overtake 1.0.4 → 1.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/README.md +68 -25
  2. package/bin/overtake.js +1 -1
  3. package/build/cli.cjs +44 -33
  4. package/build/cli.cjs.map +1 -1
  5. package/build/cli.js +43 -32
  6. package/build/cli.js.map +1 -1
  7. package/build/executor.cjs +6 -3
  8. package/build/executor.cjs.map +1 -1
  9. package/build/executor.d.ts +3 -2
  10. package/build/executor.js +6 -3
  11. package/build/executor.js.map +1 -1
  12. package/build/gc-watcher.cjs +31 -0
  13. package/build/gc-watcher.cjs.map +1 -0
  14. package/build/gc-watcher.d.ts +9 -0
  15. package/build/gc-watcher.js +21 -0
  16. package/build/gc-watcher.js.map +1 -0
  17. package/build/index.cjs +9 -1
  18. package/build/index.cjs.map +1 -1
  19. package/build/index.d.ts +1 -1
  20. package/build/index.js +9 -1
  21. package/build/index.js.map +1 -1
  22. package/build/runner.cjs +226 -18
  23. package/build/runner.cjs.map +1 -1
  24. package/build/runner.d.ts +1 -1
  25. package/build/runner.js +226 -18
  26. package/build/runner.js.map +1 -1
  27. package/build/types.cjs.map +1 -1
  28. package/build/types.d.ts +4 -0
  29. package/build/types.js.map +1 -1
  30. package/build/utils.cjs +21 -0
  31. package/build/utils.cjs.map +1 -1
  32. package/build/utils.d.ts +1 -0
  33. package/build/utils.js +18 -0
  34. package/build/utils.js.map +1 -1
  35. package/build/worker.cjs +95 -8
  36. package/build/worker.cjs.map +1 -1
  37. package/build/worker.js +54 -8
  38. package/build/worker.js.map +1 -1
  39. package/examples/accuracy.ts +54 -0
  40. package/examples/complete.ts +3 -3
  41. package/examples/custom-reports.ts +21 -0
  42. package/examples/imports.ts +47 -0
  43. package/examples/quick-start.ts +10 -9
  44. package/package.json +10 -9
  45. package/src/cli.ts +46 -30
  46. package/src/executor.ts +8 -2
  47. package/src/gc-watcher.ts +23 -0
  48. package/src/index.ts +11 -0
  49. package/src/runner.ts +266 -17
  50. package/src/types.ts +4 -0
  51. package/src/utils.ts +20 -0
  52. package/src/worker.ts +59 -9
  53. package/CLAUDE.md +0 -145
  54. package/examples/array-copy.ts +0 -17
  55. package/examples/object-merge.ts +0 -41
  56. package/examples/serialization.ts +0 -22
package/build/runner.cjs CHANGED
@@ -8,23 +8,151 @@ Object.defineProperty(exports, "benchmark", {
8
8
  return benchmark;
9
9
  }
10
10
  });
11
+ const _nodeperf_hooks = require("node:perf_hooks");
11
12
  const _typescjs = require("./types.cjs");
13
+ const _gcwatchercjs = require("./gc-watcher.cjs");
12
14
  const COMPLETE_VALUE = 100_00;
15
+ const hr = process.hrtime.bigint.bind(process.hrtime);
13
16
  const runSync = (run)=>{
14
17
  return (...args)=>{
15
- const start = process.hrtime.bigint();
18
+ const start = hr();
16
19
  run(...args);
17
- return process.hrtime.bigint() - start;
20
+ return hr() - start;
18
21
  };
19
22
  };
20
23
  const runAsync = (run)=>{
21
24
  return async (...args)=>{
22
- const start = process.hrtime.bigint();
25
+ const start = hr();
23
26
  await run(...args);
24
- return process.hrtime.bigint() - start;
27
+ return hr() - start;
25
28
  };
26
29
  };
27
- const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, durationsSAB, controlSAB })=>{
30
+ const TARGET_SAMPLE_NS = 1_000_000n;
31
+ const MAX_BATCH = 1_048_576;
32
+ const PROGRESS_STRIDE = 16;
33
+ const GC_STRIDE = 32;
34
+ const OUTLIER_MULTIPLIER = 4;
35
+ const OUTLIER_IQR_MULTIPLIER = 3;
36
+ const OUTLIER_WINDOW = 64;
37
+ const collectSample = async (batchSize, run, pre, post, context, data)=>{
38
+ let sampleDuration = 0n;
39
+ for(let b = 0; b < batchSize; b++){
40
+ await pre?.(context, data);
41
+ sampleDuration += await run(context, data);
42
+ await post?.(context, data);
43
+ }
44
+ return sampleDuration / BigInt(batchSize);
45
+ };
46
+ const tuneParameters = async ({ initialBatch, run, pre, post, context, data, minCycles, relThreshold, maxCycles })=>{
47
+ let batchSize = initialBatch;
48
+ let bestCv = Number.POSITIVE_INFINITY;
49
+ let bestBatch = batchSize;
50
+ for(let attempt = 0; attempt < 3; attempt++){
51
+ const samples = [];
52
+ const sampleCount = Math.min(8, maxCycles);
53
+ for(let s = 0; s < sampleCount; s++){
54
+ const duration = await collectSample(batchSize, run, pre, post, context, data);
55
+ samples.push(Number(duration));
56
+ }
57
+ const mean = samples.reduce((acc, v)=>acc + v, 0) / samples.length;
58
+ const variance = samples.reduce((acc, v)=>acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);
59
+ const stddev = Math.sqrt(variance);
60
+ const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
61
+ if (cv < bestCv) {
62
+ bestCv = cv;
63
+ bestBatch = batchSize;
64
+ }
65
+ if (cv <= relThreshold || batchSize >= MAX_BATCH) {
66
+ break;
67
+ }
68
+ batchSize = Math.min(MAX_BATCH, batchSize * 2);
69
+ }
70
+ const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;
71
+ const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));
72
+ return {
73
+ batchSize: bestBatch,
74
+ relThreshold: tunedRel,
75
+ minCycles: tunedMin
76
+ };
77
+ };
78
+ const createGCTracker = ()=>{
79
+ if (process.env.OVERTAKE_GC_OBSERVER !== '1') {
80
+ return null;
81
+ }
82
+ if (typeof _nodeperf_hooks.PerformanceObserver === 'undefined') {
83
+ return null;
84
+ }
85
+ const events = [];
86
+ const observer = new _nodeperf_hooks.PerformanceObserver((list)=>{
87
+ for (const entry of list.getEntries()){
88
+ events.push({
89
+ start: entry.startTime,
90
+ end: entry.startTime + entry.duration
91
+ });
92
+ }
93
+ });
94
+ try {
95
+ observer.observe({
96
+ entryTypes: [
97
+ 'gc'
98
+ ]
99
+ });
100
+ } catch {
101
+ return null;
102
+ }
103
+ const overlaps = (start, end)=>{
104
+ let noisy = false;
105
+ for(let i = events.length - 1; i >= 0; i--){
106
+ const event = events[i];
107
+ if (event.end < start - 5_000) {
108
+ events.splice(i, 1);
109
+ continue;
110
+ }
111
+ if (event.start <= end && event.end >= start) {
112
+ noisy = true;
113
+ }
114
+ }
115
+ return noisy;
116
+ };
117
+ const dispose = ()=>observer.disconnect();
118
+ return {
119
+ overlaps,
120
+ dispose
121
+ };
122
+ };
123
+ const pushWindow = (arr, value, cap)=>{
124
+ if (arr.length === cap) {
125
+ arr.shift();
126
+ }
127
+ arr.push(value);
128
+ };
129
+ const medianAndIqr = (arr)=>{
130
+ if (arr.length === 0) return {
131
+ median: 0,
132
+ iqr: 0
133
+ };
134
+ const sorted = [
135
+ ...arr
136
+ ].sort((a, b)=>a - b);
137
+ const mid = Math.floor(sorted.length / 2);
138
+ const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];
139
+ const q1Idx = Math.floor(sorted.length * 0.25);
140
+ const q3Idx = Math.floor(sorted.length * 0.75);
141
+ const q1 = sorted[q1Idx];
142
+ const q3 = sorted[q3Idx];
143
+ return {
144
+ median,
145
+ iqr: q3 - q1
146
+ };
147
+ };
148
+ const windowCv = (arr)=>{
149
+ if (arr.length < 2) return Number.POSITIVE_INFINITY;
150
+ const mean = arr.reduce((a, v)=>a + v, 0) / arr.length;
151
+ const variance = arr.reduce((a, v)=>a + (v - mean) * (v - mean), 0) / (arr.length - 1);
152
+ const stddev = Math.sqrt(variance);
153
+ return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
154
+ };
155
+ const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, gcObserver = false, durationsSAB, controlSAB })=>{
28
156
  const durations = new BigUint64Array(durationsSAB);
29
157
  const control = new Int32Array(controlSAB);
30
158
  control[_typescjs.Control.INDEX] = 0;
@@ -32,34 +160,113 @@ const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmup
32
160
  control[_typescjs.Control.COMPLETE] = 255;
33
161
  const context = await setup?.();
34
162
  const maxCycles = durations.length;
163
+ const gcWatcher = new _gcwatchercjs.GCWatcher();
164
+ const gcTracker = gcObserver ? createGCTracker() : null;
35
165
  try {
36
166
  await pre?.(context, data);
37
- const result = runRaw(context, data);
167
+ const probeStart = hr();
168
+ const probeResult = runRaw(context, data);
169
+ const isAsync = probeResult instanceof Promise;
170
+ if (isAsync) {
171
+ await probeResult;
172
+ }
173
+ const durationProbe = hr() - probeStart;
38
174
  await post?.(context, data);
39
- const run = result instanceof Promise ? runAsync(runRaw) : runSync(runRaw);
40
- const start = Date.now();
41
- while(Date.now() - start < 1_000){
42
- Math.sqrt(Math.random());
175
+ const run = isAsync ? runAsync(runRaw) : runSync(runRaw);
176
+ const durationPerRun = durationProbe === 0n ? 1n : durationProbe;
177
+ const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);
178
+ const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));
179
+ const tuned = await tuneParameters({
180
+ initialBatch: initialBatchSize,
181
+ run,
182
+ pre,
183
+ post,
184
+ context,
185
+ data: data,
186
+ minCycles,
187
+ relThreshold,
188
+ maxCycles
189
+ });
190
+ let batchSize = tuned.batchSize;
191
+ minCycles = tuned.minCycles;
192
+ relThreshold = tuned.relThreshold;
193
+ const warmupStart = Date.now();
194
+ let warmupRemaining = warmupCycles;
195
+ const warmupWindow = [];
196
+ const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));
197
+ while(Date.now() - warmupStart < 1_000 && warmupRemaining > 0){
198
+ const start = hr();
199
+ await pre?.(context, data);
200
+ await run(context, data);
201
+ await post?.(context, data);
202
+ pushWindow(warmupWindow, Number(hr() - start), warmupCap);
203
+ warmupRemaining--;
204
+ }
205
+ let warmupDone = 0;
206
+ while(warmupDone < warmupRemaining){
207
+ const start = hr();
208
+ await pre?.(context, data);
209
+ await run(context, data);
210
+ await post?.(context, data);
211
+ pushWindow(warmupWindow, Number(hr() - start), warmupCap);
212
+ warmupDone++;
213
+ if (global.gc && warmupDone % GC_STRIDE === 0) {
214
+ global.gc();
215
+ }
43
216
  }
44
- for(let i = 0; i < warmupCycles; i++){
217
+ while(warmupWindow.length >= 8 && warmupWindow.length < warmupCap){
218
+ const cv = windowCv(warmupWindow);
219
+ if (cv <= relThreshold * 2) {
220
+ break;
221
+ }
222
+ const start = hr();
45
223
  await pre?.(context, data);
46
224
  await run(context, data);
47
225
  await post?.(context, data);
226
+ pushWindow(warmupWindow, Number(hr() - start), warmupCap);
48
227
  }
49
228
  let i = 0;
50
229
  let mean = 0n;
51
230
  let m2 = 0n;
231
+ const outlierWindow = [];
52
232
  while(true){
53
233
  if (i >= maxCycles) break;
54
- await pre?.(context, data);
55
- const duration = await run(context, data);
56
- await post?.(context, data);
57
- durations[i++] = duration;
58
- const delta = duration - mean;
234
+ const gcMarker = gcWatcher.start();
235
+ const sampleStart = _nodeperf_hooks.performance.now();
236
+ let sampleDuration = 0n;
237
+ for(let b = 0; b < batchSize; b++){
238
+ await pre?.(context, data);
239
+ sampleDuration += await run(context, data);
240
+ await post?.(context, data);
241
+ if (global.gc && (i + b) % GC_STRIDE === 0) {
242
+ global.gc();
243
+ }
244
+ }
245
+ sampleDuration /= BigInt(batchSize);
246
+ const sampleEnd = _nodeperf_hooks.performance.now();
247
+ const gcNoise = gcWatcher.seen(gcMarker) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);
248
+ if (gcNoise) {
249
+ continue;
250
+ }
251
+ const durationNumber = Number(sampleDuration);
252
+ pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);
253
+ const { median, iqr } = medianAndIqr(outlierWindow);
254
+ const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;
255
+ if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {
256
+ continue;
257
+ }
258
+ const meanNumber = Number(mean);
259
+ if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {
260
+ continue;
261
+ }
262
+ durations[i++] = sampleDuration;
263
+ const delta = sampleDuration - mean;
59
264
  mean += delta / BigInt(i);
60
- m2 += delta * (duration - mean);
265
+ m2 += delta * (sampleDuration - mean);
61
266
  const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;
62
- control[_typescjs.Control.PROGRESS] = progress;
267
+ if (i % PROGRESS_STRIDE === 0) {
268
+ control[_typescjs.Control.PROGRESS] = progress;
269
+ }
63
270
  if (i >= minCycles) {
64
271
  const variance = Number(m2) / (i - 1);
65
272
  const stddev = Math.sqrt(variance);
@@ -79,6 +286,7 @@ const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmup
79
286
  console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);
80
287
  control[_typescjs.Control.COMPLETE] = 1;
81
288
  } finally{
289
+ gcTracker?.dispose?.();
82
290
  try {
83
291
  await teardown?.(context);
84
292
  } catch (e) {
@@ -1 +1 @@
1
- {"version":3,"sources":["../src/runner.ts"],"sourcesContent":["import { Options, Control } from './types.js';\n\nconst COMPLETE_VALUE = 100_00;\n\nconst runSync = (run: Function) => {\n return (...args: unknown[]) => {\n const start = process.hrtime.bigint();\n run(...args);\n return process.hrtime.bigint() - start;\n };\n};\n\nconst runAsync = (run: Function) => {\n return async (...args: unknown[]) => {\n const start = process.hrtime.bigint();\n await run(...args);\n return process.hrtime.bigint() - start;\n };\n};\n\nexport const benchmark = async <TContext, TInput>({\n setup,\n teardown,\n pre,\n run: runRaw,\n post,\n data,\n\n warmupCycles,\n minCycles,\n absThreshold,\n relThreshold,\n\n durationsSAB,\n controlSAB,\n}: Required<Options<TContext, TInput>>) => {\n const durations = new BigUint64Array(durationsSAB);\n const control = new Int32Array(controlSAB);\n\n control[Control.INDEX] = 0;\n control[Control.PROGRESS] = 0;\n control[Control.COMPLETE] = 255;\n\n const context = (await setup?.()) as TContext;\n const maxCycles = durations.length;\n\n try {\n await pre?.(context, data!);\n const result = runRaw(context, data!);\n await post?.(context, data!);\n const run = result instanceof Promise ? runAsync(runRaw) : runSync(runRaw);\n const start = Date.now();\n while (Date.now() - start < 1_000) {\n Math.sqrt(Math.random());\n }\n for (let i = 0; i < warmupCycles; i++) {\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n }\n\n let i = 0;\n let mean = 0n;\n let m2 = 0n;\n\n while (true) {\n if (i >= maxCycles) break;\n\n await pre?.(context, data!);\n const duration = await run(context, data);\n await post?.(context, data!);\n\n durations[i++] = duration;\n const delta = duration - mean;\n mean += delta / BigInt(i);\n m2 += delta * (duration - mean);\n\n const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;\n control[Control.PROGRESS] = progress;\n\n if (i >= minCycles) {\n const variance = Number(m2) / (i - 1);\n const stddev = Math.sqrt(variance);\n if (stddev <= Number(absThreshold)) {\n break;\n }\n\n const meanNum = Number(mean);\n const cov = stddev / (meanNum || 1);\n if (cov <= relThreshold) {\n break;\n }\n }\n }\n\n control[Control.INDEX] = i;\n control[Control.COMPLETE] = 0;\n } catch (e) {\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n control[Control.COMPLETE] = 1;\n } finally {\n try {\n await teardown?.(context);\n } catch (e) {\n control[Control.COMPLETE] = 2;\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n }\n }\n\n return control[Control.COMPLETE];\n};\n"],"names":["benchmark","COMPLETE_VALUE","runSync","run","args","start","process","hrtime","bigint","runAsync","setup","teardown","pre","runRaw","post","data","warmupCycles","minCycles","absThreshold","relThreshold","durationsSAB","controlSAB","durations","BigUint64Array","control","Int32Array","Control","INDEX","PROGRESS","COMPLETE","context","maxCycles","length","result","Promise","Date","now","Math","sqrt","random","i","mean","m2","duration","delta","BigInt","progress","max","variance","Number","stddev","meanNum","cov","e","console","error","stack"],"mappings":";;;;+BAoBaA;;;eAAAA;;;0BApBoB;AAEjC,MAAMC,iBAAiB;AAEvB,MAAMC,UAAU,CAACC;IACf,OAAO,CAAC,GAAGC;QACT,MAAMC,QAAQC,QAAQC,MAAM,CAACC,MAAM;QACnCL,OAAOC;QACP,OAAOE,QAAQC,MAAM,CAACC,MAAM,KAAKH;IACnC;AACF;AAEA,MAAMI,WAAW,CAACN;IAChB,OAAO,OAAO,GAAGC;QACf,MAAMC,QAAQC,QAAQC,MAAM,CAACC,MAAM;QACnC,MAAML,OAAOC;QACb,OAAOE,QAAQC,MAAM,CAACC,MAAM,KAAKH;IACnC;AACF;AAEO,MAAML,YAAY,OAAyB,EAChDU,KAAK,EACLC,QAAQ,EACRC,GAAG,EACHT,KAAKU,MAAM,EACXC,IAAI,EACJC,IAAI,EAEJC,YAAY,EACZC,SAAS,EACTC,YAAY,EACZC,YAAY,EAEZC,YAAY,EACZC,UAAU,EAC0B;IACpC,MAAMC,YAAY,IAAIC,eAAeH;IACrC,MAAMI,UAAU,IAAIC,WAAWJ;IAE/BG,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAG;IACzBH,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAG;IAC5BJ,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAE5B,MAAMC,UAAW,MAAMpB;IACvB,MAAMqB,YAAYT,UAAUU,MAAM;IAElC,IAAI;QACF,MAAMpB,MAAMkB,SAASf;QACrB,MAAMkB,SAASpB,OAAOiB,SAASf;QAC/B,MAAMD,OAAOgB,SAASf;QACtB,MAAMZ,MAAM8B,kBAAkBC,UAAUzB,SAASI,UAAUX,QAAQW;QACnE,MAAMR,QAAQ8B,KAAKC,GAAG;QACtB,MAAOD,KAAKC,GAAG,KAAK/B,QAAQ,MAAO;YACjCgC,KAAKC,IAAI,CAACD,KAAKE,MAAM;QACvB;QACA,IAAK,IAAIC,IAAI,GAAGA,IAAIxB,cAAcwB,IAAK;YACrC,MAAM5B,MAAMkB,SAASf;YACrB,MAAMZ,IAAI2B,SAASf;YACnB,MAAMD,OAAOgB,SAASf;QACxB;QAEA,IAAIyB,IAAI;QACR,IAAIC,OAAO,EAAE;QACb,IAAIC,KAAK,EAAE;QAEX,MAAO,KAAM;YACX,IAAIF,KAAKT,WAAW;YAEpB,MAAMnB,MAAMkB,SAASf;YACrB,MAAM4B,WAAW,MAAMxC,IAAI2B,SAASf;YACpC,MAAMD,OAAOgB,SAASf;YAEtBO,SAAS,CAACkB,IAAI,GAAGG;YACjB,MAAMC,QAAQD,WAAWF;YACzBA,QAAQG,QAAQC,OAAOL;YACvBE,MAAME,QAASD,CAAAA,WAAWF,IAAG;YAE7B,MAAMK,WAAWT,KAAKU,GAAG,CAACP,IAAIT,aAAa9B;YAC3CuB,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAGkB;YAE5B,IAAIN,KAAKvB,WAAW;gBAClB,MAAM+B,WAAWC,OAAOP,MAAOF,CAAAA,IAAI,CAAA;gBACnC,MAAMU,SAASb,KAAKC,IAAI,CAACU;gBACzB,IAAIE,UAAUD,OAAO/B,eAAe;oBAClC;gBACF;gBAEA,MAAMiC,UAAUF,OAAOR;gBACvB,MAAMW,MAAMF,SAAUC,CAAAA,WAAW,CAAA;gBACjC,IAAIC,OAAOjC,cAAc;oBACvB;gBACF;YACF;QACF;QAEAK,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAGa;QACzBhB,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,EAAE,OAAOwB,GAAG;QACVC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACrE7B,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,SAAU;QACR,IAAI;YACF,MAAMlB,WAAWmB;QACnB,EAAE,OAAOuB,GAAG;YACV7B,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;YAC5ByB,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACvE;IACF;IAEA,OAAO7B,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC;AAClC"}
1
+ {"version":3,"sources":["../src/runner.ts"],"sourcesContent":["import { performance, PerformanceObserver } from 'node:perf_hooks';\nimport { Options, Control } from './types.js';\nimport { GCWatcher } from './gc-watcher.js';\nimport { StepFn, MaybePromise } from './types.js';\n\nconst COMPLETE_VALUE = 100_00;\n\nconst hr = process.hrtime.bigint.bind(process.hrtime);\n\nconst runSync = (run: Function) => {\n return (...args: unknown[]) => {\n const start = hr();\n run(...args);\n return hr() - start;\n };\n};\n\nconst runAsync = (run: Function) => {\n return async (...args: unknown[]) => {\n const start = hr();\n await run(...args);\n return hr() - start;\n };\n};\n\nconst TARGET_SAMPLE_NS = 1_000_000n; // aim for ~1ms per measured sample\nconst MAX_BATCH = 1_048_576;\nconst PROGRESS_STRIDE = 16;\nconst GC_STRIDE = 32;\nconst OUTLIER_MULTIPLIER = 4;\nconst OUTLIER_IQR_MULTIPLIER = 3;\nconst OUTLIER_WINDOW = 64;\n\ntype GCEvent = { start: number; end: number };\n\nconst collectSample = async <TContext, TInput>(\n batchSize: number,\n run: (ctx: TContext, data: TInput) => MaybePromise<bigint>,\n pre: StepFn<TContext, TInput> | undefined,\n post: StepFn<TContext, TInput> | undefined,\n context: TContext,\n data: TInput,\n) => {\n let sampleDuration = 0n;\n for (let b = 0; b < batchSize; b++) {\n await pre?.(context, data);\n sampleDuration += await run(context, data);\n await post?.(context, data);\n }\n return sampleDuration / BigInt(batchSize);\n};\n\nconst tuneParameters = async <TContext, TInput>({\n initialBatch,\n run,\n pre,\n post,\n context,\n data,\n minCycles,\n relThreshold,\n maxCycles,\n}: {\n initialBatch: number;\n run: (ctx: TContext, data: TInput) => MaybePromise<bigint>;\n pre?: StepFn<TContext, TInput>;\n post?: StepFn<TContext, TInput>;\n context: TContext;\n data: TInput;\n minCycles: number;\n relThreshold: number;\n maxCycles: number;\n}) => {\n let batchSize = initialBatch;\n let bestCv = Number.POSITIVE_INFINITY;\n let bestBatch = batchSize;\n\n for (let attempt = 0; attempt < 3; attempt++) {\n const samples: number[] = [];\n const sampleCount = Math.min(8, maxCycles);\n for (let s = 0; s < sampleCount; s++) {\n const duration = await collectSample(batchSize, run, pre, post, context, data);\n samples.push(Number(duration));\n }\n const mean = samples.reduce((acc, v) => acc + v, 0) / samples.length;\n const variance = samples.reduce((acc, v) => acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);\n const stddev = Math.sqrt(variance);\n const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n\n if (cv < bestCv) {\n bestCv = cv;\n bestBatch = batchSize;\n }\n\n if (cv <= relThreshold || batchSize >= MAX_BATCH) {\n break;\n }\n batchSize = Math.min(MAX_BATCH, batchSize * 2);\n }\n\n const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;\n const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));\n\n return { batchSize: bestBatch, relThreshold: tunedRel, minCycles: tunedMin };\n};\n\nconst createGCTracker = () => {\n if (process.env.OVERTAKE_GC_OBSERVER !== '1') {\n return null;\n }\n if (typeof PerformanceObserver === 'undefined') {\n return null;\n }\n\n const events: GCEvent[] = [];\n const observer = new PerformanceObserver((list) => {\n for (const entry of list.getEntries()) {\n events.push({ start: entry.startTime, end: entry.startTime + entry.duration });\n }\n });\n\n try {\n observer.observe({ entryTypes: ['gc'] });\n } catch {\n return null;\n }\n\n const overlaps = (start: number, end: number) => {\n let noisy = false;\n for (let i = events.length - 1; i >= 0; i--) {\n const event = events[i];\n if (event.end < start - 5_000) {\n events.splice(i, 1);\n continue;\n }\n if (event.start <= end && event.end >= start) {\n noisy = true;\n }\n }\n return noisy;\n };\n\n const dispose = () => observer.disconnect();\n\n return { overlaps, dispose };\n};\n\nconst pushWindow = (arr: number[], value: number, cap: number) => {\n if (arr.length === cap) {\n arr.shift();\n }\n arr.push(value);\n};\n\nconst medianAndIqr = (arr: number[]) => {\n if (arr.length === 0) return { median: 0, iqr: 0 };\n const sorted = [...arr].sort((a, b) => a - b);\n const mid = Math.floor(sorted.length / 2);\n const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];\n const q1Idx = Math.floor(sorted.length * 0.25);\n const q3Idx = Math.floor(sorted.length * 0.75);\n const q1 = sorted[q1Idx];\n const q3 = sorted[q3Idx];\n return { median, iqr: q3 - q1 };\n};\n\nconst windowCv = (arr: number[]) => {\n if (arr.length < 2) return Number.POSITIVE_INFINITY;\n const mean = arr.reduce((a, v) => a + v, 0) / arr.length;\n const variance = arr.reduce((a, v) => a + (v - mean) * (v - mean), 0) / (arr.length - 1);\n const stddev = Math.sqrt(variance);\n return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n};\n\nexport const benchmark = async <TContext, TInput>({\n setup,\n teardown,\n pre,\n run: runRaw,\n post,\n data,\n\n warmupCycles,\n minCycles,\n absThreshold,\n relThreshold,\n gcObserver = false,\n\n durationsSAB,\n controlSAB,\n}: Required<Options<TContext, TInput>>) => {\n const durations = new BigUint64Array(durationsSAB);\n const control = new Int32Array(controlSAB);\n\n control[Control.INDEX] = 0;\n control[Control.PROGRESS] = 0;\n control[Control.COMPLETE] = 255;\n\n const context = (await setup?.()) as TContext;\n const maxCycles = durations.length;\n const gcWatcher = new GCWatcher();\n const gcTracker = gcObserver ? createGCTracker() : null;\n\n try {\n // classify sync/async and capture initial duration\n await pre?.(context, data!);\n const probeStart = hr();\n const probeResult = runRaw(context, data!);\n const isAsync = probeResult instanceof Promise;\n if (isAsync) {\n await probeResult;\n }\n const durationProbe = hr() - probeStart;\n await post?.(context, data!);\n\n const run = isAsync ? runAsync(runRaw) : runSync(runRaw);\n\n // choose batch size to amortize timer overhead\n const durationPerRun = durationProbe === 0n ? 1n : durationProbe;\n const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);\n const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));\n\n // auto-tune based on warmup samples\n const tuned = await tuneParameters({\n initialBatch: initialBatchSize,\n run,\n pre,\n post,\n context,\n data: data as TInput,\n minCycles,\n relThreshold,\n maxCycles,\n });\n let batchSize = tuned.batchSize;\n minCycles = tuned.minCycles;\n relThreshold = tuned.relThreshold;\n\n // warmup: run until requested cycles, adapt if unstable\n const warmupStart = Date.now();\n let warmupRemaining = warmupCycles;\n const warmupWindow: number[] = [];\n const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));\n\n while (Date.now() - warmupStart < 1_000 && warmupRemaining > 0) {\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n warmupRemaining--;\n }\n let warmupDone = 0;\n while (warmupDone < warmupRemaining) {\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n warmupDone++;\n if (global.gc && warmupDone % GC_STRIDE === 0) {\n global.gc();\n }\n }\n while (warmupWindow.length >= 8 && warmupWindow.length < warmupCap) {\n const cv = windowCv(warmupWindow);\n if (cv <= relThreshold * 2) {\n break;\n }\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n }\n\n let i = 0;\n let mean = 0n;\n let m2 = 0n;\n const outlierWindow: number[] = [];\n\n while (true) {\n if (i >= maxCycles) break;\n\n const gcMarker = gcWatcher.start();\n const sampleStart = performance.now();\n let sampleDuration = 0n;\n for (let b = 0; b < batchSize; b++) {\n await pre?.(context, data!);\n sampleDuration += await run(context, data);\n await post?.(context, data!);\n if (global.gc && (i + b) % GC_STRIDE === 0) {\n global.gc();\n }\n }\n\n // normalize by batch size\n sampleDuration /= BigInt(batchSize);\n\n const sampleEnd = performance.now();\n const gcNoise = gcWatcher.seen(gcMarker) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);\n if (gcNoise) {\n continue;\n }\n\n const durationNumber = Number(sampleDuration);\n pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);\n const { median, iqr } = medianAndIqr(outlierWindow);\n const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;\n if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {\n continue;\n }\n\n const meanNumber = Number(mean);\n if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {\n continue;\n }\n\n durations[i++] = sampleDuration;\n const delta = sampleDuration - mean;\n mean += delta / BigInt(i);\n m2 += delta * (sampleDuration - mean);\n\n const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;\n if (i % PROGRESS_STRIDE === 0) {\n control[Control.PROGRESS] = progress;\n }\n\n if (i >= minCycles) {\n const variance = Number(m2) / (i - 1);\n const stddev = Math.sqrt(variance);\n if (stddev <= Number(absThreshold)) {\n break;\n }\n\n const meanNum = Number(mean);\n const cov = stddev / (meanNum || 1);\n if (cov <= relThreshold) {\n break;\n }\n }\n }\n\n control[Control.INDEX] = i;\n control[Control.COMPLETE] = 0;\n } catch (e) {\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n control[Control.COMPLETE] = 1;\n } finally {\n gcTracker?.dispose?.();\n try {\n await teardown?.(context);\n } catch (e) {\n control[Control.COMPLETE] = 2;\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n }\n }\n\n return control[Control.COMPLETE];\n};\n"],"names":["benchmark","COMPLETE_VALUE","hr","process","hrtime","bigint","bind","runSync","run","args","start","runAsync","TARGET_SAMPLE_NS","MAX_BATCH","PROGRESS_STRIDE","GC_STRIDE","OUTLIER_MULTIPLIER","OUTLIER_IQR_MULTIPLIER","OUTLIER_WINDOW","collectSample","batchSize","pre","post","context","data","sampleDuration","b","BigInt","tuneParameters","initialBatch","minCycles","relThreshold","maxCycles","bestCv","Number","POSITIVE_INFINITY","bestBatch","attempt","samples","sampleCount","Math","min","s","duration","push","mean","reduce","acc","v","length","variance","max","stddev","sqrt","cv","tunedRel","tunedMin","ceil","createGCTracker","env","OVERTAKE_GC_OBSERVER","PerformanceObserver","events","observer","list","entry","getEntries","startTime","end","observe","entryTypes","overlaps","noisy","i","event","splice","dispose","disconnect","pushWindow","arr","value","cap","shift","medianAndIqr","median","iqr","sorted","sort","a","mid","floor","q1Idx","q3Idx","q1","q3","windowCv","setup","teardown","runRaw","warmupCycles","absThreshold","gcObserver","durationsSAB","controlSAB","durations","BigUint64Array","control","Int32Array","Control","INDEX","PROGRESS","COMPLETE","gcWatcher","GCWatcher","gcTracker","probeStart","probeResult","isAsync","Promise","durationProbe","durationPerRun","suggestedBatch","initialBatchSize","tuned","warmupStart","Date","now","warmupRemaining","warmupWindow","warmupCap","warmupDone","global","gc","m2","outlierWindow","gcMarker","sampleStart","performance","sampleEnd","gcNoise","seen","durationNumber","maxAllowed","meanNumber","delta","progress","meanNum","cov","e","console","error","stack"],"mappings":";;;;+BA8KaA;;;eAAAA;;;gCA9KoC;0BAChB;8BACP;AAG1B,MAAMC,iBAAiB;AAEvB,MAAMC,KAAKC,QAAQC,MAAM,CAACC,MAAM,CAACC,IAAI,CAACH,QAAQC,MAAM;AAEpD,MAAMG,UAAU,CAACC;IACf,OAAO,CAAC,GAAGC;QACT,MAAMC,QAAQR;QACdM,OAAOC;QACP,OAAOP,OAAOQ;IAChB;AACF;AAEA,MAAMC,WAAW,CAACH;IAChB,OAAO,OAAO,GAAGC;QACf,MAAMC,QAAQR;QACd,MAAMM,OAAOC;QACb,OAAOP,OAAOQ;IAChB;AACF;AAEA,MAAME,mBAAmB,UAAU;AACnC,MAAMC,YAAY;AAClB,MAAMC,kBAAkB;AACxB,MAAMC,YAAY;AAClB,MAAMC,qBAAqB;AAC3B,MAAMC,yBAAyB;AAC/B,MAAMC,iBAAiB;AAIvB,MAAMC,gBAAgB,OACpBC,WACAZ,KACAa,KACAC,MACAC,SACAC;IAEA,IAAIC,iBAAiB,EAAE;IACvB,IAAK,IAAIC,IAAI,GAAGA,IAAIN,WAAWM,IAAK;QAClC,MAAML,MAAME,SAASC;QACrBC,kBAAkB,MAAMjB,IAAIe,SAASC;QACrC,MAAMF,OAAOC,SAASC;IACxB;IACA,OAAOC,iBAAiBE,OAAOP;AACjC;AAEA,MAAMQ,iBAAiB,OAAyB,EAC9CC,YAAY,EACZrB,GAAG,EACHa,GAAG,EACHC,IAAI,EACJC,OAAO,EACPC,IAAI,EACJM,SAAS,EACTC,YAAY,EACZC,SAAS,EAWV;IACC,IAAIZ,YAAYS;IAChB,IAAII,SAASC,OAAOC,iBAAiB;IACrC,IAAIC,YAAYhB;IAEhB,IAAK,IAAIiB,UAAU,GAAGA,UAAU,GAAGA,UAAW;QAC5C,MAAMC,UAAoB,EAAE;QAC5B,MAAMC,cAAcC,KAAKC,GAAG,CAAC,GAAGT;QAChC,IAAK,IAAIU,IAAI,GAAGA,IAAIH,aAAaG,IAAK;YACpC,MAAMC,WAAW,MAAMxB,cAAcC,WAAWZ,KAAKa,KAAKC,MAAMC,SAASC;YACzEc,QAAQM,IAAI,CAACV,OAAOS;QACtB;QACA,MAAME,OAAOP,QAAQQ,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAMC,GAAG,KAAKV,QAAQW,MAAM;QACpE,MAAMC,WAAWZ,QAAQQ,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAM,AAACC,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAKL,KAAKW,GAAG,CAAC,GAAGb,QAAQW,MAAM,GAAG;QAC7G,MAAMG,SAASZ,KAAKa,IAAI,CAACH;QACzB,MAAMI,KAAKT,SAAS,IAAIX,OAAOC,iBAAiB,GAAGiB,SAASP;QAE5D,IAAIS,KAAKrB,QAAQ;YACfA,SAASqB;YACTlB,YAAYhB;QACd;QAEA,IAAIkC,MAAMvB,gBAAgBX,aAAaP,WAAW;YAChD;QACF;QACAO,YAAYoB,KAAKC,GAAG,CAAC5B,WAAWO,YAAY;IAC9C;IAEA,MAAMmC,WAAWtB,SAASF,eAAeS,KAAKW,GAAG,CAAClB,SAAS,KAAKF,eAAe,OAAOA;IACtF,MAAMyB,WAAWhB,KAAKC,GAAG,CAACT,WAAWQ,KAAKW,GAAG,CAACrB,WAAWU,KAAKiB,IAAI,CAAC3B,YAAYU,KAAKW,GAAG,CAAC,GAAGlB,SAAUF,CAAAA,gBAAgB,IAAG;IAExH,OAAO;QAAEX,WAAWgB;QAAWL,cAAcwB;QAAUzB,WAAW0B;IAAS;AAC7E;AAEA,MAAME,kBAAkB;IACtB,IAAIvD,QAAQwD,GAAG,CAACC,oBAAoB,KAAK,KAAK;QAC5C,OAAO;IACT;IACA,IAAI,OAAOC,mCAAmB,KAAK,aAAa;QAC9C,OAAO;IACT;IAEA,MAAMC,SAAoB,EAAE;IAC5B,MAAMC,WAAW,IAAIF,mCAAmB,CAAC,CAACG;QACxC,KAAK,MAAMC,SAASD,KAAKE,UAAU,GAAI;YACrCJ,OAAOlB,IAAI,CAAC;gBAAElC,OAAOuD,MAAME,SAAS;gBAAEC,KAAKH,MAAME,SAAS,GAAGF,MAAMtB,QAAQ;YAAC;QAC9E;IACF;IAEA,IAAI;QACFoB,SAASM,OAAO,CAAC;YAAEC,YAAY;gBAAC;aAAK;QAAC;IACxC,EAAE,OAAM;QACN,OAAO;IACT;IAEA,MAAMC,WAAW,CAAC7D,OAAe0D;QAC/B,IAAII,QAAQ;QACZ,IAAK,IAAIC,IAAIX,OAAOb,MAAM,GAAG,GAAGwB,KAAK,GAAGA,IAAK;YAC3C,MAAMC,QAAQZ,MAAM,CAACW,EAAE;YACvB,IAAIC,MAAMN,GAAG,GAAG1D,QAAQ,OAAO;gBAC7BoD,OAAOa,MAAM,CAACF,GAAG;gBACjB;YACF;YACA,IAAIC,MAAMhE,KAAK,IAAI0D,OAAOM,MAAMN,GAAG,IAAI1D,OAAO;gBAC5C8D,QAAQ;YACV;QACF;QACA,OAAOA;IACT;IAEA,MAAMI,UAAU,IAAMb,SAASc,UAAU;IAEzC,OAAO;QAAEN;QAAUK;IAAQ;AAC7B;AAEA,MAAME,aAAa,CAACC,KAAeC,OAAeC;IAChD,IAAIF,IAAI9B,MAAM,KAAKgC,KAAK;QACtBF,IAAIG,KAAK;IACX;IACAH,IAAInC,IAAI,CAACoC;AACX;AAEA,MAAMG,eAAe,CAACJ;IACpB,IAAIA,IAAI9B,MAAM,KAAK,GAAG,OAAO;QAAEmC,QAAQ;QAAGC,KAAK;IAAE;IACjD,MAAMC,SAAS;WAAIP;KAAI,CAACQ,IAAI,CAAC,CAACC,GAAG9D,IAAM8D,IAAI9D;IAC3C,MAAM+D,MAAMjD,KAAKkD,KAAK,CAACJ,OAAOrC,MAAM,GAAG;IACvC,MAAMmC,SAASE,OAAOrC,MAAM,GAAG,MAAM,IAAI,AAACqC,CAAAA,MAAM,CAACG,MAAM,EAAE,GAAGH,MAAM,CAACG,IAAI,AAAD,IAAK,IAAIH,MAAM,CAACG,IAAI;IAC1F,MAAME,QAAQnD,KAAKkD,KAAK,CAACJ,OAAOrC,MAAM,GAAG;IACzC,MAAM2C,QAAQpD,KAAKkD,KAAK,CAACJ,OAAOrC,MAAM,GAAG;IACzC,MAAM4C,KAAKP,MAAM,CAACK,MAAM;IACxB,MAAMG,KAAKR,MAAM,CAACM,MAAM;IACxB,OAAO;QAAER;QAAQC,KAAKS,KAAKD;IAAG;AAChC;AAEA,MAAME,WAAW,CAAChB;IAChB,IAAIA,IAAI9B,MAAM,GAAG,GAAG,OAAOf,OAAOC,iBAAiB;IACnD,MAAMU,OAAOkC,IAAIjC,MAAM,CAAC,CAAC0C,GAAGxC,IAAMwC,IAAIxC,GAAG,KAAK+B,IAAI9B,MAAM;IACxD,MAAMC,WAAW6B,IAAIjC,MAAM,CAAC,CAAC0C,GAAGxC,IAAMwC,IAAI,AAACxC,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAMkC,CAAAA,IAAI9B,MAAM,GAAG,CAAA;IACtF,MAAMG,SAASZ,KAAKa,IAAI,CAACH;IACzB,OAAOL,SAAS,IAAIX,OAAOC,iBAAiB,GAAGiB,SAASP;AAC1D;AAEO,MAAM7C,YAAY,OAAyB,EAChDgG,KAAK,EACLC,QAAQ,EACR5E,GAAG,EACHb,KAAK0F,MAAM,EACX5E,IAAI,EACJE,IAAI,EAEJ2E,YAAY,EACZrE,SAAS,EACTsE,YAAY,EACZrE,YAAY,EACZsE,aAAa,KAAK,EAElBC,YAAY,EACZC,UAAU,EAC0B;IACpC,MAAMC,YAAY,IAAIC,eAAeH;IACrC,MAAMI,UAAU,IAAIC,WAAWJ;IAE/BG,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAG;IACzBH,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAG;IAC5BJ,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAE5B,MAAMxF,UAAW,MAAMyE;IACvB,MAAMhE,YAAYwE,UAAUvD,MAAM;IAClC,MAAM+D,YAAY,IAAIC,uBAAS;IAC/B,MAAMC,YAAYb,aAAa3C,oBAAoB;IAEnD,IAAI;QAEF,MAAMrC,MAAME,SAASC;QACrB,MAAM2F,aAAajH;QACnB,MAAMkH,cAAclB,OAAO3E,SAASC;QACpC,MAAM6F,UAAUD,uBAAuBE;QACvC,IAAID,SAAS;YACX,MAAMD;QACR;QACA,MAAMG,gBAAgBrH,OAAOiH;QAC7B,MAAM7F,OAAOC,SAASC;QAEtB,MAAMhB,MAAM6G,UAAU1G,SAASuF,UAAU3F,QAAQ2F;QAGjD,MAAMsB,iBAAiBD,kBAAkB,EAAE,GAAG,EAAE,GAAGA;QACnD,MAAME,iBAAiBvF,OAAOtB,mBAAmB4G;QACjD,MAAME,mBAAmBlF,KAAKC,GAAG,CAAC5B,WAAW2B,KAAKW,GAAG,CAAC,GAAGsE;QAGzD,MAAME,QAAQ,MAAM/F,eAAe;YACjCC,cAAc6F;YACdlH;YACAa;YACAC;YACAC;YACAC,MAAMA;YACNM;YACAC;YACAC;QACF;QACA,IAAIZ,YAAYuG,MAAMvG,SAAS;QAC/BU,YAAY6F,MAAM7F,SAAS;QAC3BC,eAAe4F,MAAM5F,YAAY;QAGjC,MAAM6F,cAAcC,KAAKC,GAAG;QAC5B,IAAIC,kBAAkB5B;QACtB,MAAM6B,eAAyB,EAAE;QACjC,MAAMC,YAAYzF,KAAKW,GAAG,CAACgD,cAAc3D,KAAKC,GAAG,CAACT,WAAWmE,eAAe,KAAK;QAEjF,MAAO0B,KAAKC,GAAG,KAAKF,cAAc,SAASG,kBAAkB,EAAG;YAC9D,MAAMrH,QAAQR;YACd,MAAMmB,MAAME,SAASC;YACrB,MAAMhB,IAAIe,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWkD,cAAc9F,OAAOhC,OAAOQ,QAAQuH;YAC/CF;QACF;QACA,IAAIG,aAAa;QACjB,MAAOA,aAAaH,gBAAiB;YACnC,MAAMrH,QAAQR;YACd,MAAMmB,MAAME,SAASC;YACrB,MAAMhB,IAAIe,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWkD,cAAc9F,OAAOhC,OAAOQ,QAAQuH;YAC/CC;YACA,IAAIC,OAAOC,EAAE,IAAIF,aAAanH,cAAc,GAAG;gBAC7CoH,OAAOC,EAAE;YACX;QACF;QACA,MAAOJ,aAAa/E,MAAM,IAAI,KAAK+E,aAAa/E,MAAM,GAAGgF,UAAW;YAClE,MAAM3E,KAAKyC,SAASiC;YACpB,IAAI1E,MAAMvB,eAAe,GAAG;gBAC1B;YACF;YACA,MAAMrB,QAAQR;YACd,MAAMmB,MAAME,SAASC;YACrB,MAAMhB,IAAIe,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWkD,cAAc9F,OAAOhC,OAAOQ,QAAQuH;QACjD;QAEA,IAAIxD,IAAI;QACR,IAAI5B,OAAO,EAAE;QACb,IAAIwF,KAAK,EAAE;QACX,MAAMC,gBAA0B,EAAE;QAElC,MAAO,KAAM;YACX,IAAI7D,KAAKzC,WAAW;YAEpB,MAAMuG,WAAWvB,UAAUtG,KAAK;YAChC,MAAM8H,cAAcC,2BAAW,CAACX,GAAG;YACnC,IAAIrG,iBAAiB,EAAE;YACvB,IAAK,IAAIC,IAAI,GAAGA,IAAIN,WAAWM,IAAK;gBAClC,MAAML,MAAME,SAASC;gBACrBC,kBAAkB,MAAMjB,IAAIe,SAASC;gBACrC,MAAMF,OAAOC,SAASC;gBACtB,IAAI2G,OAAOC,EAAE,IAAI,AAAC3D,CAAAA,IAAI/C,CAAAA,IAAKX,cAAc,GAAG;oBAC1CoH,OAAOC,EAAE;gBACX;YACF;YAGA3G,kBAAkBE,OAAOP;YAEzB,MAAMsH,YAAYD,2BAAW,CAACX,GAAG;YACjC,MAAMa,UAAU3B,UAAU4B,IAAI,CAACL,aAAcrB,CAAAA,WAAW3C,SAASiE,aAAaE,cAAc,KAAI;YAChG,IAAIC,SAAS;gBACX;YACF;YAEA,MAAME,iBAAiB3G,OAAOT;YAC9BqD,WAAWwD,eAAeO,gBAAgB3H;YAC1C,MAAM,EAAEkE,MAAM,EAAEC,GAAG,EAAE,GAAGF,aAAamD;YACrC,MAAMQ,aAAa1D,SAASnE,yBAAyBoE,OAAOnD,OAAOC,iBAAiB;YACpF,IAAImG,cAAcrF,MAAM,IAAI,KAAK4F,iBAAiBC,YAAY;gBAC5D;YACF;YAEA,MAAMC,aAAa7G,OAAOW;YAC1B,IAAI4B,KAAK,KAAKsE,aAAa,KAAKF,iBAAiB7H,qBAAqB+H,YAAY;gBAChF;YACF;YAEAvC,SAAS,CAAC/B,IAAI,GAAGhD;YACjB,MAAMuH,QAAQvH,iBAAiBoB;YAC/BA,QAAQmG,QAAQrH,OAAO8C;YACvB4D,MAAMW,QAASvH,CAAAA,iBAAiBoB,IAAG;YAEnC,MAAMoG,WAAWzG,KAAKW,GAAG,CAACsB,IAAIzC,aAAa/B;YAC3C,IAAIwE,IAAI3D,oBAAoB,GAAG;gBAC7B4F,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAGmC;YAC9B;YAEA,IAAIxE,KAAK3C,WAAW;gBAClB,MAAMoB,WAAWhB,OAAOmG,MAAO5D,CAAAA,IAAI,CAAA;gBACnC,MAAMrB,SAASZ,KAAKa,IAAI,CAACH;gBACzB,IAAIE,UAAUlB,OAAOkE,eAAe;oBAClC;gBACF;gBAEA,MAAM8C,UAAUhH,OAAOW;gBACvB,MAAMsG,MAAM/F,SAAU8F,CAAAA,WAAW,CAAA;gBACjC,IAAIC,OAAOpH,cAAc;oBACvB;gBACF;YACF;QACF;QAEA2E,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAGpC;QACzBiC,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,EAAE,OAAOqC,GAAG;QACVC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACrE1C,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,SAAU;QACRG,WAAWtC;QACX,IAAI;YACF,MAAMqB,WAAW1E;QACnB,EAAE,OAAO6H,GAAG;YACV1C,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;YAC5BsC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACvE;IACF;IAEA,OAAO1C,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC;AAClC"}
package/build/runner.d.ts CHANGED
@@ -1,2 +1,2 @@
1
1
  import { Options } from './types.js';
2
- export declare const benchmark: <TContext, TInput>({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, durationsSAB, controlSAB, }: Required<Options<TContext, TInput>>) => Promise<number>;
2
+ export declare const benchmark: <TContext, TInput>({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, gcObserver, durationsSAB, controlSAB, }: Required<Options<TContext, TInput>>) => Promise<number>;
package/build/runner.js CHANGED
@@ -1,20 +1,148 @@
1
+ import { performance, PerformanceObserver } from 'node:perf_hooks';
1
2
  import { Control } from "./types.js";
3
+ import { GCWatcher } from "./gc-watcher.js";
2
4
  const COMPLETE_VALUE = 100_00;
5
+ const hr = process.hrtime.bigint.bind(process.hrtime);
3
6
  const runSync = (run)=>{
4
7
  return (...args)=>{
5
- const start = process.hrtime.bigint();
8
+ const start = hr();
6
9
  run(...args);
7
- return process.hrtime.bigint() - start;
10
+ return hr() - start;
8
11
  };
9
12
  };
10
13
  const runAsync = (run)=>{
11
14
  return async (...args)=>{
12
- const start = process.hrtime.bigint();
15
+ const start = hr();
13
16
  await run(...args);
14
- return process.hrtime.bigint() - start;
17
+ return hr() - start;
15
18
  };
16
19
  };
17
- export const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, durationsSAB, controlSAB })=>{
20
+ const TARGET_SAMPLE_NS = 1_000_000n;
21
+ const MAX_BATCH = 1_048_576;
22
+ const PROGRESS_STRIDE = 16;
23
+ const GC_STRIDE = 32;
24
+ const OUTLIER_MULTIPLIER = 4;
25
+ const OUTLIER_IQR_MULTIPLIER = 3;
26
+ const OUTLIER_WINDOW = 64;
27
+ const collectSample = async (batchSize, run, pre, post, context, data)=>{
28
+ let sampleDuration = 0n;
29
+ for(let b = 0; b < batchSize; b++){
30
+ await pre?.(context, data);
31
+ sampleDuration += await run(context, data);
32
+ await post?.(context, data);
33
+ }
34
+ return sampleDuration / BigInt(batchSize);
35
+ };
36
+ const tuneParameters = async ({ initialBatch, run, pre, post, context, data, minCycles, relThreshold, maxCycles })=>{
37
+ let batchSize = initialBatch;
38
+ let bestCv = Number.POSITIVE_INFINITY;
39
+ let bestBatch = batchSize;
40
+ for(let attempt = 0; attempt < 3; attempt++){
41
+ const samples = [];
42
+ const sampleCount = Math.min(8, maxCycles);
43
+ for(let s = 0; s < sampleCount; s++){
44
+ const duration = await collectSample(batchSize, run, pre, post, context, data);
45
+ samples.push(Number(duration));
46
+ }
47
+ const mean = samples.reduce((acc, v)=>acc + v, 0) / samples.length;
48
+ const variance = samples.reduce((acc, v)=>acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);
49
+ const stddev = Math.sqrt(variance);
50
+ const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
51
+ if (cv < bestCv) {
52
+ bestCv = cv;
53
+ bestBatch = batchSize;
54
+ }
55
+ if (cv <= relThreshold || batchSize >= MAX_BATCH) {
56
+ break;
57
+ }
58
+ batchSize = Math.min(MAX_BATCH, batchSize * 2);
59
+ }
60
+ const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;
61
+ const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));
62
+ return {
63
+ batchSize: bestBatch,
64
+ relThreshold: tunedRel,
65
+ minCycles: tunedMin
66
+ };
67
+ };
68
+ const createGCTracker = ()=>{
69
+ if (process.env.OVERTAKE_GC_OBSERVER !== '1') {
70
+ return null;
71
+ }
72
+ if (typeof PerformanceObserver === 'undefined') {
73
+ return null;
74
+ }
75
+ const events = [];
76
+ const observer = new PerformanceObserver((list)=>{
77
+ for (const entry of list.getEntries()){
78
+ events.push({
79
+ start: entry.startTime,
80
+ end: entry.startTime + entry.duration
81
+ });
82
+ }
83
+ });
84
+ try {
85
+ observer.observe({
86
+ entryTypes: [
87
+ 'gc'
88
+ ]
89
+ });
90
+ } catch {
91
+ return null;
92
+ }
93
+ const overlaps = (start, end)=>{
94
+ let noisy = false;
95
+ for(let i = events.length - 1; i >= 0; i--){
96
+ const event = events[i];
97
+ if (event.end < start - 5_000) {
98
+ events.splice(i, 1);
99
+ continue;
100
+ }
101
+ if (event.start <= end && event.end >= start) {
102
+ noisy = true;
103
+ }
104
+ }
105
+ return noisy;
106
+ };
107
+ const dispose = ()=>observer.disconnect();
108
+ return {
109
+ overlaps,
110
+ dispose
111
+ };
112
+ };
113
+ const pushWindow = (arr, value, cap)=>{
114
+ if (arr.length === cap) {
115
+ arr.shift();
116
+ }
117
+ arr.push(value);
118
+ };
119
+ const medianAndIqr = (arr)=>{
120
+ if (arr.length === 0) return {
121
+ median: 0,
122
+ iqr: 0
123
+ };
124
+ const sorted = [
125
+ ...arr
126
+ ].sort((a, b)=>a - b);
127
+ const mid = Math.floor(sorted.length / 2);
128
+ const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];
129
+ const q1Idx = Math.floor(sorted.length * 0.25);
130
+ const q3Idx = Math.floor(sorted.length * 0.75);
131
+ const q1 = sorted[q1Idx];
132
+ const q3 = sorted[q3Idx];
133
+ return {
134
+ median,
135
+ iqr: q3 - q1
136
+ };
137
+ };
138
+ const windowCv = (arr)=>{
139
+ if (arr.length < 2) return Number.POSITIVE_INFINITY;
140
+ const mean = arr.reduce((a, v)=>a + v, 0) / arr.length;
141
+ const variance = arr.reduce((a, v)=>a + (v - mean) * (v - mean), 0) / (arr.length - 1);
142
+ const stddev = Math.sqrt(variance);
143
+ return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
144
+ };
145
+ export const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, gcObserver = false, durationsSAB, controlSAB })=>{
18
146
  const durations = new BigUint64Array(durationsSAB);
19
147
  const control = new Int32Array(controlSAB);
20
148
  control[Control.INDEX] = 0;
@@ -22,34 +150,113 @@ export const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data,
22
150
  control[Control.COMPLETE] = 255;
23
151
  const context = await setup?.();
24
152
  const maxCycles = durations.length;
153
+ const gcWatcher = new GCWatcher();
154
+ const gcTracker = gcObserver ? createGCTracker() : null;
25
155
  try {
26
156
  await pre?.(context, data);
27
- const result = runRaw(context, data);
157
+ const probeStart = hr();
158
+ const probeResult = runRaw(context, data);
159
+ const isAsync = probeResult instanceof Promise;
160
+ if (isAsync) {
161
+ await probeResult;
162
+ }
163
+ const durationProbe = hr() - probeStart;
28
164
  await post?.(context, data);
29
- const run = result instanceof Promise ? runAsync(runRaw) : runSync(runRaw);
30
- const start = Date.now();
31
- while(Date.now() - start < 1_000){
32
- Math.sqrt(Math.random());
165
+ const run = isAsync ? runAsync(runRaw) : runSync(runRaw);
166
+ const durationPerRun = durationProbe === 0n ? 1n : durationProbe;
167
+ const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);
168
+ const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));
169
+ const tuned = await tuneParameters({
170
+ initialBatch: initialBatchSize,
171
+ run,
172
+ pre,
173
+ post,
174
+ context,
175
+ data: data,
176
+ minCycles,
177
+ relThreshold,
178
+ maxCycles
179
+ });
180
+ let batchSize = tuned.batchSize;
181
+ minCycles = tuned.minCycles;
182
+ relThreshold = tuned.relThreshold;
183
+ const warmupStart = Date.now();
184
+ let warmupRemaining = warmupCycles;
185
+ const warmupWindow = [];
186
+ const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));
187
+ while(Date.now() - warmupStart < 1_000 && warmupRemaining > 0){
188
+ const start = hr();
189
+ await pre?.(context, data);
190
+ await run(context, data);
191
+ await post?.(context, data);
192
+ pushWindow(warmupWindow, Number(hr() - start), warmupCap);
193
+ warmupRemaining--;
194
+ }
195
+ let warmupDone = 0;
196
+ while(warmupDone < warmupRemaining){
197
+ const start = hr();
198
+ await pre?.(context, data);
199
+ await run(context, data);
200
+ await post?.(context, data);
201
+ pushWindow(warmupWindow, Number(hr() - start), warmupCap);
202
+ warmupDone++;
203
+ if (global.gc && warmupDone % GC_STRIDE === 0) {
204
+ global.gc();
205
+ }
33
206
  }
34
- for(let i = 0; i < warmupCycles; i++){
207
+ while(warmupWindow.length >= 8 && warmupWindow.length < warmupCap){
208
+ const cv = windowCv(warmupWindow);
209
+ if (cv <= relThreshold * 2) {
210
+ break;
211
+ }
212
+ const start = hr();
35
213
  await pre?.(context, data);
36
214
  await run(context, data);
37
215
  await post?.(context, data);
216
+ pushWindow(warmupWindow, Number(hr() - start), warmupCap);
38
217
  }
39
218
  let i = 0;
40
219
  let mean = 0n;
41
220
  let m2 = 0n;
221
+ const outlierWindow = [];
42
222
  while(true){
43
223
  if (i >= maxCycles) break;
44
- await pre?.(context, data);
45
- const duration = await run(context, data);
46
- await post?.(context, data);
47
- durations[i++] = duration;
48
- const delta = duration - mean;
224
+ const gcMarker = gcWatcher.start();
225
+ const sampleStart = performance.now();
226
+ let sampleDuration = 0n;
227
+ for(let b = 0; b < batchSize; b++){
228
+ await pre?.(context, data);
229
+ sampleDuration += await run(context, data);
230
+ await post?.(context, data);
231
+ if (global.gc && (i + b) % GC_STRIDE === 0) {
232
+ global.gc();
233
+ }
234
+ }
235
+ sampleDuration /= BigInt(batchSize);
236
+ const sampleEnd = performance.now();
237
+ const gcNoise = gcWatcher.seen(gcMarker) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);
238
+ if (gcNoise) {
239
+ continue;
240
+ }
241
+ const durationNumber = Number(sampleDuration);
242
+ pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);
243
+ const { median, iqr } = medianAndIqr(outlierWindow);
244
+ const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;
245
+ if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {
246
+ continue;
247
+ }
248
+ const meanNumber = Number(mean);
249
+ if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {
250
+ continue;
251
+ }
252
+ durations[i++] = sampleDuration;
253
+ const delta = sampleDuration - mean;
49
254
  mean += delta / BigInt(i);
50
- m2 += delta * (duration - mean);
255
+ m2 += delta * (sampleDuration - mean);
51
256
  const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;
52
- control[Control.PROGRESS] = progress;
257
+ if (i % PROGRESS_STRIDE === 0) {
258
+ control[Control.PROGRESS] = progress;
259
+ }
53
260
  if (i >= minCycles) {
54
261
  const variance = Number(m2) / (i - 1);
55
262
  const stddev = Math.sqrt(variance);
@@ -69,6 +276,7 @@ export const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data,
69
276
  console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);
70
277
  control[Control.COMPLETE] = 1;
71
278
  } finally{
279
+ gcTracker?.dispose?.();
72
280
  try {
73
281
  await teardown?.(context);
74
282
  } catch (e) {