personal-ai 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md ADDED
@@ -0,0 +1,227 @@
1
+ # pai — Personal AI Identity Provider
2
+
3
+ 本地优先的 AI Agent 身份画像系统。一条命令扫描本机,编译你的 profile,部署到任何 Agent。
4
+
5
+ ```
6
+ pai init → Scan → Profile → Deploy to Agents
7
+ ```
8
+
9
+ **Profile ≠ Skill**: Profile 描述你是谁(身份、环境、偏好、项目),Skill 是 Agent 使用 pai 的说明书。
10
+
11
+ ## 快速开始
12
+
13
+ ```bash
14
+ # 安装 (需要 Node.js >= 22)
15
+ npm install -g personal-ai
16
+
17
+ # 一条命令完成: 初始化 + 扫描本机 + 编译 profile (~12s, 零 LLM)
18
+ pai init
19
+
20
+ # 部署到 Cursor (Agent 自动认识你)
21
+ pai distribute
22
+
23
+ # 查看你的 profile
24
+ pai profile
25
+ ```
26
+
27
+ 三步搞定,不需要 LLM,不需要 API Key。Agent 立刻认识你。
28
+
29
+ ### 从源码安装 (开发者)
30
+
31
+ ```bash
32
+ git clone https://github.com/piai/personal-ai-skills-new.git
33
+ cd personal-ai-skills-new
34
+ pnpm install && pnpm build && npm link
35
+ ```
36
+
37
+ ## 核心概念
38
+
39
+ ### Profile (核心产物)
40
+
41
+ `~/.pai/profile.md` — 从本机扫描数据直接编译,零 LLM 依赖。
42
+
43
+ 包含 7 个维度:
44
+ - **Identity**: 用户名、Apple ID、Git 身份、语言、时区
45
+ - **Environment & Tools**: 运行时、包管理器、Shell、IDE 扩展
46
+ - **Work Style & Habits**: 命令习惯、编码规则、AI agent 配置
47
+ - **Active Projects & Recent Focus**: 活跃仓库、近期 commit、工作目录
48
+ - **Digital Footprint**: 书签、浏览域名、安装的应用
49
+ - **Registry & Cloud Accounts**: npm/Docker/AWS/GCP/Vercel 等账户
50
+ - **Context**: 日历、文件组织结构
51
+
52
+ ### 14 个数据收集器
53
+
54
+ | # | Collector | 数据来源 |
55
+ |---|---|---|
56
+ | 1 | identity-profile | 用户名、Apple ID、Git 配置、语言、时区 |
57
+ | 2 | calendar-context | Calendar.app 订阅 |
58
+ | 3 | file-organization | Documents/Desktop/Downloads 结构 |
59
+ | 4 | dev-environment | 运行时版本、包管理器、全局包 |
60
+ | 5 | dev-preferences | Shell aliases、Git config、Cursor 扩展 |
61
+ | 6 | shell-habits | 最常用命令 Top 30 |
62
+ | 7 | coding-rules | CLAUDE.md、Claude commands、项目规则 |
63
+ | 8 | active-projects | 活跃 Git 仓库、SSH hosts |
64
+ | 9 | productivity-setup | 已装 App、Dock 应用、浏览器 |
65
+ | 10 | browser-bookmarks | 书签文件夹结构 |
66
+ | 11 | browser-domains | 近 30 天高频域名 Top 30 |
67
+ | 12 | github-profile | GitHub 用户信息、仓库、stars |
68
+ | 13 | recent-focus | 近期 commit 分析、工作目录、工具使用 |
69
+ | 14 | social-profiles | npm/Docker/AWS/GCP/Vercel 账户 |
70
+
71
+ ### Skill (Agent 说明书)
72
+
73
+ `pai distribute` 部署到 Agent 的文件包含两部分:
74
+ 1. 你的 Profile (谁、环境、偏好)
75
+ 2. Agent Skill 指令 (如何调用 `pai context/search/add`)
76
+
77
+ ## CLI 命令
78
+
79
+ ```bash
80
+ # Profile (核心)
81
+ pai init # 初始化 + 扫描 + 编译 profile (一条龙)
82
+ pai init --skip-scan # 仅初始化,跳过扫描 (CI/测试用)
83
+ pai profile # 查看当前 profile
84
+ pai profile --rebuild # 重新扫描 + 编译
85
+ pai profile --export # 输出可复制粘贴的 profile
86
+ pai profile --json # JSON 元数据
87
+ pai distribute # 部署 profile + skill 到 Cursor
88
+
89
+ # 数据管理 (进阶)
90
+ pai reset [--force] # 清空所有数据并重新初始化
91
+ pai add <text> # 手动添加文本到 raw/local/
92
+ pai add --url <url> # 抓取 URL 到 raw/web/
93
+ pai add <file> # 添加文件内容
94
+ pai auth google # Google 授权 (gmail/calendar 首次或重授权)
95
+ pai import --source mac # 手动触发 Mac 扫描 (写入 raw)
96
+ pai import --source gmail [--days N] [--query "..."] # Gmail 导入 (未授权时自动弹窗)
97
+ pai import --source calendar [--days N] # 日历导入
98
+ pai import --source <src> --path # 批量导入其他数据源 (需 --path)
99
+
100
+ # 深度知识 (可选,需要 LLM)
101
+ pai distill [--dry-run] [--file] # 蒸馏 raw → vault (需 OPENAI_API_KEY)
102
+ pai generate [--profile <name>] # LLM 生成 SKILL.md
103
+ pai index # 更新 QMD 索引
104
+
105
+ # 搜索 & 检索
106
+ pai ask <question> # 智能问答,端到端答案 (agent 首选,需 LLM)
107
+ pai ask <question> --json # JSON: answer, sources, steps
108
+ pai search <query> # 混合搜索 vault
109
+ pai search <query> --fast # 快速关键词搜索
110
+ pai search <query> --json # JSON 格式
111
+ pai context --task <desc> # 身份 + 任务相关记忆 (agent 用)
112
+
113
+ # 状态
114
+ pai status [--json] # 数据状态概览
115
+ ```
116
+
117
+ ## 技术栈
118
+
119
+ - **语言**: TypeScript (ESM, strict mode)
120
+ - **运行时**: Node.js ≥ 22
121
+ - **CLI 框架**: Commander.js
122
+ - **配置验证**: Zod + JSON5
123
+ - **LLM 调用**: openai SDK (可选,深度知识功能需要)
124
+ - **本地搜索**: QMD (可选,搜索功能需要)
125
+ - **终端输出**: chalk + ora
126
+ - **构建**: tsdown
127
+ - **测试**: Vitest
128
+ - **Lint**: Oxlint
129
+ - **包管理**: pnpm
130
+
131
+ ## 前置依赖
132
+
133
+ ```bash
134
+ # QMD (本地搜索引擎,搜索功能需要,profile 不需要)
135
+ npm install -g https://github.com/tobi/qmd
136
+
137
+ # GitHub CLI (可选,GitHub profile 收集)
138
+ brew install gh && gh auth login
139
+ ```
140
+
141
+ ## 项目结构
142
+
143
+ ```
144
+ src/
145
+ ├── cli/ # CLI 命令注册 (Commander.js)
146
+ │ ├── build-program.ts
147
+ │ ├── command-registry.ts
148
+ │ └── register.*.ts
149
+ ├── profile/ # Profile 编译器 (scan → profile.md, 零 LLM)
150
+ │ ├── compile.ts
151
+ │ └── index.ts
152
+ ├── config/ # 配置管理 (Zod + JSON5)
153
+ ├── auth/ # Google OAuth (encryption + google-oauth)
154
+ ├── connectors/ # 数据收集器
155
+ │ ├── mac/ # 14 个 Mac collectors
156
+ │ ├── google/ # gmail.ts, calendar.ts
157
+ │ └── sanitize.ts
158
+ ├── raw/ # Raw 层
159
+ ├── scraper/ # 网页抓取
160
+ ├── distill/ # 蒸馏 Pipeline (可选)
161
+ ├── generate/ # SKILL.md 生成 (可选)
162
+ ├── search/ # QMD 搜索封装
163
+ ├── llm/ # OpenAI client
164
+ ├── prompts/ # Prompt 模板
165
+ ├── utils/ # 工具函数
166
+ ├── types.ts # 全局类型
167
+ ├── index.ts # Public API
168
+ └── entry.ts # CLI 入口
169
+ ```
170
+
171
+ ## 数据目录
172
+
173
+ ```
174
+ ~/.pai/
175
+ ├── profile.md # 核心产物 — 编译后的用户画像
176
+ ├── raw/ # 原始数据 (扫描/添加)
177
+ │ ├── local/
178
+ │ ├── web/
179
+ │ └── connector/ # mac/, gmail/, calendar/
180
+ ├── credentials/ # Google OAuth: client_secret.json, google-oauth.json.enc
181
+ ├── vault/ # 蒸馏后知识 (可选进阶)
182
+ ├── skills/profiles/ # LLM 生成的 SKILL.md (可选)
183
+ └── config/
184
+ ├── pai.json5
185
+ ├── profiles.json5
186
+ └── preferences.md
187
+ ```
188
+
189
+ ## Agent 集成
190
+
191
+ ### 两层记忆架构
192
+
193
+ ```
194
+ Layer 1 (常驻): pai distribute → ~/.cursor/rules/pai-context.mdc
195
+ → Profile (谁) + Skill (怎么用 pai), 每次对话自动注入
196
+
197
+ Layer 2 (情境): pai ask "问题" → 直接答案 (agentic,需 LLM)
198
+ 或 pai context --task "当前任务" → 身份 + 相关记忆
199
+ ```
200
+
201
+ ### 快速部署
202
+
203
+ ```bash
204
+ pai init && pai distribute # 两步搞定
205
+
206
+ # Agent 在工作时调用
207
+ pai ask "What's the user's deployment preference?" # 推荐:直接拿答案
208
+ pai context --task "configure PostgreSQL connection pooling"
209
+ pai search "database performance" --json
210
+ pai add "learned: always set pool_size=20 for production"
211
+ ```
212
+
213
+ ## 开发
214
+
215
+ ```bash
216
+ pnpm install # 安装依赖
217
+ pnpm dev # 开发模式 (tsx)
218
+ pnpm build # 构建 (tsdown)
219
+ pnpm lint # Lint (oxlint)
220
+ pnpm typecheck # 类型检查
221
+ pnpm test # 测试 (vitest)
222
+ pnpm check # 完整门禁
223
+ ```
224
+
225
+ ## License
226
+
227
+ MIT
package/SKILL.md ADDED
@@ -0,0 +1,310 @@
1
+ # pai — Personal AI Identity Provider
2
+
3
+ > One command to scan your machine, compile your profile, and deploy to any AI agent.
4
+
5
+ <!--
6
+ metadata:
7
+ {
8
+ "name": "pai",
9
+ "version": "0.1.0",
10
+ "description": "Local-first AI agent identity system. Scan, compile profile, deploy to agents.",
11
+ "requires": {
12
+ "bins": ["pai"],
13
+ "optional_bins": ["qmd"],
14
+ "env": [],
15
+ "optional_env": ["OPENAI_API_KEY"]
16
+ },
17
+ "permissions": ["read", "write", "search"],
18
+ "homepage": "https://github.com/piai/personal-ai-skills-new"
19
+ }
20
+ -->
21
+
22
+ ## What This Skill Does
23
+
24
+ pai is a local-first AI agent identity provider. It scans your machine, compiles a personal profile, and deploys it to AI agents. When you have access to this skill, you can:
25
+
26
+ - **Know** who the user is — identity, environment, tools, projects, preferences
27
+ - **Search** the user's personal knowledge base (vault + raw)
28
+ - **Ask** questions about the user and get direct answers (agentic)
29
+ - **Remember** new lessons, preferences, and discoveries for the user
30
+
31
+ ## Quick Setup (1 minute)
32
+
33
+ ```bash
34
+ npm install -g personal-ai # Install pai CLI
35
+ pai init # Scan machine + compile profile (~12s, no LLM needed)
36
+ pai distribute # Deploy to Cursor / Claude Code / agents
37
+ ```
38
+
39
+ That's it. Your agent now knows who you are.
40
+
41
+ ## Authorization
42
+
43
+ ### Required Environment
44
+
45
+ | Requirement | How to Check | How to Get |
46
+ |---|---|---|
47
+ | `pai` CLI | `pai --version` | `npm install -g personal-ai` |
48
+ | Node.js ≥ 22 | `node -v` | `fnm install 22` or [nodejs.org](https://nodejs.org) |
49
+
50
+ ### Optional (for advanced features)
51
+
52
+ | Requirement | Feature | How to Get |
53
+ |---|---|---|
54
+ | `qmd` CLI | Search (`pai search`) | `npm install -g https://github.com/tobi/qmd` |
55
+ | `OPENAI_API_KEY` | AI features (`pai ask`, `pai distill`) | Set in shell profile |
56
+ | Google OAuth | Gmail/Calendar import | `pai auth google` (built-in flow) |
57
+
58
+ ### Data Location
59
+
60
+ All data is stored locally at `~/.pai/` (override with `PAI_HOME` env var):
61
+
62
+ ```
63
+ ~/.pai/
64
+ ├── profile.md # Core output — compiled user profile (no LLM needed)
65
+ ├── raw/ # Original input (immutable after write)
66
+ │ ├── local/ # Text & file input
67
+ │ ├── web/ # Scraped URLs
68
+ │ └── connector/# Imported data (mac scan, gmail, calendar)
69
+ ├── vault/ # Distilled knowledge (living documents, optional)
70
+ ├── credentials/ # Google OAuth tokens (encrypted)
71
+ ├── skills/profiles/ # LLM-generated SKILL.md files (optional)
72
+ └── config/ # pai.json5 + profiles.json5 + preferences.md
73
+ ```
74
+
75
+ ### Verifying Access
76
+
77
+ ```bash
78
+ pai --version # Check pai is installed
79
+ pai status # Check data directory and counts
80
+ pai profile # View your profile
81
+ ```
82
+
83
+ If `pai` is not found:
84
+ ```bash
85
+ npm install -g personal-ai
86
+ pai init
87
+ ```
88
+
89
+ ## Available Commands
90
+
91
+ ### Adding Knowledge
92
+
93
+ ```bash
94
+ # Add a text experience/lesson
95
+ pai add "Always use connection pooling with PostgreSQL in production"
96
+
97
+ # Add content from a URL (scrapes and saves)
98
+ pai add --url "https://docs.example.com/best-practices"
99
+
100
+ # Add a local file
101
+ pai add ./meeting-notes.txt
102
+
103
+ # Import from Mac system scan (no --path; auto-scans 11 dimensions)
104
+ pai import --source mac
105
+ pai import --source mac --dry-run
106
+
107
+ # Import from a data connector directory
108
+ pai import --source gmail --path ~/data/gmail-export/
109
+ ```
110
+
111
+ ### Ask (RECOMMENDED for Agents — get direct answers)
112
+
113
+ Ask a question; an agentic secretary uses tools to find the answer and returns a direct reply. No need to interpret raw search results.
114
+
115
+ **Requires:** `OPENAI_API_KEY` (agentic loop uses LLM + tools).
116
+
117
+ **Tools available to the agent:** search vault/raw, read profile, read file, grep (ripgrep), glob, ls, bash. The agent decides which to call and when to stop.
118
+
119
+ ```bash
120
+ # Ask anything about the user
121
+ pai ask "What deployment method does this user prefer?"
122
+ pai ask "Does the user have Kubernetes experience?" --json
123
+
124
+ # Options
125
+ pai ask "用户的编码规范是什么?" --steps 15 # max tool-call steps (default: 10)
126
+ pai ask "..." --model gpt-4o # override model
127
+ pai ask "..." --verbose # show each tool step
128
+ ```
129
+
130
+ **Output:** plain answer; or with `--json`: `{ "answer", "sources", "steps" }`.
131
+
132
+ ### Retrieving Context (fast, no LLM)
133
+
134
+ ```bash
135
+ # Get identity + task-relevant vault memories (hybrid search)
136
+ pai context --task "current task description"
137
+
138
+ # Get identity only (no search, instant)
139
+ pai context
140
+
141
+ # Machine-readable output
142
+ pai context --task "deploy React app" --json
143
+
144
+ # Use a specific profile
145
+ pai context --profile coding-assistant --task "..."
146
+ ```
147
+
148
+ ### Searching Knowledge
149
+
150
+ ```bash
151
+ # Search distilled knowledge (vault)
152
+ pai search "PostgreSQL performance"
153
+
154
+ # Search raw original data (for tracing back)
155
+ pai search "PostgreSQL" --raw
156
+
157
+ # Search everything
158
+ pai search "PostgreSQL" --all
159
+
160
+ # Control result count
161
+ pai search "React hooks" -n 10
162
+
163
+ # Machine-readable output (for agents)
164
+ pai search "PostgreSQL" --json
165
+ ```
166
+
167
+ ### Processing & Distilling
168
+
169
+ ```bash
170
+ # Preview what would be distilled (safe, no writes)
171
+ pai distill --dry-run
172
+
173
+ # Process all pending raw files → extract to vault
174
+ pai distill
175
+
176
+ # Process a specific file
177
+ pai distill --file ~/.pai/raw/local/2026-02-06T15-17-xxx.md
178
+
179
+ # Update QMD search index after changes
180
+ pai index
181
+ ```
182
+
183
+ ### Generating SKILL.md
184
+
185
+ ```bash
186
+ # Generate all configured profiles
187
+ pai generate
188
+
189
+ # Generate a specific profile
190
+ pai generate --profile coding-assistant
191
+
192
+ # View generated profile
193
+ cat ~/.pai/skills/profiles/coding-assistant.md
194
+ ```
195
+
196
+ ### Agent Deployment
197
+
198
+ ```bash
199
+ # Deploy identity + agent instructions to Cursor rules and other agent configs
200
+ pai distribute # Default: all targets
201
+ pai distribute --target cursor # Cursor only
202
+ pai distribute --target claude # Claude Code only
203
+ pai distribute --profile coding-assistant # Use a specific generated profile
204
+ ```
205
+
206
+ ### Status & Reset
207
+
208
+ ```bash
209
+ # Overview of all data
210
+ pai status
211
+ pai status --json # Machine-readable
212
+
213
+ # Remove all data and re-initialize (clean slate for testing)
214
+ pai reset # Prompts for confirmation
215
+ pai reset --force # No prompt, immediate wipe + init
216
+ ```
217
+
218
+ ## How to Use This Skill as an Agent
219
+
220
+ ### 1. Ask questions (recommended)
221
+
222
+ For any question about the user, use `pai ask` to get a direct answer. The agent uses tools (vault search, profile, grep, bash) and returns a concise reply.
223
+
224
+ ```bash
225
+ pai ask "What does this user prefer for deployment?"
226
+ pai ask "What's the user's current project?" --json
227
+ ```
228
+
229
+ ### 2. Retrieve context before starting work
230
+
231
+ For a quick identity + task-relevant snippets (no LLM, or light):
232
+
233
+ ```bash
234
+ pai context --task "brief description of what you're about to do"
235
+ ```
236
+
237
+ When you need raw search results (chunks) instead of a synthesized answer:
238
+
239
+ ```bash
240
+ pai search "editor preferences"
241
+ pai search "React deployment" --json -n 3
242
+ ```
243
+
244
+ When you discover something the user should remember (a lesson, preference, or tip):
245
+
246
+ ```bash
247
+ pai add "The user prefers dark mode and monospace fonts in all editors"
248
+ pai add --url "https://the-useful-article.com"
249
+ ```
250
+
251
+ ### 5. Periodic maintenance
252
+
253
+ After adding multiple items, process and regenerate:
254
+
255
+ ```bash
256
+ pai distill # Process pending raw files into vault
257
+ pai generate # Regenerate SKILL.md profiles
258
+ pai distribute # Update deployed agent configs
259
+ ```
260
+
261
+ The generated profiles at `~/.pai/skills/profiles/` can be used by other agents.
262
+
263
+ ## Data Flow
264
+
265
+ ```
266
+ User Input ──→ pai add ──→ raw/ (original, immutable)
267
+
268
+
269
+ pai distill ──→ vault/ (structured knowledge, 1:N routing)
270
+
271
+
272
+ pai generate ──→ skills/profiles/*.md
273
+
274
+
275
+ pai distribute ──→ ~/.cursor/rules/ (auto-injected)
276
+
277
+
278
+ Agent starts ──→ reads identity from rules (Layer 1: passive)
279
+ Agent works ──→ pai ask "question" (Layer 2: direct answer) or pai context --task "..." (quick retrieval)
280
+ Agent learns ──→ pai add "new lesson" (Layer 3: write-back)
281
+ ```
282
+
283
+ ## Security Notes
284
+
285
+ - All data stays on the user's local machine (`~/.pai/`)
286
+ - No data is sent anywhere except to the configured LLM API for processing
287
+ - `OPENAI_API_KEY` is read from environment, never stored in files
288
+ - Raw files are immutable after creation (append-only log)
289
+ - The user controls what goes in and what gets distilled
290
+
291
+ ## Profiles Configuration
292
+
293
+ Profiles are defined in `~/.pai/config/profiles.json5`. Each profile specifies which vault directories to include and the max output size:
294
+
295
+ ```json5
296
+ {
297
+ profiles: {
298
+ "coding-assistant": {
299
+ scope: ["vault/coding/**", "vault/preferences/coding-style.md"],
300
+ maxLines: 30,
301
+ },
302
+ "full-context": {
303
+ scope: ["vault/**"],
304
+ maxLines: 50,
305
+ },
306
+ },
307
+ }
308
+ ```
309
+
310
+ To add a new profile, edit `profiles.json5` and run `pai generate`.
@@ -0,0 +1,2 @@
1
+ #!/usr/bin/env node
2
+ export { };
@@ -0,0 +1,91 @@
1
+ #!/usr/bin/env node
2
+ import { a as info, c as warn, r as googleOAuth } from "./entry.mjs";
3
+ import "./auth-Dtx8Wc3l.mjs";
4
+ import { google } from "googleapis";
5
+
6
+ //#region src/connectors/google/calendar.ts
7
+ /**
8
+ * Google Calendar connector — fetches events and returns CollectorResult[] for raw layer.
9
+ *
10
+ * Default behavior: enumerate ALL user-visible calendars via calendarList.list(),
11
+ * tag each event with the calendar display name so the ask agent can distinguish
12
+ * "Work" meetings from "Holiday" markers.
13
+ */
14
+ function formatEventTime(start) {
15
+ const dt = start.dateTime ?? start.date;
16
+ const tz = start.timeZone ?? "UTC";
17
+ if (!dt) return "";
18
+ return `${dt} (${tz})`;
19
+ }
20
+ /** Resolve calendar IDs + display names. If explicit list given, use as-is; otherwise enumerate all. */
21
+ async function resolveCalendars(calendarApi, explicitIds) {
22
+ if (explicitIds) return explicitIds.map((id) => ({
23
+ id,
24
+ name: id
25
+ }));
26
+ return ((await calendarApi.calendarList.list({ showHidden: false })).data.items ?? []).filter((c) => c.id).map((c) => ({
27
+ id: c.id,
28
+ name: c.summary ?? c.id
29
+ }));
30
+ }
31
+ /**
32
+ * Sync Google Calendar events and return one CollectorResult per event.
33
+ * Each event includes a **Calendar** field with the display name of its source calendar.
34
+ */
35
+ async function syncCalendar(opts = {}) {
36
+ await googleOAuth.ensureAuthenticated();
37
+ const calendarApi = google.calendar({
38
+ version: "v3",
39
+ auth: googleOAuth.getClient()
40
+ });
41
+ const calendars = await resolveCalendars(calendarApi, opts.calendars);
42
+ const lookbackDays = opts.lookbackDays ?? 30;
43
+ const lookforwardDays = opts.lookforwardDays ?? 90;
44
+ const now = /* @__PURE__ */ new Date();
45
+ const timeMin = (/* @__PURE__ */ new Date(now.getTime() - lookbackDays * 24 * 60 * 60 * 1e3)).toISOString();
46
+ const timeMax = new Date(now.getTime() + lookforwardDays * 24 * 60 * 60 * 1e3).toISOString();
47
+ info(`Fetching events from ${calendars.length} calendar(s): ${calendars.map((c) => c.name).join(", ")}`);
48
+ const results = [];
49
+ let failed = 0;
50
+ for (const cal of calendars) try {
51
+ const items = (await calendarApi.events.list({
52
+ calendarId: cal.id,
53
+ timeMin,
54
+ timeMax,
55
+ singleEvents: true,
56
+ orderBy: "startTime",
57
+ maxResults: 250
58
+ })).data.items ?? [];
59
+ for (const event of items) {
60
+ const id = event.id ?? "";
61
+ const summary = event.summary ?? "(no title)";
62
+ const startStr = event.start ? formatEventTime(event.start) : "";
63
+ const endStr = event.end ? formatEventTime(event.end) : "";
64
+ const location = event.location ?? "";
65
+ const attendees = (event.attendees ?? []).map((a) => a.email ?? a.displayName ?? "").filter(Boolean).join(", ");
66
+ const status = event.status ?? "confirmed";
67
+ const lines = [
68
+ `- **Calendar**: ${cal.name}`,
69
+ startStr ? `- **Time**: ${startStr}${endStr ? ` - ${endStr}` : ""}` : "",
70
+ location ? `- **Location**: ${location}` : "",
71
+ attendees ? `- **Attendees**: ${attendees}` : "",
72
+ `- **Status**: ${status}`
73
+ ].filter(Boolean);
74
+ results.push({
75
+ id,
76
+ title: summary,
77
+ content: lines.join("\n") || "(no details)"
78
+ });
79
+ }
80
+ } catch (err) {
81
+ failed++;
82
+ const msgText = err instanceof Error ? err.message : String(err);
83
+ warn(`Calendar fetch failed for ${cal.name} (${cal.id}): ${msgText}`);
84
+ }
85
+ if (failed > 0 && calendars.length > failed) warn(`Calendar fetch failed for ${failed} of ${calendars.length} calendar(s).`);
86
+ return results;
87
+ }
88
+
89
+ //#endregion
90
+ export { syncCalendar };
91
+ //# sourceMappingURL=calendar-BHcM4wfQ.mjs.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"calendar-BHcM4wfQ.mjs","names":[],"sources":["../src/connectors/google/calendar.ts"],"sourcesContent":["/**\n * Google Calendar connector — fetches events and returns CollectorResult[] for raw layer.\n *\n * Default behavior: enumerate ALL user-visible calendars via calendarList.list(),\n * tag each event with the calendar display name so the ask agent can distinguish\n * \"Work\" meetings from \"Holiday\" markers.\n */\n\nimport { google } from \"googleapis\";\nimport type { calendar_v3 } from \"googleapis\";\nimport type { CollectorResult } from \"../../types.js\";\nimport { googleOAuth } from \"../../auth/index.js\";\nimport * as console from \"../../utils/console.js\";\n\nexport interface SyncCalendarOptions {\n /** Calendar IDs to fetch. If omitted, fetches ALL user-visible calendars. */\n calendars?: string[];\n /** Days to look back (default 30). */\n lookbackDays?: number;\n /** Days to look forward (default 90). */\n lookforwardDays?: number;\n}\n\nfunction formatEventTime(start: calendar_v3.Schema$EventDateTime): string {\n const dt = start.dateTime ?? start.date;\n const tz = start.timeZone ?? \"UTC\";\n if (!dt) return \"\";\n return `${dt} (${tz})`;\n}\n\n/** Resolve calendar IDs + display names. If explicit list given, use as-is; otherwise enumerate all. */\nasync function resolveCalendars(\n calendarApi: calendar_v3.Calendar,\n explicitIds?: string[],\n): Promise<{ id: string; name: string }[]> {\n if (explicitIds) {\n return explicitIds.map((id) => ({ id, name: id }));\n }\n\n // Enumerate all user-visible calendars\n const res = await calendarApi.calendarList.list({ showHidden: false });\n const items = res.data.items ?? [];\n return items\n .filter((c) => c.id)\n .map((c) => ({\n id: c.id!,\n name: c.summary ?? c.id!,\n }));\n}\n\n/**\n * Sync Google Calendar events and return one CollectorResult per event.\n * Each event includes a **Calendar** field with the display name of its source calendar.\n */\nexport async function syncCalendar(\n opts: SyncCalendarOptions = {},\n): Promise<CollectorResult[]> {\n await googleOAuth.ensureAuthenticated();\n const calendarApi: calendar_v3.Calendar = google.calendar({\n version: \"v3\",\n auth: googleOAuth.getClient(),\n });\n\n const calendars = await resolveCalendars(calendarApi, opts.calendars);\n const lookbackDays = opts.lookbackDays ?? 30;\n const lookforwardDays = opts.lookforwardDays ?? 90;\n\n const now = new Date();\n const timeMin = new Date(\n now.getTime() - lookbackDays * 24 * 60 * 60 * 1000,\n ).toISOString();\n const timeMax = new Date(\n now.getTime() + lookforwardDays * 24 * 60 * 60 * 1000,\n ).toISOString();\n\n console.info(\n `Fetching events from ${calendars.length} calendar(s): ${calendars.map((c) => c.name).join(\", \")}`,\n );\n\n const results: CollectorResult[] = [];\n let failed = 0;\n\n for (const cal of calendars) {\n try {\n const res = await calendarApi.events.list({\n calendarId: cal.id,\n timeMin,\n timeMax,\n singleEvents: true,\n orderBy: \"startTime\",\n maxResults: 250,\n });\n\n const items = res.data.items ?? [];\n for (const event of items) {\n const id = event.id ?? \"\";\n const summary = event.summary ?? \"(no title)\";\n const startStr = event.start\n ? formatEventTime(event.start)\n : \"\";\n const endStr = event.end ? formatEventTime(event.end) : \"\";\n const location = event.location ?? \"\";\n const attendees = (event.attendees ?? [])\n .map((a) => a.email ?? a.displayName ?? \"\")\n .filter(Boolean)\n .join(\", \");\n const status = event.status ?? \"confirmed\";\n\n const lines = [\n `- **Calendar**: ${cal.name}`,\n startStr ? `- **Time**: ${startStr}${endStr ? ` - ${endStr}` : \"\"}` : \"\",\n location ? `- **Location**: ${location}` : \"\",\n attendees ? `- **Attendees**: ${attendees}` : \"\",\n `- **Status**: ${status}`,\n ].filter(Boolean);\n\n results.push({\n id,\n title: summary,\n content: lines.join(\"\\n\") || \"(no details)\",\n });\n }\n } catch (err) {\n failed++;\n const msgText = err instanceof Error ? err.message : String(err);\n console.warn(`Calendar fetch failed for ${cal.name} (${cal.id}): ${msgText}`);\n }\n }\n\n if (failed > 0 && calendars.length > failed) {\n console.warn(`Calendar fetch failed for ${failed} of ${calendars.length} calendar(s).`);\n }\n return results;\n}\n"],"mappings":";;;;;;;;;;;;;AAuBA,SAAS,gBAAgB,OAAiD;CACxE,MAAM,KAAK,MAAM,YAAY,MAAM;CACnC,MAAM,KAAK,MAAM,YAAY;AAC7B,KAAI,CAAC,GAAI,QAAO;AAChB,QAAO,GAAG,GAAG,IAAI,GAAG;;;AAItB,eAAe,iBACb,aACA,aACyC;AACzC,KAAI,YACF,QAAO,YAAY,KAAK,QAAQ;EAAE;EAAI,MAAM;EAAI,EAAE;AAMpD,UAFY,MAAM,YAAY,aAAa,KAAK,EAAE,YAAY,OAAO,CAAC,EACpD,KAAK,SAAS,EAAE,EAE/B,QAAQ,MAAM,EAAE,GAAG,CACnB,KAAK,OAAO;EACX,IAAI,EAAE;EACN,MAAM,EAAE,WAAW,EAAE;EACtB,EAAE;;;;;;AAOP,eAAsB,aACpB,OAA4B,EAAE,EACF;AAC5B,OAAM,YAAY,qBAAqB;CACvC,MAAM,cAAoC,OAAO,SAAS;EACxD,SAAS;EACT,MAAM,YAAY,WAAW;EAC9B,CAAC;CAEF,MAAM,YAAY,MAAM,iBAAiB,aAAa,KAAK,UAAU;CACrE,MAAM,eAAe,KAAK,gBAAgB;CAC1C,MAAM,kBAAkB,KAAK,mBAAmB;CAEhD,MAAM,sBAAM,IAAI,MAAM;CACtB,MAAM,2BAAU,IAAI,KAClB,IAAI,SAAS,GAAG,eAAe,KAAK,KAAK,KAAK,IAC/C,EAAC,aAAa;CACf,MAAM,UAAU,IAAI,KAClB,IAAI,SAAS,GAAG,kBAAkB,KAAK,KAAK,KAAK,IAClD,CAAC,aAAa;AAEf,MACE,wBAAwB,UAAU,OAAO,gBAAgB,UAAU,KAAK,MAAM,EAAE,KAAK,CAAC,KAAK,KAAK,GACjG;CAED,MAAM,UAA6B,EAAE;CACrC,IAAI,SAAS;AAEb,MAAK,MAAM,OAAO,UAChB,KAAI;EAUF,MAAM,SATM,MAAM,YAAY,OAAO,KAAK;GACxC,YAAY,IAAI;GAChB;GACA;GACA,cAAc;GACd,SAAS;GACT,YAAY;GACb,CAAC,EAEgB,KAAK,SAAS,EAAE;AAClC,OAAK,MAAM,SAAS,OAAO;GACzB,MAAM,KAAK,MAAM,MAAM;GACvB,MAAM,UAAU,MAAM,WAAW;GACjC,MAAM,WAAW,MAAM,QACnB,gBAAgB,MAAM,MAAM,GAC5B;GACJ,MAAM,SAAS,MAAM,MAAM,gBAAgB,MAAM,IAAI,GAAG;GACxD,MAAM,WAAW,MAAM,YAAY;GACnC,MAAM,aAAa,MAAM,aAAa,EAAE,EACrC,KAAK,MAAM,EAAE,SAAS,EAAE,eAAe,GAAG,CAC1C,OAAO,QAAQ,CACf,KAAK,KAAK;GACb,MAAM,SAAS,MAAM,UAAU;GAE/B,MAAM,QAAQ;IACZ,mBAAmB,IAAI;IACvB,WAAW,eAAe,WAAW,SAAS,MAAM,WAAW,OAAO;IACtE,WAAW,mBAAmB,aAAa;IAC3C,YAAY,oBAAoB,cAAc;IAC9C,iBAAiB;IAClB,CAAC,OAAO,QAAQ;AAEjB,WAAQ,KAAK;IACX;IACA,OAAO;IACP,SAAS,MAAM,KAAK,KAAK,IAAI;IAC9B,CAAC;;UAEG,KAAK;AACZ;EACA,MAAM,UAAU,eAAe,QAAQ,IAAI,UAAU,OAAO,IAAI;AAChE,OAAa,6BAA6B,IAAI,KAAK,IAAI,IAAI,GAAG,KAAK,UAAU;;AAIjF,KAAI,SAAS,KAAK,UAAU,SAAS,OACnC,MAAa,6BAA6B,OAAO,MAAM,UAAU,OAAO,eAAe;AAEzF,QAAO"}