overtake 1.0.4 → 1.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +68 -25
- package/bin/overtake.js +1 -1
- package/build/cli.cjs +44 -33
- package/build/cli.cjs.map +1 -1
- package/build/cli.js +43 -32
- package/build/cli.js.map +1 -1
- package/build/executor.cjs +6 -3
- package/build/executor.cjs.map +1 -1
- package/build/executor.d.ts +3 -2
- package/build/executor.js +6 -3
- package/build/executor.js.map +1 -1
- package/build/gc-watcher.cjs +31 -0
- package/build/gc-watcher.cjs.map +1 -0
- package/build/gc-watcher.d.ts +9 -0
- package/build/gc-watcher.js +21 -0
- package/build/gc-watcher.js.map +1 -0
- package/build/index.cjs +9 -1
- package/build/index.cjs.map +1 -1
- package/build/index.d.ts +1 -1
- package/build/index.js +9 -1
- package/build/index.js.map +1 -1
- package/build/runner.cjs +226 -18
- package/build/runner.cjs.map +1 -1
- package/build/runner.d.ts +1 -1
- package/build/runner.js +226 -18
- package/build/runner.js.map +1 -1
- package/build/types.cjs.map +1 -1
- package/build/types.d.ts +4 -0
- package/build/types.js.map +1 -1
- package/build/utils.cjs +21 -0
- package/build/utils.cjs.map +1 -1
- package/build/utils.d.ts +1 -0
- package/build/utils.js +18 -0
- package/build/utils.js.map +1 -1
- package/build/worker.cjs +95 -8
- package/build/worker.cjs.map +1 -1
- package/build/worker.js +54 -8
- package/build/worker.js.map +1 -1
- package/examples/accuracy.ts +54 -0
- package/examples/complete.ts +3 -3
- package/examples/custom-reports.ts +21 -0
- package/examples/imports.ts +47 -0
- package/examples/quick-start.ts +10 -9
- package/package.json +10 -9
- package/src/cli.ts +46 -30
- package/src/executor.ts +8 -2
- package/src/gc-watcher.ts +23 -0
- package/src/index.ts +11 -0
- package/src/runner.ts +266 -17
- package/src/types.ts +4 -0
- package/src/utils.ts +20 -0
- package/src/worker.ts +59 -9
- package/CLAUDE.md +0 -145
- package/examples/array-copy.ts +0 -17
- package/examples/object-merge.ts +0 -41
- package/examples/serialization.ts +0 -22
package/build/runner.cjs
CHANGED
|
@@ -8,23 +8,151 @@ Object.defineProperty(exports, "benchmark", {
|
|
|
8
8
|
return benchmark;
|
|
9
9
|
}
|
|
10
10
|
});
|
|
11
|
+
const _nodeperf_hooks = require("node:perf_hooks");
|
|
11
12
|
const _typescjs = require("./types.cjs");
|
|
13
|
+
const _gcwatchercjs = require("./gc-watcher.cjs");
|
|
12
14
|
const COMPLETE_VALUE = 100_00;
|
|
15
|
+
const hr = process.hrtime.bigint.bind(process.hrtime);
|
|
13
16
|
const runSync = (run)=>{
|
|
14
17
|
return (...args)=>{
|
|
15
|
-
const start =
|
|
18
|
+
const start = hr();
|
|
16
19
|
run(...args);
|
|
17
|
-
return
|
|
20
|
+
return hr() - start;
|
|
18
21
|
};
|
|
19
22
|
};
|
|
20
23
|
const runAsync = (run)=>{
|
|
21
24
|
return async (...args)=>{
|
|
22
|
-
const start =
|
|
25
|
+
const start = hr();
|
|
23
26
|
await run(...args);
|
|
24
|
-
return
|
|
27
|
+
return hr() - start;
|
|
25
28
|
};
|
|
26
29
|
};
|
|
27
|
-
const
|
|
30
|
+
const TARGET_SAMPLE_NS = 1_000_000n;
|
|
31
|
+
const MAX_BATCH = 1_048_576;
|
|
32
|
+
const PROGRESS_STRIDE = 16;
|
|
33
|
+
const GC_STRIDE = 32;
|
|
34
|
+
const OUTLIER_MULTIPLIER = 4;
|
|
35
|
+
const OUTLIER_IQR_MULTIPLIER = 3;
|
|
36
|
+
const OUTLIER_WINDOW = 64;
|
|
37
|
+
const collectSample = async (batchSize, run, pre, post, context, data)=>{
|
|
38
|
+
let sampleDuration = 0n;
|
|
39
|
+
for(let b = 0; b < batchSize; b++){
|
|
40
|
+
await pre?.(context, data);
|
|
41
|
+
sampleDuration += await run(context, data);
|
|
42
|
+
await post?.(context, data);
|
|
43
|
+
}
|
|
44
|
+
return sampleDuration / BigInt(batchSize);
|
|
45
|
+
};
|
|
46
|
+
const tuneParameters = async ({ initialBatch, run, pre, post, context, data, minCycles, relThreshold, maxCycles })=>{
|
|
47
|
+
let batchSize = initialBatch;
|
|
48
|
+
let bestCv = Number.POSITIVE_INFINITY;
|
|
49
|
+
let bestBatch = batchSize;
|
|
50
|
+
for(let attempt = 0; attempt < 3; attempt++){
|
|
51
|
+
const samples = [];
|
|
52
|
+
const sampleCount = Math.min(8, maxCycles);
|
|
53
|
+
for(let s = 0; s < sampleCount; s++){
|
|
54
|
+
const duration = await collectSample(batchSize, run, pre, post, context, data);
|
|
55
|
+
samples.push(Number(duration));
|
|
56
|
+
}
|
|
57
|
+
const mean = samples.reduce((acc, v)=>acc + v, 0) / samples.length;
|
|
58
|
+
const variance = samples.reduce((acc, v)=>acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);
|
|
59
|
+
const stddev = Math.sqrt(variance);
|
|
60
|
+
const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
|
|
61
|
+
if (cv < bestCv) {
|
|
62
|
+
bestCv = cv;
|
|
63
|
+
bestBatch = batchSize;
|
|
64
|
+
}
|
|
65
|
+
if (cv <= relThreshold || batchSize >= MAX_BATCH) {
|
|
66
|
+
break;
|
|
67
|
+
}
|
|
68
|
+
batchSize = Math.min(MAX_BATCH, batchSize * 2);
|
|
69
|
+
}
|
|
70
|
+
const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;
|
|
71
|
+
const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));
|
|
72
|
+
return {
|
|
73
|
+
batchSize: bestBatch,
|
|
74
|
+
relThreshold: tunedRel,
|
|
75
|
+
minCycles: tunedMin
|
|
76
|
+
};
|
|
77
|
+
};
|
|
78
|
+
const createGCTracker = ()=>{
|
|
79
|
+
if (process.env.OVERTAKE_GC_OBSERVER !== '1') {
|
|
80
|
+
return null;
|
|
81
|
+
}
|
|
82
|
+
if (typeof _nodeperf_hooks.PerformanceObserver === 'undefined') {
|
|
83
|
+
return null;
|
|
84
|
+
}
|
|
85
|
+
const events = [];
|
|
86
|
+
const observer = new _nodeperf_hooks.PerformanceObserver((list)=>{
|
|
87
|
+
for (const entry of list.getEntries()){
|
|
88
|
+
events.push({
|
|
89
|
+
start: entry.startTime,
|
|
90
|
+
end: entry.startTime + entry.duration
|
|
91
|
+
});
|
|
92
|
+
}
|
|
93
|
+
});
|
|
94
|
+
try {
|
|
95
|
+
observer.observe({
|
|
96
|
+
entryTypes: [
|
|
97
|
+
'gc'
|
|
98
|
+
]
|
|
99
|
+
});
|
|
100
|
+
} catch {
|
|
101
|
+
return null;
|
|
102
|
+
}
|
|
103
|
+
const overlaps = (start, end)=>{
|
|
104
|
+
let noisy = false;
|
|
105
|
+
for(let i = events.length - 1; i >= 0; i--){
|
|
106
|
+
const event = events[i];
|
|
107
|
+
if (event.end < start - 5_000) {
|
|
108
|
+
events.splice(i, 1);
|
|
109
|
+
continue;
|
|
110
|
+
}
|
|
111
|
+
if (event.start <= end && event.end >= start) {
|
|
112
|
+
noisy = true;
|
|
113
|
+
}
|
|
114
|
+
}
|
|
115
|
+
return noisy;
|
|
116
|
+
};
|
|
117
|
+
const dispose = ()=>observer.disconnect();
|
|
118
|
+
return {
|
|
119
|
+
overlaps,
|
|
120
|
+
dispose
|
|
121
|
+
};
|
|
122
|
+
};
|
|
123
|
+
const pushWindow = (arr, value, cap)=>{
|
|
124
|
+
if (arr.length === cap) {
|
|
125
|
+
arr.shift();
|
|
126
|
+
}
|
|
127
|
+
arr.push(value);
|
|
128
|
+
};
|
|
129
|
+
const medianAndIqr = (arr)=>{
|
|
130
|
+
if (arr.length === 0) return {
|
|
131
|
+
median: 0,
|
|
132
|
+
iqr: 0
|
|
133
|
+
};
|
|
134
|
+
const sorted = [
|
|
135
|
+
...arr
|
|
136
|
+
].sort((a, b)=>a - b);
|
|
137
|
+
const mid = Math.floor(sorted.length / 2);
|
|
138
|
+
const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];
|
|
139
|
+
const q1Idx = Math.floor(sorted.length * 0.25);
|
|
140
|
+
const q3Idx = Math.floor(sorted.length * 0.75);
|
|
141
|
+
const q1 = sorted[q1Idx];
|
|
142
|
+
const q3 = sorted[q3Idx];
|
|
143
|
+
return {
|
|
144
|
+
median,
|
|
145
|
+
iqr: q3 - q1
|
|
146
|
+
};
|
|
147
|
+
};
|
|
148
|
+
const windowCv = (arr)=>{
|
|
149
|
+
if (arr.length < 2) return Number.POSITIVE_INFINITY;
|
|
150
|
+
const mean = arr.reduce((a, v)=>a + v, 0) / arr.length;
|
|
151
|
+
const variance = arr.reduce((a, v)=>a + (v - mean) * (v - mean), 0) / (arr.length - 1);
|
|
152
|
+
const stddev = Math.sqrt(variance);
|
|
153
|
+
return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
|
|
154
|
+
};
|
|
155
|
+
const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, gcObserver = false, durationsSAB, controlSAB })=>{
|
|
28
156
|
const durations = new BigUint64Array(durationsSAB);
|
|
29
157
|
const control = new Int32Array(controlSAB);
|
|
30
158
|
control[_typescjs.Control.INDEX] = 0;
|
|
@@ -32,34 +160,113 @@ const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmup
|
|
|
32
160
|
control[_typescjs.Control.COMPLETE] = 255;
|
|
33
161
|
const context = await setup?.();
|
|
34
162
|
const maxCycles = durations.length;
|
|
163
|
+
const gcWatcher = new _gcwatchercjs.GCWatcher();
|
|
164
|
+
const gcTracker = gcObserver ? createGCTracker() : null;
|
|
35
165
|
try {
|
|
36
166
|
await pre?.(context, data);
|
|
37
|
-
const
|
|
167
|
+
const probeStart = hr();
|
|
168
|
+
const probeResult = runRaw(context, data);
|
|
169
|
+
const isAsync = probeResult instanceof Promise;
|
|
170
|
+
if (isAsync) {
|
|
171
|
+
await probeResult;
|
|
172
|
+
}
|
|
173
|
+
const durationProbe = hr() - probeStart;
|
|
38
174
|
await post?.(context, data);
|
|
39
|
-
const run =
|
|
40
|
-
const
|
|
41
|
-
|
|
42
|
-
|
|
175
|
+
const run = isAsync ? runAsync(runRaw) : runSync(runRaw);
|
|
176
|
+
const durationPerRun = durationProbe === 0n ? 1n : durationProbe;
|
|
177
|
+
const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);
|
|
178
|
+
const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));
|
|
179
|
+
const tuned = await tuneParameters({
|
|
180
|
+
initialBatch: initialBatchSize,
|
|
181
|
+
run,
|
|
182
|
+
pre,
|
|
183
|
+
post,
|
|
184
|
+
context,
|
|
185
|
+
data: data,
|
|
186
|
+
minCycles,
|
|
187
|
+
relThreshold,
|
|
188
|
+
maxCycles
|
|
189
|
+
});
|
|
190
|
+
let batchSize = tuned.batchSize;
|
|
191
|
+
minCycles = tuned.minCycles;
|
|
192
|
+
relThreshold = tuned.relThreshold;
|
|
193
|
+
const warmupStart = Date.now();
|
|
194
|
+
let warmupRemaining = warmupCycles;
|
|
195
|
+
const warmupWindow = [];
|
|
196
|
+
const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));
|
|
197
|
+
while(Date.now() - warmupStart < 1_000 && warmupRemaining > 0){
|
|
198
|
+
const start = hr();
|
|
199
|
+
await pre?.(context, data);
|
|
200
|
+
await run(context, data);
|
|
201
|
+
await post?.(context, data);
|
|
202
|
+
pushWindow(warmupWindow, Number(hr() - start), warmupCap);
|
|
203
|
+
warmupRemaining--;
|
|
204
|
+
}
|
|
205
|
+
let warmupDone = 0;
|
|
206
|
+
while(warmupDone < warmupRemaining){
|
|
207
|
+
const start = hr();
|
|
208
|
+
await pre?.(context, data);
|
|
209
|
+
await run(context, data);
|
|
210
|
+
await post?.(context, data);
|
|
211
|
+
pushWindow(warmupWindow, Number(hr() - start), warmupCap);
|
|
212
|
+
warmupDone++;
|
|
213
|
+
if (global.gc && warmupDone % GC_STRIDE === 0) {
|
|
214
|
+
global.gc();
|
|
215
|
+
}
|
|
43
216
|
}
|
|
44
|
-
|
|
217
|
+
while(warmupWindow.length >= 8 && warmupWindow.length < warmupCap){
|
|
218
|
+
const cv = windowCv(warmupWindow);
|
|
219
|
+
if (cv <= relThreshold * 2) {
|
|
220
|
+
break;
|
|
221
|
+
}
|
|
222
|
+
const start = hr();
|
|
45
223
|
await pre?.(context, data);
|
|
46
224
|
await run(context, data);
|
|
47
225
|
await post?.(context, data);
|
|
226
|
+
pushWindow(warmupWindow, Number(hr() - start), warmupCap);
|
|
48
227
|
}
|
|
49
228
|
let i = 0;
|
|
50
229
|
let mean = 0n;
|
|
51
230
|
let m2 = 0n;
|
|
231
|
+
const outlierWindow = [];
|
|
52
232
|
while(true){
|
|
53
233
|
if (i >= maxCycles) break;
|
|
54
|
-
|
|
55
|
-
const
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
234
|
+
const gcMarker = gcWatcher.start();
|
|
235
|
+
const sampleStart = _nodeperf_hooks.performance.now();
|
|
236
|
+
let sampleDuration = 0n;
|
|
237
|
+
for(let b = 0; b < batchSize; b++){
|
|
238
|
+
await pre?.(context, data);
|
|
239
|
+
sampleDuration += await run(context, data);
|
|
240
|
+
await post?.(context, data);
|
|
241
|
+
if (global.gc && (i + b) % GC_STRIDE === 0) {
|
|
242
|
+
global.gc();
|
|
243
|
+
}
|
|
244
|
+
}
|
|
245
|
+
sampleDuration /= BigInt(batchSize);
|
|
246
|
+
const sampleEnd = _nodeperf_hooks.performance.now();
|
|
247
|
+
const gcNoise = gcWatcher.seen(gcMarker) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);
|
|
248
|
+
if (gcNoise) {
|
|
249
|
+
continue;
|
|
250
|
+
}
|
|
251
|
+
const durationNumber = Number(sampleDuration);
|
|
252
|
+
pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);
|
|
253
|
+
const { median, iqr } = medianAndIqr(outlierWindow);
|
|
254
|
+
const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;
|
|
255
|
+
if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {
|
|
256
|
+
continue;
|
|
257
|
+
}
|
|
258
|
+
const meanNumber = Number(mean);
|
|
259
|
+
if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {
|
|
260
|
+
continue;
|
|
261
|
+
}
|
|
262
|
+
durations[i++] = sampleDuration;
|
|
263
|
+
const delta = sampleDuration - mean;
|
|
59
264
|
mean += delta / BigInt(i);
|
|
60
|
-
m2 += delta * (
|
|
265
|
+
m2 += delta * (sampleDuration - mean);
|
|
61
266
|
const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;
|
|
62
|
-
|
|
267
|
+
if (i % PROGRESS_STRIDE === 0) {
|
|
268
|
+
control[_typescjs.Control.PROGRESS] = progress;
|
|
269
|
+
}
|
|
63
270
|
if (i >= minCycles) {
|
|
64
271
|
const variance = Number(m2) / (i - 1);
|
|
65
272
|
const stddev = Math.sqrt(variance);
|
|
@@ -79,6 +286,7 @@ const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmup
|
|
|
79
286
|
console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);
|
|
80
287
|
control[_typescjs.Control.COMPLETE] = 1;
|
|
81
288
|
} finally{
|
|
289
|
+
gcTracker?.dispose?.();
|
|
82
290
|
try {
|
|
83
291
|
await teardown?.(context);
|
|
84
292
|
} catch (e) {
|
package/build/runner.cjs.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"sources":["../src/runner.ts"],"sourcesContent":["import { Options, Control } from './types.js';\n\nconst COMPLETE_VALUE = 100_00;\n\nconst runSync = (run: Function) => {\n return (...args: unknown[]) => {\n const start = process.hrtime.bigint();\n run(...args);\n return process.hrtime.bigint() - start;\n };\n};\n\nconst runAsync = (run: Function) => {\n return async (...args: unknown[]) => {\n const start = process.hrtime.bigint();\n await run(...args);\n return process.hrtime.bigint() - start;\n };\n};\n\nexport const benchmark = async <TContext, TInput>({\n setup,\n teardown,\n pre,\n run: runRaw,\n post,\n data,\n\n warmupCycles,\n minCycles,\n absThreshold,\n relThreshold,\n\n durationsSAB,\n controlSAB,\n}: Required<Options<TContext, TInput>>) => {\n const durations = new BigUint64Array(durationsSAB);\n const control = new Int32Array(controlSAB);\n\n control[Control.INDEX] = 0;\n control[Control.PROGRESS] = 0;\n control[Control.COMPLETE] = 255;\n\n const context = (await setup?.()) as TContext;\n const maxCycles = durations.length;\n\n try {\n await pre?.(context, data!);\n const result = runRaw(context, data!);\n await post?.(context, data!);\n const run = result instanceof Promise ? runAsync(runRaw) : runSync(runRaw);\n const start = Date.now();\n while (Date.now() - start < 1_000) {\n Math.sqrt(Math.random());\n }\n for (let i = 0; i < warmupCycles; i++) {\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n }\n\n let i = 0;\n let mean = 0n;\n let m2 = 0n;\n\n while (true) {\n if (i >= maxCycles) break;\n\n await pre?.(context, data!);\n const duration = await run(context, data);\n await post?.(context, data!);\n\n durations[i++] = duration;\n const delta = duration - mean;\n mean += delta / BigInt(i);\n m2 += delta * (duration - mean);\n\n const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;\n control[Control.PROGRESS] = progress;\n\n if (i >= minCycles) {\n const variance = Number(m2) / (i - 1);\n const stddev = Math.sqrt(variance);\n if (stddev <= Number(absThreshold)) {\n break;\n }\n\n const meanNum = Number(mean);\n const cov = stddev / (meanNum || 1);\n if (cov <= relThreshold) {\n break;\n }\n }\n }\n\n control[Control.INDEX] = i;\n control[Control.COMPLETE] = 0;\n } catch (e) {\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n control[Control.COMPLETE] = 1;\n } finally {\n try {\n await teardown?.(context);\n } catch (e) {\n control[Control.COMPLETE] = 2;\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n }\n }\n\n return control[Control.COMPLETE];\n};\n"],"names":["benchmark","COMPLETE_VALUE","runSync","run","args","start","process","hrtime","bigint","runAsync","setup","teardown","pre","runRaw","post","data","warmupCycles","minCycles","absThreshold","relThreshold","durationsSAB","controlSAB","durations","BigUint64Array","control","Int32Array","Control","INDEX","PROGRESS","COMPLETE","context","maxCycles","length","result","Promise","Date","now","Math","sqrt","random","i","mean","m2","duration","delta","BigInt","progress","max","variance","Number","stddev","meanNum","cov","e","console","error","stack"],"mappings":";;;;+BAoBaA;;;eAAAA;;;0BApBoB;AAEjC,MAAMC,iBAAiB;AAEvB,MAAMC,UAAU,CAACC;IACf,OAAO,CAAC,GAAGC;QACT,MAAMC,QAAQC,QAAQC,MAAM,CAACC,MAAM;QACnCL,OAAOC;QACP,OAAOE,QAAQC,MAAM,CAACC,MAAM,KAAKH;IACnC;AACF;AAEA,MAAMI,WAAW,CAACN;IAChB,OAAO,OAAO,GAAGC;QACf,MAAMC,QAAQC,QAAQC,MAAM,CAACC,MAAM;QACnC,MAAML,OAAOC;QACb,OAAOE,QAAQC,MAAM,CAACC,MAAM,KAAKH;IACnC;AACF;AAEO,MAAML,YAAY,OAAyB,EAChDU,KAAK,EACLC,QAAQ,EACRC,GAAG,EACHT,KAAKU,MAAM,EACXC,IAAI,EACJC,IAAI,EAEJC,YAAY,EACZC,SAAS,EACTC,YAAY,EACZC,YAAY,EAEZC,YAAY,EACZC,UAAU,EAC0B;IACpC,MAAMC,YAAY,IAAIC,eAAeH;IACrC,MAAMI,UAAU,IAAIC,WAAWJ;IAE/BG,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAG;IACzBH,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAG;IAC5BJ,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAE5B,MAAMC,UAAW,MAAMpB;IACvB,MAAMqB,YAAYT,UAAUU,MAAM;IAElC,IAAI;QACF,MAAMpB,MAAMkB,SAASf;QACrB,MAAMkB,SAASpB,OAAOiB,SAASf;QAC/B,MAAMD,OAAOgB,SAASf;QACtB,MAAMZ,MAAM8B,kBAAkBC,UAAUzB,SAASI,UAAUX,QAAQW;QACnE,MAAMR,QAAQ8B,KAAKC,GAAG;QACtB,MAAOD,KAAKC,GAAG,KAAK/B,QAAQ,MAAO;YACjCgC,KAAKC,IAAI,CAACD,KAAKE,MAAM;QACvB;QACA,IAAK,IAAIC,IAAI,GAAGA,IAAIxB,cAAcwB,IAAK;YACrC,MAAM5B,MAAMkB,SAASf;YACrB,MAAMZ,IAAI2B,SAASf;YACnB,MAAMD,OAAOgB,SAASf;QACxB;QAEA,IAAIyB,IAAI;QACR,IAAIC,OAAO,EAAE;QACb,IAAIC,KAAK,EAAE;QAEX,MAAO,KAAM;YACX,IAAIF,KAAKT,WAAW;YAEpB,MAAMnB,MAAMkB,SAASf;YACrB,MAAM4B,WAAW,MAAMxC,IAAI2B,SAASf;YACpC,MAAMD,OAAOgB,SAASf;YAEtBO,SAAS,CAACkB,IAAI,GAAGG;YACjB,MAAMC,QAAQD,WAAWF;YACzBA,QAAQG,QAAQC,OAAOL;YACvBE,MAAME,QAASD,CAAAA,WAAWF,IAAG;YAE7B,MAAMK,WAAWT,KAAKU,GAAG,CAACP,IAAIT,aAAa9B;YAC3CuB,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAGkB;YAE5B,IAAIN,KAAKvB,WAAW;gBAClB,MAAM+B,WAAWC,OAAOP,MAAOF,CAAAA,IAAI,CAAA;gBACnC,MAAMU,SAASb,KAAKC,IAAI,CAACU;gBACzB,IAAIE,UAAUD,OAAO/B,eAAe;oBAClC;gBACF;gBAEA,MAAMiC,UAAUF,OAAOR;gBACvB,MAAMW,MAAMF,SAAUC,CAAAA,WAAW,CAAA;gBACjC,IAAIC,OAAOjC,cAAc;oBACvB;gBACF;YACF;QACF;QAEAK,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAGa;QACzBhB,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,EAAE,OAAOwB,GAAG;QACVC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACrE7B,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,SAAU;QACR,IAAI;YACF,MAAMlB,WAAWmB;QACnB,EAAE,OAAOuB,GAAG;YACV7B,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;YAC5ByB,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACvE;IACF;IAEA,OAAO7B,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC;AAClC"}
|
|
1
|
+
{"version":3,"sources":["../src/runner.ts"],"sourcesContent":["import { performance, PerformanceObserver } from 'node:perf_hooks';\nimport { Options, Control } from './types.js';\nimport { GCWatcher } from './gc-watcher.js';\nimport { StepFn, MaybePromise } from './types.js';\n\nconst COMPLETE_VALUE = 100_00;\n\nconst hr = process.hrtime.bigint.bind(process.hrtime);\n\nconst runSync = (run: Function) => {\n return (...args: unknown[]) => {\n const start = hr();\n run(...args);\n return hr() - start;\n };\n};\n\nconst runAsync = (run: Function) => {\n return async (...args: unknown[]) => {\n const start = hr();\n await run(...args);\n return hr() - start;\n };\n};\n\nconst TARGET_SAMPLE_NS = 1_000_000n; // aim for ~1ms per measured sample\nconst MAX_BATCH = 1_048_576;\nconst PROGRESS_STRIDE = 16;\nconst GC_STRIDE = 32;\nconst OUTLIER_MULTIPLIER = 4;\nconst OUTLIER_IQR_MULTIPLIER = 3;\nconst OUTLIER_WINDOW = 64;\n\ntype GCEvent = { start: number; end: number };\n\nconst collectSample = async <TContext, TInput>(\n batchSize: number,\n run: (ctx: TContext, data: TInput) => MaybePromise<bigint>,\n pre: StepFn<TContext, TInput> | undefined,\n post: StepFn<TContext, TInput> | undefined,\n context: TContext,\n data: TInput,\n) => {\n let sampleDuration = 0n;\n for (let b = 0; b < batchSize; b++) {\n await pre?.(context, data);\n sampleDuration += await run(context, data);\n await post?.(context, data);\n }\n return sampleDuration / BigInt(batchSize);\n};\n\nconst tuneParameters = async <TContext, TInput>({\n initialBatch,\n run,\n pre,\n post,\n context,\n data,\n minCycles,\n relThreshold,\n maxCycles,\n}: {\n initialBatch: number;\n run: (ctx: TContext, data: TInput) => MaybePromise<bigint>;\n pre?: StepFn<TContext, TInput>;\n post?: StepFn<TContext, TInput>;\n context: TContext;\n data: TInput;\n minCycles: number;\n relThreshold: number;\n maxCycles: number;\n}) => {\n let batchSize = initialBatch;\n let bestCv = Number.POSITIVE_INFINITY;\n let bestBatch = batchSize;\n\n for (let attempt = 0; attempt < 3; attempt++) {\n const samples: number[] = [];\n const sampleCount = Math.min(8, maxCycles);\n for (let s = 0; s < sampleCount; s++) {\n const duration = await collectSample(batchSize, run, pre, post, context, data);\n samples.push(Number(duration));\n }\n const mean = samples.reduce((acc, v) => acc + v, 0) / samples.length;\n const variance = samples.reduce((acc, v) => acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);\n const stddev = Math.sqrt(variance);\n const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n\n if (cv < bestCv) {\n bestCv = cv;\n bestBatch = batchSize;\n }\n\n if (cv <= relThreshold || batchSize >= MAX_BATCH) {\n break;\n }\n batchSize = Math.min(MAX_BATCH, batchSize * 2);\n }\n\n const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;\n const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));\n\n return { batchSize: bestBatch, relThreshold: tunedRel, minCycles: tunedMin };\n};\n\nconst createGCTracker = () => {\n if (process.env.OVERTAKE_GC_OBSERVER !== '1') {\n return null;\n }\n if (typeof PerformanceObserver === 'undefined') {\n return null;\n }\n\n const events: GCEvent[] = [];\n const observer = new PerformanceObserver((list) => {\n for (const entry of list.getEntries()) {\n events.push({ start: entry.startTime, end: entry.startTime + entry.duration });\n }\n });\n\n try {\n observer.observe({ entryTypes: ['gc'] });\n } catch {\n return null;\n }\n\n const overlaps = (start: number, end: number) => {\n let noisy = false;\n for (let i = events.length - 1; i >= 0; i--) {\n const event = events[i];\n if (event.end < start - 5_000) {\n events.splice(i, 1);\n continue;\n }\n if (event.start <= end && event.end >= start) {\n noisy = true;\n }\n }\n return noisy;\n };\n\n const dispose = () => observer.disconnect();\n\n return { overlaps, dispose };\n};\n\nconst pushWindow = (arr: number[], value: number, cap: number) => {\n if (arr.length === cap) {\n arr.shift();\n }\n arr.push(value);\n};\n\nconst medianAndIqr = (arr: number[]) => {\n if (arr.length === 0) return { median: 0, iqr: 0 };\n const sorted = [...arr].sort((a, b) => a - b);\n const mid = Math.floor(sorted.length / 2);\n const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];\n const q1Idx = Math.floor(sorted.length * 0.25);\n const q3Idx = Math.floor(sorted.length * 0.75);\n const q1 = sorted[q1Idx];\n const q3 = sorted[q3Idx];\n return { median, iqr: q3 - q1 };\n};\n\nconst windowCv = (arr: number[]) => {\n if (arr.length < 2) return Number.POSITIVE_INFINITY;\n const mean = arr.reduce((a, v) => a + v, 0) / arr.length;\n const variance = arr.reduce((a, v) => a + (v - mean) * (v - mean), 0) / (arr.length - 1);\n const stddev = Math.sqrt(variance);\n return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;\n};\n\nexport const benchmark = async <TContext, TInput>({\n setup,\n teardown,\n pre,\n run: runRaw,\n post,\n data,\n\n warmupCycles,\n minCycles,\n absThreshold,\n relThreshold,\n gcObserver = false,\n\n durationsSAB,\n controlSAB,\n}: Required<Options<TContext, TInput>>) => {\n const durations = new BigUint64Array(durationsSAB);\n const control = new Int32Array(controlSAB);\n\n control[Control.INDEX] = 0;\n control[Control.PROGRESS] = 0;\n control[Control.COMPLETE] = 255;\n\n const context = (await setup?.()) as TContext;\n const maxCycles = durations.length;\n const gcWatcher = new GCWatcher();\n const gcTracker = gcObserver ? createGCTracker() : null;\n\n try {\n // classify sync/async and capture initial duration\n await pre?.(context, data!);\n const probeStart = hr();\n const probeResult = runRaw(context, data!);\n const isAsync = probeResult instanceof Promise;\n if (isAsync) {\n await probeResult;\n }\n const durationProbe = hr() - probeStart;\n await post?.(context, data!);\n\n const run = isAsync ? runAsync(runRaw) : runSync(runRaw);\n\n // choose batch size to amortize timer overhead\n const durationPerRun = durationProbe === 0n ? 1n : durationProbe;\n const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);\n const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));\n\n // auto-tune based on warmup samples\n const tuned = await tuneParameters({\n initialBatch: initialBatchSize,\n run,\n pre,\n post,\n context,\n data: data as TInput,\n minCycles,\n relThreshold,\n maxCycles,\n });\n let batchSize = tuned.batchSize;\n minCycles = tuned.minCycles;\n relThreshold = tuned.relThreshold;\n\n // warmup: run until requested cycles, adapt if unstable\n const warmupStart = Date.now();\n let warmupRemaining = warmupCycles;\n const warmupWindow: number[] = [];\n const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));\n\n while (Date.now() - warmupStart < 1_000 && warmupRemaining > 0) {\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n warmupRemaining--;\n }\n let warmupDone = 0;\n while (warmupDone < warmupRemaining) {\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n warmupDone++;\n if (global.gc && warmupDone % GC_STRIDE === 0) {\n global.gc();\n }\n }\n while (warmupWindow.length >= 8 && warmupWindow.length < warmupCap) {\n const cv = windowCv(warmupWindow);\n if (cv <= relThreshold * 2) {\n break;\n }\n const start = hr();\n await pre?.(context, data!);\n await run(context, data);\n await post?.(context, data!);\n pushWindow(warmupWindow, Number(hr() - start), warmupCap);\n }\n\n let i = 0;\n let mean = 0n;\n let m2 = 0n;\n const outlierWindow: number[] = [];\n\n while (true) {\n if (i >= maxCycles) break;\n\n const gcMarker = gcWatcher.start();\n const sampleStart = performance.now();\n let sampleDuration = 0n;\n for (let b = 0; b < batchSize; b++) {\n await pre?.(context, data!);\n sampleDuration += await run(context, data);\n await post?.(context, data!);\n if (global.gc && (i + b) % GC_STRIDE === 0) {\n global.gc();\n }\n }\n\n // normalize by batch size\n sampleDuration /= BigInt(batchSize);\n\n const sampleEnd = performance.now();\n const gcNoise = gcWatcher.seen(gcMarker) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);\n if (gcNoise) {\n continue;\n }\n\n const durationNumber = Number(sampleDuration);\n pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);\n const { median, iqr } = medianAndIqr(outlierWindow);\n const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;\n if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {\n continue;\n }\n\n const meanNumber = Number(mean);\n if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {\n continue;\n }\n\n durations[i++] = sampleDuration;\n const delta = sampleDuration - mean;\n mean += delta / BigInt(i);\n m2 += delta * (sampleDuration - mean);\n\n const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;\n if (i % PROGRESS_STRIDE === 0) {\n control[Control.PROGRESS] = progress;\n }\n\n if (i >= minCycles) {\n const variance = Number(m2) / (i - 1);\n const stddev = Math.sqrt(variance);\n if (stddev <= Number(absThreshold)) {\n break;\n }\n\n const meanNum = Number(mean);\n const cov = stddev / (meanNum || 1);\n if (cov <= relThreshold) {\n break;\n }\n }\n }\n\n control[Control.INDEX] = i;\n control[Control.COMPLETE] = 0;\n } catch (e) {\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n control[Control.COMPLETE] = 1;\n } finally {\n gcTracker?.dispose?.();\n try {\n await teardown?.(context);\n } catch (e) {\n control[Control.COMPLETE] = 2;\n console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);\n }\n }\n\n return control[Control.COMPLETE];\n};\n"],"names":["benchmark","COMPLETE_VALUE","hr","process","hrtime","bigint","bind","runSync","run","args","start","runAsync","TARGET_SAMPLE_NS","MAX_BATCH","PROGRESS_STRIDE","GC_STRIDE","OUTLIER_MULTIPLIER","OUTLIER_IQR_MULTIPLIER","OUTLIER_WINDOW","collectSample","batchSize","pre","post","context","data","sampleDuration","b","BigInt","tuneParameters","initialBatch","minCycles","relThreshold","maxCycles","bestCv","Number","POSITIVE_INFINITY","bestBatch","attempt","samples","sampleCount","Math","min","s","duration","push","mean","reduce","acc","v","length","variance","max","stddev","sqrt","cv","tunedRel","tunedMin","ceil","createGCTracker","env","OVERTAKE_GC_OBSERVER","PerformanceObserver","events","observer","list","entry","getEntries","startTime","end","observe","entryTypes","overlaps","noisy","i","event","splice","dispose","disconnect","pushWindow","arr","value","cap","shift","medianAndIqr","median","iqr","sorted","sort","a","mid","floor","q1Idx","q3Idx","q1","q3","windowCv","setup","teardown","runRaw","warmupCycles","absThreshold","gcObserver","durationsSAB","controlSAB","durations","BigUint64Array","control","Int32Array","Control","INDEX","PROGRESS","COMPLETE","gcWatcher","GCWatcher","gcTracker","probeStart","probeResult","isAsync","Promise","durationProbe","durationPerRun","suggestedBatch","initialBatchSize","tuned","warmupStart","Date","now","warmupRemaining","warmupWindow","warmupCap","warmupDone","global","gc","m2","outlierWindow","gcMarker","sampleStart","performance","sampleEnd","gcNoise","seen","durationNumber","maxAllowed","meanNumber","delta","progress","meanNum","cov","e","console","error","stack"],"mappings":";;;;+BA8KaA;;;eAAAA;;;gCA9KoC;0BAChB;8BACP;AAG1B,MAAMC,iBAAiB;AAEvB,MAAMC,KAAKC,QAAQC,MAAM,CAACC,MAAM,CAACC,IAAI,CAACH,QAAQC,MAAM;AAEpD,MAAMG,UAAU,CAACC;IACf,OAAO,CAAC,GAAGC;QACT,MAAMC,QAAQR;QACdM,OAAOC;QACP,OAAOP,OAAOQ;IAChB;AACF;AAEA,MAAMC,WAAW,CAACH;IAChB,OAAO,OAAO,GAAGC;QACf,MAAMC,QAAQR;QACd,MAAMM,OAAOC;QACb,OAAOP,OAAOQ;IAChB;AACF;AAEA,MAAME,mBAAmB,UAAU;AACnC,MAAMC,YAAY;AAClB,MAAMC,kBAAkB;AACxB,MAAMC,YAAY;AAClB,MAAMC,qBAAqB;AAC3B,MAAMC,yBAAyB;AAC/B,MAAMC,iBAAiB;AAIvB,MAAMC,gBAAgB,OACpBC,WACAZ,KACAa,KACAC,MACAC,SACAC;IAEA,IAAIC,iBAAiB,EAAE;IACvB,IAAK,IAAIC,IAAI,GAAGA,IAAIN,WAAWM,IAAK;QAClC,MAAML,MAAME,SAASC;QACrBC,kBAAkB,MAAMjB,IAAIe,SAASC;QACrC,MAAMF,OAAOC,SAASC;IACxB;IACA,OAAOC,iBAAiBE,OAAOP;AACjC;AAEA,MAAMQ,iBAAiB,OAAyB,EAC9CC,YAAY,EACZrB,GAAG,EACHa,GAAG,EACHC,IAAI,EACJC,OAAO,EACPC,IAAI,EACJM,SAAS,EACTC,YAAY,EACZC,SAAS,EAWV;IACC,IAAIZ,YAAYS;IAChB,IAAII,SAASC,OAAOC,iBAAiB;IACrC,IAAIC,YAAYhB;IAEhB,IAAK,IAAIiB,UAAU,GAAGA,UAAU,GAAGA,UAAW;QAC5C,MAAMC,UAAoB,EAAE;QAC5B,MAAMC,cAAcC,KAAKC,GAAG,CAAC,GAAGT;QAChC,IAAK,IAAIU,IAAI,GAAGA,IAAIH,aAAaG,IAAK;YACpC,MAAMC,WAAW,MAAMxB,cAAcC,WAAWZ,KAAKa,KAAKC,MAAMC,SAASC;YACzEc,QAAQM,IAAI,CAACV,OAAOS;QACtB;QACA,MAAME,OAAOP,QAAQQ,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAMC,GAAG,KAAKV,QAAQW,MAAM;QACpE,MAAMC,WAAWZ,QAAQQ,MAAM,CAAC,CAACC,KAAKC,IAAMD,MAAM,AAACC,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAKL,KAAKW,GAAG,CAAC,GAAGb,QAAQW,MAAM,GAAG;QAC7G,MAAMG,SAASZ,KAAKa,IAAI,CAACH;QACzB,MAAMI,KAAKT,SAAS,IAAIX,OAAOC,iBAAiB,GAAGiB,SAASP;QAE5D,IAAIS,KAAKrB,QAAQ;YACfA,SAASqB;YACTlB,YAAYhB;QACd;QAEA,IAAIkC,MAAMvB,gBAAgBX,aAAaP,WAAW;YAChD;QACF;QACAO,YAAYoB,KAAKC,GAAG,CAAC5B,WAAWO,YAAY;IAC9C;IAEA,MAAMmC,WAAWtB,SAASF,eAAeS,KAAKW,GAAG,CAAClB,SAAS,KAAKF,eAAe,OAAOA;IACtF,MAAMyB,WAAWhB,KAAKC,GAAG,CAACT,WAAWQ,KAAKW,GAAG,CAACrB,WAAWU,KAAKiB,IAAI,CAAC3B,YAAYU,KAAKW,GAAG,CAAC,GAAGlB,SAAUF,CAAAA,gBAAgB,IAAG;IAExH,OAAO;QAAEX,WAAWgB;QAAWL,cAAcwB;QAAUzB,WAAW0B;IAAS;AAC7E;AAEA,MAAME,kBAAkB;IACtB,IAAIvD,QAAQwD,GAAG,CAACC,oBAAoB,KAAK,KAAK;QAC5C,OAAO;IACT;IACA,IAAI,OAAOC,mCAAmB,KAAK,aAAa;QAC9C,OAAO;IACT;IAEA,MAAMC,SAAoB,EAAE;IAC5B,MAAMC,WAAW,IAAIF,mCAAmB,CAAC,CAACG;QACxC,KAAK,MAAMC,SAASD,KAAKE,UAAU,GAAI;YACrCJ,OAAOlB,IAAI,CAAC;gBAAElC,OAAOuD,MAAME,SAAS;gBAAEC,KAAKH,MAAME,SAAS,GAAGF,MAAMtB,QAAQ;YAAC;QAC9E;IACF;IAEA,IAAI;QACFoB,SAASM,OAAO,CAAC;YAAEC,YAAY;gBAAC;aAAK;QAAC;IACxC,EAAE,OAAM;QACN,OAAO;IACT;IAEA,MAAMC,WAAW,CAAC7D,OAAe0D;QAC/B,IAAII,QAAQ;QACZ,IAAK,IAAIC,IAAIX,OAAOb,MAAM,GAAG,GAAGwB,KAAK,GAAGA,IAAK;YAC3C,MAAMC,QAAQZ,MAAM,CAACW,EAAE;YACvB,IAAIC,MAAMN,GAAG,GAAG1D,QAAQ,OAAO;gBAC7BoD,OAAOa,MAAM,CAACF,GAAG;gBACjB;YACF;YACA,IAAIC,MAAMhE,KAAK,IAAI0D,OAAOM,MAAMN,GAAG,IAAI1D,OAAO;gBAC5C8D,QAAQ;YACV;QACF;QACA,OAAOA;IACT;IAEA,MAAMI,UAAU,IAAMb,SAASc,UAAU;IAEzC,OAAO;QAAEN;QAAUK;IAAQ;AAC7B;AAEA,MAAME,aAAa,CAACC,KAAeC,OAAeC;IAChD,IAAIF,IAAI9B,MAAM,KAAKgC,KAAK;QACtBF,IAAIG,KAAK;IACX;IACAH,IAAInC,IAAI,CAACoC;AACX;AAEA,MAAMG,eAAe,CAACJ;IACpB,IAAIA,IAAI9B,MAAM,KAAK,GAAG,OAAO;QAAEmC,QAAQ;QAAGC,KAAK;IAAE;IACjD,MAAMC,SAAS;WAAIP;KAAI,CAACQ,IAAI,CAAC,CAACC,GAAG9D,IAAM8D,IAAI9D;IAC3C,MAAM+D,MAAMjD,KAAKkD,KAAK,CAACJ,OAAOrC,MAAM,GAAG;IACvC,MAAMmC,SAASE,OAAOrC,MAAM,GAAG,MAAM,IAAI,AAACqC,CAAAA,MAAM,CAACG,MAAM,EAAE,GAAGH,MAAM,CAACG,IAAI,AAAD,IAAK,IAAIH,MAAM,CAACG,IAAI;IAC1F,MAAME,QAAQnD,KAAKkD,KAAK,CAACJ,OAAOrC,MAAM,GAAG;IACzC,MAAM2C,QAAQpD,KAAKkD,KAAK,CAACJ,OAAOrC,MAAM,GAAG;IACzC,MAAM4C,KAAKP,MAAM,CAACK,MAAM;IACxB,MAAMG,KAAKR,MAAM,CAACM,MAAM;IACxB,OAAO;QAAER;QAAQC,KAAKS,KAAKD;IAAG;AAChC;AAEA,MAAME,WAAW,CAAChB;IAChB,IAAIA,IAAI9B,MAAM,GAAG,GAAG,OAAOf,OAAOC,iBAAiB;IACnD,MAAMU,OAAOkC,IAAIjC,MAAM,CAAC,CAAC0C,GAAGxC,IAAMwC,IAAIxC,GAAG,KAAK+B,IAAI9B,MAAM;IACxD,MAAMC,WAAW6B,IAAIjC,MAAM,CAAC,CAAC0C,GAAGxC,IAAMwC,IAAI,AAACxC,CAAAA,IAAIH,IAAG,IAAMG,CAAAA,IAAIH,IAAG,GAAI,KAAMkC,CAAAA,IAAI9B,MAAM,GAAG,CAAA;IACtF,MAAMG,SAASZ,KAAKa,IAAI,CAACH;IACzB,OAAOL,SAAS,IAAIX,OAAOC,iBAAiB,GAAGiB,SAASP;AAC1D;AAEO,MAAM7C,YAAY,OAAyB,EAChDgG,KAAK,EACLC,QAAQ,EACR5E,GAAG,EACHb,KAAK0F,MAAM,EACX5E,IAAI,EACJE,IAAI,EAEJ2E,YAAY,EACZrE,SAAS,EACTsE,YAAY,EACZrE,YAAY,EACZsE,aAAa,KAAK,EAElBC,YAAY,EACZC,UAAU,EAC0B;IACpC,MAAMC,YAAY,IAAIC,eAAeH;IACrC,MAAMI,UAAU,IAAIC,WAAWJ;IAE/BG,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAG;IACzBH,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAG;IAC5BJ,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAE5B,MAAMxF,UAAW,MAAMyE;IACvB,MAAMhE,YAAYwE,UAAUvD,MAAM;IAClC,MAAM+D,YAAY,IAAIC,uBAAS;IAC/B,MAAMC,YAAYb,aAAa3C,oBAAoB;IAEnD,IAAI;QAEF,MAAMrC,MAAME,SAASC;QACrB,MAAM2F,aAAajH;QACnB,MAAMkH,cAAclB,OAAO3E,SAASC;QACpC,MAAM6F,UAAUD,uBAAuBE;QACvC,IAAID,SAAS;YACX,MAAMD;QACR;QACA,MAAMG,gBAAgBrH,OAAOiH;QAC7B,MAAM7F,OAAOC,SAASC;QAEtB,MAAMhB,MAAM6G,UAAU1G,SAASuF,UAAU3F,QAAQ2F;QAGjD,MAAMsB,iBAAiBD,kBAAkB,EAAE,GAAG,EAAE,GAAGA;QACnD,MAAME,iBAAiBvF,OAAOtB,mBAAmB4G;QACjD,MAAME,mBAAmBlF,KAAKC,GAAG,CAAC5B,WAAW2B,KAAKW,GAAG,CAAC,GAAGsE;QAGzD,MAAME,QAAQ,MAAM/F,eAAe;YACjCC,cAAc6F;YACdlH;YACAa;YACAC;YACAC;YACAC,MAAMA;YACNM;YACAC;YACAC;QACF;QACA,IAAIZ,YAAYuG,MAAMvG,SAAS;QAC/BU,YAAY6F,MAAM7F,SAAS;QAC3BC,eAAe4F,MAAM5F,YAAY;QAGjC,MAAM6F,cAAcC,KAAKC,GAAG;QAC5B,IAAIC,kBAAkB5B;QACtB,MAAM6B,eAAyB,EAAE;QACjC,MAAMC,YAAYzF,KAAKW,GAAG,CAACgD,cAAc3D,KAAKC,GAAG,CAACT,WAAWmE,eAAe,KAAK;QAEjF,MAAO0B,KAAKC,GAAG,KAAKF,cAAc,SAASG,kBAAkB,EAAG;YAC9D,MAAMrH,QAAQR;YACd,MAAMmB,MAAME,SAASC;YACrB,MAAMhB,IAAIe,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWkD,cAAc9F,OAAOhC,OAAOQ,QAAQuH;YAC/CF;QACF;QACA,IAAIG,aAAa;QACjB,MAAOA,aAAaH,gBAAiB;YACnC,MAAMrH,QAAQR;YACd,MAAMmB,MAAME,SAASC;YACrB,MAAMhB,IAAIe,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWkD,cAAc9F,OAAOhC,OAAOQ,QAAQuH;YAC/CC;YACA,IAAIC,OAAOC,EAAE,IAAIF,aAAanH,cAAc,GAAG;gBAC7CoH,OAAOC,EAAE;YACX;QACF;QACA,MAAOJ,aAAa/E,MAAM,IAAI,KAAK+E,aAAa/E,MAAM,GAAGgF,UAAW;YAClE,MAAM3E,KAAKyC,SAASiC;YACpB,IAAI1E,MAAMvB,eAAe,GAAG;gBAC1B;YACF;YACA,MAAMrB,QAAQR;YACd,MAAMmB,MAAME,SAASC;YACrB,MAAMhB,IAAIe,SAASC;YACnB,MAAMF,OAAOC,SAASC;YACtBsD,WAAWkD,cAAc9F,OAAOhC,OAAOQ,QAAQuH;QACjD;QAEA,IAAIxD,IAAI;QACR,IAAI5B,OAAO,EAAE;QACb,IAAIwF,KAAK,EAAE;QACX,MAAMC,gBAA0B,EAAE;QAElC,MAAO,KAAM;YACX,IAAI7D,KAAKzC,WAAW;YAEpB,MAAMuG,WAAWvB,UAAUtG,KAAK;YAChC,MAAM8H,cAAcC,2BAAW,CAACX,GAAG;YACnC,IAAIrG,iBAAiB,EAAE;YACvB,IAAK,IAAIC,IAAI,GAAGA,IAAIN,WAAWM,IAAK;gBAClC,MAAML,MAAME,SAASC;gBACrBC,kBAAkB,MAAMjB,IAAIe,SAASC;gBACrC,MAAMF,OAAOC,SAASC;gBACtB,IAAI2G,OAAOC,EAAE,IAAI,AAAC3D,CAAAA,IAAI/C,CAAAA,IAAKX,cAAc,GAAG;oBAC1CoH,OAAOC,EAAE;gBACX;YACF;YAGA3G,kBAAkBE,OAAOP;YAEzB,MAAMsH,YAAYD,2BAAW,CAACX,GAAG;YACjC,MAAMa,UAAU3B,UAAU4B,IAAI,CAACL,aAAcrB,CAAAA,WAAW3C,SAASiE,aAAaE,cAAc,KAAI;YAChG,IAAIC,SAAS;gBACX;YACF;YAEA,MAAME,iBAAiB3G,OAAOT;YAC9BqD,WAAWwD,eAAeO,gBAAgB3H;YAC1C,MAAM,EAAEkE,MAAM,EAAEC,GAAG,EAAE,GAAGF,aAAamD;YACrC,MAAMQ,aAAa1D,SAASnE,yBAAyBoE,OAAOnD,OAAOC,iBAAiB;YACpF,IAAImG,cAAcrF,MAAM,IAAI,KAAK4F,iBAAiBC,YAAY;gBAC5D;YACF;YAEA,MAAMC,aAAa7G,OAAOW;YAC1B,IAAI4B,KAAK,KAAKsE,aAAa,KAAKF,iBAAiB7H,qBAAqB+H,YAAY;gBAChF;YACF;YAEAvC,SAAS,CAAC/B,IAAI,GAAGhD;YACjB,MAAMuH,QAAQvH,iBAAiBoB;YAC/BA,QAAQmG,QAAQrH,OAAO8C;YACvB4D,MAAMW,QAASvH,CAAAA,iBAAiBoB,IAAG;YAEnC,MAAMoG,WAAWzG,KAAKW,GAAG,CAACsB,IAAIzC,aAAa/B;YAC3C,IAAIwE,IAAI3D,oBAAoB,GAAG;gBAC7B4F,OAAO,CAACE,iBAAO,CAACE,QAAQ,CAAC,GAAGmC;YAC9B;YAEA,IAAIxE,KAAK3C,WAAW;gBAClB,MAAMoB,WAAWhB,OAAOmG,MAAO5D,CAAAA,IAAI,CAAA;gBACnC,MAAMrB,SAASZ,KAAKa,IAAI,CAACH;gBACzB,IAAIE,UAAUlB,OAAOkE,eAAe;oBAClC;gBACF;gBAEA,MAAM8C,UAAUhH,OAAOW;gBACvB,MAAMsG,MAAM/F,SAAU8F,CAAAA,WAAW,CAAA;gBACjC,IAAIC,OAAOpH,cAAc;oBACvB;gBACF;YACF;QACF;QAEA2E,OAAO,CAACE,iBAAO,CAACC,KAAK,CAAC,GAAGpC;QACzBiC,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,EAAE,OAAOqC,GAAG;QACVC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACrE1C,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;IAC9B,SAAU;QACRG,WAAWtC;QACX,IAAI;YACF,MAAMqB,WAAW1E;QACnB,EAAE,OAAO6H,GAAG;YACV1C,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC,GAAG;YAC5BsC,QAAQC,KAAK,CAACF,KAAK,OAAOA,MAAM,YAAY,WAAWA,IAAIA,EAAEG,KAAK,GAAGH;QACvE;IACF;IAEA,OAAO1C,OAAO,CAACE,iBAAO,CAACG,QAAQ,CAAC;AAClC"}
|
package/build/runner.d.ts
CHANGED
|
@@ -1,2 +1,2 @@
|
|
|
1
1
|
import { Options } from './types.js';
|
|
2
|
-
export declare const benchmark: <TContext, TInput>({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, durationsSAB, controlSAB, }: Required<Options<TContext, TInput>>) => Promise<number>;
|
|
2
|
+
export declare const benchmark: <TContext, TInput>({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, gcObserver, durationsSAB, controlSAB, }: Required<Options<TContext, TInput>>) => Promise<number>;
|
package/build/runner.js
CHANGED
|
@@ -1,20 +1,148 @@
|
|
|
1
|
+
import { performance, PerformanceObserver } from 'node:perf_hooks';
|
|
1
2
|
import { Control } from "./types.js";
|
|
3
|
+
import { GCWatcher } from "./gc-watcher.js";
|
|
2
4
|
const COMPLETE_VALUE = 100_00;
|
|
5
|
+
const hr = process.hrtime.bigint.bind(process.hrtime);
|
|
3
6
|
const runSync = (run)=>{
|
|
4
7
|
return (...args)=>{
|
|
5
|
-
const start =
|
|
8
|
+
const start = hr();
|
|
6
9
|
run(...args);
|
|
7
|
-
return
|
|
10
|
+
return hr() - start;
|
|
8
11
|
};
|
|
9
12
|
};
|
|
10
13
|
const runAsync = (run)=>{
|
|
11
14
|
return async (...args)=>{
|
|
12
|
-
const start =
|
|
15
|
+
const start = hr();
|
|
13
16
|
await run(...args);
|
|
14
|
-
return
|
|
17
|
+
return hr() - start;
|
|
15
18
|
};
|
|
16
19
|
};
|
|
17
|
-
|
|
20
|
+
const TARGET_SAMPLE_NS = 1_000_000n;
|
|
21
|
+
const MAX_BATCH = 1_048_576;
|
|
22
|
+
const PROGRESS_STRIDE = 16;
|
|
23
|
+
const GC_STRIDE = 32;
|
|
24
|
+
const OUTLIER_MULTIPLIER = 4;
|
|
25
|
+
const OUTLIER_IQR_MULTIPLIER = 3;
|
|
26
|
+
const OUTLIER_WINDOW = 64;
|
|
27
|
+
const collectSample = async (batchSize, run, pre, post, context, data)=>{
|
|
28
|
+
let sampleDuration = 0n;
|
|
29
|
+
for(let b = 0; b < batchSize; b++){
|
|
30
|
+
await pre?.(context, data);
|
|
31
|
+
sampleDuration += await run(context, data);
|
|
32
|
+
await post?.(context, data);
|
|
33
|
+
}
|
|
34
|
+
return sampleDuration / BigInt(batchSize);
|
|
35
|
+
};
|
|
36
|
+
const tuneParameters = async ({ initialBatch, run, pre, post, context, data, minCycles, relThreshold, maxCycles })=>{
|
|
37
|
+
let batchSize = initialBatch;
|
|
38
|
+
let bestCv = Number.POSITIVE_INFINITY;
|
|
39
|
+
let bestBatch = batchSize;
|
|
40
|
+
for(let attempt = 0; attempt < 3; attempt++){
|
|
41
|
+
const samples = [];
|
|
42
|
+
const sampleCount = Math.min(8, maxCycles);
|
|
43
|
+
for(let s = 0; s < sampleCount; s++){
|
|
44
|
+
const duration = await collectSample(batchSize, run, pre, post, context, data);
|
|
45
|
+
samples.push(Number(duration));
|
|
46
|
+
}
|
|
47
|
+
const mean = samples.reduce((acc, v)=>acc + v, 0) / samples.length;
|
|
48
|
+
const variance = samples.reduce((acc, v)=>acc + (v - mean) * (v - mean), 0) / Math.max(1, samples.length - 1);
|
|
49
|
+
const stddev = Math.sqrt(variance);
|
|
50
|
+
const cv = mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
|
|
51
|
+
if (cv < bestCv) {
|
|
52
|
+
bestCv = cv;
|
|
53
|
+
bestBatch = batchSize;
|
|
54
|
+
}
|
|
55
|
+
if (cv <= relThreshold || batchSize >= MAX_BATCH) {
|
|
56
|
+
break;
|
|
57
|
+
}
|
|
58
|
+
batchSize = Math.min(MAX_BATCH, batchSize * 2);
|
|
59
|
+
}
|
|
60
|
+
const tunedRel = bestCv < relThreshold ? Math.max(bestCv * 1.5, relThreshold * 0.5) : relThreshold;
|
|
61
|
+
const tunedMin = Math.min(maxCycles, Math.max(minCycles, Math.ceil(minCycles * Math.max(1, bestCv / (relThreshold || 1e-6)))));
|
|
62
|
+
return {
|
|
63
|
+
batchSize: bestBatch,
|
|
64
|
+
relThreshold: tunedRel,
|
|
65
|
+
minCycles: tunedMin
|
|
66
|
+
};
|
|
67
|
+
};
|
|
68
|
+
const createGCTracker = ()=>{
|
|
69
|
+
if (process.env.OVERTAKE_GC_OBSERVER !== '1') {
|
|
70
|
+
return null;
|
|
71
|
+
}
|
|
72
|
+
if (typeof PerformanceObserver === 'undefined') {
|
|
73
|
+
return null;
|
|
74
|
+
}
|
|
75
|
+
const events = [];
|
|
76
|
+
const observer = new PerformanceObserver((list)=>{
|
|
77
|
+
for (const entry of list.getEntries()){
|
|
78
|
+
events.push({
|
|
79
|
+
start: entry.startTime,
|
|
80
|
+
end: entry.startTime + entry.duration
|
|
81
|
+
});
|
|
82
|
+
}
|
|
83
|
+
});
|
|
84
|
+
try {
|
|
85
|
+
observer.observe({
|
|
86
|
+
entryTypes: [
|
|
87
|
+
'gc'
|
|
88
|
+
]
|
|
89
|
+
});
|
|
90
|
+
} catch {
|
|
91
|
+
return null;
|
|
92
|
+
}
|
|
93
|
+
const overlaps = (start, end)=>{
|
|
94
|
+
let noisy = false;
|
|
95
|
+
for(let i = events.length - 1; i >= 0; i--){
|
|
96
|
+
const event = events[i];
|
|
97
|
+
if (event.end < start - 5_000) {
|
|
98
|
+
events.splice(i, 1);
|
|
99
|
+
continue;
|
|
100
|
+
}
|
|
101
|
+
if (event.start <= end && event.end >= start) {
|
|
102
|
+
noisy = true;
|
|
103
|
+
}
|
|
104
|
+
}
|
|
105
|
+
return noisy;
|
|
106
|
+
};
|
|
107
|
+
const dispose = ()=>observer.disconnect();
|
|
108
|
+
return {
|
|
109
|
+
overlaps,
|
|
110
|
+
dispose
|
|
111
|
+
};
|
|
112
|
+
};
|
|
113
|
+
const pushWindow = (arr, value, cap)=>{
|
|
114
|
+
if (arr.length === cap) {
|
|
115
|
+
arr.shift();
|
|
116
|
+
}
|
|
117
|
+
arr.push(value);
|
|
118
|
+
};
|
|
119
|
+
const medianAndIqr = (arr)=>{
|
|
120
|
+
if (arr.length === 0) return {
|
|
121
|
+
median: 0,
|
|
122
|
+
iqr: 0
|
|
123
|
+
};
|
|
124
|
+
const sorted = [
|
|
125
|
+
...arr
|
|
126
|
+
].sort((a, b)=>a - b);
|
|
127
|
+
const mid = Math.floor(sorted.length / 2);
|
|
128
|
+
const median = sorted.length % 2 === 0 ? (sorted[mid - 1] + sorted[mid]) / 2 : sorted[mid];
|
|
129
|
+
const q1Idx = Math.floor(sorted.length * 0.25);
|
|
130
|
+
const q3Idx = Math.floor(sorted.length * 0.75);
|
|
131
|
+
const q1 = sorted[q1Idx];
|
|
132
|
+
const q3 = sorted[q3Idx];
|
|
133
|
+
return {
|
|
134
|
+
median,
|
|
135
|
+
iqr: q3 - q1
|
|
136
|
+
};
|
|
137
|
+
};
|
|
138
|
+
const windowCv = (arr)=>{
|
|
139
|
+
if (arr.length < 2) return Number.POSITIVE_INFINITY;
|
|
140
|
+
const mean = arr.reduce((a, v)=>a + v, 0) / arr.length;
|
|
141
|
+
const variance = arr.reduce((a, v)=>a + (v - mean) * (v - mean), 0) / (arr.length - 1);
|
|
142
|
+
const stddev = Math.sqrt(variance);
|
|
143
|
+
return mean === 0 ? Number.POSITIVE_INFINITY : stddev / mean;
|
|
144
|
+
};
|
|
145
|
+
export const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data, warmupCycles, minCycles, absThreshold, relThreshold, gcObserver = false, durationsSAB, controlSAB })=>{
|
|
18
146
|
const durations = new BigUint64Array(durationsSAB);
|
|
19
147
|
const control = new Int32Array(controlSAB);
|
|
20
148
|
control[Control.INDEX] = 0;
|
|
@@ -22,34 +150,113 @@ export const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data,
|
|
|
22
150
|
control[Control.COMPLETE] = 255;
|
|
23
151
|
const context = await setup?.();
|
|
24
152
|
const maxCycles = durations.length;
|
|
153
|
+
const gcWatcher = new GCWatcher();
|
|
154
|
+
const gcTracker = gcObserver ? createGCTracker() : null;
|
|
25
155
|
try {
|
|
26
156
|
await pre?.(context, data);
|
|
27
|
-
const
|
|
157
|
+
const probeStart = hr();
|
|
158
|
+
const probeResult = runRaw(context, data);
|
|
159
|
+
const isAsync = probeResult instanceof Promise;
|
|
160
|
+
if (isAsync) {
|
|
161
|
+
await probeResult;
|
|
162
|
+
}
|
|
163
|
+
const durationProbe = hr() - probeStart;
|
|
28
164
|
await post?.(context, data);
|
|
29
|
-
const run =
|
|
30
|
-
const
|
|
31
|
-
|
|
32
|
-
|
|
165
|
+
const run = isAsync ? runAsync(runRaw) : runSync(runRaw);
|
|
166
|
+
const durationPerRun = durationProbe === 0n ? 1n : durationProbe;
|
|
167
|
+
const suggestedBatch = Number(TARGET_SAMPLE_NS / durationPerRun);
|
|
168
|
+
const initialBatchSize = Math.min(MAX_BATCH, Math.max(1, suggestedBatch));
|
|
169
|
+
const tuned = await tuneParameters({
|
|
170
|
+
initialBatch: initialBatchSize,
|
|
171
|
+
run,
|
|
172
|
+
pre,
|
|
173
|
+
post,
|
|
174
|
+
context,
|
|
175
|
+
data: data,
|
|
176
|
+
minCycles,
|
|
177
|
+
relThreshold,
|
|
178
|
+
maxCycles
|
|
179
|
+
});
|
|
180
|
+
let batchSize = tuned.batchSize;
|
|
181
|
+
minCycles = tuned.minCycles;
|
|
182
|
+
relThreshold = tuned.relThreshold;
|
|
183
|
+
const warmupStart = Date.now();
|
|
184
|
+
let warmupRemaining = warmupCycles;
|
|
185
|
+
const warmupWindow = [];
|
|
186
|
+
const warmupCap = Math.max(warmupCycles, Math.min(maxCycles, warmupCycles * 4 || 1000));
|
|
187
|
+
while(Date.now() - warmupStart < 1_000 && warmupRemaining > 0){
|
|
188
|
+
const start = hr();
|
|
189
|
+
await pre?.(context, data);
|
|
190
|
+
await run(context, data);
|
|
191
|
+
await post?.(context, data);
|
|
192
|
+
pushWindow(warmupWindow, Number(hr() - start), warmupCap);
|
|
193
|
+
warmupRemaining--;
|
|
194
|
+
}
|
|
195
|
+
let warmupDone = 0;
|
|
196
|
+
while(warmupDone < warmupRemaining){
|
|
197
|
+
const start = hr();
|
|
198
|
+
await pre?.(context, data);
|
|
199
|
+
await run(context, data);
|
|
200
|
+
await post?.(context, data);
|
|
201
|
+
pushWindow(warmupWindow, Number(hr() - start), warmupCap);
|
|
202
|
+
warmupDone++;
|
|
203
|
+
if (global.gc && warmupDone % GC_STRIDE === 0) {
|
|
204
|
+
global.gc();
|
|
205
|
+
}
|
|
33
206
|
}
|
|
34
|
-
|
|
207
|
+
while(warmupWindow.length >= 8 && warmupWindow.length < warmupCap){
|
|
208
|
+
const cv = windowCv(warmupWindow);
|
|
209
|
+
if (cv <= relThreshold * 2) {
|
|
210
|
+
break;
|
|
211
|
+
}
|
|
212
|
+
const start = hr();
|
|
35
213
|
await pre?.(context, data);
|
|
36
214
|
await run(context, data);
|
|
37
215
|
await post?.(context, data);
|
|
216
|
+
pushWindow(warmupWindow, Number(hr() - start), warmupCap);
|
|
38
217
|
}
|
|
39
218
|
let i = 0;
|
|
40
219
|
let mean = 0n;
|
|
41
220
|
let m2 = 0n;
|
|
221
|
+
const outlierWindow = [];
|
|
42
222
|
while(true){
|
|
43
223
|
if (i >= maxCycles) break;
|
|
44
|
-
|
|
45
|
-
const
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
224
|
+
const gcMarker = gcWatcher.start();
|
|
225
|
+
const sampleStart = performance.now();
|
|
226
|
+
let sampleDuration = 0n;
|
|
227
|
+
for(let b = 0; b < batchSize; b++){
|
|
228
|
+
await pre?.(context, data);
|
|
229
|
+
sampleDuration += await run(context, data);
|
|
230
|
+
await post?.(context, data);
|
|
231
|
+
if (global.gc && (i + b) % GC_STRIDE === 0) {
|
|
232
|
+
global.gc();
|
|
233
|
+
}
|
|
234
|
+
}
|
|
235
|
+
sampleDuration /= BigInt(batchSize);
|
|
236
|
+
const sampleEnd = performance.now();
|
|
237
|
+
const gcNoise = gcWatcher.seen(gcMarker) || (gcTracker?.overlaps(sampleStart, sampleEnd) ?? false);
|
|
238
|
+
if (gcNoise) {
|
|
239
|
+
continue;
|
|
240
|
+
}
|
|
241
|
+
const durationNumber = Number(sampleDuration);
|
|
242
|
+
pushWindow(outlierWindow, durationNumber, OUTLIER_WINDOW);
|
|
243
|
+
const { median, iqr } = medianAndIqr(outlierWindow);
|
|
244
|
+
const maxAllowed = median + OUTLIER_IQR_MULTIPLIER * iqr || Number.POSITIVE_INFINITY;
|
|
245
|
+
if (outlierWindow.length >= 8 && durationNumber > maxAllowed) {
|
|
246
|
+
continue;
|
|
247
|
+
}
|
|
248
|
+
const meanNumber = Number(mean);
|
|
249
|
+
if (i >= 8 && meanNumber > 0 && durationNumber > OUTLIER_MULTIPLIER * meanNumber) {
|
|
250
|
+
continue;
|
|
251
|
+
}
|
|
252
|
+
durations[i++] = sampleDuration;
|
|
253
|
+
const delta = sampleDuration - mean;
|
|
49
254
|
mean += delta / BigInt(i);
|
|
50
|
-
m2 += delta * (
|
|
255
|
+
m2 += delta * (sampleDuration - mean);
|
|
51
256
|
const progress = Math.max(i / maxCycles) * COMPLETE_VALUE;
|
|
52
|
-
|
|
257
|
+
if (i % PROGRESS_STRIDE === 0) {
|
|
258
|
+
control[Control.PROGRESS] = progress;
|
|
259
|
+
}
|
|
53
260
|
if (i >= minCycles) {
|
|
54
261
|
const variance = Number(m2) / (i - 1);
|
|
55
262
|
const stddev = Math.sqrt(variance);
|
|
@@ -69,6 +276,7 @@ export const benchmark = async ({ setup, teardown, pre, run: runRaw, post, data,
|
|
|
69
276
|
console.error(e && typeof e === 'object' && 'stack' in e ? e.stack : e);
|
|
70
277
|
control[Control.COMPLETE] = 1;
|
|
71
278
|
} finally{
|
|
279
|
+
gcTracker?.dispose?.();
|
|
72
280
|
try {
|
|
73
281
|
await teardown?.(context);
|
|
74
282
|
} catch (e) {
|