omgkit 2.9.1 → 2.10.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +48 -1
- package/package.json +1 -1
- package/plugin/workflows/ai-engineering/agent-development.md +240 -0
- package/plugin/workflows/ai-engineering/fine-tuning.md +212 -0
- package/plugin/workflows/ai-engineering/model-evaluation.md +203 -0
- package/plugin/workflows/ai-engineering/prompt-engineering.md +192 -0
- package/plugin/workflows/ai-engineering/rag-development.md +203 -0
- package/plugin/workflows/api/api-design.md +152 -0
- package/plugin/workflows/api/api-testing.md +152 -0
- package/plugin/workflows/content/marketing.md +118 -0
- package/plugin/workflows/content/technical-docs.md +146 -0
- package/plugin/workflows/database/migration.md +153 -0
- package/plugin/workflows/database/optimization.md +136 -0
- package/plugin/workflows/database/schema-design.md +148 -0
- package/plugin/workflows/development/bug-fix.md +159 -0
- package/plugin/workflows/development/code-review.md +119 -0
- package/plugin/workflows/development/feature.md +171 -0
- package/plugin/workflows/development/refactor.md +155 -0
- package/plugin/workflows/fullstack/authentication.md +153 -0
- package/plugin/workflows/fullstack/full-feature.md +217 -0
- package/plugin/workflows/omega/1000x-innovation.md +167 -0
- package/plugin/workflows/omega/100x-architecture.md +150 -0
- package/plugin/workflows/omega/10x-improvement.md +228 -0
- package/plugin/workflows/quality/performance-optimization.md +157 -0
- package/plugin/workflows/research/best-practices.md +140 -0
- package/plugin/workflows/research/technology-research.md +130 -0
- package/plugin/workflows/security/penetration-testing.md +150 -0
- package/plugin/workflows/security/security-audit.md +176 -0
- package/plugin/workflows/sprint/sprint-execution.md +168 -0
- package/plugin/workflows/sprint/sprint-retrospective.md +168 -0
- package/plugin/workflows/sprint/sprint-setup.md +153 -0
package/README.md
CHANGED
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
[](LICENSE)
|
|
8
8
|
|
|
9
9
|
> **AI Team System for Claude Code**
|
|
10
|
-
> 23 Agents • 58 Commands • 88 Skills • 10 Modes
|
|
10
|
+
> 23 Agents • 58 Commands • 29 Workflows • 88 Skills • 10 Modes
|
|
11
11
|
> *"Think Omega. Build Omega. Be Omega."*
|
|
12
12
|
|
|
13
13
|
OMGKIT transforms Claude Code into an autonomous AI development team with sprint management, specialized agents, and Omega-level thinking for 10x-1000x productivity improvements.
|
|
@@ -18,6 +18,7 @@ OMGKIT transforms Claude Code into an autonomous AI development team with sprint
|
|
|
18
18
|
|-----------|-------|-------------|
|
|
19
19
|
| **Agents** | 23 | Specialized AI team members |
|
|
20
20
|
| **Commands** | 58 | Slash commands for every task |
|
|
21
|
+
| **Workflows** | 29 | Complete development processes |
|
|
21
22
|
| **Skills** | 88 | Domain expertise modules |
|
|
22
23
|
| **Modes** | 10 | Behavioral configurations |
|
|
23
24
|
| **Sprint Management** | ✅ | Vision, backlog, team autonomy |
|
|
@@ -163,6 +164,52 @@ After installation, use these commands in Claude Code:
|
|
|
163
164
|
/team:status # Show team activity
|
|
164
165
|
```
|
|
165
166
|
|
|
167
|
+
## 📋 Workflows (29)
|
|
168
|
+
|
|
169
|
+
Workflows are orchestrated sequences of agents, commands, and skills that guide complete development processes.
|
|
170
|
+
|
|
171
|
+
### Development
|
|
172
|
+
| Workflow | Description |
|
|
173
|
+
|----------|-------------|
|
|
174
|
+
| `feature` | Complete feature development from planning to PR |
|
|
175
|
+
| `bug-fix` | Systematic debugging and resolution |
|
|
176
|
+
| `refactor` | Code improvement and restructuring |
|
|
177
|
+
| `code-review` | Comprehensive code review |
|
|
178
|
+
|
|
179
|
+
### AI Engineering
|
|
180
|
+
| Workflow | Description |
|
|
181
|
+
|----------|-------------|
|
|
182
|
+
| `rag-development` | Build complete RAG systems |
|
|
183
|
+
| `model-evaluation` | AI model evaluation pipeline |
|
|
184
|
+
| `prompt-engineering` | Systematic prompt optimization |
|
|
185
|
+
| `agent-development` | Build AI agents |
|
|
186
|
+
| `fine-tuning` | Model fine-tuning workflow |
|
|
187
|
+
|
|
188
|
+
### Omega ⭐
|
|
189
|
+
| Workflow | Description |
|
|
190
|
+
|----------|-------------|
|
|
191
|
+
| `10x-improvement` | Tactical enhancements |
|
|
192
|
+
| `100x-architecture` | System redesign |
|
|
193
|
+
| `1000x-innovation` | Industry transformation |
|
|
194
|
+
|
|
195
|
+
### Sprint Management
|
|
196
|
+
| Workflow | Description |
|
|
197
|
+
|----------|-------------|
|
|
198
|
+
| `sprint-setup` | Initialize and plan sprints |
|
|
199
|
+
| `sprint-execution` | Execute sprint tasks |
|
|
200
|
+
| `sprint-retrospective` | Review and improve |
|
|
201
|
+
|
|
202
|
+
### Other Categories
|
|
203
|
+
- **Security**: `security-audit`, `penetration-testing`
|
|
204
|
+
- **Database**: `schema-design`, `migration`, `optimization`
|
|
205
|
+
- **API**: `api-design`, `api-testing`
|
|
206
|
+
- **Full Stack**: `full-feature`, `authentication`
|
|
207
|
+
- **Content**: `technical-docs`, `marketing`
|
|
208
|
+
- **Research**: `technology-research`, `best-practices`
|
|
209
|
+
- **Quality**: `performance-optimization`
|
|
210
|
+
|
|
211
|
+
Use workflows with: `/workflow:<name> "description"`
|
|
212
|
+
|
|
166
213
|
## 🎭 Modes (10)
|
|
167
214
|
|
|
168
215
|
| Mode | Description |
|
package/package.json
CHANGED
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
---
|
|
2
|
+
name: agent-development
|
|
3
|
+
description: Build autonomous AI agents with tools
|
|
4
|
+
category: ai-engineering
|
|
5
|
+
complexity: very-high
|
|
6
|
+
estimated-time: 8-24 hours
|
|
7
|
+
agents:
|
|
8
|
+
- researcher
|
|
9
|
+
- planner
|
|
10
|
+
- architect
|
|
11
|
+
- fullstack-developer
|
|
12
|
+
- tester
|
|
13
|
+
- security-auditor
|
|
14
|
+
skills:
|
|
15
|
+
- ai-agents
|
|
16
|
+
- ai-architecture
|
|
17
|
+
- guardrails-safety
|
|
18
|
+
commands:
|
|
19
|
+
- /planning:research
|
|
20
|
+
- /planning:plan-detailed
|
|
21
|
+
- /dev:feature
|
|
22
|
+
- /dev:test
|
|
23
|
+
- /quality:security-scan
|
|
24
|
+
prerequisites:
|
|
25
|
+
- Agent use case defined
|
|
26
|
+
- Tool requirements known
|
|
27
|
+
- LLM API access
|
|
28
|
+
---
|
|
29
|
+
|
|
30
|
+
# Agent Development Workflow
|
|
31
|
+
|
|
32
|
+
## Overview
|
|
33
|
+
|
|
34
|
+
The Agent Development workflow guides you through building autonomous AI agents capable of planning, tool use, and multi-step task execution. It covers architecture, implementation, testing, and safety measures.
|
|
35
|
+
|
|
36
|
+
## When to Use
|
|
37
|
+
|
|
38
|
+
- Building autonomous assistants
|
|
39
|
+
- Creating tool-using AI systems
|
|
40
|
+
- Implementing multi-step workflows
|
|
41
|
+
- Building AI copilots
|
|
42
|
+
- Creating agentic applications
|
|
43
|
+
|
|
44
|
+
## Steps
|
|
45
|
+
|
|
46
|
+
### Step 1: Research
|
|
47
|
+
**Agent:** researcher
|
|
48
|
+
**Command:** `/planning:research "agent architectures"`
|
|
49
|
+
**Duration:** 1-2 hours
|
|
50
|
+
|
|
51
|
+
Research phase:
|
|
52
|
+
- Study agent architectures (ReAct, Plan-Execute)
|
|
53
|
+
- Review tool use patterns
|
|
54
|
+
- Analyze memory systems
|
|
55
|
+
- Evaluate safety approaches
|
|
56
|
+
|
|
57
|
+
**Output:** Research findings
|
|
58
|
+
|
|
59
|
+
### Step 2: Architecture Design
|
|
60
|
+
**Agent:** architect
|
|
61
|
+
**Command:** `/planning:plan-detailed "agent architecture"`
|
|
62
|
+
**Duration:** 1-2 hours
|
|
63
|
+
|
|
64
|
+
Design architecture:
|
|
65
|
+
- Define agent capabilities
|
|
66
|
+
- Design tool interface
|
|
67
|
+
- Plan memory system
|
|
68
|
+
- Specify safety boundaries
|
|
69
|
+
|
|
70
|
+
**Output:** Architecture document
|
|
71
|
+
|
|
72
|
+
### Step 3: Tool Implementation
|
|
73
|
+
**Agent:** fullstack-developer
|
|
74
|
+
**Duration:** 2-4 hours
|
|
75
|
+
|
|
76
|
+
Build tools:
|
|
77
|
+
- Define tool schemas
|
|
78
|
+
- Implement tool functions
|
|
79
|
+
- Add input validation
|
|
80
|
+
- Create error handling
|
|
81
|
+
|
|
82
|
+
**Output:** Tool implementations
|
|
83
|
+
|
|
84
|
+
### Step 4: Planning System
|
|
85
|
+
**Agent:** fullstack-developer
|
|
86
|
+
**Duration:** 2-4 hours
|
|
87
|
+
|
|
88
|
+
Implement planning:
|
|
89
|
+
- Task decomposition
|
|
90
|
+
- Step sequencing
|
|
91
|
+
- Dependency handling
|
|
92
|
+
- Progress tracking
|
|
93
|
+
|
|
94
|
+
**Output:** Planning system
|
|
95
|
+
|
|
96
|
+
### Step 5: Execution Loop
|
|
97
|
+
**Agent:** fullstack-developer
|
|
98
|
+
**Duration:** 2-4 hours
|
|
99
|
+
|
|
100
|
+
Build execution:
|
|
101
|
+
- Action selection
|
|
102
|
+
- Tool invocation
|
|
103
|
+
- Result processing
|
|
104
|
+
- Loop control
|
|
105
|
+
|
|
106
|
+
**Output:** Execution loop
|
|
107
|
+
|
|
108
|
+
### Step 6: Memory System
|
|
109
|
+
**Agent:** fullstack-developer
|
|
110
|
+
**Duration:** 1-2 hours
|
|
111
|
+
|
|
112
|
+
Implement memory:
|
|
113
|
+
- Short-term context
|
|
114
|
+
- Long-term storage
|
|
115
|
+
- Memory retrieval
|
|
116
|
+
- Context management
|
|
117
|
+
|
|
118
|
+
**Output:** Memory system
|
|
119
|
+
|
|
120
|
+
### Step 7: Safety Implementation
|
|
121
|
+
**Agent:** security-auditor
|
|
122
|
+
**Duration:** 1-2 hours
|
|
123
|
+
|
|
124
|
+
Add safety:
|
|
125
|
+
- Input validation
|
|
126
|
+
- Output filtering
|
|
127
|
+
- Action limits
|
|
128
|
+
- Guardrails
|
|
129
|
+
|
|
130
|
+
**Output:** Safety layer
|
|
131
|
+
|
|
132
|
+
### Step 8: Testing
|
|
133
|
+
**Agent:** tester
|
|
134
|
+
**Command:** `/dev:test`
|
|
135
|
+
**Duration:** 2-4 hours
|
|
136
|
+
|
|
137
|
+
Test agent:
|
|
138
|
+
- Unit tests for tools
|
|
139
|
+
- Integration tests
|
|
140
|
+
- Behavior tests
|
|
141
|
+
- Safety tests
|
|
142
|
+
|
|
143
|
+
**Output:** Test suite
|
|
144
|
+
|
|
145
|
+
### Step 9: Security Review
|
|
146
|
+
**Agent:** security-auditor
|
|
147
|
+
**Command:** `/quality:security-scan`
|
|
148
|
+
**Duration:** 1-2 hours
|
|
149
|
+
|
|
150
|
+
Security review:
|
|
151
|
+
- Prompt injection prevention
|
|
152
|
+
- Tool abuse prevention
|
|
153
|
+
- Data leak prevention
|
|
154
|
+
- Access control
|
|
155
|
+
|
|
156
|
+
**Output:** Security report
|
|
157
|
+
|
|
158
|
+
## Quality Gates
|
|
159
|
+
|
|
160
|
+
- [ ] Architecture documented and approved
|
|
161
|
+
- [ ] All tools implemented and tested
|
|
162
|
+
- [ ] Planning system working
|
|
163
|
+
- [ ] Execution loop reliable
|
|
164
|
+
- [ ] Memory system functional
|
|
165
|
+
- [ ] Safety measures in place
|
|
166
|
+
- [ ] Security review passed
|
|
167
|
+
- [ ] All tests passing
|
|
168
|
+
|
|
169
|
+
## Agent Architecture
|
|
170
|
+
|
|
171
|
+
```
|
|
172
|
+
AI Agent Architecture
|
|
173
|
+
=====================
|
|
174
|
+
|
|
175
|
+
┌─────────────────────────────────────────┐
|
|
176
|
+
│ AGENT │
|
|
177
|
+
│ ┌─────────────────────────────────┐ │
|
|
178
|
+
│ │ PLANNER │ │
|
|
179
|
+
│ │ Task → Steps → Actions │ │
|
|
180
|
+
│ └─────────────────────────────────┘ │
|
|
181
|
+
│ ↓ │
|
|
182
|
+
│ ┌─────────────────────────────────┐ │
|
|
183
|
+
│ │ EXECUTOR │ │
|
|
184
|
+
│ │ Select → Execute → Observe │ │
|
|
185
|
+
│ └─────────────────────────────────┘ │
|
|
186
|
+
│ ↓ │
|
|
187
|
+
│ ┌─────────────────────────────────┐ │
|
|
188
|
+
│ │ TOOLS │ │
|
|
189
|
+
│ │ [Search] [Code] [API] [DB] │ │
|
|
190
|
+
│ └─────────────────────────────────┘ │
|
|
191
|
+
│ ↓ │
|
|
192
|
+
│ ┌─────────────────────────────────┐ │
|
|
193
|
+
│ │ MEMORY │ │
|
|
194
|
+
│ │ Short-term │ Long-term │ │
|
|
195
|
+
│ └─────────────────────────────────┘ │
|
|
196
|
+
└─────────────────────────────────────────┘
|
|
197
|
+
```
|
|
198
|
+
|
|
199
|
+
## Safety Considerations
|
|
200
|
+
|
|
201
|
+
```
|
|
202
|
+
Agent Safety Checklist
|
|
203
|
+
======================
|
|
204
|
+
[ ] Rate limiting implemented
|
|
205
|
+
[ ] Action scope restricted
|
|
206
|
+
[ ] Sensitive data protected
|
|
207
|
+
[ ] Prompt injection mitigated
|
|
208
|
+
[ ] Human-in-the-loop for risky actions
|
|
209
|
+
[ ] Audit logging enabled
|
|
210
|
+
[ ] Rollback capability
|
|
211
|
+
[ ] Kill switch available
|
|
212
|
+
```
|
|
213
|
+
|
|
214
|
+
## Tips
|
|
215
|
+
|
|
216
|
+
- Start with limited tools
|
|
217
|
+
- Add comprehensive logging
|
|
218
|
+
- Implement human approval for risky actions
|
|
219
|
+
- Test extensively with edge cases
|
|
220
|
+
- Monitor agent behavior in production
|
|
221
|
+
- Version control agent prompts
|
|
222
|
+
|
|
223
|
+
## Example Usage
|
|
224
|
+
|
|
225
|
+
```bash
|
|
226
|
+
# Build code assistant agent
|
|
227
|
+
/workflow:agent-development "code review agent with git, search, and code tools"
|
|
228
|
+
|
|
229
|
+
# Build data analysis agent
|
|
230
|
+
/workflow:agent-development "data analyst with SQL, Python, and visualization tools"
|
|
231
|
+
|
|
232
|
+
# Build customer service agent
|
|
233
|
+
/workflow:agent-development "support agent with knowledge base and ticketing tools"
|
|
234
|
+
```
|
|
235
|
+
|
|
236
|
+
## Related Workflows
|
|
237
|
+
|
|
238
|
+
- `rag-development` - For knowledge-augmented agents
|
|
239
|
+
- `prompt-engineering` - For agent prompts
|
|
240
|
+
- `security-audit` - For agent security
|
|
@@ -0,0 +1,212 @@
|
|
|
1
|
+
---
|
|
2
|
+
name: fine-tuning
|
|
3
|
+
description: Fine-tune foundation models for specific tasks
|
|
4
|
+
category: ai-engineering
|
|
5
|
+
complexity: high
|
|
6
|
+
estimated-time: 4-16 hours
|
|
7
|
+
agents:
|
|
8
|
+
- researcher
|
|
9
|
+
- planner
|
|
10
|
+
- fullstack-developer
|
|
11
|
+
- tester
|
|
12
|
+
skills:
|
|
13
|
+
- finetuning
|
|
14
|
+
- dataset-engineering
|
|
15
|
+
- evaluation-methodology
|
|
16
|
+
commands:
|
|
17
|
+
- /planning:plan
|
|
18
|
+
- /dev:feature
|
|
19
|
+
- /dev:test
|
|
20
|
+
prerequisites:
|
|
21
|
+
- Training data available
|
|
22
|
+
- Compute resources allocated
|
|
23
|
+
- Base model selected
|
|
24
|
+
---
|
|
25
|
+
|
|
26
|
+
# Fine-tuning Workflow
|
|
27
|
+
|
|
28
|
+
## Overview
|
|
29
|
+
|
|
30
|
+
The Fine-tuning workflow guides you through fine-tuning foundation models for specific domains or tasks. It covers data preparation, training configuration, execution, evaluation, and deployment.
|
|
31
|
+
|
|
32
|
+
## When to Use
|
|
33
|
+
|
|
34
|
+
- Adapting models to domains
|
|
35
|
+
- Improving task-specific performance
|
|
36
|
+
- Reducing inference costs
|
|
37
|
+
- Creating specialized assistants
|
|
38
|
+
- Achieving better quality/latency
|
|
39
|
+
|
|
40
|
+
## Steps
|
|
41
|
+
|
|
42
|
+
### Step 1: Strategy Planning
|
|
43
|
+
**Agent:** planner
|
|
44
|
+
**Command:** `/planning:plan "fine-tuning strategy"`
|
|
45
|
+
**Duration:** 30-60 minutes
|
|
46
|
+
|
|
47
|
+
Define strategy:
|
|
48
|
+
- Identify fine-tuning goals
|
|
49
|
+
- Select base model
|
|
50
|
+
- Choose technique (LoRA, QLoRA, full)
|
|
51
|
+
- Estimate resources
|
|
52
|
+
|
|
53
|
+
**Output:** Fine-tuning strategy
|
|
54
|
+
|
|
55
|
+
### Step 2: Data Preparation
|
|
56
|
+
**Agent:** fullstack-developer
|
|
57
|
+
**Duration:** 2-6 hours
|
|
58
|
+
|
|
59
|
+
Prepare data:
|
|
60
|
+
- Collect training examples
|
|
61
|
+
- Format for fine-tuning
|
|
62
|
+
- Quality filtering
|
|
63
|
+
- Train/val/test split
|
|
64
|
+
|
|
65
|
+
**Output:** Training dataset
|
|
66
|
+
|
|
67
|
+
### Step 3: Configuration
|
|
68
|
+
**Agent:** fullstack-developer
|
|
69
|
+
**Duration:** 30-60 minutes
|
|
70
|
+
|
|
71
|
+
Configure training:
|
|
72
|
+
- Set hyperparameters
|
|
73
|
+
- Configure LoRA/QLoRA settings
|
|
74
|
+
- Setup logging
|
|
75
|
+
- Define checkpoints
|
|
76
|
+
|
|
77
|
+
**Output:** Training configuration
|
|
78
|
+
|
|
79
|
+
### Step 4: Training
|
|
80
|
+
**Agent:** fullstack-developer
|
|
81
|
+
**Duration:** 1-8 hours
|
|
82
|
+
|
|
83
|
+
Run training:
|
|
84
|
+
- Execute training job
|
|
85
|
+
- Monitor metrics
|
|
86
|
+
- Save checkpoints
|
|
87
|
+
- Handle errors
|
|
88
|
+
|
|
89
|
+
**Output:** Trained model
|
|
90
|
+
|
|
91
|
+
### Step 5: Evaluation
|
|
92
|
+
**Agent:** tester
|
|
93
|
+
**Command:** `/dev:test`
|
|
94
|
+
**Duration:** 1-2 hours
|
|
95
|
+
|
|
96
|
+
Evaluate model:
|
|
97
|
+
- Run evaluation suite
|
|
98
|
+
- Compare to baseline
|
|
99
|
+
- Analyze improvements
|
|
100
|
+
- Check for regressions
|
|
101
|
+
|
|
102
|
+
**Output:** Evaluation report
|
|
103
|
+
|
|
104
|
+
### Step 6: Deployment
|
|
105
|
+
**Agent:** fullstack-developer
|
|
106
|
+
**Duration:** 1-2 hours
|
|
107
|
+
|
|
108
|
+
Deploy model:
|
|
109
|
+
- Export model
|
|
110
|
+
- Setup inference
|
|
111
|
+
- Configure serving
|
|
112
|
+
- Validate deployment
|
|
113
|
+
|
|
114
|
+
**Output:** Deployed model
|
|
115
|
+
|
|
116
|
+
## Quality Gates
|
|
117
|
+
|
|
118
|
+
- [ ] Strategy approved
|
|
119
|
+
- [ ] Dataset quality verified
|
|
120
|
+
- [ ] Training completed
|
|
121
|
+
- [ ] Evaluation targets met
|
|
122
|
+
- [ ] No harmful behaviors
|
|
123
|
+
- [ ] Deployment successful
|
|
124
|
+
|
|
125
|
+
## Fine-tuning Techniques
|
|
126
|
+
|
|
127
|
+
```
|
|
128
|
+
Fine-tuning Techniques Comparison
|
|
129
|
+
=================================
|
|
130
|
+
|
|
131
|
+
FULL FINE-TUNING:
|
|
132
|
+
- Updates all parameters
|
|
133
|
+
- Highest quality potential
|
|
134
|
+
- Most compute/memory
|
|
135
|
+
- Best for small models
|
|
136
|
+
|
|
137
|
+
LoRA (Low-Rank Adaptation):
|
|
138
|
+
- Updates small adapters
|
|
139
|
+
- Good quality/efficiency
|
|
140
|
+
- Lower memory needs
|
|
141
|
+
- Works with large models
|
|
142
|
+
|
|
143
|
+
QLoRA (Quantized LoRA):
|
|
144
|
+
- LoRA + 4-bit quantization
|
|
145
|
+
- Very memory efficient
|
|
146
|
+
- Good for consumer GPUs
|
|
147
|
+
- Slight quality tradeoff
|
|
148
|
+
|
|
149
|
+
PROMPT TUNING:
|
|
150
|
+
- Only tunes prompt embeddings
|
|
151
|
+
- Very parameter efficient
|
|
152
|
+
- Limited adaptation
|
|
153
|
+
- Fast training
|
|
154
|
+
```
|
|
155
|
+
|
|
156
|
+
## Data Format
|
|
157
|
+
|
|
158
|
+
```json
|
|
159
|
+
// Chat fine-tuning format
|
|
160
|
+
{
|
|
161
|
+
"messages": [
|
|
162
|
+
{"role": "system", "content": "You are..."},
|
|
163
|
+
{"role": "user", "content": "Question..."},
|
|
164
|
+
{"role": "assistant", "content": "Answer..."}
|
|
165
|
+
]
|
|
166
|
+
}
|
|
167
|
+
|
|
168
|
+
// Instruction fine-tuning format
|
|
169
|
+
{
|
|
170
|
+
"instruction": "Task description",
|
|
171
|
+
"input": "Input data",
|
|
172
|
+
"output": "Expected output"
|
|
173
|
+
}
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
## Hyperparameters
|
|
177
|
+
|
|
178
|
+
| Parameter | Typical Range | Notes |
|
|
179
|
+
|-----------|---------------|-------|
|
|
180
|
+
| Learning Rate | 1e-5 to 5e-4 | Lower for larger models |
|
|
181
|
+
| Batch Size | 4-32 | Depends on memory |
|
|
182
|
+
| Epochs | 1-5 | Watch for overfitting |
|
|
183
|
+
| LoRA Rank | 8-64 | Higher = more capacity |
|
|
184
|
+
| LoRA Alpha | 16-128 | Usually 2x rank |
|
|
185
|
+
|
|
186
|
+
## Tips
|
|
187
|
+
|
|
188
|
+
- Start with small dataset
|
|
189
|
+
- Use validation set
|
|
190
|
+
- Monitor for overfitting
|
|
191
|
+
- Save checkpoints frequently
|
|
192
|
+
- Compare to baseline early
|
|
193
|
+
- Document everything
|
|
194
|
+
|
|
195
|
+
## Example Usage
|
|
196
|
+
|
|
197
|
+
```bash
|
|
198
|
+
# Fine-tune for customer support
|
|
199
|
+
/workflow:fine-tuning "customer support model with company FAQ and tone"
|
|
200
|
+
|
|
201
|
+
# Fine-tune for code generation
|
|
202
|
+
/workflow:fine-tuning "code completion model for Python with company patterns"
|
|
203
|
+
|
|
204
|
+
# Fine-tune for domain adaptation
|
|
205
|
+
/workflow:fine-tuning "legal document analyzer with contract examples"
|
|
206
|
+
```
|
|
207
|
+
|
|
208
|
+
## Related Workflows
|
|
209
|
+
|
|
210
|
+
- `dataset-engineering` - For data preparation
|
|
211
|
+
- `model-evaluation` - For comprehensive evaluation
|
|
212
|
+
- `prompt-engineering` - Alternative to fine-tuning
|