overtake 1.1.2 → 1.1.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/build/runner.cjs CHANGED
@@ -13,17 +13,47 @@ const _typescjs = require("./types.cjs");
13
13
  const _gcwatchercjs = require("./gc-watcher.cjs");
14
14
  const COMPLETE_VALUE = 100_00;
15
15
  const hr = process.hrtime.bigint.bind(process.hrtime);
16
- const runSync = (run)=>{
16
+ const sink = new Int32Array(new SharedArrayBuffer(Int32Array.BYTES_PER_ELEMENT));
17
+ const consume = (value)=>{
18
+ let payload = 0;
19
+ switch(typeof value){
20
+ case 'number':
21
+ payload = Number.isFinite(value) ? Math.trunc(value) : 0;
22
+ break;
23
+ case 'bigint':
24
+ payload = Number(value & 0xffff_ffffn);
25
+ break;
26
+ case 'string':
27
+ payload = value.length;
28
+ break;
29
+ case 'boolean':
30
+ payload = value ? 1 : 0;
31
+ break;
32
+ case 'object':
33
+ payload = value === null ? 0 : 1;
34
+ break;
35
+ case 'function':
36
+ payload = 1;
37
+ break;
38
+ default:
39
+ payload = -1;
40
+ }
41
+ Atomics.xor(sink, 0, payload);
42
+ };
43
+ const runSync = (run, overhead)=>{
17
44
  return (...args)=>{
18
45
  const start = hr();
19
- run(...args);
20
- return hr() - start;
46
+ const result = run(...args);
47
+ consume(result);
48
+ const duration = hr() - start;
49
+ return duration > overhead ? duration - overhead : 0n;
21
50
  };
22
51
  };
23
52
  const runAsync = (run)=>{
24
53
  return async (...args)=>{
25
54
  const start = hr();
26
- await run(...args);
55
+ const result = await run(...args);
56
+ consume(result);
27
57
  return hr() - start;
28
58
  };
29
59
  };
@@ -37,16 +67,62 @@ const GC_STRIDE = 32;
37
67
  const OUTLIER_MULTIPLIER = 4;
38
68
  const OUTLIER_IQR_MULTIPLIER = 3;
39
69
  const OUTLIER_WINDOW = 64;
40
- const collectSample = async (batchSize, run, pre, post, context, data)=>{
70
+ const OUTLIER_ABS_THRESHOLD_NS = 10_000;
71
+ const BASELINE_SAMPLES = 16;
72
+ const OUTLIER_SCRATCH = new Float64Array(OUTLIER_WINDOW);
73
+ const measureTimerOverhead = ()=>{
74
+ let total = 0n;
75
+ for(let i = 0; i < BASELINE_SAMPLES; i++){
76
+ const start = hr();
77
+ consume(0);
78
+ total += hr() - start;
79
+ }
80
+ return total / BigInt(BASELINE_SAMPLES);
81
+ };
82
+ const collectSample = async ({ batchSize, run, runRaw, runIsAsync, pre, preIsAsync, post, postIsAsync, context, data, nextNonce })=>{
83
+ const canBatchTime = !runIsAsync && !pre && !post;
84
+ if (canBatchTime) {
85
+ const batchStart = hr();
86
+ if (nextNonce) {
87
+ for(let b = 0; b < batchSize; b++){
88
+ consume(runRaw(context, data, nextNonce()));
89
+ }
90
+ } else {
91
+ for(let b = 0; b < batchSize; b++){
92
+ consume(runRaw(context, data));
93
+ }
94
+ }
95
+ return (hr() - batchStart) * _typescjs.DURATION_SCALE / BigInt(batchSize);
96
+ }
41
97
  let sampleDuration = 0n;
42
98
  for(let b = 0; b < batchSize; b++){
43
- await pre?.(context, data);
44
- sampleDuration += await run(context, data);
45
- await post?.(context, data);
99
+ if (pre) {
100
+ if (preIsAsync) {
101
+ await pre(context, data);
102
+ } else {
103
+ pre(context, data);
104
+ }
105
+ }
106
+ if (runIsAsync) {
107
+ const runAsyncFn = run;
108
+ const duration = nextNonce ? await runAsyncFn(context, data, nextNonce()) : await runAsyncFn(context, data);
109
+ sampleDuration += duration;
110
+ } else {
111
+ const runSyncFn = run;
112
+ const duration = nextNonce ? runSyncFn(context, data, nextNonce()) : runSyncFn(context, data);
113
+ sampleDuration += duration;
114
+ }
115
+ if (post) {
116
+ if (postIsAsync) {
117
+ await post(context, data);
118
+ } else {
119
+ post(context, data);
120
+ }
121
+ }
46
122
  }
47
- return sampleDuration / BigInt(batchSize);
123
+ return sampleDuration * _typescjs.DURATION_SCALE / BigInt(batchSize);
48
124
  };
49
- const tuneParameters = async ({ initialBatch, run, pre, post, context, data, minCycles, relThreshold, maxCycles })=>{
125
+ const tuneParameters = async ({ initialBatch, run, runRaw, runIsAsync, pre, preIsAsync, post, postIsAsync, context, data, minCycles, relThreshold, maxCycles, nextNonce })=>{
50
126
  let batchSize = initialBatch;
51
127
  let bestCv = Number.POSITIVE_INFINITY;
52
128
  let bestBatch = batchSize;
@@ -54,7 +130,19 @@ const tuneParameters = async ({ initialBatch, run, pre, post, context, data, min
54
130
  const samples = [];
55
131
  const sampleCount = Math.min(8, maxCycles);
56
132
  for(let s = 0; s < sampleCount; s++){
57
- const duration = await collectSample(batchSize, run, pre, post, context, data);
133
+ const duration = await collectSample({
134
+ batchSize,
135
+ run,
136
+ runRaw,
137
+ runIsAsync,
138
+ pre,
139
+ preIsAsync,
140
+ post,
141
+ postIsAsync,
142
+ context,
143
+ data,
144
+ nextNonce
145
+ });
58
146
  samples.push(Number(duration));
59
147
  }
60
148
  const mean = samples.reduce((acc, v)=>acc + v, 0) / samples.length;
@@ -134,15 +222,17 @@ const medianAndIqr = (arr)=>{
134
222
  median: 0,
135
223
  iqr: 0
136
224
  };
137
- const sorted = [
138
- ...arr
139
- ].sort((a, b)=>a - b);
140
- const mid = Math.floor(sorted.length / 2);
141
- const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];
142
- const q1Idx = Math.floor(sorted.length * 0.25);
143
- const q3Idx = Math.floor(sorted.length * 0.75);
144
- const q1 = sorted[q1Idx];
145
- const q3 = sorted[q3Idx];
225
+ for(let i = 0; i < arr.length; i++){
226
+ OUTLIER_SCRATCH[i] = arr[i];
227
+ }
228
+ const view = OUTLIER_SCRATCH.subarray(0, arr.length);
229
+ view.sort();
230
+ const mid = Math.floor(view.length / 2);
231
+ const median = view.length % 2 === 0 ? (view[mid - 1] + view[mid]) / 2 : view[mid];
232
+ const q1Idx = Math.floor(view.length * 0.25);
233
+ const q3Idx = Math.floor(view.length * 0.75);
234
+ const q1 = view[q1Idx];
235
+ const q3 = view[q3Idx];
146
236
  return {
147
237
  median,
148
238
  iqr: q3 - q1
@@ -162,56 +252,132 @@ const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmup
162
252
  control[_typescjs.Control.PROGRESS] = 0;
163
253
  control[_typescjs.Control.COMPLETE] = 255;
164
254
  const context = await setup?.();
255
+ const input = data;
165
256
  const maxCycles = durations.length;
166
257
  const gcWatcher = gcObserver ? new _gcwatchercjs.GCWatcher() : null;
167
258
  const gcTracker = gcObserver ? createGCTracker() : null;
168
259
  try {
169
- await pre?.(context, data);
260
+ let preIsAsync = false;
261
+ if (pre) {
262
+ const preResult = pre(context, input);
263
+ preIsAsync = isThenable(preResult);
264
+ if (preIsAsync) {
265
+ await preResult;
266
+ }
267
+ }
170
268
  const probeStart = hr();
171
- const probeResult = runRaw(context, data);
172
- const isAsync = isThenable(probeResult);
173
- if (isAsync) {
174
- await probeResult;
269
+ const probeResult = runRaw(context, input);
270
+ const runIsAsync = isThenable(probeResult);
271
+ if (runIsAsync) {
272
+ const resolved = await probeResult;
273
+ consume(resolved);
274
+ } else {
275
+ consume(probeResult);
276
+ }
277
+ const durationProbeRaw = hr() - probeStart;
278
+ let postIsAsync = false;
279
+ if (post) {
280
+ const postResult = post(context, input);
281
+ postIsAsync = isThenable(postResult);
282
+ if (postIsAsync) {
283
+ await postResult;
284
+ }
285
+ }
286
+ const timerOverhead = runIsAsync ? 0n : measureTimerOverhead();
287
+ let durationProbe = runIsAsync ? durationProbeRaw : durationProbeRaw > timerOverhead ? durationProbeRaw - timerOverhead : 0n;
288
+ const shouldPerturbInput = process.env.OVERTAKE_PERTURB_INPUT === '1';
289
+ let nonce = 0;
290
+ const nextNonce = shouldPerturbInput ? ()=>{
291
+ nonce = nonce + 1 | 0;
292
+ return nonce;
293
+ } : null;
294
+ if (!runIsAsync && !pre && !post) {
295
+ const batchProbeSize = 10_000;
296
+ const batchProbeStart = hr();
297
+ if (nextNonce) {
298
+ for(let i = 0; i < batchProbeSize; i++){
299
+ consume(runRaw(context, input, nextNonce()));
300
+ }
301
+ } else {
302
+ for(let i = 0; i < batchProbeSize; i++){
303
+ consume(runRaw(context, input));
304
+ }
305
+ }
306
+ durationProbe = (hr() - batchProbeStart) / BigInt(batchProbeSize);
175
307
  }
176
- const durationProbe = hr() - probeStart;
177
- await post?.(context, data);
178
- const run = isAsync ? runAsync(runRaw) : runSync(runRaw);
308
+ const runTimedSync = runIsAsync ? null : runSync(runRaw, timerOverhead);
309
+ const runTimedAsync = runIsAsync ? runAsync(runRaw) : null;
310
+ const run = runIsAsync ? runTimedAsync : runTimedSync;
311
+ const runOnceSync = runIsAsync ? null : nextNonce ? (ctx, dataValue)=>runTimedSync(ctx, dataValue, nextNonce()) : runTimedSync;
312
+ const runOnceAsync = runIsAsync ? nextNonce ? (ctx, dataValue)=>runTimedAsync(ctx, dataValue, nextNonce()) : runTimedAsync : null;
313
+ const preSync = preIsAsync ? null : pre;
314
+ const preAsync = preIsAsync ? pre : null;
315
+ const postSync = postIsAsync ? null : post;
316
+ const postAsync = postIsAsync ? post : null;
179
317
  const durationPerRun = durationProbe === 0n ? 1n : durationProbe;
180
318
  const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);
181
- const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));
319
+ const minBatchForFastOps = durationProbe < 100n ? 100_000 : 1;
320
+ const initialBatchSize = Math.min(MAX_BATCH, Math.max(minBatchForFastOps, suggestedBatch));
182
321
  const tuned = await tuneParameters({
183
322
  initialBatch: initialBatchSize,
184
323
  run,
324
+ runRaw,
325
+ runIsAsync,
185
326
  pre,
327
+ preIsAsync,
186
328
  post,
329
+ postIsAsync,
187
330
  context,
188
- data: data,
331
+ data: input,
189
332
  minCycles,
190
333
  relThreshold,
191
- maxCycles
334
+ maxCycles,
335
+ nextNonce
192
336
  });
193
337
  let batchSize = tuned.batchSize;
194
338
  minCycles = tuned.minCycles;
195
339
  relThreshold = tuned.relThreshold;
196
- const warmupStart = Date.now();
340
+ const warmupStart = _nodeperf_hooks.performance.now();
197
341
  let warmupRemaining = warmupCycles;
198
342
  const warmupWindow = [];
199
343
  const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));
200
- while(Date.now() - warmupStart < 1_000 && warmupRemaining > 0){
201
- const start = hr();
202
- await pre?.(context, data);
203
- await run(context, data);
204
- await post?.(context, data);
205
- pushWindow(warmupWindow, Number(hr() - start), warmupCap);
344
+ const canBatchTime = !runIsAsync && !preSync && !preAsync && !postSync && !postAsync;
345
+ const runWarmup = async ()=>{
346
+ if (canBatchTime) {
347
+ const batchStart = hr();
348
+ if (nextNonce) {
349
+ for(let b = 0; b < batchSize; b++){
350
+ consume(runRaw(context, input, nextNonce()));
351
+ }
352
+ } else {
353
+ for(let b = 0; b < batchSize; b++){
354
+ consume(runRaw(context, input));
355
+ }
356
+ }
357
+ return (hr() - batchStart) * _typescjs.DURATION_SCALE / BigInt(batchSize);
358
+ }
359
+ if (preSync) {
360
+ preSync(context, input);
361
+ } else if (preAsync) {
362
+ await preAsync(context, input);
363
+ }
364
+ const duration = runIsAsync ? await runOnceAsync(context, input) : runOnceSync(context, input);
365
+ if (postSync) {
366
+ postSync(context, input);
367
+ } else if (postAsync) {
368
+ await postAsync(context, input);
369
+ }
370
+ return duration;
371
+ };
372
+ while(_nodeperf_hooks.performance.now() - warmupStart < 1_000 && warmupRemaining > 0){
373
+ const duration = await runWarmup();
374
+ pushWindow(warmupWindow, Number(duration), warmupCap);
206
375
  warmupRemaining--;
207
376
  }
208
377
  let warmupDone = 0;
209
378
  while(warmupDone < warmupRemaining){
210
- const start = hr();
211
- await pre?.(context, data);
212
- await run(context, data);
213
- await post?.(context, data);
214
- pushWindow(warmupWindow, Number(hr() - start), warmupCap);
379
+ const duration = await runWarmup();
380
+ pushWindow(warmupWindow, Number(duration), warmupCap);
215
381
  warmupDone++;
216
382
  if (global.gc && warmupDone % GC_STRIDE === 0) {
217
383
  global.gc();
@@ -222,45 +388,80 @@ const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmup
222
388
  if (cv <= relThreshold * 2) {
223
389
  break;
224
390
  }
225
- const start = hr();
226
- await pre?.(context, data);
227
- await run(context, data);
228
- await post?.(context, data);
229
- pushWindow(warmupWindow, Number(hr() - start), warmupCap);
391
+ const duration = await runWarmup();
392
+ pushWindow(warmupWindow, Number(duration), warmupCap);
230
393
  }
231
394
  let i = 0;
232
395
  let mean = 0n;
233
396
  let m2 = 0n;
234
397
  const outlierWindow = [];
398
+ let skipped = 0;
399
+ const maxSkipped = maxCycles * 10;
400
+ let disableFiltering = false;
235
401
  while(true){
236
402
  if (i >= maxCycles) break;
403
+ if (!disableFiltering && skipped >= maxSkipped) {
404
+ console.error(`Warning: ${skipped} samples skipped due to noise/outlier detection. ` + `Disabling filtering for remaining samples. Results may have higher variance.`);
405
+ disableFiltering = true;
406
+ }
407
+ if (global.gc && i > 0 && i % GC_STRIDE === 0) {
408
+ global.gc();
409
+ }
237
410
  const gcMarker = gcWatcher?.start();
238
411
  const sampleStart = _nodeperf_hooks.performance.now();
239
412
  let sampleDuration = 0n;
240
- for(let b = 0; b < batchSize; b++){
241
- await pre?.(context, data);
242
- sampleDuration += await run(context, data);
243
- await post?.(context, data);
244
- if (global.gc && (i + b) % GC_STRIDE === 0) {
245
- global.gc();
413
+ if (canBatchTime) {
414
+ const batchStart = hr();
415
+ if (nextNonce) {
416
+ for(let b = 0; b < batchSize; b++){
417
+ consume(runRaw(context, input, nextNonce()));
418
+ }
419
+ } else {
420
+ for(let b = 0; b < batchSize; b++){
421
+ consume(runRaw(context, input));
422
+ }
423
+ }
424
+ const batchDuration = hr() - batchStart;
425
+ sampleDuration = batchDuration * _typescjs.DURATION_SCALE / BigInt(batchSize);
426
+ } else {
427
+ for(let b = 0; b < batchSize; b++){
428
+ if (preSync) {
429
+ preSync(context, input);
430
+ } else if (preAsync) {
431
+ await preAsync(context, input);
432
+ }
433
+ const duration = runIsAsync ? await runOnceAsync(context, input) : runOnceSync(context, input);
434
+ sampleDuration += duration;
435
+ if (postSync) {
436
+ postSync(context, input);
437
+ } else if (postAsync) {
438
+ await postAsync(context, input);
439
+ }
246
440
  }
441
+ sampleDuration = sampleDuration * _typescjs.DURATION_SCALE / BigInt(batchSize);
247
442
  }
248
- sampleDuration /= BigInt(batchSize);
249
443
  const sampleEnd = _nodeperf_hooks.performance.now();
250
- const gcNoise = (gcMarker ? gcWatcher.seen(gcMarker) : false) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);
251
- if (gcNoise) {
252
- continue;
444
+ if (!disableFiltering) {
445
+ const gcNoise = (gcMarker ? gcWatcher.seen(gcMarker) : false) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);
446
+ if (gcNoise) {
447
+ skipped++;
448
+ continue;
449
+ }
253
450
  }
254
451
  const durationNumber = Number(sampleDuration);
255
452
  pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);
256
- const { median, iqr } = medianAndIqr(outlierWindow);
257
- const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;
258
- if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {
259
- continue;
260
- }
261
- const meanNumber = Number(mean);
262
- if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {
263
- continue;
453
+ if (!disableFiltering) {
454
+ const { median, iqr } = medianAndIqr(outlierWindow);
455
+ const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;
456
+ if (outlierWindow.length >= 8 && durationNumber > maxAllowed && durationNumber - median > OUTLIER_ABS_THRESHOLD_NS) {
457
+ skipped++;
458
+ continue;
459
+ }
460
+ const meanNumber = Number(mean);
461
+ if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber && durationNumber - meanNumber > OUTLIER_ABS_THRESHOLD_NS) {
462
+ skipped++;
463
+ continue;
464
+ }
264
465
  }
265
466
  durations[i++] = sampleDuration;
266
467
  const delta = sampleDuration - mean;
@@ -1 +1 @@
1
- {"version":3,"sources":["../src/runner.ts"],"sourcesContent":["import { performance, PerformanceObserver } from 'node:perf_hooks';\nimport { Options, Control } from './types.js';\nimport { GCWatcher } from './gc-watcher.js';\nimport { StepFn, MaybePromise } from './types.js';\n\nconst COMPLETE_VALUE = 100_00;\n\nconst hr = process.hrtime.bigint.bind(process.hrtime);\n\nconst runSync = (run: Function) => {\n return (...args: unknown[]) => {\n const start = hr();\n run(...args);\n return hr() - start;\n };\n};\n\nconst runAsync = (run: Function) => {\n return async (...args: unknown[]) => {\n const start = hr();\n await run(...args);\n return hr() - start;\n };\n};\n\nconst isThenable = (value: unknown): value is PromiseLike<unknown> => {\n return value !== null && (typeof value === 'object' || typeof value === 'function') && typeof (value as PromiseLike<unknown>).then === 'function';\n};\n\nconst TARGET_SAMPLE_NS = 1_000_000n; // aim for ~1ms per measured sample\nconst MAX_BATCH = 1_048_576;\nconst PROGRESS_STRIDE = 16;\nconst GC_STRIDE = 32;\nconst OUTLIER_MULTIPLIER = 4;\nconst OUTLIER_IQR_MULTIPLIER = 3;\nconst OUTLIER_WINDOW = 64;\n\ntype GCEvent = { start: number; end: number };\n\nconst collectSample = async <TContext, TInput>(\n batchSize: number,\n run: (ctx: TContext, data: TInput) => MaybePromise<bigint>,\n pre: StepFn<TContext, TInput> | undefined,\n post: StepFn<TContext, TInput> | undefined,\n context: TContext,\n data: TInput,\n) => {\n let sampleDuration = 0n;\n for (let b = 0; b < batchSize; b++) {\n await pre?.(context, data);\n sampleDuration += await run(context, data);\n await post?.(context, data);\n }\n return sampleDuration / BigInt(batchSize);\n};\n\nconst tuneParameters = async <TContext, TInput>({\n initialBatch,\n run,\n pre,\n post,\n context,\n data,\n minCycles,\n relThreshold,\n maxCycles,\n}: {\n initialBatch: number;\n run: (ctx: TContext, data: TInput) => MaybePromise<bigint>;\n pre?: StepFn<TContext, TInput>;\n post?: StepFn<TContext, TInput>;\n context: TContext;\n data: TInput;\n minCycles: number;\n relThreshold: number;\n maxCycles: number;\n}) => {\n let batchSize = initialBatch;\n let bestCv = Number.POSITIVE_INFINITY;\n let bestBatch = batchSize;\n\n for (let attempt = 0; attempt < 3; attempt++) {\n const samples: number[] = [];\n const sampleCount = Math.min(8, maxCycles);\n for (let s = 0; s < sampleCount; s++) {\n const duration = await collectSample(batchSize, run, pre, post, context, data);\n samples.push(Number(duration));\n }\n const mean = samples.reduce((acc, v) => acc + v, 0) / samples.length;\n const variance = samples.reduce((acc, v) => acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);\n const stddev = Math.sqrt(variance);\n const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n\n if (cv < bestCv) {\n bestCv = cv;\n bestBatch = batchSize;\n }\n\n if (cv <= relThreshold || batchSize >= MAX_BATCH) {\n break;\n }\n batchSize = Math.min(MAX_BATCH, batchSize * 2);\n }\n\n const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;\n const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));\n\n return { batchSize: bestBatch, relThreshold: tunedRel, minCycles: tunedMin };\n};\n\nconst createGCTracker = () => {\n if (process.env.OVERTAKE_GC_OBSERVER !== '1') {\n return null;\n }\n if (typeof PerformanceObserver === 'undefined') {\n return null;\n }\n\n const events: GCEvent[] = [];\n const observer = new PerformanceObserver((list) => {\n for (const entry of list.getEntries()) {\n events.push({ start: entry.startTime, end: entry.startTime + entry.duration });\n }\n });\n\n try {\n observer.observe({ entryTypes: ['gc'] });\n } catch {\n return null;\n }\n\n const overlaps = (start: number, end: number) => {\n let noisy = false;\n for (let i = events.length - 1; i >= 0; i--) {\n const event = events[i];\n if (event.end < start - 5_000) {\n events.splice(i, 1);\n continue;\n }\n if (event.start <= end && event.end >= start) {\n noisy = true;\n }\n }\n return noisy;\n };\n\n const dispose = () => observer.disconnect();\n\n return { overlaps, dispose };\n};\n\nconst pushWindow = (arr: number[], value: number, cap: number) => {\n if (arr.length === cap) {\n arr.shift();\n }\n arr.push(value);\n};\n\nconst medianAndIqr = (arr: number[]) => {\n if (arr.length === 0) return { median: 0, iqr: 0 };\n const sorted = [...arr].sort((a, b) => a - b);\n const mid = Math.floor(sorted.length / 2);\n const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];\n const q1Idx = Math.floor(sorted.length * 0.25);\n const q3Idx = Math.floor(sorted.length * 0.75);\n const q1 = sorted[q1Idx];\n const q3 = sorted[q3Idx];\n return { median, iqr: q3 - q1 };\n};\n\nconst windowCv = (arr: number[]) => {\n if (arr.length < 2) return Number.POSITIVE_INFINITY;\n const mean = arr.reduce((a, v) => a + v, 0) / arr.length;\n const variance = arr.reduce((a, v) => a + (v - mean) * (v - mean), 0) / (arr.length - 1);\n const stddev = Math.sqrt(variance);\n return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n};\n\nexport const benchmark = async <TContext, TInput>({\n setup,\n teardown,\n pre,\n run: runRaw,\n post,\n data,\n\n warmupCycles,\n minCycles,\n absThreshold,\n relThreshold,\n gcObserver = false,\n\n durationsSAB,\n controlSAB,\n}: Required<Options<TContext, TInput>>) => {\n const durations = new BigUint64Array(durationsSAB);\n const control = new Int32Array(controlSAB);\n\n control[Control.INDEX] = 0;\n control[Control.PROGRESS] = 0;\n control[Control.COMPLETE] = 255;\n\n const context = (await setup?.()) as TContext;\n const maxCycles = durations.length;\n const gcWatcher = gcObserver ? new GCWatcher() : null;\n const gcTracker = gcObserver ? createGCTracker() : null;\n\n try {\n // classify sync/async and capture initial duration\n await pre?.(context, data!);\n const probeStart = hr();\n const probeResult = runRaw(context, data!);\n const isAsync = isThenable(probeResult);\n if (isAsync) {\n await probeResult;\n }\n const durationProbe = hr() - probeStart;\n await post?.(context, data!);\n\n const run = isAsync ? runAsync(runRaw) : runSync(runRaw);\n\n // choose batch size to amortize timer overhead\n const durationPerRun = durationProbe === 0n ? 1n : durationProbe;\n const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);\n const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));\n\n // auto-tune based on warmup samples\n const tuned = await tuneParameters({\n initialBatch: initialBatchSize,\n run,\n pre,\n post,\n context,\n data: data as TInput,\n minCycles,\n relThreshold,\n maxCycles,\n });\n let batchSize = tuned.batchSize;\n minCycles = tuned.minCycles;\n relThreshold = tuned.relThreshold;\n\n // warmup: run until requested cycles, adapt if unstable\n const warmupStart = Date.now();\n let warmupRemaining = warmupCycles;\n const warmupWindow: number[] = [];\n const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));\n\n while (Date.now() - warmupStart < 1_000 && warmupRemaining > 0) {\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n warmupRemaining--;\n }\n let warmupDone = 0;\n while (warmupDone < warmupRemaining) {\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n warmupDone++;\n if (global.gc && warmupDone % GC_STRIDE === 0) {\n global.gc();\n }\n }\n while (warmupWindow.length >= 8 && warmupWindow.length < warmupCap) {\n const cv = windowCv(warmupWindow);\n if (cv <= relThreshold * 2) {\n break;\n }\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n }\n\n let i = 0;\n let mean = 0n;\n let m2 = 0n;\n const outlierWindow: number[] = [];\n\n while (true) {\n if (i >= maxCycles) break;\n\n const gcMarker = gcWatcher?.start();\n const sampleStart = performance.now();\n let sampleDuration = 0n;\n for (let b = 0; b < batchSize; b++) {\n await pre?.(context, data!);\n sampleDuration += await run(context, data);\n await post?.(context, data!);\n if (global.gc && (i + b) % GC_STRIDE === 0) {\n global.gc();\n }\n }\n\n // normalize by batch size\n sampleDuration /= BigInt(batchSize);\n\n const sampleEnd = performance.now();\n const gcNoise = (gcMarker ? gcWatcher!.seen(gcMarker) : false) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);\n if (gcNoise) {\n continue;\n }\n\n const durationNumber = Number(sampleDuration);\n pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);\n const { median, iqr } = medianAndIqr(outlierWindow);\n const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;\n if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {\n continue;\n }\n\n const meanNumber = Number(mean);\n if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {\n continue;\n }\n\n durations[i++] = sampleDuration;\n const delta = sampleDuration - mean;\n mean += delta / BigInt(i);\n m2 += delta * (sampleDuration - mean);\n\n const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;\n if (i % PROGRESS_STRIDE === 0) {\n control[Control.PROGRESS] = progress;\n }\n\n if (i >= minCycles) {\n const variance = Number(m2) / (i - 1);\n const stddev = Math.sqrt(variance);\n if (stddev <= Number(absThreshold)) {\n break;\n }\n\n const meanNum = Number(mean);\n const cov = stddev / (meanNum || 1);\n if (cov <= relThreshold) {\n break;\n }\n }\n }\n\n control[Control.INDEX] = i;\n control[Control.COMPLETE] = 0;\n } catch (e) {\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n control[Control.COMPLETE] = 1;\n } finally {\n gcTracker?.dispose?.();\n try {\n await teardown?.(context);\n } catch (e) {\n control[Control.COMPLETE] = 2;\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n }\n }\n\n return control[Control.COMPLETE];\n};\n"],"names":["benchmark","COMPLETE_VALUE","hr","process","hrtime","bigint","bind","runSync","run","args","start","runAsync","isThenable","value","then","TARGET_SAMPLE_NS","MAX_BATCH","PROGRESS_STRIDE","GC_STRIDE","OUTLIER_MULTIPLIER","OUTLIER_IQR_MULTIPLIER","OUTLIER_WINDOW","collectSample","batchSize","pre","post","context","data","sampleDuration","b","BigInt","tuneParameters","initialBatch","minCycles","relThreshold","maxCycles","bestCv","Number","POSITIVE_INFINITY","bestBatch","attempt","samples","sampleCount","Math","min","s","duration","push","mean","reduce","acc","v","length","variance","max","stddev","sqrt","cv","tunedRel","tunedMin","ceil","createGCTracker","env","OVERTAKE_GC_OBSERVER","PerformanceObserver","events","observer","list","entry","getEntries","startTime","end","observe","entryTypes","overlaps","noisy","i","event","splice","dispose","disconnect","pushWindow","arr","cap","shift","medianAndIqr","median","iqr","sorted","sort","a","mid","floor","q1Idx","q3Idx","q1","q3","windowCv","setup","teardown","runRaw","warmupCycles","absThreshold","gcObserver","durationsSAB","controlSAB","durations","BigUint64Array","control","Int32Array","Control","INDEX","PROGRESS","COMPLETE","gcWatcher","GCWatcher","gcTracker","probeStart","probeResult","isAsync","durationProbe","durationPerRun","suggestedBatch","initialBatchSize","tuned","warmupStart","Date","now","warmupRemaining","warmupWindow","warmupCap","warmupDone","global","gc","m2","outlierWindow","gcMarker","sampleStart","performance","sampleEnd","gcNoise","seen","durationNumber","maxAllowed","meanNumber","delta","progress","meanNum","cov","e","console","error","stack"],"mappings":";;;;+BAkLaA;;;eAAAA;;;gCAlLoC;0BAChB;8BACP;AAG1B,MAAMC,iBAAiB;AAEvB,MAAMC,KAAKC,QAAQC,MAAM,CAACC,MAAM,CAACC,IAAI,CAACH,QAAQC,MAAM;AAEpD,MAAMG,UAAU,CAACC;IACf,OAAO,CAAC,GAAGC;QACT,MAAMC,QAAQR;QACdM,OAAOC;QACP,OAAOP,OAAOQ;IAChB;AACF;AAEA,MAAMC,WAAW,CAACH;IAChB,OAAO,OAAO,GAAGC;QACf,MAAMC,QAAQR;QACd,MAAMM,OAAOC;QACb,OAAOP,OAAOQ;IAChB;AACF;AAEA,MAAME,aAAa,CAACC;IAClB,OAAOA,UAAU,QAAS,CAAA,OAAOA,UAAU,YAAY,OAAOA,UAAU,UAAS,KAAM,OAAO,AAACA,MAA+BC,IAAI,KAAK;AACzI;AAEA,MAAMC,mBAAmB,UAAU;AACnC,MAAMC,YAAY;AAClB,MAAMC,kBAAkB;AACxB,MAAMC,YAAY;AAClB,MAAMC,qBAAqB;AAC3B,MAAMC,yBAAyB;AAC/B,MAAMC,iBAAiB;AAIvB,MAAMC,gBAAgB,OACpBC,WACAf,KACAgB,KACAC,MACAC,SACAC;IAEA,IAAIC,iBAAiB,EAAE;IACvB,IAAK,IAAIC,IAAI,GAAGA,IAAIN,WAAWM,IAAK;QAClC,MAAML,MAAME,SAASC;QACrBC,kBAAkB,MAAMpB,IAAIkB,SAASC;QACrC,MAAMF,OAAOC,SAASC;IACxB;IACA,OAAOC,iBAAiBE,OAAOP;AACjC;AAEA,MAAMQ,iBAAiB,OAAyB,EAC9CC,YAAY,EACZxB,GAAG,EACHgB,GAAG,EACHC,IAAI,EACJC,OAAO,EACPC,IAAI,EACJM,SAAS,EACTC,YAAY,EACZC,SAAS,EAWV;IACC,IAAIZ,YAAYS;IAChB,IAAII,SAASC,OAAOC,iBAAiB;IACrC,IAAIC,YAAYhB;IAEhB,IAAK,IAAIiB,UAAU,GAAGA,UAAU,GAAGA,UAAW;QAC5C,MAAMC,UAAoB,EAAE;QAC5B,MAAMC,cAAcC,KAAKC,GAAG,CAAC,GAAGT;QAChC,IAAK,IAAIU,IAAI,GAAGA,IAAIH,aAAaG,IAAK;YACpC,MAAMC,WAAW,MAAMxB,cAAcC,WAAWf,KAAKgB,KAAKC,MAAMC,SAASC;YACzEc,QAAQM,IAAI,CAACV,OAAOS;QACtB;QACA,MAAME,OAAOP,QAAQQ,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAMC,GAAG,KAAKV,QAAQW,MAAM;QACpE,MAAMC,WAAWZ,QAAQQ,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAM,AAACC,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAKL,KAAKW,GAAG,CAAC,GAAGb,QAAQW,MAAM,GAAG;QAC7G,MAAMG,SAASZ,KAAKa,IAAI,CAACH;QACzB,MAAMI,KAAKT,SAAS,IAAIX,OAAOC,iBAAiB,GAAGiB,SAASP;QAE5D,IAAIS,KAAKrB,QAAQ;YACfA,SAASqB;YACTlB,YAAYhB;QACd;QAEA,IAAIkC,MAAMvB,gBAAgBX,aAAaP,WAAW;YAChD;QACF;QACAO,YAAYoB,KAAKC,GAAG,CAAC5B,WAAWO,YAAY;IAC9C;IAEA,MAAMmC,WAAWtB,SAASF,eAAeS,KAAKW,GAAG,CAAClB,SAAS,KAAKF,eAAe,OAAOA;IACtF,MAAMyB,WAAWhB,KAAKC,GAAG,CAACT,WAAWQ,KAAKW,GAAG,CAACrB,WAAWU,KAAKiB,IAAI,CAAC3B,YAAYU,KAAKW,GAAG,CAAC,GAAGlB,SAAUF,CAAAA,gBAAgB,IAAG;IAExH,OAAO;QAAEX,WAAWgB;QAAWL,cAAcwB;QAAUzB,WAAW0B;IAAS;AAC7E;AAEA,MAAME,kBAAkB;IACtB,IAAI1D,QAAQ2D,GAAG,CAACC,oBAAoB,KAAK,KAAK;QAC5C,OAAO;IACT;IACA,IAAI,OAAOC,mCAAmB,KAAK,aAAa;QAC9C,OAAO;IACT;IAEA,MAAMC,SAAoB,EAAE;IAC5B,MAAMC,WAAW,IAAIF,mCAAmB,CAAC,CAACG;QACxC,KAAK,MAAMC,SAASD,KAAKE,UAAU,GAAI;YACrCJ,OAAOlB,IAAI,CAAC;gBAAErC,OAAO0D,MAAME,SAAS;gBAAEC,KAAKH,MAAME,SAAS,GAAGF,MAAMtB,QAAQ;YAAC;QAC9E;IACF;IAEA,IAAI;QACFoB,SAASM,OAAO,CAAC;YAAEC,YAAY;gBAAC;aAAK;QAAC;IACxC,EAAE,OAAM;QACN,OAAO;IACT;IAEA,MAAMC,WAAW,CAAChE,OAAe6D;QAC/B,IAAII,QAAQ;QACZ,IAAK,IAAIC,IAAIX,OAAOb,MAAM,GAAG,GAAGwB,KAAK,GAAGA,IAAK;YAC3C,MAAMC,QAAQZ,MAAM,CAACW,EAAE;YACvB,IAAIC,MAAMN,GAAG,GAAG7D,QAAQ,OAAO;gBAC7BuD,OAAOa,MAAM,CAACF,GAAG;gBACjB;YACF;YACA,IAAIC,MAAMnE,KAAK,IAAI6D,OAAOM,MAAMN,GAAG,IAAI7D,OAAO;gBAC5CiE,QAAQ;YACV;QACF;QACA,OAAOA;IACT;IAEA,MAAMI,UAAU,IAAMb,SAASc,UAAU;IAEzC,OAAO;QAAEN;QAAUK;IAAQ;AAC7B;AAEA,MAAME,aAAa,CAACC,KAAerE,OAAesE;IAChD,IAAID,IAAI9B,MAAM,KAAK+B,KAAK;QACtBD,IAAIE,KAAK;IACX;IACAF,IAAInC,IAAI,CAAClC;AACX;AAEA,MAAMwE,eAAe,CAACH;IACpB,IAAIA,IAAI9B,MAAM,KAAK,GAAG,OAAO;QAAEkC,QAAQ;QAAGC,KAAK;IAAE;IACjD,MAAMC,SAAS;WAAIN;KAAI,CAACO,IAAI,CAAC,CAACC,GAAG7D,IAAM6D,IAAI7D;IAC3C,MAAM8D,MAAMhD,KAAKiD,KAAK,CAACJ,OAAOpC,MAAM,GAAG;IACvC,MAAMkC,SAASE,OAAOpC,MAAM,GAAG,MAAM,IAAI,AAACoC,CAAAA,MAAM,CAACG,MAAM,EAAE,GAAGH,MAAM,CAACG,IAAI,AAAD,IAAK,IAAIH,MAAM,CAACG,IAAI;IAC1F,MAAME,QAAQlD,KAAKiD,KAAK,CAACJ,OAAOpC,MAAM,GAAG;IACzC,MAAM0C,QAAQnD,KAAKiD,KAAK,CAACJ,OAAOpC,MAAM,GAAG;IACzC,MAAM2C,KAAKP,MAAM,CAACK,MAAM;IACxB,MAAMG,KAAKR,MAAM,CAACM,MAAM;IACxB,OAAO;QAAER;QAAQC,KAAKS,KAAKD;IAAG;AAChC;AAEA,MAAME,WAAW,CAACf;IAChB,IAAIA,IAAI9B,MAAM,GAAG,GAAG,OAAOf,OAAOC,iBAAiB;IACnD,MAAMU,OAAOkC,IAAIjC,MAAM,CAAC,CAACyC,GAAGvC,IAAMuC,IAAIvC,GAAG,KAAK+B,IAAI9B,MAAM;IACxD,MAAMC,WAAW6B,IAAIjC,MAAM,CAAC,CAACyC,GAAGvC,IAAMuC,IAAI,AAACvC,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAMkC,CAAAA,IAAI9B,MAAM,GAAG,CAAA;IACtF,MAAMG,SAASZ,KAAKa,IAAI,CAACH;IACzB,OAAOL,SAAS,IAAIX,OAAOC,iBAAiB,GAAGiB,SAASP;AAC1D;AAEO,MAAMhD,YAAY,OAAyB,EAChDkG,KAAK,EACLC,QAAQ,EACR3E,GAAG,EACHhB,KAAK4F,MAAM,EACX3E,IAAI,EACJE,IAAI,EAEJ0E,YAAY,EACZpE,SAAS,EACTqE,YAAY,EACZpE,YAAY,EACZqE,aAAa,KAAK,EAElBC,YAAY,EACZC,UAAU,EAC0B;IACpC,MAAMC,YAAY,IAAIC,eAAeH;IACrC,MAAMI,UAAU,IAAIC,WAAWJ;IAE/BG,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAG;IACzBH,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAG;IAC5BJ,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAE5B,MAAMvF,UAAW,MAAMwE;IACvB,MAAM/D,YAAYuE,UAAUtD,MAAM;IAClC,MAAM8D,YAAYX,aAAa,IAAIY,uBAAS,KAAK;IACjD,MAAMC,YAAYb,aAAa1C,oBAAoB;IAEnD,IAAI;QAEF,MAAMrC,MAAME,SAASC;QACrB,MAAM0F,aAAanH;QACnB,MAAMoH,cAAclB,OAAO1E,SAASC;QACpC,MAAM4F,UAAU3G,WAAW0G;QAC3B,IAAIC,SAAS;YACX,MAAMD;QACR;QACA,MAAME,gBAAgBtH,OAAOmH;QAC7B,MAAM5F,OAAOC,SAASC;QAEtB,MAAMnB,MAAM+G,UAAU5G,SAASyF,UAAU7F,QAAQ6F;QAGjD,MAAMqB,iBAAiBD,kBAAkB,EAAE,GAAG,EAAE,GAAGA;QACnD,MAAME,iBAAiBrF,OAAOtB,mBAAmB0G;QACjD,MAAME,mBAAmBhF,KAAKC,GAAG,CAAC5B,WAAW2B,KAAKW,GAAG,CAAC,GAAGoE;QAGzD,MAAME,QAAQ,MAAM7F,eAAe;YACjCC,cAAc2F;YACdnH;YACAgB;YACAC;YACAC;YACAC,MAAMA;YACNM;YACAC;YACAC;QACF;QACA,IAAIZ,YAAYqG,MAAMrG,SAAS;QAC/BU,YAAY2F,MAAM3F,SAAS;QAC3BC,eAAe0F,MAAM1F,YAAY;QAGjC,MAAM2F,cAAcC,KAAKC,GAAG;QAC5B,IAAIC,kBAAkB3B;QACtB,MAAM4B,eAAyB,EAAE;QACjC,MAAMC,YAAYvF,KAAKW,GAAG,CAAC+C,cAAc1D,KAAKC,GAAG,CAACT,WAAWkE,eAAe,KAAK;QAEjF,MAAOyB,KAAKC,GAAG,KAAKF,cAAc,SAASG,kBAAkB,EAAG;YAC9D,MAAMtH,QAAQR;YACd,MAAMsB,MAAME,SAASC;YACrB,MAAMnB,IAAIkB,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWgD,cAAc5F,OAAOnC,OAAOQ,QAAQwH;YAC/CF;QACF;QACA,IAAIG,aAAa;QACjB,MAAOA,aAAaH,gBAAiB;YACnC,MAAMtH,QAAQR;YACd,MAAMsB,MAAME,SAASC;YACrB,MAAMnB,IAAIkB,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWgD,cAAc5F,OAAOnC,OAAOQ,QAAQwH;YAC/CC;YACA,IAAIC,OAAOC,EAAE,IAAIF,aAAajH,cAAc,GAAG;gBAC7CkH,OAAOC,EAAE;YACX;QACF;QACA,MAAOJ,aAAa7E,MAAM,IAAI,KAAK6E,aAAa7E,MAAM,GAAG8E,UAAW;YAClE,MAAMzE,KAAKwC,SAASgC;YACpB,IAAIxE,MAAMvB,eAAe,GAAG;gBAC1B;YACF;YACA,MAAMxB,QAAQR;YACd,MAAMsB,MAAME,SAASC;YACrB,MAAMnB,IAAIkB,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWgD,cAAc5F,OAAOnC,OAAOQ,QAAQwH;QACjD;QAEA,IAAItD,IAAI;QACR,IAAI5B,OAAO,EAAE;QACb,IAAIsF,KAAK,EAAE;QACX,MAAMC,gBAA0B,EAAE;QAElC,MAAO,KAAM;YACX,IAAI3D,KAAKzC,WAAW;YAEpB,MAAMqG,WAAWtB,WAAWxG;YAC5B,MAAM+H,cAAcC,2BAAW,CAACX,GAAG;YACnC,IAAInG,iBAAiB,EAAE;YACvB,IAAK,IAAIC,IAAI,GAAGA,IAAIN,WAAWM,IAAK;gBAClC,MAAML,MAAME,SAASC;gBACrBC,kBAAkB,MAAMpB,IAAIkB,SAASC;gBACrC,MAAMF,OAAOC,SAASC;gBACtB,IAAIyG,OAAOC,EAAE,IAAI,AAACzD,CAAAA,IAAI/C,CAAAA,IAAKX,cAAc,GAAG;oBAC1CkH,OAAOC,EAAE;gBACX;YACF;YAGAzG,kBAAkBE,OAAOP;YAEzB,MAAMoH,YAAYD,2BAAW,CAACX,GAAG;YACjC,MAAMa,UAAU,AAACJ,CAAAA,WAAWtB,UAAW2B,IAAI,CAACL,YAAY,KAAI,KAAOpB,CAAAA,WAAW1C,SAAS+D,aAAaE,cAAc,KAAI;YACtH,IAAIC,SAAS;gBACX;YACF;YAEA,MAAME,iBAAiBzG,OAAOT;YAC9BqD,WAAWsD,eAAeO,gBAAgBzH;YAC1C,MAAM,EAAEiE,MAAM,EAAEC,GAAG,EAAE,GAAGF,aAAakD;YACrC,MAAMQ,aAAazD,SAASlE,yBAAyBmE,OAAOlD,OAAOC,iBAAiB;YACpF,IAAIiG,cAAcnF,MAAM,IAAI,KAAK0F,iBAAiBC,YAAY;gBAC5D;YACF;YAEA,MAAMC,aAAa3G,OAAOW;YAC1B,IAAI4B,KAAK,KAAKoE,aAAa,KAAKF,iBAAiB3H,qBAAqB6H,YAAY;gBAChF;YACF;YAEAtC,SAAS,CAAC9B,IAAI,GAAGhD;YACjB,MAAMqH,QAAQrH,iBAAiBoB;YAC/BA,QAAQiG,QAAQnH,OAAO8C;YACvB0D,MAAMW,QAASrH,CAAAA,iBAAiBoB,IAAG;YAEnC,MAAMkG,WAAWvG,KAAKW,GAAG,CAACsB,IAAIzC,aAAalC;YAC3C,IAAI2E,IAAI3D,oBAAoB,GAAG;gBAC7B2F,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAGkC;YAC9B;YAEA,IAAItE,KAAK3C,WAAW;gBAClB,MAAMoB,WAAWhB,OAAOiG,MAAO1D,CAAAA,IAAI,CAAA;gBACnC,MAAMrB,SAASZ,KAAKa,IAAI,CAACH;gBACzB,IAAIE,UAAUlB,OAAOiE,eAAe;oBAClC;gBACF;gBAEA,MAAM6C,UAAU9G,OAAOW;gBACvB,MAAMoG,MAAM7F,SAAU4F,CAAAA,WAAW,CAAA;gBACjC,IAAIC,OAAOlH,cAAc;oBACvB;gBACF;YACF;QACF;QAEA0E,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAGnC;QACzBgC,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,EAAE,OAAOoC,GAAG;QACVC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACrEzC,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,SAAU;QACRG,WAAWrC;QACX,IAAI;YACF,MAAMoB,WAAWzE;QACnB,EAAE,OAAO2H,GAAG;YACVzC,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;YAC5BqC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACvE;IACF;IAEA,OAAOzC,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC;AAClC"}
1
+ {"version":3,"sources":["../src/runner.ts"],"sourcesContent":["import { performance, PerformanceObserver } from 'node:perf_hooks';\nimport { Options, Control, DURATION_SCALE } from './types.js';\nimport { GCWatcher } from './gc-watcher.js';\nimport { StepFn } from './types.js';\n\nconst COMPLETE_VALUE = 100_00;\n\nconst hr = process.hrtime.bigint.bind(process.hrtime);\n\nconst sink = new Int32Array(new SharedArrayBuffer(Int32Array.BYTES_PER_ELEMENT));\nconst consume = (value: unknown) => {\n let payload = 0;\n switch (typeof value) {\n case 'number':\n payload = Number.isFinite(value) ? Math.trunc(value) : 0;\n break;\n case 'bigint':\n payload = Number(value & 0xffff_ffffn);\n break;\n case 'string':\n payload = value.length;\n break;\n case 'boolean':\n payload = value ? 1 : 0;\n break;\n case 'object':\n payload = value === null ? 0 : 1;\n break;\n case 'function':\n payload = 1;\n break;\n default:\n payload = -1;\n }\n Atomics.xor(sink, 0, payload);\n};\n\nconst runSync = (run: Function, overhead: bigint) => {\n return (...args: unknown[]) => {\n const start = hr();\n const result = run(...args);\n consume(result);\n const duration = hr() - start;\n return duration > overhead ? duration - overhead : 0n;\n };\n};\n\nconst runAsync = (run: Function) => {\n return async (...args: unknown[]) => {\n const start = hr();\n const result = await run(...args);\n consume(result);\n return hr() - start;\n };\n};\n\nconst isThenable = (value: unknown): value is PromiseLike<unknown> => {\n return value !== null && (typeof value === 'object' || typeof value === 'function') && typeof (value as PromiseLike<unknown>).then === 'function';\n};\n\nconst TARGET_SAMPLE_NS = 1_000_000n; // aim for ~1ms per measured sample\nconst MAX_BATCH = 1_048_576;\nconst PROGRESS_STRIDE = 16;\nconst GC_STRIDE = 32;\nconst OUTLIER_MULTIPLIER = 4;\nconst OUTLIER_IQR_MULTIPLIER = 3;\nconst OUTLIER_WINDOW = 64;\nconst OUTLIER_ABS_THRESHOLD_NS = 10_000;\nconst BASELINE_SAMPLES = 16;\nconst OUTLIER_SCRATCH = new Float64Array(OUTLIER_WINDOW);\n\ntype GCEvent = { start: number; end: number };\ntype RunTimedSync<TContext, TInput> = (ctx: TContext, data: TInput, nonce?: number) => bigint;\ntype RunTimedAsync<TContext, TInput> = (ctx: TContext, data: TInput, nonce?: number) => Promise<bigint>;\n\nconst measureTimerOverhead = () => {\n let total = 0n;\n for (let i = 0; i < BASELINE_SAMPLES; i++) {\n const start = hr();\n consume(0);\n total += hr() - start;\n }\n return total / BigInt(BASELINE_SAMPLES);\n};\n\nconst collectSample = async <TContext, TInput>({\n batchSize,\n run,\n runRaw,\n runIsAsync,\n pre,\n preIsAsync,\n post,\n postIsAsync,\n context,\n data,\n nextNonce,\n}: {\n batchSize: number;\n run: RunTimedSync<TContext, TInput> | RunTimedAsync<TContext, TInput>;\n runRaw: StepFn<TContext, TInput>;\n runIsAsync: boolean;\n pre: StepFn<TContext, TInput> | undefined;\n preIsAsync: boolean;\n post: StepFn<TContext, TInput> | undefined;\n postIsAsync: boolean;\n context: TContext;\n data: TInput;\n nextNonce: (() => number) | null;\n}) => {\n const canBatchTime = !runIsAsync && !pre && !post;\n if (canBatchTime) {\n const batchStart = hr();\n if (nextNonce) {\n for (let b = 0; b < batchSize; b++) {\n consume((runRaw as Function)(context, data, nextNonce()));\n }\n } else {\n for (let b = 0; b < batchSize; b++) {\n consume(runRaw(context, data));\n }\n }\n return ((hr() - batchStart) * DURATION_SCALE) / BigInt(batchSize);\n }\n\n let sampleDuration = 0n;\n for (let b = 0; b < batchSize; b++) {\n if (pre) {\n if (preIsAsync) {\n await pre(context, data);\n } else {\n pre(context, data);\n }\n }\n\n if (runIsAsync) {\n const runAsyncFn = run as RunTimedAsync<TContext, TInput>;\n const duration = nextNonce ? await runAsyncFn(context, data, nextNonce()) : await runAsyncFn(context, data);\n sampleDuration += duration;\n } else {\n const runSyncFn = run as RunTimedSync<TContext, TInput>;\n const duration = nextNonce ? runSyncFn(context, data, nextNonce()) : runSyncFn(context, data);\n sampleDuration += duration;\n }\n\n if (post) {\n if (postIsAsync) {\n await post(context, data);\n } else {\n post(context, data);\n }\n }\n }\n return (sampleDuration * DURATION_SCALE) / BigInt(batchSize);\n};\n\nconst tuneParameters = async <TContext, TInput>({\n initialBatch,\n run,\n runRaw,\n runIsAsync,\n pre,\n preIsAsync,\n post,\n postIsAsync,\n context,\n data,\n minCycles,\n relThreshold,\n maxCycles,\n nextNonce,\n}: {\n initialBatch: number;\n run: RunTimedSync<TContext, TInput> | RunTimedAsync<TContext, TInput>;\n runRaw: StepFn<TContext, TInput>;\n runIsAsync: boolean;\n pre?: StepFn<TContext, TInput>;\n preIsAsync: boolean;\n post?: StepFn<TContext, TInput>;\n postIsAsync: boolean;\n context: TContext;\n data: TInput;\n minCycles: number;\n relThreshold: number;\n maxCycles: number;\n nextNonce: (() => number) | null;\n}) => {\n let batchSize = initialBatch;\n let bestCv = Number.POSITIVE_INFINITY;\n let bestBatch = batchSize;\n\n for (let attempt = 0; attempt < 3; attempt++) {\n const samples: number[] = [];\n const sampleCount = Math.min(8, maxCycles);\n for (let s = 0; s < sampleCount; s++) {\n const duration = await collectSample({\n batchSize,\n run,\n runRaw,\n runIsAsync,\n pre,\n preIsAsync,\n post,\n postIsAsync,\n context,\n data,\n nextNonce,\n });\n samples.push(Number(duration));\n }\n const mean = samples.reduce((acc, v) => acc + v, 0) / samples.length;\n const variance = samples.reduce((acc, v) => acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);\n const stddev = Math.sqrt(variance);\n const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n\n if (cv < bestCv) {\n bestCv = cv;\n bestBatch = batchSize;\n }\n\n if (cv <= relThreshold || batchSize >= MAX_BATCH) {\n break;\n }\n batchSize = Math.min(MAX_BATCH, batchSize * 2);\n }\n\n const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;\n const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));\n\n return { batchSize: bestBatch, relThreshold: tunedRel, minCycles: tunedMin };\n};\n\nconst createGCTracker = () => {\n if (process.env.OVERTAKE_GC_OBSERVER !== '1') {\n return null;\n }\n if (typeof PerformanceObserver === 'undefined') {\n return null;\n }\n\n const events: GCEvent[] = [];\n const observer = new PerformanceObserver((list) => {\n for (const entry of list.getEntries()) {\n events.push({ start: entry.startTime, end: entry.startTime + entry.duration });\n }\n });\n\n try {\n observer.observe({ entryTypes: ['gc'] });\n } catch {\n return null;\n }\n\n const overlaps = (start: number, end: number) => {\n let noisy = false;\n for (let i = events.length - 1; i >= 0; i--) {\n const event = events[i];\n if (event.end < start - 5_000) {\n events.splice(i, 1);\n continue;\n }\n if (event.start <= end && event.end >= start) {\n noisy = true;\n }\n }\n return noisy;\n };\n\n const dispose = () => observer.disconnect();\n\n return { overlaps, dispose };\n};\n\nconst pushWindow = (arr: number[], value: number, cap: number) => {\n if (arr.length === cap) {\n arr.shift();\n }\n arr.push(value);\n};\n\nconst medianAndIqr = (arr: number[]) => {\n if (arr.length === 0) return { median: 0, iqr: 0 };\n for (let i = 0; i < arr.length; i++) {\n OUTLIER_SCRATCH[i] = arr[i];\n }\n const view = OUTLIER_SCRATCH.subarray(0, arr.length);\n view.sort();\n const mid = Math.floor(view.length / 2);\n const median = view.length % 2 === 0 ? (view[mid - 1] + view[mid]) / 2 : view[mid];\n const q1Idx = Math.floor(view.length * 0.25);\n const q3Idx = Math.floor(view.length * 0.75);\n const q1 = view[q1Idx];\n const q3 = view[q3Idx];\n return { median, iqr: q3 - q1 };\n};\n\nconst windowCv = (arr: number[]) => {\n if (arr.length < 2) return Number.POSITIVE_INFINITY;\n const mean = arr.reduce((a, v) => a + v, 0) / arr.length;\n const variance = arr.reduce((a, v) => a + (v - mean) * (v - mean), 0) / (arr.length - 1);\n const stddev = Math.sqrt(variance);\n return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n};\n\nexport const benchmark = async <TContext, TInput>({\n setup,\n teardown,\n pre,\n run: runRaw,\n post,\n data,\n\n warmupCycles,\n minCycles,\n absThreshold,\n relThreshold,\n gcObserver = false,\n\n durationsSAB,\n controlSAB,\n}: Required<Options<TContext, TInput>>) => {\n const durations = new BigUint64Array(durationsSAB);\n const control = new Int32Array(controlSAB);\n\n control[Control.INDEX] = 0;\n control[Control.PROGRESS] = 0;\n control[Control.COMPLETE] = 255;\n\n const context = (await setup?.()) as TContext;\n const input = data as TInput;\n const maxCycles = durations.length;\n const gcWatcher = gcObserver ? new GCWatcher() : null;\n const gcTracker = gcObserver ? createGCTracker() : null;\n\n try {\n // classify sync/async and capture initial duration\n let preIsAsync = false;\n if (pre) {\n const preResult = pre(context, input);\n preIsAsync = isThenable(preResult);\n if (preIsAsync) {\n await preResult;\n }\n }\n\n const probeStart = hr();\n const probeResult = runRaw(context, input);\n const runIsAsync = isThenable(probeResult);\n if (runIsAsync) {\n const resolved = await probeResult;\n consume(resolved);\n } else {\n consume(probeResult);\n }\n const durationProbeRaw = hr() - probeStart;\n\n let postIsAsync = false;\n if (post) {\n const postResult = post(context, input);\n postIsAsync = isThenable(postResult);\n if (postIsAsync) {\n await postResult;\n }\n }\n\n const timerOverhead = runIsAsync ? 0n : measureTimerOverhead();\n let durationProbe = runIsAsync ? durationProbeRaw : durationProbeRaw > timerOverhead ? durationProbeRaw - timerOverhead : 0n;\n\n const shouldPerturbInput = process.env.OVERTAKE_PERTURB_INPUT === '1';\n let nonce = 0;\n const nextNonce = shouldPerturbInput\n ? () => {\n nonce = (nonce + 1) | 0;\n return nonce;\n }\n : null;\n\n if (!runIsAsync && !pre && !post) {\n const batchProbeSize = 10_000;\n const batchProbeStart = hr();\n if (nextNonce) {\n for (let i = 0; i < batchProbeSize; i++) {\n consume((runRaw as Function)(context, input, nextNonce()));\n }\n } else {\n for (let i = 0; i < batchProbeSize; i++) {\n consume(runRaw(context, input));\n }\n }\n durationProbe = (hr() - batchProbeStart) / BigInt(batchProbeSize);\n }\n\n const runTimedSync = runIsAsync ? null : runSync(runRaw, timerOverhead);\n const runTimedAsync = runIsAsync ? runAsync(runRaw) : null;\n const run = runIsAsync ? runTimedAsync! : runTimedSync!;\n\n const runOnceSync: RunTimedSync<TContext, TInput> | null = runIsAsync ? null : nextNonce ? (ctx, dataValue) => runTimedSync!(ctx, dataValue, nextNonce()) : runTimedSync!;\n const runOnceAsync: RunTimedAsync<TContext, TInput> | null = runIsAsync ? (nextNonce ? (ctx, dataValue) => runTimedAsync!(ctx, dataValue, nextNonce()) : runTimedAsync!) : null;\n\n const preSync = preIsAsync ? null : pre;\n const preAsync = preIsAsync ? pre : null;\n const postSync = postIsAsync ? null : post;\n const postAsync = postIsAsync ? post : null;\n\n // choose batch size to amortize timer overhead\n const durationPerRun = durationProbe === 0n ? 1n : durationProbe;\n const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);\n const minBatchForFastOps = durationProbe < 100n ? 100_000 : 1;\n const initialBatchSize = Math.min(MAX_BATCH, Math.max(minBatchForFastOps, suggestedBatch));\n\n // auto-tune based on warmup samples\n const tuned = await tuneParameters({\n initialBatch: initialBatchSize,\n run,\n runRaw,\n runIsAsync,\n pre,\n preIsAsync,\n post,\n postIsAsync,\n context,\n data: input,\n minCycles,\n relThreshold,\n maxCycles,\n nextNonce,\n });\n let batchSize = tuned.batchSize;\n minCycles = tuned.minCycles;\n relThreshold = tuned.relThreshold;\n\n // warmup: run until requested cycles, adapt if unstable\n const warmupStart = performance.now();\n let warmupRemaining = warmupCycles;\n const warmupWindow: number[] = [];\n const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));\n const canBatchTime = !runIsAsync && !preSync && !preAsync && !postSync && !postAsync;\n\n const runWarmup = async () => {\n if (canBatchTime) {\n const batchStart = hr();\n if (nextNonce) {\n for (let b = 0; b < batchSize; b++) {\n consume((runRaw as Function)(context, input, nextNonce()));\n }\n } else {\n for (let b = 0; b < batchSize; b++) {\n consume(runRaw(context, input));\n }\n }\n return ((hr() - batchStart) * DURATION_SCALE) / BigInt(batchSize);\n }\n\n if (preSync) {\n preSync(context, input);\n } else if (preAsync) {\n await preAsync(context, input);\n }\n\n const duration = runIsAsync ? await runOnceAsync!(context, input) : runOnceSync!(context, input);\n\n if (postSync) {\n postSync(context, input);\n } else if (postAsync) {\n await postAsync(context, input);\n }\n\n return duration;\n };\n\n while (performance.now() - warmupStart < 1_000 && warmupRemaining > 0) {\n const duration = await runWarmup();\n pushWindow(warmupWindow, Number(duration), warmupCap);\n warmupRemaining--;\n }\n let warmupDone = 0;\n while (warmupDone < warmupRemaining) {\n const duration = await runWarmup();\n pushWindow(warmupWindow, Number(duration), warmupCap);\n warmupDone++;\n if (global.gc && warmupDone % GC_STRIDE === 0) {\n global.gc();\n }\n }\n while (warmupWindow.length >= 8 && warmupWindow.length < warmupCap) {\n const cv = windowCv(warmupWindow);\n if (cv <= relThreshold * 2) {\n break;\n }\n const duration = await runWarmup();\n pushWindow(warmupWindow, Number(duration), warmupCap);\n }\n\n let i = 0;\n let mean = 0n;\n let m2 = 0n;\n const outlierWindow: number[] = [];\n let skipped = 0;\n const maxSkipped = maxCycles * 10;\n let disableFiltering = false;\n\n while (true) {\n if (i >= maxCycles) break;\n if (!disableFiltering && skipped >= maxSkipped) {\n console.error(`Warning: ${skipped} samples skipped due to noise/outlier detection. ` + `Disabling filtering for remaining samples. Results may have higher variance.`);\n disableFiltering = true;\n }\n\n if (global.gc && i > 0 && i % GC_STRIDE === 0) {\n global.gc();\n }\n\n const gcMarker = gcWatcher?.start();\n const sampleStart = performance.now();\n let sampleDuration = 0n;\n\n if (canBatchTime) {\n const batchStart = hr();\n if (nextNonce) {\n for (let b = 0; b < batchSize; b++) {\n consume((runRaw as Function)(context, input, nextNonce()));\n }\n } else {\n for (let b = 0; b < batchSize; b++) {\n consume(runRaw(context, input));\n }\n }\n const batchDuration = hr() - batchStart;\n sampleDuration = (batchDuration * DURATION_SCALE) / BigInt(batchSize);\n } else {\n for (let b = 0; b < batchSize; b++) {\n if (preSync) {\n preSync(context, input);\n } else if (preAsync) {\n await preAsync(context, input);\n }\n\n const duration = runIsAsync ? await runOnceAsync!(context, input) : runOnceSync!(context, input);\n sampleDuration += duration;\n\n if (postSync) {\n postSync(context, input);\n } else if (postAsync) {\n await postAsync(context, input);\n }\n }\n sampleDuration = (sampleDuration * DURATION_SCALE) / BigInt(batchSize);\n }\n\n const sampleEnd = performance.now();\n if (!disableFiltering) {\n const gcNoise = (gcMarker ? gcWatcher!.seen(gcMarker) : false) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);\n if (gcNoise) {\n skipped++;\n continue;\n }\n }\n\n const durationNumber = Number(sampleDuration);\n pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);\n if (!disableFiltering) {\n const { median, iqr } = medianAndIqr(outlierWindow);\n const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;\n if (outlierWindow.length >= 8 && durationNumber > maxAllowed && durationNumber - median > OUTLIER_ABS_THRESHOLD_NS) {\n skipped++;\n continue;\n }\n\n const meanNumber = Number(mean);\n if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber && durationNumber - meanNumber > OUTLIER_ABS_THRESHOLD_NS) {\n skipped++;\n continue;\n }\n }\n\n durations[i++] = sampleDuration;\n const delta = sampleDuration - mean;\n mean += delta / BigInt(i);\n m2 += delta * (sampleDuration - mean);\n\n const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;\n if (i % PROGRESS_STRIDE === 0) {\n control[Control.PROGRESS] = progress;\n }\n\n if (i >= minCycles) {\n const variance = Number(m2) / (i - 1);\n const stddev = Math.sqrt(variance);\n if (stddev <= Number(absThreshold)) {\n break;\n }\n\n const meanNum = Number(mean);\n const cov = stddev / (meanNum || 1);\n if (cov <= relThreshold) {\n break;\n }\n }\n }\n\n control[Control.INDEX] = i;\n control[Control.COMPLETE] = 0;\n } catch (e) {\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n control[Control.COMPLETE] = 1;\n } finally {\n gcTracker?.dispose?.();\n try {\n await teardown?.(context);\n } catch (e) {\n control[Control.COMPLETE] = 2;\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n }\n }\n\n return control[Control.COMPLETE];\n};\n"],"names":["benchmark","COMPLETE_VALUE","hr","process","hrtime","bigint","bind","sink","Int32Array","SharedArrayBuffer","BYTES_PER_ELEMENT","consume","value","payload","Number","isFinite","Math","trunc","length","Atomics","xor","runSync","run","overhead","args","start","result","duration","runAsync","isThenable","then","TARGET_SAMPLE_NS","MAX_BATCH","PROGRESS_STRIDE","GC_STRIDE","OUTLIER_MULTIPLIER","OUTLIER_IQR_MULTIPLIER","OUTLIER_WINDOW","OUTLIER_ABS_THRESHOLD_NS","BASELINE_SAMPLES","OUTLIER_SCRATCH","Float64Array","measureTimerOverhead","total","i","BigInt","collectSample","batchSize","runRaw","runIsAsync","pre","preIsAsync","post","postIsAsync","context","data","nextNonce","canBatchTime","batchStart","b","DURATION_SCALE","sampleDuration","runAsyncFn","runSyncFn","tuneParameters","initialBatch","minCycles","relThreshold","maxCycles","bestCv","POSITIVE_INFINITY","bestBatch","attempt","samples","sampleCount","min","s","push","mean","reduce","acc","v","variance","max","stddev","sqrt","cv","tunedRel","tunedMin","ceil","createGCTracker","env","OVERTAKE_GC_OBSERVER","PerformanceObserver","events","observer","list","entry","getEntries","startTime","end","observe","entryTypes","overlaps","noisy","event","splice","dispose","disconnect","pushWindow","arr","cap","shift","medianAndIqr","median","iqr","view","subarray","sort","mid","floor","q1Idx","q3Idx","q1","q3","windowCv","a","setup","teardown","warmupCycles","absThreshold","gcObserver","durationsSAB","controlSAB","durations","BigUint64Array","control","Control","INDEX","PROGRESS","COMPLETE","input","gcWatcher","GCWatcher","gcTracker","preResult","probeStart","probeResult","resolved","durationProbeRaw","postResult","timerOverhead","durationProbe","shouldPerturbInput","OVERTAKE_PERTURB_INPUT","nonce","batchProbeSize","batchProbeStart","runTimedSync","runTimedAsync","runOnceSync","ctx","dataValue","runOnceAsync","preSync","preAsync","postSync","postAsync","durationPerRun","suggestedBatch","minBatchForFastOps","initialBatchSize","tuned","warmupStart","performance","now","warmupRemaining","warmupWindow","warmupCap","runWarmup","warmupDone","global","gc","m2","outlierWindow","skipped","maxSkipped","disableFiltering","console","error","gcMarker","sampleStart","batchDuration","sampleEnd","gcNoise","seen","durationNumber","maxAllowed","meanNumber","delta","progress","meanNum","cov","e","stack"],"mappings":";;;;+BAgTaA;;;eAAAA;;;gCAhToC;0BACA;8BACvB;AAG1B,MAAMC,iBAAiB;AAEvB,MAAMC,KAAKC,QAAQC,MAAM,CAACC,MAAM,CAACC,IAAI,CAACH,QAAQC,MAAM;AAEpD,MAAMG,OAAO,IAAIC,WAAW,IAAIC,kBAAkBD,WAAWE,iBAAiB;AAC9E,MAAMC,UAAU,CAACC;IACf,IAAIC,UAAU;IACd,OAAQ,OAAOD;QACb,KAAK;YACHC,UAAUC,OAAOC,QAAQ,CAACH,SAASI,KAAKC,KAAK,CAACL,SAAS;YACvD;QACF,KAAK;YACHC,UAAUC,OAAOF,QAAQ,YAAY;YACrC;QACF,KAAK;YACHC,UAAUD,MAAMM,MAAM;YACtB;QACF,KAAK;YACHL,UAAUD,QAAQ,IAAI;YACtB;QACF,KAAK;YACHC,UAAUD,UAAU,OAAO,IAAI;YAC/B;QACF,KAAK;YACHC,UAAU;YACV;QACF;YACEA,UAAU,CAAC;IACf;IACAM,QAAQC,GAAG,CAACb,MAAM,GAAGM;AACvB;AAEA,MAAMQ,UAAU,CAACC,KAAeC;IAC9B,OAAO,CAAC,GAAGC;QACT,MAAMC,QAAQvB;QACd,MAAMwB,SAASJ,OAAOE;QACtBb,QAAQe;QACR,MAAMC,WAAWzB,OAAOuB;QACxB,OAAOE,WAAWJ,WAAWI,WAAWJ,WAAW,EAAE;IACvD;AACF;AAEA,MAAMK,WAAW,CAACN;IAChB,OAAO,OAAO,GAAGE;QACf,MAAMC,QAAQvB;QACd,MAAMwB,SAAS,MAAMJ,OAAOE;QAC5Bb,QAAQe;QACR,OAAOxB,OAAOuB;IAChB;AACF;AAEA,MAAMI,aAAa,CAACjB;IAClB,OAAOA,UAAU,QAAS,CAAA,OAAOA,UAAU,YAAY,OAAOA,UAAU,UAAS,KAAM,OAAO,AAACA,MAA+BkB,IAAI,KAAK;AACzI;AAEA,MAAMC,mBAAmB,UAAU;AACnC,MAAMC,YAAY;AAClB,MAAMC,kBAAkB;AACxB,MAAMC,YAAY;AAClB,MAAMC,qBAAqB;AAC3B,MAAMC,yBAAyB;AAC/B,MAAMC,iBAAiB;AACvB,MAAMC,2BAA2B;AACjC,MAAMC,mBAAmB;AACzB,MAAMC,kBAAkB,IAAIC,aAAaJ;AAMzC,MAAMK,uBAAuB;IAC3B,IAAIC,QAAQ,EAAE;IACd,IAAK,IAAIC,IAAI,GAAGA,IAAIL,kBAAkBK,IAAK;QACzC,MAAMnB,QAAQvB;QACdS,QAAQ;QACRgC,SAASzC,OAAOuB;IAClB;IACA,OAAOkB,QAAQE,OAAON;AACxB;AAEA,MAAMO,gBAAgB,OAAyB,EAC7CC,SAAS,EACTzB,GAAG,EACH0B,MAAM,EACNC,UAAU,EACVC,GAAG,EACHC,UAAU,EACVC,IAAI,EACJC,WAAW,EACXC,OAAO,EACPC,IAAI,EACJC,SAAS,EAaV;IACC,MAAMC,eAAe,CAACR,cAAc,CAACC,OAAO,CAACE;IAC7C,IAAIK,cAAc;QAChB,MAAMC,aAAaxD;QACnB,IAAIsD,WAAW;YACb,IAAK,IAAIG,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;gBAClChD,QAAQ,AAACqC,OAAoBM,SAASC,MAAMC;YAC9C;QACF,OAAO;YACL,IAAK,IAAIG,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;gBAClChD,QAAQqC,OAAOM,SAASC;YAC1B;QACF;QACA,OAAO,AAAErD,CAAAA,OAAOwD,UAAS,IAAKE,wBAAc,GAAIf,OAAOE;IACzD;IAEA,IAAIc,iBAAiB,EAAE;IACvB,IAAK,IAAIF,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;QAClC,IAAIT,KAAK;YACP,IAAIC,YAAY;gBACd,MAAMD,IAAII,SAASC;YACrB,OAAO;gBACLL,IAAII,SAASC;YACf;QACF;QAEA,IAAIN,YAAY;YACd,MAAMa,aAAaxC;YACnB,MAAMK,WAAW6B,YAAY,MAAMM,WAAWR,SAASC,MAAMC,eAAe,MAAMM,WAAWR,SAASC;YACtGM,kBAAkBlC;QACpB,OAAO;YACL,MAAMoC,YAAYzC;YAClB,MAAMK,WAAW6B,YAAYO,UAAUT,SAASC,MAAMC,eAAeO,UAAUT,SAASC;YACxFM,kBAAkBlC;QACpB;QAEA,IAAIyB,MAAM;YACR,IAAIC,aAAa;gBACf,MAAMD,KAAKE,SAASC;YACtB,OAAO;gBACLH,KAAKE,SAASC;YAChB;QACF;IACF;IACA,OAAO,AAACM,iBAAiBD,wBAAc,GAAIf,OAAOE;AACpD;AAEA,MAAMiB,iBAAiB,OAAyB,EAC9CC,YAAY,EACZ3C,GAAG,EACH0B,MAAM,EACNC,UAAU,EACVC,GAAG,EACHC,UAAU,EACVC,IAAI,EACJC,WAAW,EACXC,OAAO,EACPC,IAAI,EACJW,SAAS,EACTC,YAAY,EACZC,SAAS,EACTZ,SAAS,EAgBV;IACC,IAAIT,YAAYkB;IAChB,IAAII,SAASvD,OAAOwD,iBAAiB;IACrC,IAAIC,YAAYxB;IAEhB,IAAK,IAAIyB,UAAU,GAAGA,UAAU,GAAGA,UAAW;QAC5C,MAAMC,UAAoB,EAAE;QAC5B,MAAMC,cAAc1D,KAAK2D,GAAG,CAAC,GAAGP;QAChC,IAAK,IAAIQ,IAAI,GAAGA,IAAIF,aAAaE,IAAK;YACpC,MAAMjD,WAAW,MAAMmB,cAAc;gBACnCC;gBACAzB;gBACA0B;gBACAC;gBACAC;gBACAC;gBACAC;gBACAC;gBACAC;gBACAC;gBACAC;YACF;YACAiB,QAAQI,IAAI,CAAC/D,OAAOa;QACtB;QACA,MAAMmD,OAAOL,QAAQM,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAMC,GAAG,KAAKR,QAAQvD,MAAM;QACpE,MAAMgE,WAAWT,QAAQM,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAM,AAACC,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAK9D,KAAKmE,GAAG,CAAC,GAAGV,QAAQvD,MAAM,GAAG;QAC7G,MAAMkE,SAASpE,KAAKqE,IAAI,CAACH;QACzB,MAAMI,KAAKR,SAAS,IAAIhE,OAAOwD,iBAAiB,GAAGc,SAASN;QAE5D,IAAIQ,KAAKjB,QAAQ;YACfA,SAASiB;YACTf,YAAYxB;QACd;QAEA,IAAIuC,MAAMnB,gBAAgBpB,aAAaf,WAAW;YAChD;QACF;QACAe,YAAY/B,KAAK2D,GAAG,CAAC3C,WAAWe,YAAY;IAC9C;IAEA,MAAMwC,WAAWlB,SAASF,eAAenD,KAAKmE,GAAG,CAACd,SAAS,KAAKF,eAAe,OAAOA;IACtF,MAAMqB,WAAWxE,KAAK2D,GAAG,CAACP,WAAWpD,KAAKmE,GAAG,CAACjB,WAAWlD,KAAKyE,IAAI,CAACvB,YAAYlD,KAAKmE,GAAG,CAAC,GAAGd,SAAUF,CAAAA,gBAAgB,IAAG;IAExH,OAAO;QAAEpB,WAAWwB;QAAWJ,cAAcoB;QAAUrB,WAAWsB;IAAS;AAC7E;AAEA,MAAME,kBAAkB;IACtB,IAAIvF,QAAQwF,GAAG,CAACC,oBAAoB,KAAK,KAAK;QAC5C,OAAO;IACT;IACA,IAAI,OAAOC,mCAAmB,KAAK,aAAa;QAC9C,OAAO;IACT;IAEA,MAAMC,SAAoB,EAAE;IAC5B,MAAMC,WAAW,IAAIF,mCAAmB,CAAC,CAACG;QACxC,KAAK,MAAMC,SAASD,KAAKE,UAAU,GAAI;YACrCJ,OAAOjB,IAAI,CAAC;gBAAEpD,OAAOwE,MAAME,SAAS;gBAAEC,KAAKH,MAAME,SAAS,GAAGF,MAAMtE,QAAQ;YAAC;QAC9E;IACF;IAEA,IAAI;QACFoE,SAASM,OAAO,CAAC;YAAEC,YAAY;gBAAC;aAAK;QAAC;IACxC,EAAE,OAAM;QACN,OAAO;IACT;IAEA,MAAMC,WAAW,CAAC9E,OAAe2E;QAC/B,IAAII,QAAQ;QACZ,IAAK,IAAI5D,IAAIkD,OAAO5E,MAAM,GAAG,GAAG0B,KAAK,GAAGA,IAAK;YAC3C,MAAM6D,QAAQX,MAAM,CAAClD,EAAE;YACvB,IAAI6D,MAAML,GAAG,GAAG3E,QAAQ,OAAO;gBAC7BqE,OAAOY,MAAM,CAAC9D,GAAG;gBACjB;YACF;YACA,IAAI6D,MAAMhF,KAAK,IAAI2E,OAAOK,MAAML,GAAG,IAAI3E,OAAO;gBAC5C+E,QAAQ;YACV;QACF;QACA,OAAOA;IACT;IAEA,MAAMG,UAAU,IAAMZ,SAASa,UAAU;IAEzC,OAAO;QAAEL;QAAUI;IAAQ;AAC7B;AAEA,MAAME,aAAa,CAACC,KAAelG,OAAemG;IAChD,IAAID,IAAI5F,MAAM,KAAK6F,KAAK;QACtBD,IAAIE,KAAK;IACX;IACAF,IAAIjC,IAAI,CAACjE;AACX;AAEA,MAAMqG,eAAe,CAACH;IACpB,IAAIA,IAAI5F,MAAM,KAAK,GAAG,OAAO;QAAEgG,QAAQ;QAAGC,KAAK;IAAE;IACjD,IAAK,IAAIvE,IAAI,GAAGA,IAAIkE,IAAI5F,MAAM,EAAE0B,IAAK;QACnCJ,eAAe,CAACI,EAAE,GAAGkE,GAAG,CAAClE,EAAE;IAC7B;IACA,MAAMwE,OAAO5E,gBAAgB6E,QAAQ,CAAC,GAAGP,IAAI5F,MAAM;IACnDkG,KAAKE,IAAI;IACT,MAAMC,MAAMvG,KAAKwG,KAAK,CAACJ,KAAKlG,MAAM,GAAG;IACrC,MAAMgG,SAASE,KAAKlG,MAAM,GAAG,MAAM,IAAI,AAACkG,CAAAA,IAAI,CAACG,MAAM,EAAE,GAAGH,IAAI,CAACG,IAAI,AAAD,IAAK,IAAIH,IAAI,CAACG,IAAI;IAClF,MAAME,QAAQzG,KAAKwG,KAAK,CAACJ,KAAKlG,MAAM,GAAG;IACvC,MAAMwG,QAAQ1G,KAAKwG,KAAK,CAACJ,KAAKlG,MAAM,GAAG;IACvC,MAAMyG,KAAKP,IAAI,CAACK,MAAM;IACtB,MAAMG,KAAKR,IAAI,CAACM,MAAM;IACtB,OAAO;QAAER;QAAQC,KAAKS,KAAKD;IAAG;AAChC;AAEA,MAAME,WAAW,CAACf;IAChB,IAAIA,IAAI5F,MAAM,GAAG,GAAG,OAAOJ,OAAOwD,iBAAiB;IACnD,MAAMQ,OAAOgC,IAAI/B,MAAM,CAAC,CAAC+C,GAAG7C,IAAM6C,IAAI7C,GAAG,KAAK6B,IAAI5F,MAAM;IACxD,MAAMgE,WAAW4B,IAAI/B,MAAM,CAAC,CAAC+C,GAAG7C,IAAM6C,IAAI,AAAC7C,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAMgC,CAAAA,IAAI5F,MAAM,GAAG,CAAA;IACtF,MAAMkE,SAASpE,KAAKqE,IAAI,CAACH;IACzB,OAAOJ,SAAS,IAAIhE,OAAOwD,iBAAiB,GAAGc,SAASN;AAC1D;AAEO,MAAM9E,YAAY,OAAyB,EAChD+H,KAAK,EACLC,QAAQ,EACR9E,GAAG,EACH5B,KAAK0B,MAAM,EACXI,IAAI,EACJG,IAAI,EAEJ0E,YAAY,EACZ/D,SAAS,EACTgE,YAAY,EACZ/D,YAAY,EACZgE,aAAa,KAAK,EAElBC,YAAY,EACZC,UAAU,EAC0B;IACpC,MAAMC,YAAY,IAAIC,eAAeH;IACrC,MAAMI,UAAU,IAAIhI,WAAW6H;IAE/BG,OAAO,CAACC,iBAAO,CAACC,KAAK,CAAC,GAAG;IACzBF,OAAO,CAACC,iBAAO,CAACE,QAAQ,CAAC,GAAG;IAC5BH,OAAO,CAACC,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAE5B,MAAMtF,UAAW,MAAMyE;IACvB,MAAMc,QAAQtF;IACd,MAAMa,YAAYkE,UAAUpH,MAAM;IAClC,MAAM4H,YAAYX,aAAa,IAAIY,uBAAS,KAAK;IACjD,MAAMC,YAAYb,aAAazC,oBAAoB;IAEnD,IAAI;QAEF,IAAIvC,aAAa;QACjB,IAAID,KAAK;YACP,MAAM+F,YAAY/F,IAAII,SAASuF;YAC/B1F,aAAatB,WAAWoH;YACxB,IAAI9F,YAAY;gBACd,MAAM8F;YACR;QACF;QAEA,MAAMC,aAAahJ;QACnB,MAAMiJ,cAAcnG,OAAOM,SAASuF;QACpC,MAAM5F,aAAapB,WAAWsH;QAC9B,IAAIlG,YAAY;YACd,MAAMmG,WAAW,MAAMD;YACvBxI,QAAQyI;QACV,OAAO;YACLzI,QAAQwI;QACV;QACA,MAAME,mBAAmBnJ,OAAOgJ;QAEhC,IAAI7F,cAAc;QAClB,IAAID,MAAM;YACR,MAAMkG,aAAalG,KAAKE,SAASuF;YACjCxF,cAAcxB,WAAWyH;YACzB,IAAIjG,aAAa;gBACf,MAAMiG;YACR;QACF;QAEA,MAAMC,gBAAgBtG,aAAa,EAAE,GAAGP;QACxC,IAAI8G,gBAAgBvG,aAAaoG,mBAAmBA,mBAAmBE,gBAAgBF,mBAAmBE,gBAAgB,EAAE;QAE5H,MAAME,qBAAqBtJ,QAAQwF,GAAG,CAAC+D,sBAAsB,KAAK;QAClE,IAAIC,QAAQ;QACZ,MAAMnG,YAAYiG,qBACd;YACEE,QAAQ,AAACA,QAAQ,IAAK;YACtB,OAAOA;QACT,IACA;QAEJ,IAAI,CAAC1G,cAAc,CAACC,OAAO,CAACE,MAAM;YAChC,MAAMwG,iBAAiB;YACvB,MAAMC,kBAAkB3J;YACxB,IAAIsD,WAAW;gBACb,IAAK,IAAIZ,IAAI,GAAGA,IAAIgH,gBAAgBhH,IAAK;oBACvCjC,QAAQ,AAACqC,OAAoBM,SAASuF,OAAOrF;gBAC/C;YACF,OAAO;gBACL,IAAK,IAAIZ,IAAI,GAAGA,IAAIgH,gBAAgBhH,IAAK;oBACvCjC,QAAQqC,OAAOM,SAASuF;gBAC1B;YACF;YACAW,gBAAgB,AAACtJ,CAAAA,OAAO2J,eAAc,IAAKhH,OAAO+G;QACpD;QAEA,MAAME,eAAe7G,aAAa,OAAO5B,QAAQ2B,QAAQuG;QACzD,MAAMQ,gBAAgB9G,aAAarB,SAASoB,UAAU;QACtD,MAAM1B,MAAM2B,aAAa8G,gBAAiBD;QAE1C,MAAME,cAAqD/G,aAAa,OAAOO,YAAY,CAACyG,KAAKC,YAAcJ,aAAcG,KAAKC,WAAW1G,eAAesG;QAC5J,MAAMK,eAAuDlH,aAAcO,YAAY,CAACyG,KAAKC,YAAcH,cAAeE,KAAKC,WAAW1G,eAAeuG,gBAAkB;QAE3K,MAAMK,UAAUjH,aAAa,OAAOD;QACpC,MAAMmH,WAAWlH,aAAaD,MAAM;QACpC,MAAMoH,WAAWjH,cAAc,OAAOD;QACtC,MAAMmH,YAAYlH,cAAcD,OAAO;QAGvC,MAAMoH,iBAAiBhB,kBAAkB,EAAE,GAAG,EAAE,GAAGA;QACnD,MAAMiB,iBAAiB3J,OAAOiB,mBAAmByI;QACjD,MAAME,qBAAqBlB,gBAAgB,IAAI,GAAG,UAAU;QAC5D,MAAMmB,mBAAmB3J,KAAK2D,GAAG,CAAC3C,WAAWhB,KAAKmE,GAAG,CAACuF,oBAAoBD;QAG1E,MAAMG,QAAQ,MAAM5G,eAAe;YACjCC,cAAc0G;YACdrJ;YACA0B;YACAC;YACAC;YACAC;YACAC;YACAC;YACAC;YACAC,MAAMsF;YACN3E;YACAC;YACAC;YACAZ;QACF;QACA,IAAIT,YAAY6H,MAAM7H,SAAS;QAC/BmB,YAAY0G,MAAM1G,SAAS;QAC3BC,eAAeyG,MAAMzG,YAAY;QAGjC,MAAM0G,cAAcC,2BAAW,CAACC,GAAG;QACnC,IAAIC,kBAAkB/C;QACtB,MAAMgD,eAAyB,EAAE;QACjC,MAAMC,YAAYlK,KAAKmE,GAAG,CAAC8C,cAAcjH,KAAK2D,GAAG,CAACP,WAAW6D,eAAe,KAAK;QACjF,MAAMxE,eAAe,CAACR,cAAc,CAACmH,WAAW,CAACC,YAAY,CAACC,YAAY,CAACC;QAE3E,MAAMY,YAAY;YAChB,IAAI1H,cAAc;gBAChB,MAAMC,aAAaxD;gBACnB,IAAIsD,WAAW;oBACb,IAAK,IAAIG,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;wBAClChD,QAAQ,AAACqC,OAAoBM,SAASuF,OAAOrF;oBAC/C;gBACF,OAAO;oBACL,IAAK,IAAIG,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;wBAClChD,QAAQqC,OAAOM,SAASuF;oBAC1B;gBACF;gBACA,OAAO,AAAE3I,CAAAA,OAAOwD,UAAS,IAAKE,wBAAc,GAAIf,OAAOE;YACzD;YAEA,IAAIqH,SAAS;gBACXA,QAAQ9G,SAASuF;YACnB,OAAO,IAAIwB,UAAU;gBACnB,MAAMA,SAAS/G,SAASuF;YAC1B;YAEA,MAAMlH,WAAWsB,aAAa,MAAMkH,aAAc7G,SAASuF,SAASmB,YAAa1G,SAASuF;YAE1F,IAAIyB,UAAU;gBACZA,SAAShH,SAASuF;YACpB,OAAO,IAAI0B,WAAW;gBACpB,MAAMA,UAAUjH,SAASuF;YAC3B;YAEA,OAAOlH;QACT;QAEA,MAAOmJ,2BAAW,CAACC,GAAG,KAAKF,cAAc,SAASG,kBAAkB,EAAG;YACrE,MAAMrJ,WAAW,MAAMwJ;YACvBtE,WAAWoE,cAAcnK,OAAOa,WAAWuJ;YAC3CF;QACF;QACA,IAAII,aAAa;QACjB,MAAOA,aAAaJ,gBAAiB;YACnC,MAAMrJ,WAAW,MAAMwJ;YACvBtE,WAAWoE,cAAcnK,OAAOa,WAAWuJ;YAC3CE;YACA,IAAIC,OAAOC,EAAE,IAAIF,aAAalJ,cAAc,GAAG;gBAC7CmJ,OAAOC,EAAE;YACX;QACF;QACA,MAAOL,aAAa/J,MAAM,IAAI,KAAK+J,aAAa/J,MAAM,GAAGgK,UAAW;YAClE,MAAM5F,KAAKuC,SAASoD;YACpB,IAAI3F,MAAMnB,eAAe,GAAG;gBAC1B;YACF;YACA,MAAMxC,WAAW,MAAMwJ;YACvBtE,WAAWoE,cAAcnK,OAAOa,WAAWuJ;QAC7C;QAEA,IAAItI,IAAI;QACR,IAAIkC,OAAO,EAAE;QACb,IAAIyG,KAAK,EAAE;QACX,MAAMC,gBAA0B,EAAE;QAClC,IAAIC,UAAU;QACd,MAAMC,aAAatH,YAAY;QAC/B,IAAIuH,mBAAmB;QAEvB,MAAO,KAAM;YACX,IAAI/I,KAAKwB,WAAW;YACpB,IAAI,CAACuH,oBAAoBF,WAAWC,YAAY;gBAC9CE,QAAQC,KAAK,CAAC,CAAC,SAAS,EAAEJ,QAAQ,iDAAiD,CAAC,GAAG,CAAC,4EAA4E,CAAC;gBACrKE,mBAAmB;YACrB;YAEA,IAAIN,OAAOC,EAAE,IAAI1I,IAAI,KAAKA,IAAIV,cAAc,GAAG;gBAC7CmJ,OAAOC,EAAE;YACX;YAEA,MAAMQ,WAAWhD,WAAWrH;YAC5B,MAAMsK,cAAcjB,2BAAW,CAACC,GAAG;YACnC,IAAIlH,iBAAiB,EAAE;YAEvB,IAAIJ,cAAc;gBAChB,MAAMC,aAAaxD;gBACnB,IAAIsD,WAAW;oBACb,IAAK,IAAIG,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;wBAClChD,QAAQ,AAACqC,OAAoBM,SAASuF,OAAOrF;oBAC/C;gBACF,OAAO;oBACL,IAAK,IAAIG,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;wBAClChD,QAAQqC,OAAOM,SAASuF;oBAC1B;gBACF;gBACA,MAAMmD,gBAAgB9L,OAAOwD;gBAC7BG,iBAAiB,AAACmI,gBAAgBpI,wBAAc,GAAIf,OAAOE;YAC7D,OAAO;gBACL,IAAK,IAAIY,IAAI,GAAGA,IAAIZ,WAAWY,IAAK;oBAClC,IAAIyG,SAAS;wBACXA,QAAQ9G,SAASuF;oBACnB,OAAO,IAAIwB,UAAU;wBACnB,MAAMA,SAAS/G,SAASuF;oBAC1B;oBAEA,MAAMlH,WAAWsB,aAAa,MAAMkH,aAAc7G,SAASuF,SAASmB,YAAa1G,SAASuF;oBAC1FhF,kBAAkBlC;oBAElB,IAAI2I,UAAU;wBACZA,SAAShH,SAASuF;oBACpB,OAAO,IAAI0B,WAAW;wBACpB,MAAMA,UAAUjH,SAASuF;oBAC3B;gBACF;gBACAhF,iBAAiB,AAACA,iBAAiBD,wBAAc,GAAIf,OAAOE;YAC9D;YAEA,MAAMkJ,YAAYnB,2BAAW,CAACC,GAAG;YACjC,IAAI,CAACY,kBAAkB;gBACrB,MAAMO,UAAU,AAACJ,CAAAA,WAAWhD,UAAWqD,IAAI,CAACL,YAAY,KAAI,KAAO9C,CAAAA,WAAWzC,SAASwF,aAAaE,cAAc,KAAI;gBACtH,IAAIC,SAAS;oBACXT;oBACA;gBACF;YACF;YAEA,MAAMW,iBAAiBtL,OAAO+C;YAC9BgD,WAAW2E,eAAeY,gBAAgB/J;YAC1C,IAAI,CAACsJ,kBAAkB;gBACrB,MAAM,EAAEzE,MAAM,EAAEC,GAAG,EAAE,GAAGF,aAAauE;gBACrC,MAAMa,aAAanF,SAAS9E,yBAAyB+E,OAAOrG,OAAOwD,iBAAiB;gBACpF,IAAIkH,cAActK,MAAM,IAAI,KAAKkL,iBAAiBC,cAAcD,iBAAiBlF,SAAS5E,0BAA0B;oBAClHmJ;oBACA;gBACF;gBAEA,MAAMa,aAAaxL,OAAOgE;gBAC1B,IAAIlC,KAAK,KAAK0J,aAAa,KAAKF,iBAAiBjK,qBAAqBmK,cAAcF,iBAAiBE,aAAahK,0BAA0B;oBAC1ImJ;oBACA;gBACF;YACF;YAEAnD,SAAS,CAAC1F,IAAI,GAAGiB;YACjB,MAAM0I,QAAQ1I,iBAAiBiB;YAC/BA,QAAQyH,QAAQ1J,OAAOD;YACvB2I,MAAMgB,QAAS1I,CAAAA,iBAAiBiB,IAAG;YAEnC,MAAM0H,WAAWxL,KAAKmE,GAAG,CAACvC,IAAIwB,aAAanE;YAC3C,IAAI2C,IAAIX,oBAAoB,GAAG;gBAC7BuG,OAAO,CAACC,iBAAO,CAACE,QAAQ,CAAC,GAAG6D;YAC9B;YAEA,IAAI5J,KAAKsB,WAAW;gBAClB,MAAMgB,WAAWpE,OAAOyK,MAAO3I,CAAAA,IAAI,CAAA;gBACnC,MAAMwC,SAASpE,KAAKqE,IAAI,CAACH;gBACzB,IAAIE,UAAUtE,OAAOoH,eAAe;oBAClC;gBACF;gBAEA,MAAMuE,UAAU3L,OAAOgE;gBACvB,MAAM4H,MAAMtH,SAAUqH,CAAAA,WAAW,CAAA;gBACjC,IAAIC,OAAOvI,cAAc;oBACvB;gBACF;YACF;QACF;QAEAqE,OAAO,CAACC,iBAAO,CAACC,KAAK,CAAC,GAAG9F;QACzB4F,OAAO,CAACC,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,EAAE,OAAO+D,GAAG;QACVf,QAAQC,KAAK,CAACc,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEC,KAAK,GAAGD;QACrEnE,OAAO,CAACC,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,SAAU;QACRI,WAAWrC;QACX,IAAI;YACF,MAAMqB,WAAW1E;QACnB,EAAE,OAAOqJ,GAAG;YACVnE,OAAO,CAACC,iBAAO,CAACG,QAAQ,CAAC,GAAG;YAC5BgD,QAAQC,KAAK,CAACc,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEC,KAAK,GAAGD;QACvE;IACF;IAEA,OAAOnE,OAAO,CAACC,iBAAO,CAACG,QAAQ,CAAC;AAClC"}