orion-design 0.1.1 → 0.1.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (65) hide show
  1. package/dist/components/Flex/Col.d.ts +25 -0
  2. package/dist/components/Flex/Item.d.ts +25 -0
  3. package/dist/components/Flex/Row.d.ts +25 -0
  4. package/dist/components/Flex/index.d.ts +10 -0
  5. package/dist/components/Flex/index.js +151 -0
  6. package/dist/components/Modal/Modal.d.ts +2 -0
  7. package/dist/components/Space/index.d.ts +76 -0
  8. package/dist/components/_util/classNames.d.ts +2 -0
  9. package/dist/components/_util/classNames.js +31 -0
  10. package/dist/components/_util/isValid.d.ts +2 -0
  11. package/dist/components/_util/isValid.js +5 -0
  12. package/dist/components/_util/props-util/index.d.ts +6 -0
  13. package/dist/components/_util/props-util/index.js +53 -0
  14. package/dist/components/_util/props-util/initDefaultProps.d.ts +6 -0
  15. package/dist/components/_util/props-util/initDefaultProps.js +25 -0
  16. package/dist/components/_util/type.d.ts +62 -0
  17. package/dist/components/_util/type.js +66 -0
  18. package/dist/components/_util/util.d.ts +18 -0
  19. package/dist/components/_util/util.js +83 -0
  20. package/dist/components/_util/vue-types/index.d.ts +12 -0
  21. package/dist/components/_util/vue-types/index.js +473 -0
  22. package/dist/components/components.d.ts +4 -0
  23. package/dist/components/components.js +10 -0
  24. package/dist/components/index.d.ts +3 -0
  25. package/dist/components/index.js +23 -0
  26. package/dist/components-O4L3qYfM.js +61 -0
  27. package/dist/error/OrionError.js +9 -7
  28. package/dist/index.css +44 -0
  29. package/dist/index.d.ts +3 -0
  30. package/dist/index.js +11 -0
  31. package/dist/print/LodopFuncs.js +109 -140
  32. package/dist/print/index.js +204 -199
  33. package/dist/request/ErrorHandlerChain.js +13 -13
  34. package/dist/request/RequestFilterChain.js +13 -13
  35. package/dist/request/ResponseParserChain.js +13 -13
  36. package/dist/request/disivion/DateSerializer.js +43 -51
  37. package/dist/request/disivion/DivisionErrorHandler.js +42 -42
  38. package/dist/request/disivion/DivisionResponseParser.js +22 -18
  39. package/dist/request/disivion/index.d.ts +21 -1
  40. package/dist/request/disivion/index.js +174 -153
  41. package/dist/request/error/BizExceptionResponseError.js +10 -10
  42. package/dist/request/error/ExceptionResponseError.js +10 -10
  43. package/dist/request/error/ResponseError.js +11 -9
  44. package/dist/request/error/SessionExceptionResponseError.js +10 -10
  45. package/dist/request/index.d.ts +3 -0
  46. package/dist/request/index.js +3 -2
  47. package/dist/style/index.d.ts +3 -0
  48. package/dist/style/index.js +1 -0
  49. package/dist/utils/DateUtil.js +46 -50
  50. package/dist/utils/NumberUtil.js +5 -5
  51. package/dist/utils/cloneDeep.js +1 -2255
  52. package/dist/utils/delay.js +1 -1
  53. package/dist/utils/index.js +2 -2
  54. package/dist/utils/md5.js +215 -271
  55. package/dist/version/index.d.ts +2 -0
  56. package/dist/version/index.js +6 -0
  57. package/dist/version/version.d.ts +2 -0
  58. package/dist/version/version.js +3 -0
  59. package/global.d.ts +9 -0
  60. package/package.json +25 -9
  61. package/dist/bignumber-upqAL281.js +0 -2907
  62. package/dist/request/disivion/request.d.ts +0 -21
  63. package/dist/request/disivion/request.js +0 -476
  64. package/dist/request/postByOpenNewWindow.d.ts +0 -1
  65. package/dist/request/postByOpenNewWindow.js +0 -41
@@ -1,2907 +0,0 @@
1
- /*
2
- * bignumber.js v9.1.2
3
- * A JavaScript library for arbitrary-precision arithmetic.
4
- * https://github.com/MikeMcl/bignumber.js
5
- * Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>
6
- * MIT Licensed.
7
- *
8
- * BigNumber.prototype methods | BigNumber methods
9
- * |
10
- * absoluteValue abs | clone
11
- * comparedTo | config set
12
- * decimalPlaces dp | DECIMAL_PLACES
13
- * dividedBy div | ROUNDING_MODE
14
- * dividedToIntegerBy idiv | EXPONENTIAL_AT
15
- * exponentiatedBy pow | RANGE
16
- * integerValue | CRYPTO
17
- * isEqualTo eq | MODULO_MODE
18
- * isFinite | POW_PRECISION
19
- * isGreaterThan gt | FORMAT
20
- * isGreaterThanOrEqualTo gte | ALPHABET
21
- * isInteger | isBigNumber
22
- * isLessThan lt | maximum max
23
- * isLessThanOrEqualTo lte | minimum min
24
- * isNaN | random
25
- * isNegative | sum
26
- * isPositive |
27
- * isZero |
28
- * minus |
29
- * modulo mod |
30
- * multipliedBy times |
31
- * negated |
32
- * plus |
33
- * precision sd |
34
- * shiftedBy |
35
- * squareRoot sqrt |
36
- * toExponential |
37
- * toFixed |
38
- * toFormat |
39
- * toFraction |
40
- * toJSON |
41
- * toNumber |
42
- * toPrecision |
43
- * toString |
44
- * valueOf |
45
- *
46
- */
47
-
48
-
49
- var
50
- isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i,
51
- mathceil = Math.ceil,
52
- mathfloor = Math.floor,
53
-
54
- bignumberError = '[BigNumber Error] ',
55
- tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',
56
-
57
- BASE = 1e14,
58
- LOG_BASE = 14,
59
- MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1
60
- // MAX_INT32 = 0x7fffffff, // 2^31 - 1
61
- POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
62
- SQRT_BASE = 1e7,
63
-
64
- // EDITABLE
65
- // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
66
- // the arguments to toExponential, toFixed, toFormat, and toPrecision.
67
- MAX = 1E9; // 0 to MAX_INT32
68
-
69
-
70
- /*
71
- * Create and return a BigNumber constructor.
72
- */
73
- function clone(configObject) {
74
- var div, convertBase, parseNumeric,
75
- P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null },
76
- ONE = new BigNumber(1),
77
-
78
-
79
- //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------
80
-
81
-
82
- // The default values below must be integers within the inclusive ranges stated.
83
- // The values can also be changed at run-time using BigNumber.set.
84
-
85
- // The maximum number of decimal places for operations involving division.
86
- DECIMAL_PLACES = 20, // 0 to MAX
87
-
88
- // The rounding mode used when rounding to the above decimal places, and when using
89
- // toExponential, toFixed, toFormat and toPrecision, and round (default value).
90
- // UP 0 Away from zero.
91
- // DOWN 1 Towards zero.
92
- // CEIL 2 Towards +Infinity.
93
- // FLOOR 3 Towards -Infinity.
94
- // HALF_UP 4 Towards nearest neighbour. If equidistant, up.
95
- // HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.
96
- // HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.
97
- // HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.
98
- // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
99
- ROUNDING_MODE = 4, // 0 to 8
100
-
101
- // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
102
-
103
- // The exponent value at and beneath which toString returns exponential notation.
104
- // Number type: -7
105
- TO_EXP_NEG = -7, // 0 to -MAX
106
-
107
- // The exponent value at and above which toString returns exponential notation.
108
- // Number type: 21
109
- TO_EXP_POS = 21, // 0 to MAX
110
-
111
- // RANGE : [MIN_EXP, MAX_EXP]
112
-
113
- // The minimum exponent value, beneath which underflow to zero occurs.
114
- // Number type: -324 (5e-324)
115
- MIN_EXP = -1e7, // -1 to -MAX
116
-
117
- // The maximum exponent value, above which overflow to Infinity occurs.
118
- // Number type: 308 (1.7976931348623157e+308)
119
- // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
120
- MAX_EXP = 1e7, // 1 to MAX
121
-
122
- // Whether to use cryptographically-secure random number generation, if available.
123
- CRYPTO = false, // true or false
124
-
125
- // The modulo mode used when calculating the modulus: a mod n.
126
- // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
127
- // The remainder (r) is calculated as: r = a - n * q.
128
- //
129
- // UP 0 The remainder is positive if the dividend is negative, else is negative.
130
- // DOWN 1 The remainder has the same sign as the dividend.
131
- // This modulo mode is commonly known as 'truncated division' and is
132
- // equivalent to (a % n) in JavaScript.
133
- // FLOOR 3 The remainder has the same sign as the divisor (Python %).
134
- // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
135
- // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).
136
- // The remainder is always positive.
137
- //
138
- // The truncated division, floored division, Euclidian division and IEEE 754 remainder
139
- // modes are commonly used for the modulus operation.
140
- // Although the other rounding modes can also be used, they may not give useful results.
141
- MODULO_MODE = 1, // 0 to 9
142
-
143
- // The maximum number of significant digits of the result of the exponentiatedBy operation.
144
- // If POW_PRECISION is 0, there will be unlimited significant digits.
145
- POW_PRECISION = 0, // 0 to MAX
146
-
147
- // The format specification used by the BigNumber.prototype.toFormat method.
148
- FORMAT = {
149
- prefix: '',
150
- groupSize: 3,
151
- secondaryGroupSize: 0,
152
- groupSeparator: ',',
153
- decimalSeparator: '.',
154
- fractionGroupSize: 0,
155
- fractionGroupSeparator: '\xA0', // non-breaking space
156
- suffix: ''
157
- },
158
-
159
- // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',
160
- // '-', '.', whitespace, or repeated character.
161
- // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
162
- ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz',
163
- alphabetHasNormalDecimalDigits = true;
164
-
165
-
166
- //------------------------------------------------------------------------------------------
167
-
168
-
169
- // CONSTRUCTOR
170
-
171
-
172
- /*
173
- * The BigNumber constructor and exported function.
174
- * Create and return a new instance of a BigNumber object.
175
- *
176
- * v {number|string|BigNumber} A numeric value.
177
- * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive.
178
- */
179
- function BigNumber(v, b) {
180
- var alphabet, c, caseChanged, e, i, isNum, len, str,
181
- x = this;
182
-
183
- // Enable constructor call without `new`.
184
- if (!(x instanceof BigNumber)) return new BigNumber(v, b);
185
-
186
- if (b == null) {
187
-
188
- if (v && v._isBigNumber === true) {
189
- x.s = v.s;
190
-
191
- if (!v.c || v.e > MAX_EXP) {
192
- x.c = x.e = null;
193
- } else if (v.e < MIN_EXP) {
194
- x.c = [x.e = 0];
195
- } else {
196
- x.e = v.e;
197
- x.c = v.c.slice();
198
- }
199
-
200
- return;
201
- }
202
-
203
- if ((isNum = typeof v == 'number') && v * 0 == 0) {
204
-
205
- // Use `1 / n` to handle minus zero also.
206
- x.s = 1 / v < 0 ? (v = -v, -1) : 1;
207
-
208
- // Fast path for integers, where n < 2147483648 (2**31).
209
- if (v === ~~v) {
210
- for (e = 0, i = v; i >= 10; i /= 10, e++);
211
-
212
- if (e > MAX_EXP) {
213
- x.c = x.e = null;
214
- } else {
215
- x.e = e;
216
- x.c = [v];
217
- }
218
-
219
- return;
220
- }
221
-
222
- str = String(v);
223
- } else {
224
-
225
- if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum);
226
-
227
- x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1;
228
- }
229
-
230
- // Decimal point?
231
- if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
232
-
233
- // Exponential form?
234
- if ((i = str.search(/e/i)) > 0) {
235
-
236
- // Determine exponent.
237
- if (e < 0) e = i;
238
- e += +str.slice(i + 1);
239
- str = str.substring(0, i);
240
- } else if (e < 0) {
241
-
242
- // Integer.
243
- e = str.length;
244
- }
245
-
246
- } else {
247
-
248
- // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
249
- intCheck(b, 2, ALPHABET.length, 'Base');
250
-
251
- // Allow exponential notation to be used with base 10 argument, while
252
- // also rounding to DECIMAL_PLACES as with other bases.
253
- if (b == 10 && alphabetHasNormalDecimalDigits) {
254
- x = new BigNumber(v);
255
- return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE);
256
- }
257
-
258
- str = String(v);
259
-
260
- if (isNum = typeof v == 'number') {
261
-
262
- // Avoid potential interpretation of Infinity and NaN as base 44+ values.
263
- if (v * 0 != 0) return parseNumeric(x, str, isNum, b);
264
-
265
- x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1;
266
-
267
- // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
268
- if (BigNumber.DEBUG && str.replace(/^0\.0*|\./, '').length > 15) {
269
- throw Error
270
- (tooManyDigits + v);
271
- }
272
- } else {
273
- x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1;
274
- }
275
-
276
- alphabet = ALPHABET.slice(0, b);
277
- e = i = 0;
278
-
279
- // Check that str is a valid base b number.
280
- // Don't use RegExp, so alphabet can contain special characters.
281
- for (len = str.length; i < len; i++) {
282
- if (alphabet.indexOf(c = str.charAt(i)) < 0) {
283
- if (c == '.') {
284
-
285
- // If '.' is not the first character and it has not be found before.
286
- if (i > e) {
287
- e = len;
288
- continue;
289
- }
290
- } else if (!caseChanged) {
291
-
292
- // Allow e.g. hexadecimal 'FF' as well as 'ff'.
293
- if (str == str.toUpperCase() && (str = str.toLowerCase()) ||
294
- str == str.toLowerCase() && (str = str.toUpperCase())) {
295
- caseChanged = true;
296
- i = -1;
297
- e = 0;
298
- continue;
299
- }
300
- }
301
-
302
- return parseNumeric(x, String(v), isNum, b);
303
- }
304
- }
305
-
306
- // Prevent later check for length on converted number.
307
- isNum = false;
308
- str = convertBase(str, b, 10, x.s);
309
-
310
- // Decimal point?
311
- if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
312
- else e = str.length;
313
- }
314
-
315
- // Determine leading zeros.
316
- for (i = 0; str.charCodeAt(i) === 48; i++);
317
-
318
- // Determine trailing zeros.
319
- for (len = str.length; str.charCodeAt(--len) === 48;);
320
-
321
- if (str = str.slice(i, ++len)) {
322
- len -= i;
323
-
324
- // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
325
- if (isNum && BigNumber.DEBUG &&
326
- len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) {
327
- throw Error
328
- (tooManyDigits + (x.s * v));
329
- }
330
-
331
- // Overflow?
332
- if ((e = e - i - 1) > MAX_EXP) {
333
-
334
- // Infinity.
335
- x.c = x.e = null;
336
-
337
- // Underflow?
338
- } else if (e < MIN_EXP) {
339
-
340
- // Zero.
341
- x.c = [x.e = 0];
342
- } else {
343
- x.e = e;
344
- x.c = [];
345
-
346
- // Transform base
347
-
348
- // e is the base 10 exponent.
349
- // i is where to slice str to get the first element of the coefficient array.
350
- i = (e + 1) % LOG_BASE;
351
- if (e < 0) i += LOG_BASE; // i < 1
352
-
353
- if (i < len) {
354
- if (i) x.c.push(+str.slice(0, i));
355
-
356
- for (len -= LOG_BASE; i < len;) {
357
- x.c.push(+str.slice(i, i += LOG_BASE));
358
- }
359
-
360
- i = LOG_BASE - (str = str.slice(i)).length;
361
- } else {
362
- i -= len;
363
- }
364
-
365
- for (; i--; str += '0');
366
- x.c.push(+str);
367
- }
368
- } else {
369
-
370
- // Zero.
371
- x.c = [x.e = 0];
372
- }
373
- }
374
-
375
-
376
- // CONSTRUCTOR PROPERTIES
377
-
378
-
379
- BigNumber.clone = clone;
380
-
381
- BigNumber.ROUND_UP = 0;
382
- BigNumber.ROUND_DOWN = 1;
383
- BigNumber.ROUND_CEIL = 2;
384
- BigNumber.ROUND_FLOOR = 3;
385
- BigNumber.ROUND_HALF_UP = 4;
386
- BigNumber.ROUND_HALF_DOWN = 5;
387
- BigNumber.ROUND_HALF_EVEN = 6;
388
- BigNumber.ROUND_HALF_CEIL = 7;
389
- BigNumber.ROUND_HALF_FLOOR = 8;
390
- BigNumber.EUCLID = 9;
391
-
392
-
393
- /*
394
- * Configure infrequently-changing library-wide settings.
395
- *
396
- * Accept an object with the following optional properties (if the value of a property is
397
- * a number, it must be an integer within the inclusive range stated):
398
- *
399
- * DECIMAL_PLACES {number} 0 to MAX
400
- * ROUNDING_MODE {number} 0 to 8
401
- * EXPONENTIAL_AT {number|number[]} -MAX to MAX or [-MAX to 0, 0 to MAX]
402
- * RANGE {number|number[]} -MAX to MAX (not zero) or [-MAX to -1, 1 to MAX]
403
- * CRYPTO {boolean} true or false
404
- * MODULO_MODE {number} 0 to 9
405
- * POW_PRECISION {number} 0 to MAX
406
- * ALPHABET {string} A string of two or more unique characters which does
407
- * not contain '.'.
408
- * FORMAT {object} An object with some of the following properties:
409
- * prefix {string}
410
- * groupSize {number}
411
- * secondaryGroupSize {number}
412
- * groupSeparator {string}
413
- * decimalSeparator {string}
414
- * fractionGroupSize {number}
415
- * fractionGroupSeparator {string}
416
- * suffix {string}
417
- *
418
- * (The values assigned to the above FORMAT object properties are not checked for validity.)
419
- *
420
- * E.g.
421
- * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
422
- *
423
- * Ignore properties/parameters set to null or undefined, except for ALPHABET.
424
- *
425
- * Return an object with the properties current values.
426
- */
427
- BigNumber.config = BigNumber.set = function (obj) {
428
- var p, v;
429
-
430
- if (obj != null) {
431
-
432
- if (typeof obj == 'object') {
433
-
434
- // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
435
- // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'
436
- if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) {
437
- v = obj[p];
438
- intCheck(v, 0, MAX, p);
439
- DECIMAL_PLACES = v;
440
- }
441
-
442
- // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
443
- // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'
444
- if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) {
445
- v = obj[p];
446
- intCheck(v, 0, 8, p);
447
- ROUNDING_MODE = v;
448
- }
449
-
450
- // EXPONENTIAL_AT {number|number[]}
451
- // Integer, -MAX to MAX inclusive or
452
- // [integer -MAX to 0 inclusive, 0 to MAX inclusive].
453
- // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'
454
- if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) {
455
- v = obj[p];
456
- if (v && v.pop) {
457
- intCheck(v[0], -MAX, 0, p);
458
- intCheck(v[1], 0, MAX, p);
459
- TO_EXP_NEG = v[0];
460
- TO_EXP_POS = v[1];
461
- } else {
462
- intCheck(v, -MAX, MAX, p);
463
- TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v);
464
- }
465
- }
466
-
467
- // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
468
- // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
469
- // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'
470
- if (obj.hasOwnProperty(p = 'RANGE')) {
471
- v = obj[p];
472
- if (v && v.pop) {
473
- intCheck(v[0], -MAX, -1, p);
474
- intCheck(v[1], 1, MAX, p);
475
- MIN_EXP = v[0];
476
- MAX_EXP = v[1];
477
- } else {
478
- intCheck(v, -MAX, MAX, p);
479
- if (v) {
480
- MIN_EXP = -(MAX_EXP = v < 0 ? -v : v);
481
- } else {
482
- throw Error
483
- (bignumberError + p + ' cannot be zero: ' + v);
484
- }
485
- }
486
- }
487
-
488
- // CRYPTO {boolean} true or false.
489
- // '[BigNumber Error] CRYPTO not true or false: {v}'
490
- // '[BigNumber Error] crypto unavailable'
491
- if (obj.hasOwnProperty(p = 'CRYPTO')) {
492
- v = obj[p];
493
- if (v === !!v) {
494
- if (v) {
495
- if (typeof crypto != 'undefined' && crypto &&
496
- (crypto.getRandomValues || crypto.randomBytes)) {
497
- CRYPTO = v;
498
- } else {
499
- CRYPTO = !v;
500
- throw Error
501
- (bignumberError + 'crypto unavailable');
502
- }
503
- } else {
504
- CRYPTO = v;
505
- }
506
- } else {
507
- throw Error
508
- (bignumberError + p + ' not true or false: ' + v);
509
- }
510
- }
511
-
512
- // MODULO_MODE {number} Integer, 0 to 9 inclusive.
513
- // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'
514
- if (obj.hasOwnProperty(p = 'MODULO_MODE')) {
515
- v = obj[p];
516
- intCheck(v, 0, 9, p);
517
- MODULO_MODE = v;
518
- }
519
-
520
- // POW_PRECISION {number} Integer, 0 to MAX inclusive.
521
- // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'
522
- if (obj.hasOwnProperty(p = 'POW_PRECISION')) {
523
- v = obj[p];
524
- intCheck(v, 0, MAX, p);
525
- POW_PRECISION = v;
526
- }
527
-
528
- // FORMAT {object}
529
- // '[BigNumber Error] FORMAT not an object: {v}'
530
- if (obj.hasOwnProperty(p = 'FORMAT')) {
531
- v = obj[p];
532
- if (typeof v == 'object') FORMAT = v;
533
- else throw Error
534
- (bignumberError + p + ' not an object: ' + v);
535
- }
536
-
537
- // ALPHABET {string}
538
- // '[BigNumber Error] ALPHABET invalid: {v}'
539
- if (obj.hasOwnProperty(p = 'ALPHABET')) {
540
- v = obj[p];
541
-
542
- // Disallow if less than two characters,
543
- // or if it contains '+', '-', '.', whitespace, or a repeated character.
544
- if (typeof v == 'string' && !/^.?$|[+\-.\s]|(.).*\1/.test(v)) {
545
- alphabetHasNormalDecimalDigits = v.slice(0, 10) == '0123456789';
546
- ALPHABET = v;
547
- } else {
548
- throw Error
549
- (bignumberError + p + ' invalid: ' + v);
550
- }
551
- }
552
-
553
- } else {
554
-
555
- // '[BigNumber Error] Object expected: {v}'
556
- throw Error
557
- (bignumberError + 'Object expected: ' + obj);
558
- }
559
- }
560
-
561
- return {
562
- DECIMAL_PLACES: DECIMAL_PLACES,
563
- ROUNDING_MODE: ROUNDING_MODE,
564
- EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS],
565
- RANGE: [MIN_EXP, MAX_EXP],
566
- CRYPTO: CRYPTO,
567
- MODULO_MODE: MODULO_MODE,
568
- POW_PRECISION: POW_PRECISION,
569
- FORMAT: FORMAT,
570
- ALPHABET: ALPHABET
571
- };
572
- };
573
-
574
-
575
- /*
576
- * Return true if v is a BigNumber instance, otherwise return false.
577
- *
578
- * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed.
579
- *
580
- * v {any}
581
- *
582
- * '[BigNumber Error] Invalid BigNumber: {v}'
583
- */
584
- BigNumber.isBigNumber = function (v) {
585
- if (!v || v._isBigNumber !== true) return false;
586
- if (!BigNumber.DEBUG) return true;
587
-
588
- var i, n,
589
- c = v.c,
590
- e = v.e,
591
- s = v.s;
592
-
593
- out: if ({}.toString.call(c) == '[object Array]') {
594
-
595
- if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) {
596
-
597
- // If the first element is zero, the BigNumber value must be zero.
598
- if (c[0] === 0) {
599
- if (e === 0 && c.length === 1) return true;
600
- break out;
601
- }
602
-
603
- // Calculate number of digits that c[0] should have, based on the exponent.
604
- i = (e + 1) % LOG_BASE;
605
- if (i < 1) i += LOG_BASE;
606
-
607
- // Calculate number of digits of c[0].
608
- //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {
609
- if (String(c[0]).length == i) {
610
-
611
- for (i = 0; i < c.length; i++) {
612
- n = c[i];
613
- if (n < 0 || n >= BASE || n !== mathfloor(n)) break out;
614
- }
615
-
616
- // Last element cannot be zero, unless it is the only element.
617
- if (n !== 0) return true;
618
- }
619
- }
620
-
621
- // Infinity/NaN
622
- } else if (c === null && e === null && (s === null || s === 1 || s === -1)) {
623
- return true;
624
- }
625
-
626
- throw Error
627
- (bignumberError + 'Invalid BigNumber: ' + v);
628
- };
629
-
630
-
631
- /*
632
- * Return a new BigNumber whose value is the maximum of the arguments.
633
- *
634
- * arguments {number|string|BigNumber}
635
- */
636
- BigNumber.maximum = BigNumber.max = function () {
637
- return maxOrMin(arguments, -1);
638
- };
639
-
640
-
641
- /*
642
- * Return a new BigNumber whose value is the minimum of the arguments.
643
- *
644
- * arguments {number|string|BigNumber}
645
- */
646
- BigNumber.minimum = BigNumber.min = function () {
647
- return maxOrMin(arguments, 1);
648
- };
649
-
650
-
651
- /*
652
- * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
653
- * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
654
- * zeros are produced).
655
- *
656
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
657
- *
658
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'
659
- * '[BigNumber Error] crypto unavailable'
660
- */
661
- BigNumber.random = (function () {
662
- var pow2_53 = 0x20000000000000;
663
-
664
- // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
665
- // Check if Math.random() produces more than 32 bits of randomness.
666
- // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
667
- // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
668
- var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
669
- ? function () { return mathfloor(Math.random() * pow2_53); }
670
- : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
671
- (Math.random() * 0x800000 | 0); };
672
-
673
- return function (dp) {
674
- var a, b, e, k, v,
675
- i = 0,
676
- c = [],
677
- rand = new BigNumber(ONE);
678
-
679
- if (dp == null) dp = DECIMAL_PLACES;
680
- else intCheck(dp, 0, MAX);
681
-
682
- k = mathceil(dp / LOG_BASE);
683
-
684
- if (CRYPTO) {
685
-
686
- // Browsers supporting crypto.getRandomValues.
687
- if (crypto.getRandomValues) {
688
-
689
- a = crypto.getRandomValues(new Uint32Array(k *= 2));
690
-
691
- for (; i < k;) {
692
-
693
- // 53 bits:
694
- // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
695
- // 11111 11111111 11111111 11111111 11100000 00000000 00000000
696
- // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
697
- // 11111 11111111 11111111
698
- // 0x20000 is 2^21.
699
- v = a[i] * 0x20000 + (a[i + 1] >>> 11);
700
-
701
- // Rejection sampling:
702
- // 0 <= v < 9007199254740992
703
- // Probability that v >= 9e15, is
704
- // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
705
- if (v >= 9e15) {
706
- b = crypto.getRandomValues(new Uint32Array(2));
707
- a[i] = b[0];
708
- a[i + 1] = b[1];
709
- } else {
710
-
711
- // 0 <= v <= 8999999999999999
712
- // 0 <= (v % 1e14) <= 99999999999999
713
- c.push(v % 1e14);
714
- i += 2;
715
- }
716
- }
717
- i = k / 2;
718
-
719
- // Node.js supporting crypto.randomBytes.
720
- } else if (crypto.randomBytes) {
721
-
722
- // buffer
723
- a = crypto.randomBytes(k *= 7);
724
-
725
- for (; i < k;) {
726
-
727
- // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
728
- // 0x100000000 is 2^32, 0x1000000 is 2^24
729
- // 11111 11111111 11111111 11111111 11111111 11111111 11111111
730
- // 0 <= v < 9007199254740992
731
- v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) +
732
- (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) +
733
- (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6];
734
-
735
- if (v >= 9e15) {
736
- crypto.randomBytes(7).copy(a, i);
737
- } else {
738
-
739
- // 0 <= (v % 1e14) <= 99999999999999
740
- c.push(v % 1e14);
741
- i += 7;
742
- }
743
- }
744
- i = k / 7;
745
- } else {
746
- CRYPTO = false;
747
- throw Error
748
- (bignumberError + 'crypto unavailable');
749
- }
750
- }
751
-
752
- // Use Math.random.
753
- if (!CRYPTO) {
754
-
755
- for (; i < k;) {
756
- v = random53bitInt();
757
- if (v < 9e15) c[i++] = v % 1e14;
758
- }
759
- }
760
-
761
- k = c[--i];
762
- dp %= LOG_BASE;
763
-
764
- // Convert trailing digits to zeros according to dp.
765
- if (k && dp) {
766
- v = POWS_TEN[LOG_BASE - dp];
767
- c[i] = mathfloor(k / v) * v;
768
- }
769
-
770
- // Remove trailing elements which are zero.
771
- for (; c[i] === 0; c.pop(), i--);
772
-
773
- // Zero?
774
- if (i < 0) {
775
- c = [e = 0];
776
- } else {
777
-
778
- // Remove leading elements which are zero and adjust exponent accordingly.
779
- for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);
780
-
781
- // Count the digits of the first element of c to determine leading zeros, and...
782
- for (i = 1, v = c[0]; v >= 10; v /= 10, i++);
783
-
784
- // adjust the exponent accordingly.
785
- if (i < LOG_BASE) e -= LOG_BASE - i;
786
- }
787
-
788
- rand.e = e;
789
- rand.c = c;
790
- return rand;
791
- };
792
- })();
793
-
794
-
795
- /*
796
- * Return a BigNumber whose value is the sum of the arguments.
797
- *
798
- * arguments {number|string|BigNumber}
799
- */
800
- BigNumber.sum = function () {
801
- var i = 1,
802
- args = arguments,
803
- sum = new BigNumber(args[0]);
804
- for (; i < args.length;) sum = sum.plus(args[i++]);
805
- return sum;
806
- };
807
-
808
-
809
- // PRIVATE FUNCTIONS
810
-
811
-
812
- // Called by BigNumber and BigNumber.prototype.toString.
813
- convertBase = (function () {
814
- var decimal = '0123456789';
815
-
816
- /*
817
- * Convert string of baseIn to an array of numbers of baseOut.
818
- * Eg. toBaseOut('255', 10, 16) returns [15, 15].
819
- * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].
820
- */
821
- function toBaseOut(str, baseIn, baseOut, alphabet) {
822
- var j,
823
- arr = [0],
824
- arrL,
825
- i = 0,
826
- len = str.length;
827
-
828
- for (; i < len;) {
829
- for (arrL = arr.length; arrL--; arr[arrL] *= baseIn);
830
-
831
- arr[0] += alphabet.indexOf(str.charAt(i++));
832
-
833
- for (j = 0; j < arr.length; j++) {
834
-
835
- if (arr[j] > baseOut - 1) {
836
- if (arr[j + 1] == null) arr[j + 1] = 0;
837
- arr[j + 1] += arr[j] / baseOut | 0;
838
- arr[j] %= baseOut;
839
- }
840
- }
841
- }
842
-
843
- return arr.reverse();
844
- }
845
-
846
- // Convert a numeric string of baseIn to a numeric string of baseOut.
847
- // If the caller is toString, we are converting from base 10 to baseOut.
848
- // If the caller is BigNumber, we are converting from baseIn to base 10.
849
- return function (str, baseIn, baseOut, sign, callerIsToString) {
850
- var alphabet, d, e, k, r, x, xc, y,
851
- i = str.indexOf('.'),
852
- dp = DECIMAL_PLACES,
853
- rm = ROUNDING_MODE;
854
-
855
- // Non-integer.
856
- if (i >= 0) {
857
- k = POW_PRECISION;
858
-
859
- // Unlimited precision.
860
- POW_PRECISION = 0;
861
- str = str.replace('.', '');
862
- y = new BigNumber(baseIn);
863
- x = y.pow(str.length - i);
864
- POW_PRECISION = k;
865
-
866
- // Convert str as if an integer, then restore the fraction part by dividing the
867
- // result by its base raised to a power.
868
-
869
- y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'),
870
- 10, baseOut, decimal);
871
- y.e = y.c.length;
872
- }
873
-
874
- // Convert the number as integer.
875
-
876
- xc = toBaseOut(str, baseIn, baseOut, callerIsToString
877
- ? (alphabet = ALPHABET, decimal)
878
- : (alphabet = decimal, ALPHABET));
879
-
880
- // xc now represents str as an integer and converted to baseOut. e is the exponent.
881
- e = k = xc.length;
882
-
883
- // Remove trailing zeros.
884
- for (; xc[--k] == 0; xc.pop());
885
-
886
- // Zero?
887
- if (!xc[0]) return alphabet.charAt(0);
888
-
889
- // Does str represent an integer? If so, no need for the division.
890
- if (i < 0) {
891
- --e;
892
- } else {
893
- x.c = xc;
894
- x.e = e;
895
-
896
- // The sign is needed for correct rounding.
897
- x.s = sign;
898
- x = div(x, y, dp, rm, baseOut);
899
- xc = x.c;
900
- r = x.r;
901
- e = x.e;
902
- }
903
-
904
- // xc now represents str converted to baseOut.
905
-
906
- // THe index of the rounding digit.
907
- d = e + dp + 1;
908
-
909
- // The rounding digit: the digit to the right of the digit that may be rounded up.
910
- i = xc[d];
911
-
912
- // Look at the rounding digits and mode to determine whether to round up.
913
-
914
- k = baseOut / 2;
915
- r = r || d < 0 || xc[d + 1] != null;
916
-
917
- r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
918
- : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
919
- rm == (x.s < 0 ? 8 : 7));
920
-
921
- // If the index of the rounding digit is not greater than zero, or xc represents
922
- // zero, then the result of the base conversion is zero or, if rounding up, a value
923
- // such as 0.00001.
924
- if (d < 1 || !xc[0]) {
925
-
926
- // 1^-dp or 0
927
- str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0);
928
- } else {
929
-
930
- // Truncate xc to the required number of decimal places.
931
- xc.length = d;
932
-
933
- // Round up?
934
- if (r) {
935
-
936
- // Rounding up may mean the previous digit has to be rounded up and so on.
937
- for (--baseOut; ++xc[--d] > baseOut;) {
938
- xc[d] = 0;
939
-
940
- if (!d) {
941
- ++e;
942
- xc = [1].concat(xc);
943
- }
944
- }
945
- }
946
-
947
- // Determine trailing zeros.
948
- for (k = xc.length; !xc[--k];);
949
-
950
- // E.g. [4, 11, 15] becomes 4bf.
951
- for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++]));
952
-
953
- // Add leading zeros, decimal point and trailing zeros as required.
954
- str = toFixedPoint(str, e, alphabet.charAt(0));
955
- }
956
-
957
- // The caller will add the sign.
958
- return str;
959
- };
960
- })();
961
-
962
-
963
- // Perform division in the specified base. Called by div and convertBase.
964
- div = (function () {
965
-
966
- // Assume non-zero x and k.
967
- function multiply(x, k, base) {
968
- var m, temp, xlo, xhi,
969
- carry = 0,
970
- i = x.length,
971
- klo = k % SQRT_BASE,
972
- khi = k / SQRT_BASE | 0;
973
-
974
- for (x = x.slice(); i--;) {
975
- xlo = x[i] % SQRT_BASE;
976
- xhi = x[i] / SQRT_BASE | 0;
977
- m = khi * xlo + xhi * klo;
978
- temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry;
979
- carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi;
980
- x[i] = temp % base;
981
- }
982
-
983
- if (carry) x = [carry].concat(x);
984
-
985
- return x;
986
- }
987
-
988
- function compare(a, b, aL, bL) {
989
- var i, cmp;
990
-
991
- if (aL != bL) {
992
- cmp = aL > bL ? 1 : -1;
993
- } else {
994
-
995
- for (i = cmp = 0; i < aL; i++) {
996
-
997
- if (a[i] != b[i]) {
998
- cmp = a[i] > b[i] ? 1 : -1;
999
- break;
1000
- }
1001
- }
1002
- }
1003
-
1004
- return cmp;
1005
- }
1006
-
1007
- function subtract(a, b, aL, base) {
1008
- var i = 0;
1009
-
1010
- // Subtract b from a.
1011
- for (; aL--;) {
1012
- a[aL] -= i;
1013
- i = a[aL] < b[aL] ? 1 : 0;
1014
- a[aL] = i * base + a[aL] - b[aL];
1015
- }
1016
-
1017
- // Remove leading zeros.
1018
- for (; !a[0] && a.length > 1; a.splice(0, 1));
1019
- }
1020
-
1021
- // x: dividend, y: divisor.
1022
- return function (x, y, dp, rm, base) {
1023
- var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
1024
- yL, yz,
1025
- s = x.s == y.s ? 1 : -1,
1026
- xc = x.c,
1027
- yc = y.c;
1028
-
1029
- // Either NaN, Infinity or 0?
1030
- if (!xc || !xc[0] || !yc || !yc[0]) {
1031
-
1032
- return new BigNumber(
1033
-
1034
- // Return NaN if either NaN, or both Infinity or 0.
1035
- !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN :
1036
-
1037
- // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
1038
- xc && xc[0] == 0 || !yc ? s * 0 : s / 0
1039
- );
1040
- }
1041
-
1042
- q = new BigNumber(s);
1043
- qc = q.c = [];
1044
- e = x.e - y.e;
1045
- s = dp + e + 1;
1046
-
1047
- if (!base) {
1048
- base = BASE;
1049
- e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE);
1050
- s = s / LOG_BASE | 0;
1051
- }
1052
-
1053
- // Result exponent may be one less then the current value of e.
1054
- // The coefficients of the BigNumbers from convertBase may have trailing zeros.
1055
- for (i = 0; yc[i] == (xc[i] || 0); i++);
1056
-
1057
- if (yc[i] > (xc[i] || 0)) e--;
1058
-
1059
- if (s < 0) {
1060
- qc.push(1);
1061
- more = true;
1062
- } else {
1063
- xL = xc.length;
1064
- yL = yc.length;
1065
- i = 0;
1066
- s += 2;
1067
-
1068
- // Normalise xc and yc so highest order digit of yc is >= base / 2.
1069
-
1070
- n = mathfloor(base / (yc[0] + 1));
1071
-
1072
- // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.
1073
- // if (n > 1 || n++ == 1 && yc[0] < base / 2) {
1074
- if (n > 1) {
1075
- yc = multiply(yc, n, base);
1076
- xc = multiply(xc, n, base);
1077
- yL = yc.length;
1078
- xL = xc.length;
1079
- }
1080
-
1081
- xi = yL;
1082
- rem = xc.slice(0, yL);
1083
- remL = rem.length;
1084
-
1085
- // Add zeros to make remainder as long as divisor.
1086
- for (; remL < yL; rem[remL++] = 0);
1087
- yz = yc.slice();
1088
- yz = [0].concat(yz);
1089
- yc0 = yc[0];
1090
- if (yc[1] >= base / 2) yc0++;
1091
- // Not necessary, but to prevent trial digit n > base, when using base 3.
1092
- // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;
1093
-
1094
- do {
1095
- n = 0;
1096
-
1097
- // Compare divisor and remainder.
1098
- cmp = compare(yc, rem, yL, remL);
1099
-
1100
- // If divisor < remainder.
1101
- if (cmp < 0) {
1102
-
1103
- // Calculate trial digit, n.
1104
-
1105
- rem0 = rem[0];
1106
- if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);
1107
-
1108
- // n is how many times the divisor goes into the current remainder.
1109
- n = mathfloor(rem0 / yc0);
1110
-
1111
- // Algorithm:
1112
- // product = divisor multiplied by trial digit (n).
1113
- // Compare product and remainder.
1114
- // If product is greater than remainder:
1115
- // Subtract divisor from product, decrement trial digit.
1116
- // Subtract product from remainder.
1117
- // If product was less than remainder at the last compare:
1118
- // Compare new remainder and divisor.
1119
- // If remainder is greater than divisor:
1120
- // Subtract divisor from remainder, increment trial digit.
1121
-
1122
- if (n > 1) {
1123
-
1124
- // n may be > base only when base is 3.
1125
- if (n >= base) n = base - 1;
1126
-
1127
- // product = divisor * trial digit.
1128
- prod = multiply(yc, n, base);
1129
- prodL = prod.length;
1130
- remL = rem.length;
1131
-
1132
- // Compare product and remainder.
1133
- // If product > remainder then trial digit n too high.
1134
- // n is 1 too high about 5% of the time, and is not known to have
1135
- // ever been more than 1 too high.
1136
- while (compare(prod, rem, prodL, remL) == 1) {
1137
- n--;
1138
-
1139
- // Subtract divisor from product.
1140
- subtract(prod, yL < prodL ? yz : yc, prodL, base);
1141
- prodL = prod.length;
1142
- cmp = 1;
1143
- }
1144
- } else {
1145
-
1146
- // n is 0 or 1, cmp is -1.
1147
- // If n is 0, there is no need to compare yc and rem again below,
1148
- // so change cmp to 1 to avoid it.
1149
- // If n is 1, leave cmp as -1, so yc and rem are compared again.
1150
- if (n == 0) {
1151
-
1152
- // divisor < remainder, so n must be at least 1.
1153
- cmp = n = 1;
1154
- }
1155
-
1156
- // product = divisor
1157
- prod = yc.slice();
1158
- prodL = prod.length;
1159
- }
1160
-
1161
- if (prodL < remL) prod = [0].concat(prod);
1162
-
1163
- // Subtract product from remainder.
1164
- subtract(rem, prod, remL, base);
1165
- remL = rem.length;
1166
-
1167
- // If product was < remainder.
1168
- if (cmp == -1) {
1169
-
1170
- // Compare divisor and new remainder.
1171
- // If divisor < new remainder, subtract divisor from remainder.
1172
- // Trial digit n too low.
1173
- // n is 1 too low about 5% of the time, and very rarely 2 too low.
1174
- while (compare(yc, rem, yL, remL) < 1) {
1175
- n++;
1176
-
1177
- // Subtract divisor from remainder.
1178
- subtract(rem, yL < remL ? yz : yc, remL, base);
1179
- remL = rem.length;
1180
- }
1181
- }
1182
- } else if (cmp === 0) {
1183
- n++;
1184
- rem = [0];
1185
- } // else cmp === 1 and n will be 0
1186
-
1187
- // Add the next digit, n, to the result array.
1188
- qc[i++] = n;
1189
-
1190
- // Update the remainder.
1191
- if (rem[0]) {
1192
- rem[remL++] = xc[xi] || 0;
1193
- } else {
1194
- rem = [xc[xi]];
1195
- remL = 1;
1196
- }
1197
- } while ((xi++ < xL || rem[0] != null) && s--);
1198
-
1199
- more = rem[0] != null;
1200
-
1201
- // Leading zero?
1202
- if (!qc[0]) qc.splice(0, 1);
1203
- }
1204
-
1205
- if (base == BASE) {
1206
-
1207
- // To calculate q.e, first get the number of digits of qc[0].
1208
- for (i = 1, s = qc[0]; s >= 10; s /= 10, i++);
1209
-
1210
- round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more);
1211
-
1212
- // Caller is convertBase.
1213
- } else {
1214
- q.e = e;
1215
- q.r = +more;
1216
- }
1217
-
1218
- return q;
1219
- };
1220
- })();
1221
-
1222
-
1223
- /*
1224
- * Return a string representing the value of BigNumber n in fixed-point or exponential
1225
- * notation rounded to the specified decimal places or significant digits.
1226
- *
1227
- * n: a BigNumber.
1228
- * i: the index of the last digit required (i.e. the digit that may be rounded up).
1229
- * rm: the rounding mode.
1230
- * id: 1 (toExponential) or 2 (toPrecision).
1231
- */
1232
- function format(n, i, rm, id) {
1233
- var c0, e, ne, len, str;
1234
-
1235
- if (rm == null) rm = ROUNDING_MODE;
1236
- else intCheck(rm, 0, 8);
1237
-
1238
- if (!n.c) return n.toString();
1239
-
1240
- c0 = n.c[0];
1241
- ne = n.e;
1242
-
1243
- if (i == null) {
1244
- str = coeffToString(n.c);
1245
- str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS)
1246
- ? toExponential(str, ne)
1247
- : toFixedPoint(str, ne, '0');
1248
- } else {
1249
- n = round(new BigNumber(n), i, rm);
1250
-
1251
- // n.e may have changed if the value was rounded up.
1252
- e = n.e;
1253
-
1254
- str = coeffToString(n.c);
1255
- len = str.length;
1256
-
1257
- // toPrecision returns exponential notation if the number of significant digits
1258
- // specified is less than the number of digits necessary to represent the integer
1259
- // part of the value in fixed-point notation.
1260
-
1261
- // Exponential notation.
1262
- if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) {
1263
-
1264
- // Append zeros?
1265
- for (; len < i; str += '0', len++);
1266
- str = toExponential(str, e);
1267
-
1268
- // Fixed-point notation.
1269
- } else {
1270
- i -= ne;
1271
- str = toFixedPoint(str, e, '0');
1272
-
1273
- // Append zeros?
1274
- if (e + 1 > len) {
1275
- if (--i > 0) for (str += '.'; i--; str += '0');
1276
- } else {
1277
- i += e - len;
1278
- if (i > 0) {
1279
- if (e + 1 == len) str += '.';
1280
- for (; i--; str += '0');
1281
- }
1282
- }
1283
- }
1284
- }
1285
-
1286
- return n.s < 0 && c0 ? '-' + str : str;
1287
- }
1288
-
1289
-
1290
- // Handle BigNumber.max and BigNumber.min.
1291
- // If any number is NaN, return NaN.
1292
- function maxOrMin(args, n) {
1293
- var k, y,
1294
- i = 1,
1295
- x = new BigNumber(args[0]);
1296
-
1297
- for (; i < args.length; i++) {
1298
- y = new BigNumber(args[i]);
1299
- if (!y.s || (k = compare(x, y)) === n || k === 0 && x.s === n) {
1300
- x = y;
1301
- }
1302
- }
1303
-
1304
- return x;
1305
- }
1306
-
1307
-
1308
- /*
1309
- * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
1310
- * Called by minus, plus and times.
1311
- */
1312
- function normalise(n, c, e) {
1313
- var i = 1,
1314
- j = c.length;
1315
-
1316
- // Remove trailing zeros.
1317
- for (; !c[--j]; c.pop());
1318
-
1319
- // Calculate the base 10 exponent. First get the number of digits of c[0].
1320
- for (j = c[0]; j >= 10; j /= 10, i++);
1321
-
1322
- // Overflow?
1323
- if ((e = i + e * LOG_BASE - 1) > MAX_EXP) {
1324
-
1325
- // Infinity.
1326
- n.c = n.e = null;
1327
-
1328
- // Underflow?
1329
- } else if (e < MIN_EXP) {
1330
-
1331
- // Zero.
1332
- n.c = [n.e = 0];
1333
- } else {
1334
- n.e = e;
1335
- n.c = c;
1336
- }
1337
-
1338
- return n;
1339
- }
1340
-
1341
-
1342
- // Handle values that fail the validity test in BigNumber.
1343
- parseNumeric = (function () {
1344
- var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
1345
- dotAfter = /^([^.]+)\.$/,
1346
- dotBefore = /^\.([^.]+)$/,
1347
- isInfinityOrNaN = /^-?(Infinity|NaN)$/,
1348
- whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
1349
-
1350
- return function (x, str, isNum, b) {
1351
- var base,
1352
- s = isNum ? str : str.replace(whitespaceOrPlus, '');
1353
-
1354
- // No exception on ±Infinity or NaN.
1355
- if (isInfinityOrNaN.test(s)) {
1356
- x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
1357
- } else {
1358
- if (!isNum) {
1359
-
1360
- // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
1361
- s = s.replace(basePrefix, function (m, p1, p2) {
1362
- base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
1363
- return !b || b == base ? p1 : m;
1364
- });
1365
-
1366
- if (b) {
1367
- base = b;
1368
-
1369
- // E.g. '1.' to '1', '.1' to '0.1'
1370
- s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1');
1371
- }
1372
-
1373
- if (str != s) return new BigNumber(s, base);
1374
- }
1375
-
1376
- // '[BigNumber Error] Not a number: {n}'
1377
- // '[BigNumber Error] Not a base {b} number: {n}'
1378
- if (BigNumber.DEBUG) {
1379
- throw Error
1380
- (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str);
1381
- }
1382
-
1383
- // NaN
1384
- x.s = null;
1385
- }
1386
-
1387
- x.c = x.e = null;
1388
- }
1389
- })();
1390
-
1391
-
1392
- /*
1393
- * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
1394
- * If r is truthy, it is known that there are more digits after the rounding digit.
1395
- */
1396
- function round(x, sd, rm, r) {
1397
- var d, i, j, k, n, ni, rd,
1398
- xc = x.c,
1399
- pows10 = POWS_TEN;
1400
-
1401
- // if x is not Infinity or NaN...
1402
- if (xc) {
1403
-
1404
- // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
1405
- // n is a base 1e14 number, the value of the element of array x.c containing rd.
1406
- // ni is the index of n within x.c.
1407
- // d is the number of digits of n.
1408
- // i is the index of rd within n including leading zeros.
1409
- // j is the actual index of rd within n (if < 0, rd is a leading zero).
1410
- out: {
1411
-
1412
- // Get the number of digits of the first element of xc.
1413
- for (d = 1, k = xc[0]; k >= 10; k /= 10, d++);
1414
- i = sd - d;
1415
-
1416
- // If the rounding digit is in the first element of xc...
1417
- if (i < 0) {
1418
- i += LOG_BASE;
1419
- j = sd;
1420
- n = xc[ni = 0];
1421
-
1422
- // Get the rounding digit at index j of n.
1423
- rd = mathfloor(n / pows10[d - j - 1] % 10);
1424
- } else {
1425
- ni = mathceil((i + 1) / LOG_BASE);
1426
-
1427
- if (ni >= xc.length) {
1428
-
1429
- if (r) {
1430
-
1431
- // Needed by sqrt.
1432
- for (; xc.length <= ni; xc.push(0));
1433
- n = rd = 0;
1434
- d = 1;
1435
- i %= LOG_BASE;
1436
- j = i - LOG_BASE + 1;
1437
- } else {
1438
- break out;
1439
- }
1440
- } else {
1441
- n = k = xc[ni];
1442
-
1443
- // Get the number of digits of n.
1444
- for (d = 1; k >= 10; k /= 10, d++);
1445
-
1446
- // Get the index of rd within n.
1447
- i %= LOG_BASE;
1448
-
1449
- // Get the index of rd within n, adjusted for leading zeros.
1450
- // The number of leading zeros of n is given by LOG_BASE - d.
1451
- j = i - LOG_BASE + d;
1452
-
1453
- // Get the rounding digit at index j of n.
1454
- rd = j < 0 ? 0 : mathfloor(n / pows10[d - j - 1] % 10);
1455
- }
1456
- }
1457
-
1458
- r = r || sd < 0 ||
1459
-
1460
- // Are there any non-zero digits after the rounding digit?
1461
- // The expression n % pows10[d - j - 1] returns all digits of n to the right
1462
- // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
1463
- xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]);
1464
-
1465
- r = rm < 4
1466
- ? (rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
1467
- : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 &&
1468
-
1469
- // Check whether the digit to the left of the rounding digit is odd.
1470
- ((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 ||
1471
- rm == (x.s < 0 ? 8 : 7));
1472
-
1473
- if (sd < 1 || !xc[0]) {
1474
- xc.length = 0;
1475
-
1476
- if (r) {
1477
-
1478
- // Convert sd to decimal places.
1479
- sd -= x.e + 1;
1480
-
1481
- // 1, 0.1, 0.01, 0.001, 0.0001 etc.
1482
- xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE];
1483
- x.e = -sd || 0;
1484
- } else {
1485
-
1486
- // Zero.
1487
- xc[0] = x.e = 0;
1488
- }
1489
-
1490
- return x;
1491
- }
1492
-
1493
- // Remove excess digits.
1494
- if (i == 0) {
1495
- xc.length = ni;
1496
- k = 1;
1497
- ni--;
1498
- } else {
1499
- xc.length = ni + 1;
1500
- k = pows10[LOG_BASE - i];
1501
-
1502
- // E.g. 56700 becomes 56000 if 7 is the rounding digit.
1503
- // j > 0 means i > number of leading zeros of n.
1504
- xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0;
1505
- }
1506
-
1507
- // Round up?
1508
- if (r) {
1509
-
1510
- for (; ;) {
1511
-
1512
- // If the digit to be rounded up is in the first element of xc...
1513
- if (ni == 0) {
1514
-
1515
- // i will be the length of xc[0] before k is added.
1516
- for (i = 1, j = xc[0]; j >= 10; j /= 10, i++);
1517
- j = xc[0] += k;
1518
- for (k = 1; j >= 10; j /= 10, k++);
1519
-
1520
- // if i != k the length has increased.
1521
- if (i != k) {
1522
- x.e++;
1523
- if (xc[0] == BASE) xc[0] = 1;
1524
- }
1525
-
1526
- break;
1527
- } else {
1528
- xc[ni] += k;
1529
- if (xc[ni] != BASE) break;
1530
- xc[ni--] = 0;
1531
- k = 1;
1532
- }
1533
- }
1534
- }
1535
-
1536
- // Remove trailing zeros.
1537
- for (i = xc.length; xc[--i] === 0; xc.pop());
1538
- }
1539
-
1540
- // Overflow? Infinity.
1541
- if (x.e > MAX_EXP) {
1542
- x.c = x.e = null;
1543
-
1544
- // Underflow? Zero.
1545
- } else if (x.e < MIN_EXP) {
1546
- x.c = [x.e = 0];
1547
- }
1548
- }
1549
-
1550
- return x;
1551
- }
1552
-
1553
-
1554
- function valueOf(n) {
1555
- var str,
1556
- e = n.e;
1557
-
1558
- if (e === null) return n.toString();
1559
-
1560
- str = coeffToString(n.c);
1561
-
1562
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
1563
- ? toExponential(str, e)
1564
- : toFixedPoint(str, e, '0');
1565
-
1566
- return n.s < 0 ? '-' + str : str;
1567
- }
1568
-
1569
-
1570
- // PROTOTYPE/INSTANCE METHODS
1571
-
1572
-
1573
- /*
1574
- * Return a new BigNumber whose value is the absolute value of this BigNumber.
1575
- */
1576
- P.absoluteValue = P.abs = function () {
1577
- var x = new BigNumber(this);
1578
- if (x.s < 0) x.s = 1;
1579
- return x;
1580
- };
1581
-
1582
-
1583
- /*
1584
- * Return
1585
- * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
1586
- * -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
1587
- * 0 if they have the same value,
1588
- * or null if the value of either is NaN.
1589
- */
1590
- P.comparedTo = function (y, b) {
1591
- return compare(this, new BigNumber(y, b));
1592
- };
1593
-
1594
-
1595
- /*
1596
- * If dp is undefined or null or true or false, return the number of decimal places of the
1597
- * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
1598
- *
1599
- * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this
1600
- * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or
1601
- * ROUNDING_MODE if rm is omitted.
1602
- *
1603
- * [dp] {number} Decimal places: integer, 0 to MAX inclusive.
1604
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
1605
- *
1606
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
1607
- */
1608
- P.decimalPlaces = P.dp = function (dp, rm) {
1609
- var c, n, v,
1610
- x = this;
1611
-
1612
- if (dp != null) {
1613
- intCheck(dp, 0, MAX);
1614
- if (rm == null) rm = ROUNDING_MODE;
1615
- else intCheck(rm, 0, 8);
1616
-
1617
- return round(new BigNumber(x), dp + x.e + 1, rm);
1618
- }
1619
-
1620
- if (!(c = x.c)) return null;
1621
- n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE;
1622
-
1623
- // Subtract the number of trailing zeros of the last number.
1624
- if (v = c[v]) for (; v % 10 == 0; v /= 10, n--);
1625
- if (n < 0) n = 0;
1626
-
1627
- return n;
1628
- };
1629
-
1630
-
1631
- /*
1632
- * n / 0 = I
1633
- * n / N = N
1634
- * n / I = 0
1635
- * 0 / n = 0
1636
- * 0 / 0 = N
1637
- * 0 / N = N
1638
- * 0 / I = 0
1639
- * N / n = N
1640
- * N / 0 = N
1641
- * N / N = N
1642
- * N / I = N
1643
- * I / n = I
1644
- * I / 0 = I
1645
- * I / N = N
1646
- * I / I = N
1647
- *
1648
- * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
1649
- * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
1650
- */
1651
- P.dividedBy = P.div = function (y, b) {
1652
- return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE);
1653
- };
1654
-
1655
-
1656
- /*
1657
- * Return a new BigNumber whose value is the integer part of dividing the value of this
1658
- * BigNumber by the value of BigNumber(y, b).
1659
- */
1660
- P.dividedToIntegerBy = P.idiv = function (y, b) {
1661
- return div(this, new BigNumber(y, b), 0, 1);
1662
- };
1663
-
1664
-
1665
- /*
1666
- * Return a BigNumber whose value is the value of this BigNumber exponentiated by n.
1667
- *
1668
- * If m is present, return the result modulo m.
1669
- * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
1670
- * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE.
1671
- *
1672
- * The modular power operation works efficiently when x, n, and m are integers, otherwise it
1673
- * is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0.
1674
- *
1675
- * n {number|string|BigNumber} The exponent. An integer.
1676
- * [m] {number|string|BigNumber} The modulus.
1677
- *
1678
- * '[BigNumber Error] Exponent not an integer: {n}'
1679
- */
1680
- P.exponentiatedBy = P.pow = function (n, m) {
1681
- var half, isModExp, i, k, more, nIsBig, nIsNeg, nIsOdd, y,
1682
- x = this;
1683
-
1684
- n = new BigNumber(n);
1685
-
1686
- // Allow NaN and ±Infinity, but not other non-integers.
1687
- if (n.c && !n.isInteger()) {
1688
- throw Error
1689
- (bignumberError + 'Exponent not an integer: ' + valueOf(n));
1690
- }
1691
-
1692
- if (m != null) m = new BigNumber(m);
1693
-
1694
- // Exponent of MAX_SAFE_INTEGER is 15.
1695
- nIsBig = n.e > 14;
1696
-
1697
- // If x is NaN, ±Infinity, ±0 or ±1, or n is ±Infinity, NaN or ±0.
1698
- if (!x.c || !x.c[0] || x.c[0] == 1 && !x.e && x.c.length == 1 || !n.c || !n.c[0]) {
1699
-
1700
- // The sign of the result of pow when x is negative depends on the evenness of n.
1701
- // If +n overflows to ±Infinity, the evenness of n would be not be known.
1702
- y = new BigNumber(Math.pow(+valueOf(x), nIsBig ? n.s * (2 - isOdd(n)) : +valueOf(n)));
1703
- return m ? y.mod(m) : y;
1704
- }
1705
-
1706
- nIsNeg = n.s < 0;
1707
-
1708
- if (m) {
1709
-
1710
- // x % m returns NaN if abs(m) is zero, or m is NaN.
1711
- if (m.c ? !m.c[0] : !m.s) return new BigNumber(NaN);
1712
-
1713
- isModExp = !nIsNeg && x.isInteger() && m.isInteger();
1714
-
1715
- if (isModExp) x = x.mod(m);
1716
-
1717
- // Overflow to ±Infinity: >=2**1e10 or >=1.0000024**1e15.
1718
- // Underflow to ±0: <=0.79**1e10 or <=0.9999975**1e15.
1719
- } else if (n.e > 9 && (x.e > 0 || x.e < -1 || (x.e == 0
1720
- // [1, 240000000]
1721
- ? x.c[0] > 1 || nIsBig && x.c[1] >= 24e7
1722
- // [80000000000000] [99999750000000]
1723
- : x.c[0] < 8e13 || nIsBig && x.c[0] <= 9999975e7))) {
1724
-
1725
- // If x is negative and n is odd, k = -0, else k = 0.
1726
- k = x.s < 0 && isOdd(n) ? -0 : 0;
1727
-
1728
- // If x >= 1, k = ±Infinity.
1729
- if (x.e > -1) k = 1 / k;
1730
-
1731
- // If n is negative return ±0, else return ±Infinity.
1732
- return new BigNumber(nIsNeg ? 1 / k : k);
1733
-
1734
- } else if (POW_PRECISION) {
1735
-
1736
- // Truncating each coefficient array to a length of k after each multiplication
1737
- // equates to truncating significant digits to POW_PRECISION + [28, 41],
1738
- // i.e. there will be a minimum of 28 guard digits retained.
1739
- k = mathceil(POW_PRECISION / LOG_BASE + 2);
1740
- }
1741
-
1742
- if (nIsBig) {
1743
- half = new BigNumber(0.5);
1744
- if (nIsNeg) n.s = 1;
1745
- nIsOdd = isOdd(n);
1746
- } else {
1747
- i = Math.abs(+valueOf(n));
1748
- nIsOdd = i % 2;
1749
- }
1750
-
1751
- y = new BigNumber(ONE);
1752
-
1753
- // Performs 54 loop iterations for n of 9007199254740991.
1754
- for (; ;) {
1755
-
1756
- if (nIsOdd) {
1757
- y = y.times(x);
1758
- if (!y.c) break;
1759
-
1760
- if (k) {
1761
- if (y.c.length > k) y.c.length = k;
1762
- } else if (isModExp) {
1763
- y = y.mod(m); //y = y.minus(div(y, m, 0, MODULO_MODE).times(m));
1764
- }
1765
- }
1766
-
1767
- if (i) {
1768
- i = mathfloor(i / 2);
1769
- if (i === 0) break;
1770
- nIsOdd = i % 2;
1771
- } else {
1772
- n = n.times(half);
1773
- round(n, n.e + 1, 1);
1774
-
1775
- if (n.e > 14) {
1776
- nIsOdd = isOdd(n);
1777
- } else {
1778
- i = +valueOf(n);
1779
- if (i === 0) break;
1780
- nIsOdd = i % 2;
1781
- }
1782
- }
1783
-
1784
- x = x.times(x);
1785
-
1786
- if (k) {
1787
- if (x.c && x.c.length > k) x.c.length = k;
1788
- } else if (isModExp) {
1789
- x = x.mod(m); //x = x.minus(div(x, m, 0, MODULO_MODE).times(m));
1790
- }
1791
- }
1792
-
1793
- if (isModExp) return y;
1794
- if (nIsNeg) y = ONE.div(y);
1795
-
1796
- return m ? y.mod(m) : k ? round(y, POW_PRECISION, ROUNDING_MODE, more) : y;
1797
- };
1798
-
1799
-
1800
- /*
1801
- * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer
1802
- * using rounding mode rm, or ROUNDING_MODE if rm is omitted.
1803
- *
1804
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
1805
- *
1806
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}'
1807
- */
1808
- P.integerValue = function (rm) {
1809
- var n = new BigNumber(this);
1810
- if (rm == null) rm = ROUNDING_MODE;
1811
- else intCheck(rm, 0, 8);
1812
- return round(n, n.e + 1, rm);
1813
- };
1814
-
1815
-
1816
- /*
1817
- * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
1818
- * otherwise return false.
1819
- */
1820
- P.isEqualTo = P.eq = function (y, b) {
1821
- return compare(this, new BigNumber(y, b)) === 0;
1822
- };
1823
-
1824
-
1825
- /*
1826
- * Return true if the value of this BigNumber is a finite number, otherwise return false.
1827
- */
1828
- P.isFinite = function () {
1829
- return !!this.c;
1830
- };
1831
-
1832
-
1833
- /*
1834
- * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
1835
- * otherwise return false.
1836
- */
1837
- P.isGreaterThan = P.gt = function (y, b) {
1838
- return compare(this, new BigNumber(y, b)) > 0;
1839
- };
1840
-
1841
-
1842
- /*
1843
- * Return true if the value of this BigNumber is greater than or equal to the value of
1844
- * BigNumber(y, b), otherwise return false.
1845
- */
1846
- P.isGreaterThanOrEqualTo = P.gte = function (y, b) {
1847
- return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0;
1848
-
1849
- };
1850
-
1851
-
1852
- /*
1853
- * Return true if the value of this BigNumber is an integer, otherwise return false.
1854
- */
1855
- P.isInteger = function () {
1856
- return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2;
1857
- };
1858
-
1859
-
1860
- /*
1861
- * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
1862
- * otherwise return false.
1863
- */
1864
- P.isLessThan = P.lt = function (y, b) {
1865
- return compare(this, new BigNumber(y, b)) < 0;
1866
- };
1867
-
1868
-
1869
- /*
1870
- * Return true if the value of this BigNumber is less than or equal to the value of
1871
- * BigNumber(y, b), otherwise return false.
1872
- */
1873
- P.isLessThanOrEqualTo = P.lte = function (y, b) {
1874
- return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0;
1875
- };
1876
-
1877
-
1878
- /*
1879
- * Return true if the value of this BigNumber is NaN, otherwise return false.
1880
- */
1881
- P.isNaN = function () {
1882
- return !this.s;
1883
- };
1884
-
1885
-
1886
- /*
1887
- * Return true if the value of this BigNumber is negative, otherwise return false.
1888
- */
1889
- P.isNegative = function () {
1890
- return this.s < 0;
1891
- };
1892
-
1893
-
1894
- /*
1895
- * Return true if the value of this BigNumber is positive, otherwise return false.
1896
- */
1897
- P.isPositive = function () {
1898
- return this.s > 0;
1899
- };
1900
-
1901
-
1902
- /*
1903
- * Return true if the value of this BigNumber is 0 or -0, otherwise return false.
1904
- */
1905
- P.isZero = function () {
1906
- return !!this.c && this.c[0] == 0;
1907
- };
1908
-
1909
-
1910
- /*
1911
- * n - 0 = n
1912
- * n - N = N
1913
- * n - I = -I
1914
- * 0 - n = -n
1915
- * 0 - 0 = 0
1916
- * 0 - N = N
1917
- * 0 - I = -I
1918
- * N - n = N
1919
- * N - 0 = N
1920
- * N - N = N
1921
- * N - I = N
1922
- * I - n = I
1923
- * I - 0 = I
1924
- * I - N = N
1925
- * I - I = N
1926
- *
1927
- * Return a new BigNumber whose value is the value of this BigNumber minus the value of
1928
- * BigNumber(y, b).
1929
- */
1930
- P.minus = function (y, b) {
1931
- var i, j, t, xLTy,
1932
- x = this,
1933
- a = x.s;
1934
-
1935
- y = new BigNumber(y, b);
1936
- b = y.s;
1937
-
1938
- // Either NaN?
1939
- if (!a || !b) return new BigNumber(NaN);
1940
-
1941
- // Signs differ?
1942
- if (a != b) {
1943
- y.s = -b;
1944
- return x.plus(y);
1945
- }
1946
-
1947
- var xe = x.e / LOG_BASE,
1948
- ye = y.e / LOG_BASE,
1949
- xc = x.c,
1950
- yc = y.c;
1951
-
1952
- if (!xe || !ye) {
1953
-
1954
- // Either Infinity?
1955
- if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN);
1956
-
1957
- // Either zero?
1958
- if (!xc[0] || !yc[0]) {
1959
-
1960
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
1961
- return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x :
1962
-
1963
- // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
1964
- ROUNDING_MODE == 3 ? -0 : 0);
1965
- }
1966
- }
1967
-
1968
- xe = bitFloor(xe);
1969
- ye = bitFloor(ye);
1970
- xc = xc.slice();
1971
-
1972
- // Determine which is the bigger number.
1973
- if (a = xe - ye) {
1974
-
1975
- if (xLTy = a < 0) {
1976
- a = -a;
1977
- t = xc;
1978
- } else {
1979
- ye = xe;
1980
- t = yc;
1981
- }
1982
-
1983
- t.reverse();
1984
-
1985
- // Prepend zeros to equalise exponents.
1986
- for (b = a; b--; t.push(0));
1987
- t.reverse();
1988
- } else {
1989
-
1990
- // Exponents equal. Check digit by digit.
1991
- j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b;
1992
-
1993
- for (a = b = 0; b < j; b++) {
1994
-
1995
- if (xc[b] != yc[b]) {
1996
- xLTy = xc[b] < yc[b];
1997
- break;
1998
- }
1999
- }
2000
- }
2001
-
2002
- // x < y? Point xc to the array of the bigger number.
2003
- if (xLTy) {
2004
- t = xc;
2005
- xc = yc;
2006
- yc = t;
2007
- y.s = -y.s;
2008
- }
2009
-
2010
- b = (j = yc.length) - (i = xc.length);
2011
-
2012
- // Append zeros to xc if shorter.
2013
- // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
2014
- if (b > 0) for (; b--; xc[i++] = 0);
2015
- b = BASE - 1;
2016
-
2017
- // Subtract yc from xc.
2018
- for (; j > a;) {
2019
-
2020
- if (xc[--j] < yc[j]) {
2021
- for (i = j; i && !xc[--i]; xc[i] = b);
2022
- --xc[i];
2023
- xc[j] += BASE;
2024
- }
2025
-
2026
- xc[j] -= yc[j];
2027
- }
2028
-
2029
- // Remove leading zeros and adjust exponent accordingly.
2030
- for (; xc[0] == 0; xc.splice(0, 1), --ye);
2031
-
2032
- // Zero?
2033
- if (!xc[0]) {
2034
-
2035
- // Following IEEE 754 (2008) 6.3,
2036
- // n - n = +0 but n - n = -0 when rounding towards -Infinity.
2037
- y.s = ROUNDING_MODE == 3 ? -1 : 1;
2038
- y.c = [y.e = 0];
2039
- return y;
2040
- }
2041
-
2042
- // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
2043
- // for finite x and y.
2044
- return normalise(y, xc, ye);
2045
- };
2046
-
2047
-
2048
- /*
2049
- * n % 0 = N
2050
- * n % N = N
2051
- * n % I = n
2052
- * 0 % n = 0
2053
- * -0 % n = -0
2054
- * 0 % 0 = N
2055
- * 0 % N = N
2056
- * 0 % I = 0
2057
- * N % n = N
2058
- * N % 0 = N
2059
- * N % N = N
2060
- * N % I = N
2061
- * I % n = N
2062
- * I % 0 = N
2063
- * I % N = N
2064
- * I % I = N
2065
- *
2066
- * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
2067
- * BigNumber(y, b). The result depends on the value of MODULO_MODE.
2068
- */
2069
- P.modulo = P.mod = function (y, b) {
2070
- var q, s,
2071
- x = this;
2072
-
2073
- y = new BigNumber(y, b);
2074
-
2075
- // Return NaN if x is Infinity or NaN, or y is NaN or zero.
2076
- if (!x.c || !y.s || y.c && !y.c[0]) {
2077
- return new BigNumber(NaN);
2078
-
2079
- // Return x if y is Infinity or x is zero.
2080
- } else if (!y.c || x.c && !x.c[0]) {
2081
- return new BigNumber(x);
2082
- }
2083
-
2084
- if (MODULO_MODE == 9) {
2085
-
2086
- // Euclidian division: q = sign(y) * floor(x / abs(y))
2087
- // r = x - qy where 0 <= r < abs(y)
2088
- s = y.s;
2089
- y.s = 1;
2090
- q = div(x, y, 0, 3);
2091
- y.s = s;
2092
- q.s *= s;
2093
- } else {
2094
- q = div(x, y, 0, MODULO_MODE);
2095
- }
2096
-
2097
- y = x.minus(q.times(y));
2098
-
2099
- // To match JavaScript %, ensure sign of zero is sign of dividend.
2100
- if (!y.c[0] && MODULO_MODE == 1) y.s = x.s;
2101
-
2102
- return y;
2103
- };
2104
-
2105
-
2106
- /*
2107
- * n * 0 = 0
2108
- * n * N = N
2109
- * n * I = I
2110
- * 0 * n = 0
2111
- * 0 * 0 = 0
2112
- * 0 * N = N
2113
- * 0 * I = N
2114
- * N * n = N
2115
- * N * 0 = N
2116
- * N * N = N
2117
- * N * I = N
2118
- * I * n = I
2119
- * I * 0 = N
2120
- * I * N = N
2121
- * I * I = I
2122
- *
2123
- * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value
2124
- * of BigNumber(y, b).
2125
- */
2126
- P.multipliedBy = P.times = function (y, b) {
2127
- var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
2128
- base, sqrtBase,
2129
- x = this,
2130
- xc = x.c,
2131
- yc = (y = new BigNumber(y, b)).c;
2132
-
2133
- // Either NaN, ±Infinity or ±0?
2134
- if (!xc || !yc || !xc[0] || !yc[0]) {
2135
-
2136
- // Return NaN if either is NaN, or one is 0 and the other is Infinity.
2137
- if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) {
2138
- y.c = y.e = y.s = null;
2139
- } else {
2140
- y.s *= x.s;
2141
-
2142
- // Return ±Infinity if either is ±Infinity.
2143
- if (!xc || !yc) {
2144
- y.c = y.e = null;
2145
-
2146
- // Return ±0 if either is ±0.
2147
- } else {
2148
- y.c = [0];
2149
- y.e = 0;
2150
- }
2151
- }
2152
-
2153
- return y;
2154
- }
2155
-
2156
- e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE);
2157
- y.s *= x.s;
2158
- xcL = xc.length;
2159
- ycL = yc.length;
2160
-
2161
- // Ensure xc points to longer array and xcL to its length.
2162
- if (xcL < ycL) {
2163
- zc = xc;
2164
- xc = yc;
2165
- yc = zc;
2166
- i = xcL;
2167
- xcL = ycL;
2168
- ycL = i;
2169
- }
2170
-
2171
- // Initialise the result array with zeros.
2172
- for (i = xcL + ycL, zc = []; i--; zc.push(0));
2173
-
2174
- base = BASE;
2175
- sqrtBase = SQRT_BASE;
2176
-
2177
- for (i = ycL; --i >= 0;) {
2178
- c = 0;
2179
- ylo = yc[i] % sqrtBase;
2180
- yhi = yc[i] / sqrtBase | 0;
2181
-
2182
- for (k = xcL, j = i + k; j > i;) {
2183
- xlo = xc[--k] % sqrtBase;
2184
- xhi = xc[k] / sqrtBase | 0;
2185
- m = yhi * xlo + xhi * ylo;
2186
- xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c;
2187
- c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi;
2188
- zc[j--] = xlo % base;
2189
- }
2190
-
2191
- zc[j] = c;
2192
- }
2193
-
2194
- if (c) {
2195
- ++e;
2196
- } else {
2197
- zc.splice(0, 1);
2198
- }
2199
-
2200
- return normalise(y, zc, e);
2201
- };
2202
-
2203
-
2204
- /*
2205
- * Return a new BigNumber whose value is the value of this BigNumber negated,
2206
- * i.e. multiplied by -1.
2207
- */
2208
- P.negated = function () {
2209
- var x = new BigNumber(this);
2210
- x.s = -x.s || null;
2211
- return x;
2212
- };
2213
-
2214
-
2215
- /*
2216
- * n + 0 = n
2217
- * n + N = N
2218
- * n + I = I
2219
- * 0 + n = n
2220
- * 0 + 0 = 0
2221
- * 0 + N = N
2222
- * 0 + I = I
2223
- * N + n = N
2224
- * N + 0 = N
2225
- * N + N = N
2226
- * N + I = N
2227
- * I + n = I
2228
- * I + 0 = I
2229
- * I + N = N
2230
- * I + I = I
2231
- *
2232
- * Return a new BigNumber whose value is the value of this BigNumber plus the value of
2233
- * BigNumber(y, b).
2234
- */
2235
- P.plus = function (y, b) {
2236
- var t,
2237
- x = this,
2238
- a = x.s;
2239
-
2240
- y = new BigNumber(y, b);
2241
- b = y.s;
2242
-
2243
- // Either NaN?
2244
- if (!a || !b) return new BigNumber(NaN);
2245
-
2246
- // Signs differ?
2247
- if (a != b) {
2248
- y.s = -b;
2249
- return x.minus(y);
2250
- }
2251
-
2252
- var xe = x.e / LOG_BASE,
2253
- ye = y.e / LOG_BASE,
2254
- xc = x.c,
2255
- yc = y.c;
2256
-
2257
- if (!xe || !ye) {
2258
-
2259
- // Return ±Infinity if either ±Infinity.
2260
- if (!xc || !yc) return new BigNumber(a / 0);
2261
-
2262
- // Either zero?
2263
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
2264
- if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0);
2265
- }
2266
-
2267
- xe = bitFloor(xe);
2268
- ye = bitFloor(ye);
2269
- xc = xc.slice();
2270
-
2271
- // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
2272
- if (a = xe - ye) {
2273
- if (a > 0) {
2274
- ye = xe;
2275
- t = yc;
2276
- } else {
2277
- a = -a;
2278
- t = xc;
2279
- }
2280
-
2281
- t.reverse();
2282
- for (; a--; t.push(0));
2283
- t.reverse();
2284
- }
2285
-
2286
- a = xc.length;
2287
- b = yc.length;
2288
-
2289
- // Point xc to the longer array, and b to the shorter length.
2290
- if (a - b < 0) {
2291
- t = yc;
2292
- yc = xc;
2293
- xc = t;
2294
- b = a;
2295
- }
2296
-
2297
- // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
2298
- for (a = 0; b;) {
2299
- a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0;
2300
- xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
2301
- }
2302
-
2303
- if (a) {
2304
- xc = [a].concat(xc);
2305
- ++ye;
2306
- }
2307
-
2308
- // No need to check for zero, as +x + +y != 0 && -x + -y != 0
2309
- // ye = MAX_EXP + 1 possible
2310
- return normalise(y, xc, ye);
2311
- };
2312
-
2313
-
2314
- /*
2315
- * If sd is undefined or null or true or false, return the number of significant digits of
2316
- * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
2317
- * If sd is true include integer-part trailing zeros in the count.
2318
- *
2319
- * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this
2320
- * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or
2321
- * ROUNDING_MODE if rm is omitted.
2322
- *
2323
- * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive.
2324
- * boolean: whether to count integer-part trailing zeros: true or false.
2325
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2326
- *
2327
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
2328
- */
2329
- P.precision = P.sd = function (sd, rm) {
2330
- var c, n, v,
2331
- x = this;
2332
-
2333
- if (sd != null && sd !== !!sd) {
2334
- intCheck(sd, 1, MAX);
2335
- if (rm == null) rm = ROUNDING_MODE;
2336
- else intCheck(rm, 0, 8);
2337
-
2338
- return round(new BigNumber(x), sd, rm);
2339
- }
2340
-
2341
- if (!(c = x.c)) return null;
2342
- v = c.length - 1;
2343
- n = v * LOG_BASE + 1;
2344
-
2345
- if (v = c[v]) {
2346
-
2347
- // Subtract the number of trailing zeros of the last element.
2348
- for (; v % 10 == 0; v /= 10, n--);
2349
-
2350
- // Add the number of digits of the first element.
2351
- for (v = c[0]; v >= 10; v /= 10, n++);
2352
- }
2353
-
2354
- if (sd && x.e + 1 > n) n = x.e + 1;
2355
-
2356
- return n;
2357
- };
2358
-
2359
-
2360
- /*
2361
- * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
2362
- * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
2363
- *
2364
- * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
2365
- *
2366
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}'
2367
- */
2368
- P.shiftedBy = function (k) {
2369
- intCheck(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER);
2370
- return this.times('1e' + k);
2371
- };
2372
-
2373
-
2374
- /*
2375
- * sqrt(-n) = N
2376
- * sqrt(N) = N
2377
- * sqrt(-I) = N
2378
- * sqrt(I) = I
2379
- * sqrt(0) = 0
2380
- * sqrt(-0) = -0
2381
- *
2382
- * Return a new BigNumber whose value is the square root of the value of this BigNumber,
2383
- * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
2384
- */
2385
- P.squareRoot = P.sqrt = function () {
2386
- var m, n, r, rep, t,
2387
- x = this,
2388
- c = x.c,
2389
- s = x.s,
2390
- e = x.e,
2391
- dp = DECIMAL_PLACES + 4,
2392
- half = new BigNumber('0.5');
2393
-
2394
- // Negative/NaN/Infinity/zero?
2395
- if (s !== 1 || !c || !c[0]) {
2396
- return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0);
2397
- }
2398
-
2399
- // Initial estimate.
2400
- s = Math.sqrt(+valueOf(x));
2401
-
2402
- // Math.sqrt underflow/overflow?
2403
- // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
2404
- if (s == 0 || s == 1 / 0) {
2405
- n = coeffToString(c);
2406
- if ((n.length + e) % 2 == 0) n += '0';
2407
- s = Math.sqrt(+n);
2408
- e = bitFloor((e + 1) / 2) - (e < 0 || e % 2);
2409
-
2410
- if (s == 1 / 0) {
2411
- n = '5e' + e;
2412
- } else {
2413
- n = s.toExponential();
2414
- n = n.slice(0, n.indexOf('e') + 1) + e;
2415
- }
2416
-
2417
- r = new BigNumber(n);
2418
- } else {
2419
- r = new BigNumber(s + '');
2420
- }
2421
-
2422
- // Check for zero.
2423
- // r could be zero if MIN_EXP is changed after the this value was created.
2424
- // This would cause a division by zero (x/t) and hence Infinity below, which would cause
2425
- // coeffToString to throw.
2426
- if (r.c[0]) {
2427
- e = r.e;
2428
- s = e + dp;
2429
- if (s < 3) s = 0;
2430
-
2431
- // Newton-Raphson iteration.
2432
- for (; ;) {
2433
- t = r;
2434
- r = half.times(t.plus(div(x, t, dp, 1)));
2435
-
2436
- if (coeffToString(t.c).slice(0, s) === (n = coeffToString(r.c)).slice(0, s)) {
2437
-
2438
- // The exponent of r may here be one less than the final result exponent,
2439
- // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
2440
- // are indexed correctly.
2441
- if (r.e < e) --s;
2442
- n = n.slice(s - 3, s + 1);
2443
-
2444
- // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
2445
- // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
2446
- // iteration.
2447
- if (n == '9999' || !rep && n == '4999') {
2448
-
2449
- // On the first iteration only, check to see if rounding up gives the
2450
- // exact result as the nines may infinitely repeat.
2451
- if (!rep) {
2452
- round(t, t.e + DECIMAL_PLACES + 2, 0);
2453
-
2454
- if (t.times(t).eq(x)) {
2455
- r = t;
2456
- break;
2457
- }
2458
- }
2459
-
2460
- dp += 4;
2461
- s += 4;
2462
- rep = 1;
2463
- } else {
2464
-
2465
- // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
2466
- // result. If not, then there are further digits and m will be truthy.
2467
- if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
2468
-
2469
- // Truncate to the first rounding digit.
2470
- round(r, r.e + DECIMAL_PLACES + 2, 1);
2471
- m = !r.times(r).eq(x);
2472
- }
2473
-
2474
- break;
2475
- }
2476
- }
2477
- }
2478
- }
2479
-
2480
- return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m);
2481
- };
2482
-
2483
-
2484
- /*
2485
- * Return a string representing the value of this BigNumber in exponential notation and
2486
- * rounded using ROUNDING_MODE to dp fixed decimal places.
2487
- *
2488
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
2489
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2490
- *
2491
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
2492
- */
2493
- P.toExponential = function (dp, rm) {
2494
- if (dp != null) {
2495
- intCheck(dp, 0, MAX);
2496
- dp++;
2497
- }
2498
- return format(this, dp, rm, 1);
2499
- };
2500
-
2501
-
2502
- /*
2503
- * Return a string representing the value of this BigNumber in fixed-point notation rounding
2504
- * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
2505
- *
2506
- * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
2507
- * but e.g. (-0.00001).toFixed(0) is '-0'.
2508
- *
2509
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
2510
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2511
- *
2512
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
2513
- */
2514
- P.toFixed = function (dp, rm) {
2515
- if (dp != null) {
2516
- intCheck(dp, 0, MAX);
2517
- dp = dp + this.e + 1;
2518
- }
2519
- return format(this, dp, rm);
2520
- };
2521
-
2522
-
2523
- /*
2524
- * Return a string representing the value of this BigNumber in fixed-point notation rounded
2525
- * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
2526
- * of the format or FORMAT object (see BigNumber.set).
2527
- *
2528
- * The formatting object may contain some or all of the properties shown below.
2529
- *
2530
- * FORMAT = {
2531
- * prefix: '',
2532
- * groupSize: 3,
2533
- * secondaryGroupSize: 0,
2534
- * groupSeparator: ',',
2535
- * decimalSeparator: '.',
2536
- * fractionGroupSize: 0,
2537
- * fractionGroupSeparator: '\xA0', // non-breaking space
2538
- * suffix: ''
2539
- * };
2540
- *
2541
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
2542
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2543
- * [format] {object} Formatting options. See FORMAT pbject above.
2544
- *
2545
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
2546
- * '[BigNumber Error] Argument not an object: {format}'
2547
- */
2548
- P.toFormat = function (dp, rm, format) {
2549
- var str,
2550
- x = this;
2551
-
2552
- if (format == null) {
2553
- if (dp != null && rm && typeof rm == 'object') {
2554
- format = rm;
2555
- rm = null;
2556
- } else if (dp && typeof dp == 'object') {
2557
- format = dp;
2558
- dp = rm = null;
2559
- } else {
2560
- format = FORMAT;
2561
- }
2562
- } else if (typeof format != 'object') {
2563
- throw Error
2564
- (bignumberError + 'Argument not an object: ' + format);
2565
- }
2566
-
2567
- str = x.toFixed(dp, rm);
2568
-
2569
- if (x.c) {
2570
- var i,
2571
- arr = str.split('.'),
2572
- g1 = +format.groupSize,
2573
- g2 = +format.secondaryGroupSize,
2574
- groupSeparator = format.groupSeparator || '',
2575
- intPart = arr[0],
2576
- fractionPart = arr[1],
2577
- isNeg = x.s < 0,
2578
- intDigits = isNeg ? intPart.slice(1) : intPart,
2579
- len = intDigits.length;
2580
-
2581
- if (g2) {
2582
- i = g1;
2583
- g1 = g2;
2584
- g2 = i;
2585
- len -= i;
2586
- }
2587
-
2588
- if (g1 > 0 && len > 0) {
2589
- i = len % g1 || g1;
2590
- intPart = intDigits.substr(0, i);
2591
- for (; i < len; i += g1) intPart += groupSeparator + intDigits.substr(i, g1);
2592
- if (g2 > 0) intPart += groupSeparator + intDigits.slice(i);
2593
- if (isNeg) intPart = '-' + intPart;
2594
- }
2595
-
2596
- str = fractionPart
2597
- ? intPart + (format.decimalSeparator || '') + ((g2 = +format.fractionGroupSize)
2598
- ? fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'),
2599
- '$&' + (format.fractionGroupSeparator || ''))
2600
- : fractionPart)
2601
- : intPart;
2602
- }
2603
-
2604
- return (format.prefix || '') + str + (format.suffix || '');
2605
- };
2606
-
2607
-
2608
- /*
2609
- * Return an array of two BigNumbers representing the value of this BigNumber as a simple
2610
- * fraction with an integer numerator and an integer denominator.
2611
- * The denominator will be a positive non-zero value less than or equal to the specified
2612
- * maximum denominator. If a maximum denominator is not specified, the denominator will be
2613
- * the lowest value necessary to represent the number exactly.
2614
- *
2615
- * [md] {number|string|BigNumber} Integer >= 1, or Infinity. The maximum denominator.
2616
- *
2617
- * '[BigNumber Error] Argument {not an integer|out of range} : {md}'
2618
- */
2619
- P.toFraction = function (md) {
2620
- var d, d0, d1, d2, e, exp, n, n0, n1, q, r, s,
2621
- x = this,
2622
- xc = x.c;
2623
-
2624
- if (md != null) {
2625
- n = new BigNumber(md);
2626
-
2627
- // Throw if md is less than one or is not an integer, unless it is Infinity.
2628
- if (!n.isInteger() && (n.c || n.s !== 1) || n.lt(ONE)) {
2629
- throw Error
2630
- (bignumberError + 'Argument ' +
2631
- (n.isInteger() ? 'out of range: ' : 'not an integer: ') + valueOf(n));
2632
- }
2633
- }
2634
-
2635
- if (!xc) return new BigNumber(x);
2636
-
2637
- d = new BigNumber(ONE);
2638
- n1 = d0 = new BigNumber(ONE);
2639
- d1 = n0 = new BigNumber(ONE);
2640
- s = coeffToString(xc);
2641
-
2642
- // Determine initial denominator.
2643
- // d is a power of 10 and the minimum max denominator that specifies the value exactly.
2644
- e = d.e = s.length - x.e - 1;
2645
- d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp];
2646
- md = !md || n.comparedTo(d) > 0 ? (e > 0 ? d : n1) : n;
2647
-
2648
- exp = MAX_EXP;
2649
- MAX_EXP = 1 / 0;
2650
- n = new BigNumber(s);
2651
-
2652
- // n0 = d1 = 0
2653
- n0.c[0] = 0;
2654
-
2655
- for (; ;) {
2656
- q = div(n, d, 0, 1);
2657
- d2 = d0.plus(q.times(d1));
2658
- if (d2.comparedTo(md) == 1) break;
2659
- d0 = d1;
2660
- d1 = d2;
2661
- n1 = n0.plus(q.times(d2 = n1));
2662
- n0 = d2;
2663
- d = n.minus(q.times(d2 = d));
2664
- n = d2;
2665
- }
2666
-
2667
- d2 = div(md.minus(d0), d1, 0, 1);
2668
- n0 = n0.plus(d2.times(n1));
2669
- d0 = d0.plus(d2.times(d1));
2670
- n0.s = n1.s = x.s;
2671
- e = e * 2;
2672
-
2673
- // Determine which fraction is closer to x, n0/d0 or n1/d1
2674
- r = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().comparedTo(
2675
- div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];
2676
-
2677
- MAX_EXP = exp;
2678
-
2679
- return r;
2680
- };
2681
-
2682
-
2683
- /*
2684
- * Return the value of this BigNumber converted to a number primitive.
2685
- */
2686
- P.toNumber = function () {
2687
- return +valueOf(this);
2688
- };
2689
-
2690
-
2691
- /*
2692
- * Return a string representing the value of this BigNumber rounded to sd significant digits
2693
- * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
2694
- * necessary to represent the integer part of the value in fixed-point notation, then use
2695
- * exponential notation.
2696
- *
2697
- * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
2698
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2699
- *
2700
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
2701
- */
2702
- P.toPrecision = function (sd, rm) {
2703
- if (sd != null) intCheck(sd, 1, MAX);
2704
- return format(this, sd, rm, 2);
2705
- };
2706
-
2707
-
2708
- /*
2709
- * Return a string representing the value of this BigNumber in base b, or base 10 if b is
2710
- * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
2711
- * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
2712
- * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
2713
- * TO_EXP_NEG, return exponential notation.
2714
- *
2715
- * [b] {number} Integer, 2 to ALPHABET.length inclusive.
2716
- *
2717
- * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
2718
- */
2719
- P.toString = function (b) {
2720
- var str,
2721
- n = this,
2722
- s = n.s,
2723
- e = n.e;
2724
-
2725
- // Infinity or NaN?
2726
- if (e === null) {
2727
- if (s) {
2728
- str = 'Infinity';
2729
- if (s < 0) str = '-' + str;
2730
- } else {
2731
- str = 'NaN';
2732
- }
2733
- } else {
2734
- if (b == null) {
2735
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
2736
- ? toExponential(coeffToString(n.c), e)
2737
- : toFixedPoint(coeffToString(n.c), e, '0');
2738
- } else if (b === 10 && alphabetHasNormalDecimalDigits) {
2739
- n = round(new BigNumber(n), DECIMAL_PLACES + e + 1, ROUNDING_MODE);
2740
- str = toFixedPoint(coeffToString(n.c), n.e, '0');
2741
- } else {
2742
- intCheck(b, 2, ALPHABET.length, 'Base');
2743
- str = convertBase(toFixedPoint(coeffToString(n.c), e, '0'), 10, b, s, true);
2744
- }
2745
-
2746
- if (s < 0 && n.c[0]) str = '-' + str;
2747
- }
2748
-
2749
- return str;
2750
- };
2751
-
2752
-
2753
- /*
2754
- * Return as toString, but do not accept a base argument, and include the minus sign for
2755
- * negative zero.
2756
- */
2757
- P.valueOf = P.toJSON = function () {
2758
- return valueOf(this);
2759
- };
2760
-
2761
-
2762
- P._isBigNumber = true;
2763
-
2764
- P[Symbol.toStringTag] = 'BigNumber';
2765
-
2766
- // Node.js v10.12.0+
2767
- P[Symbol.for('nodejs.util.inspect.custom')] = P.valueOf;
2768
-
2769
- if (configObject != null) BigNumber.set(configObject);
2770
-
2771
- return BigNumber;
2772
- }
2773
-
2774
-
2775
- // PRIVATE HELPER FUNCTIONS
2776
-
2777
- // These functions don't need access to variables,
2778
- // e.g. DECIMAL_PLACES, in the scope of the `clone` function above.
2779
-
2780
-
2781
- function bitFloor(n) {
2782
- var i = n | 0;
2783
- return n > 0 || n === i ? i : i - 1;
2784
- }
2785
-
2786
-
2787
- // Return a coefficient array as a string of base 10 digits.
2788
- function coeffToString(a) {
2789
- var s, z,
2790
- i = 1,
2791
- j = a.length,
2792
- r = a[0] + '';
2793
-
2794
- for (; i < j;) {
2795
- s = a[i++] + '';
2796
- z = LOG_BASE - s.length;
2797
- for (; z--; s = '0' + s);
2798
- r += s;
2799
- }
2800
-
2801
- // Determine trailing zeros.
2802
- for (j = r.length; r.charCodeAt(--j) === 48;);
2803
-
2804
- return r.slice(0, j + 1 || 1);
2805
- }
2806
-
2807
-
2808
- // Compare the value of BigNumbers x and y.
2809
- function compare(x, y) {
2810
- var a, b,
2811
- xc = x.c,
2812
- yc = y.c,
2813
- i = x.s,
2814
- j = y.s,
2815
- k = x.e,
2816
- l = y.e;
2817
-
2818
- // Either NaN?
2819
- if (!i || !j) return null;
2820
-
2821
- a = xc && !xc[0];
2822
- b = yc && !yc[0];
2823
-
2824
- // Either zero?
2825
- if (a || b) return a ? b ? 0 : -j : i;
2826
-
2827
- // Signs differ?
2828
- if (i != j) return i;
2829
-
2830
- a = i < 0;
2831
- b = k == l;
2832
-
2833
- // Either Infinity?
2834
- if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1;
2835
-
2836
- // Compare exponents.
2837
- if (!b) return k > l ^ a ? 1 : -1;
2838
-
2839
- j = (k = xc.length) < (l = yc.length) ? k : l;
2840
-
2841
- // Compare digit by digit.
2842
- for (i = 0; i < j; i++) if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1;
2843
-
2844
- // Compare lengths.
2845
- return k == l ? 0 : k > l ^ a ? 1 : -1;
2846
- }
2847
-
2848
-
2849
- /*
2850
- * Check that n is a primitive number, an integer, and in range, otherwise throw.
2851
- */
2852
- function intCheck(n, min, max, name) {
2853
- if (n < min || n > max || n !== mathfloor(n)) {
2854
- throw Error
2855
- (bignumberError + (name || 'Argument') + (typeof n == 'number'
2856
- ? n < min || n > max ? ' out of range: ' : ' not an integer: '
2857
- : ' not a primitive number: ') + String(n));
2858
- }
2859
- }
2860
-
2861
-
2862
- // Assumes finite n.
2863
- function isOdd(n) {
2864
- var k = n.c.length - 1;
2865
- return bitFloor(n.e / LOG_BASE) == k && n.c[k] % 2 != 0;
2866
- }
2867
-
2868
-
2869
- function toExponential(str, e) {
2870
- return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) +
2871
- (e < 0 ? 'e' : 'e+') + e;
2872
- }
2873
-
2874
-
2875
- function toFixedPoint(str, e, z) {
2876
- var len, zs;
2877
-
2878
- // Negative exponent?
2879
- if (e < 0) {
2880
-
2881
- // Prepend zeros.
2882
- for (zs = z + '.'; ++e; zs += z);
2883
- str = zs + str;
2884
-
2885
- // Positive exponent
2886
- } else {
2887
- len = str.length;
2888
-
2889
- // Append zeros.
2890
- if (++e > len) {
2891
- for (zs = z, e -= len; --e; zs += z);
2892
- str += zs;
2893
- } else if (e < len) {
2894
- str = str.slice(0, e) + '.' + str.slice(e);
2895
- }
2896
- }
2897
-
2898
- return str;
2899
- }
2900
-
2901
-
2902
- // EXPORT
2903
-
2904
-
2905
- var BigNumber = clone();
2906
-
2907
- export { BigNumber as B };