orangeslice 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +107 -0
- package/dist/b2b.d.ts +30 -0
- package/dist/b2b.js +89 -0
- package/dist/index.d.ts +29 -0
- package/dist/index.js +28 -0
- package/dist/queue.d.ts +9 -0
- package/dist/queue.js +48 -0
- package/docs/B2B_CROSS_TABLE_TEST_FINDINGS.md +255 -0
- package/docs/B2B_DATABASE.md +314 -0
- package/docs/B2B_DATABASE_TEST_FINDINGS.md +476 -0
- package/docs/B2B_EMPLOYEE_SEARCH.md +697 -0
- package/docs/B2B_GENERALIZATION_RULES.md +220 -0
- package/docs/B2B_NLP_QUERY_MAPPINGS.md +240 -0
- package/docs/B2B_NORMALIZED_VS_DENORMALIZED.md +952 -0
- package/docs/B2B_SCHEMA.md +1042 -0
- package/docs/B2B_SQL_COMPREHENSIVE_TEST_FINDINGS.md +301 -0
- package/docs/B2B_TABLE_INDICES.ts +496 -0
- package/package.json +33 -0
|
@@ -0,0 +1,220 @@
|
|
|
1
|
+
# B2B Database: Generalized Rules for Table Selection
|
|
2
|
+
|
|
3
|
+
Based on 40+ comprehensive tests across different filter types, selectivity levels, and cross-table patterns.
|
|
4
|
+
|
|
5
|
+
---
|
|
6
|
+
|
|
7
|
+
## The Core Rules
|
|
8
|
+
|
|
9
|
+
### Rule 1: Single Filter Type Determines Winner
|
|
10
|
+
|
|
11
|
+
| Filter Type | Normalized | Denormalized | Winner |
|
|
12
|
+
| ------------------------ | ---------- | ------------ | ------------------- |
|
|
13
|
+
| **ID lookup** | 4-6ms | 12-31ms | Normalized (3-8x) |
|
|
14
|
+
| **NULL check** | 5ms | 18ms | Normalized (3.6x) |
|
|
15
|
+
| **Numeric range** | 19ms | 187ms | Normalized (10x) |
|
|
16
|
+
| **Numeric comparison** | 115ms | 354ms | Normalized (3x) |
|
|
17
|
+
| **Single skill array** | 209ms | 152ms | Denormalized (1.4x) |
|
|
18
|
+
| **updated_at** (indexed) | 4ms | 14ms | Normalized (3.5x) |
|
|
19
|
+
|
|
20
|
+
**Generalization**: For single filters, normalized wins on indexed columns and numeric filters; denormalized wins on array filters.
|
|
21
|
+
|
|
22
|
+
---
|
|
23
|
+
|
|
24
|
+
### Rule 2: Text Selectivity is the Key Factor
|
|
25
|
+
|
|
26
|
+
| Headline Term | Normalized | Denormalized | Winner |
|
|
27
|
+
| ------------------------ | ---------- | ------------ | ----------------------- |
|
|
28
|
+
| **CEO** (very common) | 55ms | 131ms | Normalized (2.4x) |
|
|
29
|
+
| **engineer** (common) | 24ms | 136ms | Normalized (5.7x) |
|
|
30
|
+
| **devops** (uncommon) | 409ms | 256ms | **Denormalized (1.6x)** |
|
|
31
|
+
| **tensorflow** (rare) | 28,000ms | 9,873ms | **Denormalized (2.8x)** |
|
|
32
|
+
| **solidity** (very rare) | 27,246ms | 12,829ms | **Denormalized (2.1x)** |
|
|
33
|
+
|
|
34
|
+
**Crossover Point**: Around "uncommon" selectivity level.
|
|
35
|
+
|
|
36
|
+
**Generalization**:
|
|
37
|
+
|
|
38
|
+
- **Common terms** (CEO, engineer, manager, developer) → Use normalized
|
|
39
|
+
- **Uncommon/rare terms** (devops, kubernetes, blockchain, tensorflow) → Use denormalized
|
|
40
|
+
|
|
41
|
+
---
|
|
42
|
+
|
|
43
|
+
### Rule 3: Filter Count Matters
|
|
44
|
+
|
|
45
|
+
| # of Filters | Pattern | Normalized | Denormalized | Winner |
|
|
46
|
+
| ------------ | ----------------------- | ---------- | ------------ | ----------------------- |
|
|
47
|
+
| 1 | Numeric only | 19-115ms | 187-354ms | Normalized (3-10x) |
|
|
48
|
+
| 1 | Text (common) | 24-55ms | 131-136ms | Normalized (2.4-5.7x) |
|
|
49
|
+
| 1 | Text (rare) | 27-28s | 9-13s | Denormalized (2-2.8x) |
|
|
50
|
+
| 2 | Numeric + text (common) | 119ms | 603ms | Normalized (5x) |
|
|
51
|
+
| 2 | Numeric + text (rare) | 10,643ms | 4,024ms | **Denormalized (2.6x)** |
|
|
52
|
+
| 2 | Array + text | 2,968ms | 1,037ms | **Denormalized (2.9x)** |
|
|
53
|
+
| 3 | Array + numeric + text | 6,948ms | 3,257ms | **Denormalized (2.1x)** |
|
|
54
|
+
| 3 | Company triple filter | 6,568ms | 1,486ms | **Denormalized (4.4x)** |
|
|
55
|
+
|
|
56
|
+
**Generalization**:
|
|
57
|
+
|
|
58
|
+
- **1 filter**: Normalized usually wins (except rare text or arrays)
|
|
59
|
+
- **2 filters**: Depends on selectivity and filter types
|
|
60
|
+
- **3+ filters**: Denormalized usually wins
|
|
61
|
+
|
|
62
|
+
---
|
|
63
|
+
|
|
64
|
+
### Rule 4: Filter Location in Cross-Table Queries
|
|
65
|
+
|
|
66
|
+
| Text Filter Location | Normalized | Denormalized | Winner |
|
|
67
|
+
| ---------------------------- | ---------- | -------------- | ------------------------ |
|
|
68
|
+
| **Company description only** | 125ms | 4,166-15,435ms | **Normalized (33-123x)** |
|
|
69
|
+
| **Profile headline only** | TIMEOUT | 602-709ms | **Denormalized (∞)** |
|
|
70
|
+
| **Both profile + company** | 702ms | 3,440ms | **Normalized (4.9x)** |
|
|
71
|
+
|
|
72
|
+
**Generalization**:
|
|
73
|
+
|
|
74
|
+
- Text filter on **company** side → Normalized wins (company table smaller)
|
|
75
|
+
- Text filter on **profile** side → Denormalized wins (profile table huge)
|
|
76
|
+
- Text filter on **both** → Normalized wins if company filter is selective
|
|
77
|
+
|
|
78
|
+
---
|
|
79
|
+
|
|
80
|
+
### Rule 5: LIMIT Size Impact
|
|
81
|
+
|
|
82
|
+
| Term Type | LIMIT 10 | LIMIT 100 | LIMIT 500-1000 |
|
|
83
|
+
| --------------------- | ------------------------- | --------------------------- | ------------------------------- |
|
|
84
|
+
| **Common** (engineer) | N: 24ms, D: 42ms (N 1.8x) | N: 24ms, D: 136ms (N 5.7x) | N: 80ms, D: 865ms (N 10.8x) |
|
|
85
|
+
| **Rare** (blockchain) | N: 234ms, D: 241ms (tie) | N: 713ms, D: 384ms (D 1.9x) | N: 3,725ms, D: 2,806ms (D 1.3x) |
|
|
86
|
+
|
|
87
|
+
**Generalization**:
|
|
88
|
+
|
|
89
|
+
- **Common terms**: Normalized scales better with larger LIMITs
|
|
90
|
+
- **Rare terms**: Denormalized maintains advantage across all LIMITs
|
|
91
|
+
|
|
92
|
+
---
|
|
93
|
+
|
|
94
|
+
### Rule 6: Cross-Table JOIN Patterns
|
|
95
|
+
|
|
96
|
+
| Pattern | Normalized | Denormalized | Winner |
|
|
97
|
+
| -------------------------------- | ---------- | ------------ | ---------------------- |
|
|
98
|
+
| Company ID → employees | 48ms | 279ms | Normalized (5.8x) |
|
|
99
|
+
| Company name (org) search | 274ms | 8,600ms | Normalized (31x) |
|
|
100
|
+
| Profile headline + company size | 20,205ms | 217ms | **Denormalized (93x)** |
|
|
101
|
+
| Profile skill + company size | 7,168ms | 536ms | **Denormalized (13x)** |
|
|
102
|
+
| Profile skill + company industry | TIMEOUT | 3,553ms | **Denormalized (∞)** |
|
|
103
|
+
| Profile text + company text | 702ms | 3,440ms | Normalized (4.9x) |
|
|
104
|
+
|
|
105
|
+
**Generalization**:
|
|
106
|
+
|
|
107
|
+
- **Company-first lookups**: Normalized wins
|
|
108
|
+
- **Profile text + company constraint**: Denormalized wins (dramatically)
|
|
109
|
+
- **Both have text filters**: Normalized may win if company filter is selective
|
|
110
|
+
|
|
111
|
+
---
|
|
112
|
+
|
|
113
|
+
## The Decision Matrix
|
|
114
|
+
|
|
115
|
+
### Profile-Only Queries
|
|
116
|
+
|
|
117
|
+
```
|
|
118
|
+
Single filter?
|
|
119
|
+
├─ ID/slug/updated_at (indexed) → Normalized
|
|
120
|
+
├─ Numeric (connections, followers) → Normalized
|
|
121
|
+
├─ Single skill array → Denormalized (slight)
|
|
122
|
+
├─ Headline (common term) → Normalized
|
|
123
|
+
└─ Headline (rare term) → Denormalized
|
|
124
|
+
|
|
125
|
+
Multiple filters?
|
|
126
|
+
├─ All numeric/indexed → Normalized
|
|
127
|
+
├─ Contains rare headline term → Denormalized
|
|
128
|
+
├─ Contains multiple skills → Denormalized
|
|
129
|
+
└─ 3+ filters → Denormalized
|
|
130
|
+
```
|
|
131
|
+
|
|
132
|
+
### Company-Only Queries
|
|
133
|
+
|
|
134
|
+
```
|
|
135
|
+
Single filter?
|
|
136
|
+
├─ ID/slug (indexed) → Normalized
|
|
137
|
+
├─ employee_count > high threshold → Denormalized (odd case)
|
|
138
|
+
├─ employee_count range → Normalized or tie
|
|
139
|
+
└─ Description ILIKE → Normalized or tie
|
|
140
|
+
|
|
141
|
+
Multiple filters?
|
|
142
|
+
├─ 2 filters → Usually tie or slight normalized advantage
|
|
143
|
+
└─ 3+ filters → Denormalized
|
|
144
|
+
```
|
|
145
|
+
|
|
146
|
+
### Cross-Table Queries (Profile + Company)
|
|
147
|
+
|
|
148
|
+
```
|
|
149
|
+
Text filter location?
|
|
150
|
+
├─ Only on company → Normalized (company table smaller)
|
|
151
|
+
├─ Only on profile → Denormalized (profile table huge)
|
|
152
|
+
└─ Both → Depends on company filter selectivity
|
|
153
|
+
|
|
154
|
+
Filter type combination?
|
|
155
|
+
├─ Company-first (ID/name lookup) → Normalized
|
|
156
|
+
├─ Profile text + company numeric → Denormalized
|
|
157
|
+
├─ Profile skill + company constraint → Denormalized
|
|
158
|
+
└─ Profile numeric + company text → Normalized (if company selective)
|
|
159
|
+
```
|
|
160
|
+
|
|
161
|
+
---
|
|
162
|
+
|
|
163
|
+
## Quick Reference Table
|
|
164
|
+
|
|
165
|
+
| Scenario | Use This | Speedup |
|
|
166
|
+
| ------------------------------ | ----------------------- | ----------- |
|
|
167
|
+
| ID lookup | Normalized | 3-8x |
|
|
168
|
+
| Slug lookup | Normalized (with key64) | ∞ |
|
|
169
|
+
| updated_at filter | Normalized | 3.5x |
|
|
170
|
+
| Common headline term | Normalized | 2.4-5.7x |
|
|
171
|
+
| **Rare headline term** | Denormalized | 2-2.8x |
|
|
172
|
+
| **Multi-skill search** | Denormalized | 1.4-2.9x |
|
|
173
|
+
| **3+ combined filters** | Denormalized | 2-4x |
|
|
174
|
+
| Company name via org | Normalized (GIN) | 31-68x |
|
|
175
|
+
| Company description search | Normalized | 1.2x or tie |
|
|
176
|
+
| **Profile headline + company** | Denormalized | 13-93x |
|
|
177
|
+
| Company text + profile | Normalized | 4.9x |
|
|
178
|
+
|
|
179
|
+
---
|
|
180
|
+
|
|
181
|
+
## The Three Key Insights
|
|
182
|
+
|
|
183
|
+
### 1. Text Selectivity Crossover
|
|
184
|
+
|
|
185
|
+
Common terms have high early-termination probability → Normalized wins.
|
|
186
|
+
Rare terms require full table scan → Denormalized wins (smaller row size).
|
|
187
|
+
|
|
188
|
+
### 2. Filter Count Scaling
|
|
189
|
+
|
|
190
|
+
More filters = more full-table scan work → Denormalized's smaller row size advantage compounds.
|
|
191
|
+
|
|
192
|
+
### 3. Table Size Asymmetry
|
|
193
|
+
|
|
194
|
+
- `linkedin_profile`: ~1.15 billion rows
|
|
195
|
+
- `linkedin_company`: ~millions of rows (100-1000x smaller)
|
|
196
|
+
|
|
197
|
+
Text filter on the **smaller table** (company) is fast for normalized.
|
|
198
|
+
Text filter on the **larger table** (profile) favors denormalized.
|
|
199
|
+
|
|
200
|
+
---
|
|
201
|
+
|
|
202
|
+
## Summary: When to Use Each
|
|
203
|
+
|
|
204
|
+
### Use Normalized When:
|
|
205
|
+
|
|
206
|
+
1. Single indexed filter (ID, slug, updated_at)
|
|
207
|
+
2. Company-first queries
|
|
208
|
+
3. Common headline terms (CEO, engineer, manager)
|
|
209
|
+
4. Text filter is on company side (not profile)
|
|
210
|
+
5. Large LIMIT with common terms
|
|
211
|
+
6. Aggregations (COUNT, GROUP BY)
|
|
212
|
+
|
|
213
|
+
### Use Denormalized When:
|
|
214
|
+
|
|
215
|
+
1. Rare headline terms (kubernetes, blockchain, tensorflow)
|
|
216
|
+
2. Multiple skills in query
|
|
217
|
+
3. 3+ combined filters
|
|
218
|
+
4. Profile text filter + company constraint
|
|
219
|
+
5. Country filter + headline filter
|
|
220
|
+
6. Complex regex patterns on headline
|
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# B2B Database NLP Test Queries
|
|
2
|
+
|
|
3
|
+
Natural language queries for testing the B2B database agent.
|
|
4
|
+
|
|
5
|
+
---
|
|
6
|
+
|
|
7
|
+
## Company Lookups
|
|
8
|
+
|
|
9
|
+
1. Find the company with domain stripe.com
|
|
10
|
+
2. Get company info for Anthropic
|
|
11
|
+
3. Look up the company OpenAI
|
|
12
|
+
4. What company has the website openai.com?
|
|
13
|
+
5. Show me details about Stripe
|
|
14
|
+
|
|
15
|
+
## People at Companies
|
|
16
|
+
|
|
17
|
+
6. Show me people who work at Stripe
|
|
18
|
+
7. Find engineers at Stripe
|
|
19
|
+
8. Find sales and account executives at OpenAI
|
|
20
|
+
9. Who are the software engineers at Google?
|
|
21
|
+
10. Find product managers at Meta
|
|
22
|
+
|
|
23
|
+
## Company Description Searches
|
|
24
|
+
|
|
25
|
+
11. Find AI video companies
|
|
26
|
+
12. Find companies building personalization infrastructure
|
|
27
|
+
13. Find AI platforms for sales and RevOps
|
|
28
|
+
14. Find companies with developer APIs
|
|
29
|
+
15. Find companies that do data integration
|
|
30
|
+
16. Find cybersecurity startups
|
|
31
|
+
17. Find companies building workflow automation tools
|
|
32
|
+
|
|
33
|
+
## Top-of-Funnel Company Lists
|
|
34
|
+
|
|
35
|
+
18. Find SaaS platform software companies
|
|
36
|
+
19. List all tech companies
|
|
37
|
+
20. Find B2B software companies
|
|
38
|
+
21. Show me internet companies
|
|
39
|
+
|
|
40
|
+
## People by Headline/Title
|
|
41
|
+
|
|
42
|
+
22. Find people working in AI
|
|
43
|
+
23. Find CTOs at AI startups
|
|
44
|
+
24. Find founders, CEOs, CTOs, VPs, and directors
|
|
45
|
+
25. Find C-suite executives
|
|
46
|
+
26. Find VP of Sales professionals
|
|
47
|
+
27. Find data scientists
|
|
48
|
+
28. Find product managers in tech
|
|
49
|
+
|
|
50
|
+
## Complex Company Searches
|
|
51
|
+
|
|
52
|
+
29. Find SaaS companies with usage-based pricing
|
|
53
|
+
30. Find companies with video APIs or SDKs
|
|
54
|
+
31. Find companies doing real-time analytics
|
|
55
|
+
32. Find enterprise security companies
|
|
56
|
+
|
|
57
|
+
## Funding Queries
|
|
58
|
+
|
|
59
|
+
33. Find recently funded companies
|
|
60
|
+
34. Find Series A software companies
|
|
61
|
+
35. Find companies funded by Andreessen Horowitz
|
|
62
|
+
36. Find seed stage startups funded recently
|
|
63
|
+
37. Find Series B companies in fintech
|
|
64
|
+
38. Find companies that raised over $50M
|
|
65
|
+
39. Show me YC-backed companies
|
|
66
|
+
|
|
67
|
+
## Industry Lookups
|
|
68
|
+
|
|
69
|
+
40. What are the top industries by company count?
|
|
70
|
+
41. What industry is OpenAI in?
|
|
71
|
+
42. List all industry categories
|
|
72
|
+
|
|
73
|
+
## Employee Growth
|
|
74
|
+
|
|
75
|
+
43. Find fast-growing companies with over 50% growth
|
|
76
|
+
44. Find hypergrowth companies
|
|
77
|
+
45. Find companies that doubled headcount this year
|
|
78
|
+
46. Show me the fastest growing startups
|
|
79
|
+
|
|
80
|
+
## Targeted Role + Company Searches
|
|
81
|
+
|
|
82
|
+
47. Find founders at AI companies
|
|
83
|
+
48. Find CTOs at fintech companies
|
|
84
|
+
49. Find VPs of Engineering at SaaS companies
|
|
85
|
+
50. Find sales leaders at Series A startups
|
|
86
|
+
51. Find marketing executives at e-commerce companies
|
|
87
|
+
|
|
88
|
+
## People at Company Types
|
|
89
|
+
|
|
90
|
+
52. Find engineers at tech companies
|
|
91
|
+
53. Find decision makers at AI video companies
|
|
92
|
+
54. Find recruiters at fast-growing startups
|
|
93
|
+
55. Find designers at consumer apps
|
|
94
|
+
|
|
95
|
+
## Role + Funding Stage
|
|
96
|
+
|
|
97
|
+
56. Find engineers at Series A startups
|
|
98
|
+
57. Find VPs of Engineering at Series B companies
|
|
99
|
+
58. Find CTOs at recently funded AI companies
|
|
100
|
+
59. Find product managers at seed stage companies
|
|
101
|
+
60. Find sales reps at Series C companies
|
|
102
|
+
|
|
103
|
+
## Education
|
|
104
|
+
|
|
105
|
+
61. Find Stanford alumni who work at Google
|
|
106
|
+
62. Find people who got their MBA recently
|
|
107
|
+
63. Find people with Computer Science degrees
|
|
108
|
+
64. Find MIT graduates in tech
|
|
109
|
+
65. Find Harvard Business School alumni
|
|
110
|
+
|
|
111
|
+
## Skills
|
|
112
|
+
|
|
113
|
+
66. Find people with Python and Machine Learning skills
|
|
114
|
+
67. Find full-stack developers with React and Node.js
|
|
115
|
+
68. Find data engineers with SQL and Spark
|
|
116
|
+
69. Find iOS developers with Swift experience
|
|
117
|
+
70. Find people who know Kubernetes
|
|
118
|
+
|
|
119
|
+
## Certifications
|
|
120
|
+
|
|
121
|
+
71. Find AWS certified professionals
|
|
122
|
+
72. Find Google Cloud certified people
|
|
123
|
+
73. Find PMP certified project managers
|
|
124
|
+
74. Find Salesforce certified admins
|
|
125
|
+
|
|
126
|
+
## Thought Leaders & Content
|
|
127
|
+
|
|
128
|
+
75. Find AI thought leaders with popular articles
|
|
129
|
+
76. Find people who write LinkedIn articles frequently
|
|
130
|
+
77. Find tech influencers
|
|
131
|
+
78. Find people writing about machine learning
|
|
132
|
+
|
|
133
|
+
## Job Postings
|
|
134
|
+
|
|
135
|
+
79. Show me jobs at Stripe
|
|
136
|
+
80. Find high-paying engineering jobs over 200k
|
|
137
|
+
81. Find remote jobs posted recently
|
|
138
|
+
82. Find senior engineering roles at startups
|
|
139
|
+
83. Show me product manager openings
|
|
140
|
+
|
|
141
|
+
## Company Social Activity
|
|
142
|
+
|
|
143
|
+
84. Find companies posting about AI
|
|
144
|
+
85. Find viral company posts with high engagement
|
|
145
|
+
86. Find companies announcing new products
|
|
146
|
+
|
|
147
|
+
## Company Attributes
|
|
148
|
+
|
|
149
|
+
87. Find companies specializing in ML or AI
|
|
150
|
+
88. Find public companies with stock tickers
|
|
151
|
+
89. Find companies with active career pages
|
|
152
|
+
90. Find companies with multiple office locations
|
|
153
|
+
|
|
154
|
+
## Alumni Searches
|
|
155
|
+
|
|
156
|
+
91. Find ex-Google employees who now work at startups
|
|
157
|
+
92. Find former Stripe engineers
|
|
158
|
+
93. Find Meta alumni at AI companies
|
|
159
|
+
94. Find people who left Amazon for startups
|
|
160
|
+
|
|
161
|
+
## Analytics & Aggregations
|
|
162
|
+
|
|
163
|
+
95. What roles are most common at OpenAI?
|
|
164
|
+
96. What is the average funding by round type?
|
|
165
|
+
97. How many engineers does Stripe have?
|
|
166
|
+
98. What's the headcount breakdown at Google?
|
|
167
|
+
|
|
168
|
+
## Influencers
|
|
169
|
+
|
|
170
|
+
99. Find LinkedIn influencers
|
|
171
|
+
100. Find people with over 50,000 followers
|
|
172
|
+
101. Find well-connected professionals
|
|
173
|
+
|
|
174
|
+
## Reference Data
|
|
175
|
+
|
|
176
|
+
102. What are the company types?
|
|
177
|
+
103. What are the job seniority levels?
|
|
178
|
+
104. What are the employment types?
|
|
179
|
+
105. List countries in North America
|
|
180
|
+
|
|
181
|
+
## Geography
|
|
182
|
+
|
|
183
|
+
106. Find tech companies in the UK
|
|
184
|
+
107. Find tech companies in the Bay Area
|
|
185
|
+
108. Find tech workers in New York
|
|
186
|
+
109. Find startups in Austin
|
|
187
|
+
110. Find AI companies in London
|
|
188
|
+
|
|
189
|
+
## Ranked Companies
|
|
190
|
+
|
|
191
|
+
111. Show me Fortune 500 companies
|
|
192
|
+
112. Show me Inc Magazine ranked companies
|
|
193
|
+
113. Find Forbes Cloud 100 companies
|
|
194
|
+
|
|
195
|
+
## Volunteers & Awards
|
|
196
|
+
|
|
197
|
+
114. Find people who volunteer in education
|
|
198
|
+
115. Find people with innovation awards
|
|
199
|
+
116. Find award-winning engineers
|
|
200
|
+
|
|
201
|
+
## Recommendations & Languages
|
|
202
|
+
|
|
203
|
+
117. Find highly recommended people
|
|
204
|
+
118. Find multilingual professionals
|
|
205
|
+
119. Find people who speak Mandarin and English
|
|
206
|
+
|
|
207
|
+
## Patents & Publications
|
|
208
|
+
|
|
209
|
+
120. Find patent holders
|
|
210
|
+
121. Find people with AI patents
|
|
211
|
+
122. Find published researchers
|
|
212
|
+
123. Find people with machine learning patents
|
|
213
|
+
|
|
214
|
+
## Projects & Links
|
|
215
|
+
|
|
216
|
+
124. Find people with AI/ML projects
|
|
217
|
+
125. Find people with GitHub profiles
|
|
218
|
+
126. Find developers with open source contributions
|
|
219
|
+
|
|
220
|
+
## Full Enrichment
|
|
221
|
+
|
|
222
|
+
127. Get full company profile for Stripe
|
|
223
|
+
128. Get complete info on this person
|
|
224
|
+
129. Enrich this company with funding data
|
|
225
|
+
130. Get all details about OpenAI
|
|
226
|
+
|
|
227
|
+
---
|
|
228
|
+
|
|
229
|
+
## Complex Multi-Criteria Queries
|
|
230
|
+
|
|
231
|
+
131. Find CTOs at Series A AI companies in San Francisco
|
|
232
|
+
132. Find Stanford MBAs who are now founders at fintech startups
|
|
233
|
+
133. Find ex-Google engineers at YC companies
|
|
234
|
+
134. Find AWS certified developers at fast-growing startups
|
|
235
|
+
135. Find VPs of Sales at recently funded B2B SaaS companies
|
|
236
|
+
136. Find people with ML skills who work at Series B companies
|
|
237
|
+
137. Find founders at AI companies who went to Stanford
|
|
238
|
+
138. Find CTOs at healthcare tech companies with recent funding
|
|
239
|
+
139. Find engineers at remote-first companies with Python skills
|
|
240
|
+
140. Find product managers at e-commerce companies in New York
|