
420
- let value = numerator.value / Math.sqrt(d2.value), F = numerator.clone().divide(d2.clone().sqrt());
421
- // The denominator is a perfect square.
422
- if (d2.isSquare()) {
423
- return {
424
- value,
425
- tex: F.tex,
426
- fraction: F
427
- };
428
- }
429
- // Complete answer...
430
- return {
431
- value,
432
- tex: `\\frac{${numerator.tex}}{\\sqrt{${d2.tex}}}`,
433
- fraction: F
434
- };
435
- }
436
- hitSegment(A, B) {
437
- let iPt = this.intersection(new Line(A, B));
438
- // There is an intersection point
439
- if (iPt.hasIntersection) {
440
- return iPt.point.x.value >= Math.min(A.x.value, B.x.value)
441
- && iPt.point.x.value <= Math.max(A.x.value, B.x.value)
442
- && iPt.point.y.value >= Math.min(A.y.value, B.y.value)
443
- && iPt.point.y.value <= Math.max(A.y.value, B.y.value);
444
- }
445
- return false;
446
- }
447
- // ------------------------------------------
448
- // Special functions
449
- // ------------------------------------------
450
- canonicalAsFloatCoefficient(decimals) {
451
- if (decimals === undefined) {
452
- decimals = 2;
453
- }
454
- let ca = this._a.value, cb = this._b.value, cc = this._c.value, canonical = '';
455
- if (!this._a.isZero()) {
456
- if (this._a.isOne()) {
457
- canonical = 'x';
458
- }
459
- else if (this._a.clone().opposed().isOne()) {
460
- canonical = '-x';
461
- }
462
- else {
463
- canonical = this._a.value.toFixed(decimals) + 'x';
464
- }
465
- }
466
- if (!this._b.isZero()) {
467
- if (this._b.isPositive()) {
468
- canonical += '+';
469
- }
470
- canonical += this._b.value.toFixed(decimals) + 'y';
471
- }
472
- if (!this._c.isZero()) {
473
- if (this._c.isPositive()) {
474
- canonical += '+';
475
- }
476
- canonical += this._c.value.toFixed(decimals);
477
- }
478
- return canonical + '=0';
479
- }
480
- }
481
- exports.Line = Line;
482
- // A line is defined as the canonical form
483
- Line.PERPENDICULAR = LinePropriety.Perpendicular;
484
- Line.PARALLEL = LinePropriety.Parallel;
371
+ \\end{aligned}\\right.`
372
+ };
373
+ }
374
+ get reduceBeforeDisplay() {
375
+ return this._reduceBeforeDisplay;
376
+ }
377
+ set reduceBeforeDisplay(value) {
378
+ this._reduceBeforeDisplay = value;
379
+ }
380
+ get display() {
381
+ // canonical => ax + by + c = 0
382
+ // mxh => y = -a/b x - c/b
383
+ // parametric => (xy) = OA + k*d // not relevant in display mode.
384
+ let canonical = this.equation;
385
+ // Make sur the first item is positive.
386
+ if (this._a.isNegative()) {
387
+ canonical.multiply(-1);
388
+ }
389
+ return {
390
+ canonical: canonical.display,
391
+ mxh: this.slope.isInfinity() ? 'x=' + this.OA.x.display : 'y=' + new polynom_1.Polynom().parse('x', this.slope, this.height).display,
392
+ parametric: ""
393
+ };
394
+ }
395
+ get normal() {
396
+ return new vector_1.Vector(this._a, this._b);
397
+ }
398
+ get director() {
399
+ return this._d.clone();
400
+ }
401
+ get slope() {
402
+ return this._a.clone().opposed().divide(this._b);
403
+ }
404
+ get height() {
405
+ return this._c.clone().opposed().divide(this._b);
406
+ }
407
+ distanceTo(pt) {
408
+ let numerator = pt.x.clone().multiply(this._a)
409
+ .add(pt.y.clone().multiply(this._b))
410
+ .add(this._c).abs(), d2 = this.normal.normSquare;
411
+ // The denominator is null - shouldn't be possible
412
+ if (d2.isZero()) {
413
+ return {
414
+ value: NaN,
415
+ tex: 'Not a line',
416
+ fraction: new fraction_1.Fraction().infinite()
417
+ };
418
+ }
419
+ // The denominator is a perfect square - simplify the tex result
420
+ let value = numerator.value / Math.sqrt(d2.value), F = numerator.clone().divide(d2.clone().sqrt());
421
+ // The denominator is a perfect square.
422
+ if (d2.isSquare()) {
423
+ return {
424
+ value,
425
+ tex: F.tex,
426
+ fraction: F
427
+ };
428
+ }
429
+ // Complete answer...
430
+ return {
431
+ value,
432
+ tex: `\\frac{${numerator.tex}}{\\sqrt{${d2.tex}}}`,
433
+ fraction: F
434
+ };
435
+ }
436
+ hitSegment(A, B) {
437
+ let iPt = this.intersection(new Line(A, B));
438
+ // There is an intersection point
439
+ if (iPt.hasIntersection) {
440
+ return iPt.point.x.value >= Math.min(A.x.value, B.x.value)
441
+ && iPt.point.x.value <= Math.max(A.x.value, B.x.value)
442
+ && iPt.point.y.value >= Math.min(A.y.value, B.y.value)
443
+ && iPt.point.y.value <= Math.max(A.y.value, B.y.value);
444
+ }
445
+ return false;
446
+ }
447
+ // ------------------------------------------
448
+ // Special functions
449
+ // ------------------------------------------
450
+ canonicalAsFloatCoefficient(decimals) {
451
+ if (decimals === undefined) {
452
+ decimals = 2;
453
+ }
454
+ let ca = this._a.value, cb = this._b.value, cc = this._c.value, canonical = '';
455
+ if (!this._a.isZero()) {
456
+ if (this._a.isOne()) {
457
+ canonical = 'x';
458
+ }
459
+ else if (this._a.clone().opposed().isOne()) {
460
+ canonical = '-x';
461
+ }
462
+ else {
463
+ canonical = this._a.value.toFixed(decimals) + 'x';
464
+ }
465
+ }
466
+ if (!this._b.isZero()) {
467
+ if (this._b.isPositive()) {
468
+ canonical += '+';
469
+ }
470
+ canonical += this._b.value.toFixed(decimals) + 'y';
471
+ }
472
+ if (!this._c.isZero()) {
473
+ if (this._c.isPositive()) {
474
+ canonical += '+';
475
+ }
476
+ canonical += this._c.value.toFixed(decimals);
477
+ }
478
+ return canonical + '=0';
479
+ }
480
+ }
481
+ exports.Line = Line;
482
+ // A line is defined as the canonical form
483
+ Line.PERPENDICULAR = LinePropriety.Perpendicular;
484
+ Line.PARALLEL = LinePropriety.Parallel;
485
485
  //# sourceMappingURL=line.js.map