omgkit 2.9.0 → 2.10.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. package/README.md +48 -1
  2. package/lib/cli.js +3 -1
  3. package/package.json +1 -1
  4. package/plugin/workflows/ai-engineering/agent-development.md +240 -0
  5. package/plugin/workflows/ai-engineering/fine-tuning.md +212 -0
  6. package/plugin/workflows/ai-engineering/model-evaluation.md +203 -0
  7. package/plugin/workflows/ai-engineering/prompt-engineering.md +192 -0
  8. package/plugin/workflows/ai-engineering/rag-development.md +203 -0
  9. package/plugin/workflows/api/api-design.md +152 -0
  10. package/plugin/workflows/api/api-testing.md +152 -0
  11. package/plugin/workflows/content/marketing.md +118 -0
  12. package/plugin/workflows/content/technical-docs.md +146 -0
  13. package/plugin/workflows/database/migration.md +153 -0
  14. package/plugin/workflows/database/optimization.md +136 -0
  15. package/plugin/workflows/database/schema-design.md +148 -0
  16. package/plugin/workflows/development/bug-fix.md +159 -0
  17. package/plugin/workflows/development/code-review.md +119 -0
  18. package/plugin/workflows/development/feature.md +171 -0
  19. package/plugin/workflows/development/refactor.md +155 -0
  20. package/plugin/workflows/fullstack/authentication.md +153 -0
  21. package/plugin/workflows/fullstack/full-feature.md +217 -0
  22. package/plugin/workflows/omega/1000x-innovation.md +167 -0
  23. package/plugin/workflows/omega/100x-architecture.md +150 -0
  24. package/plugin/workflows/omega/10x-improvement.md +228 -0
  25. package/plugin/workflows/quality/performance-optimization.md +157 -0
  26. package/plugin/workflows/research/best-practices.md +140 -0
  27. package/plugin/workflows/research/technology-research.md +130 -0
  28. package/plugin/workflows/security/penetration-testing.md +150 -0
  29. package/plugin/workflows/security/security-audit.md +176 -0
  30. package/plugin/workflows/sprint/sprint-execution.md +168 -0
  31. package/plugin/workflows/sprint/sprint-retrospective.md +168 -0
  32. package/plugin/workflows/sprint/sprint-setup.md +153 -0
  33. package/templates/CLAUDE.md +84 -0
package/README.md CHANGED
@@ -7,7 +7,7 @@
7
7
  [![License](https://img.shields.io/badge/license-MIT-blue)](LICENSE)
8
8
 
9
9
  > **AI Team System for Claude Code**
10
- > 23 Agents • 58 Commands • 88 Skills • 10 Modes
10
+ > 23 Agents • 58 Commands • 29 Workflows • 88 Skills • 10 Modes
11
11
  > *"Think Omega. Build Omega. Be Omega."*
12
12
 
13
13
  OMGKIT transforms Claude Code into an autonomous AI development team with sprint management, specialized agents, and Omega-level thinking for 10x-1000x productivity improvements.
@@ -18,6 +18,7 @@ OMGKIT transforms Claude Code into an autonomous AI development team with sprint
18
18
  |-----------|-------|-------------|
19
19
  | **Agents** | 23 | Specialized AI team members |
20
20
  | **Commands** | 58 | Slash commands for every task |
21
+ | **Workflows** | 29 | Complete development processes |
21
22
  | **Skills** | 88 | Domain expertise modules |
22
23
  | **Modes** | 10 | Behavioral configurations |
23
24
  | **Sprint Management** | ✅ | Vision, backlog, team autonomy |
@@ -163,6 +164,52 @@ After installation, use these commands in Claude Code:
163
164
  /team:status # Show team activity
164
165
  ```
165
166
 
167
+ ## 📋 Workflows (29)
168
+
169
+ Workflows are orchestrated sequences of agents, commands, and skills that guide complete development processes.
170
+
171
+ ### Development
172
+ | Workflow | Description |
173
+ |----------|-------------|
174
+ | `feature` | Complete feature development from planning to PR |
175
+ | `bug-fix` | Systematic debugging and resolution |
176
+ | `refactor` | Code improvement and restructuring |
177
+ | `code-review` | Comprehensive code review |
178
+
179
+ ### AI Engineering
180
+ | Workflow | Description |
181
+ |----------|-------------|
182
+ | `rag-development` | Build complete RAG systems |
183
+ | `model-evaluation` | AI model evaluation pipeline |
184
+ | `prompt-engineering` | Systematic prompt optimization |
185
+ | `agent-development` | Build AI agents |
186
+ | `fine-tuning` | Model fine-tuning workflow |
187
+
188
+ ### Omega ⭐
189
+ | Workflow | Description |
190
+ |----------|-------------|
191
+ | `10x-improvement` | Tactical enhancements |
192
+ | `100x-architecture` | System redesign |
193
+ | `1000x-innovation` | Industry transformation |
194
+
195
+ ### Sprint Management
196
+ | Workflow | Description |
197
+ |----------|-------------|
198
+ | `sprint-setup` | Initialize and plan sprints |
199
+ | `sprint-execution` | Execute sprint tasks |
200
+ | `sprint-retrospective` | Review and improve |
201
+
202
+ ### Other Categories
203
+ - **Security**: `security-audit`, `penetration-testing`
204
+ - **Database**: `schema-design`, `migration`, `optimization`
205
+ - **API**: `api-design`, `api-testing`
206
+ - **Full Stack**: `full-feature`, `authentication`
207
+ - **Content**: `technical-docs`, `marketing`
208
+ - **Research**: `technology-research`, `best-practices`
209
+ - **Quality**: `performance-optimization`
210
+
211
+ Use workflows with: `/workflow:<name> "description"`
212
+
166
213
  ## 🎭 Modes (10)
167
214
 
168
215
  | Mode | Description |
package/lib/cli.js CHANGED
@@ -389,6 +389,7 @@ export function initProject(options = {}) {
389
389
  const templates = [
390
390
  { src: 'config.yaml', dest: '.omgkit/config.yaml' },
391
391
  { src: 'OMEGA.md', dest: 'OMEGA.md' },
392
+ { src: 'CLAUDE.md', dest: 'CLAUDE.md' },
392
393
  { src: 'vision.yaml', dest: '.omgkit/sprints/vision.yaml' },
393
394
  { src: 'backlog.yaml', dest: '.omgkit/sprints/backlog.yaml' },
394
395
  { src: 'settings.json', dest: '.omgkit/settings.json' },
@@ -578,7 +579,8 @@ export function doctor(options = {}) {
578
579
  const files = [
579
580
  '.omgkit/config.yaml',
580
581
  '.omgkit/sprints/vision.yaml',
581
- 'OMEGA.md'
582
+ 'OMEGA.md',
583
+ 'CLAUDE.md'
582
584
  ];
583
585
 
584
586
  files.forEach(f => {
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "omgkit",
3
- "version": "2.9.0",
3
+ "version": "2.10.0",
4
4
  "description": "Omega-Level Development Kit - AI Team System for Claude Code. 23 agents, 58 commands, 88 skills, sprint management.",
5
5
  "keywords": [
6
6
  "claude-code",
@@ -0,0 +1,240 @@
1
+ ---
2
+ name: agent-development
3
+ description: Build autonomous AI agents with tools
4
+ category: ai-engineering
5
+ complexity: very-high
6
+ estimated-time: 8-24 hours
7
+ agents:
8
+ - researcher
9
+ - planner
10
+ - architect
11
+ - fullstack-developer
12
+ - tester
13
+ - security-auditor
14
+ skills:
15
+ - ai-agents
16
+ - ai-architecture
17
+ - guardrails-safety
18
+ commands:
19
+ - /planning:research
20
+ - /planning:plan-detailed
21
+ - /dev:feature
22
+ - /dev:test
23
+ - /quality:security-scan
24
+ prerequisites:
25
+ - Agent use case defined
26
+ - Tool requirements known
27
+ - LLM API access
28
+ ---
29
+
30
+ # Agent Development Workflow
31
+
32
+ ## Overview
33
+
34
+ The Agent Development workflow guides you through building autonomous AI agents capable of planning, tool use, and multi-step task execution. It covers architecture, implementation, testing, and safety measures.
35
+
36
+ ## When to Use
37
+
38
+ - Building autonomous assistants
39
+ - Creating tool-using AI systems
40
+ - Implementing multi-step workflows
41
+ - Building AI copilots
42
+ - Creating agentic applications
43
+
44
+ ## Steps
45
+
46
+ ### Step 1: Research
47
+ **Agent:** researcher
48
+ **Command:** `/planning:research "agent architectures"`
49
+ **Duration:** 1-2 hours
50
+
51
+ Research phase:
52
+ - Study agent architectures (ReAct, Plan-Execute)
53
+ - Review tool use patterns
54
+ - Analyze memory systems
55
+ - Evaluate safety approaches
56
+
57
+ **Output:** Research findings
58
+
59
+ ### Step 2: Architecture Design
60
+ **Agent:** architect
61
+ **Command:** `/planning:plan-detailed "agent architecture"`
62
+ **Duration:** 1-2 hours
63
+
64
+ Design architecture:
65
+ - Define agent capabilities
66
+ - Design tool interface
67
+ - Plan memory system
68
+ - Specify safety boundaries
69
+
70
+ **Output:** Architecture document
71
+
72
+ ### Step 3: Tool Implementation
73
+ **Agent:** fullstack-developer
74
+ **Duration:** 2-4 hours
75
+
76
+ Build tools:
77
+ - Define tool schemas
78
+ - Implement tool functions
79
+ - Add input validation
80
+ - Create error handling
81
+
82
+ **Output:** Tool implementations
83
+
84
+ ### Step 4: Planning System
85
+ **Agent:** fullstack-developer
86
+ **Duration:** 2-4 hours
87
+
88
+ Implement planning:
89
+ - Task decomposition
90
+ - Step sequencing
91
+ - Dependency handling
92
+ - Progress tracking
93
+
94
+ **Output:** Planning system
95
+
96
+ ### Step 5: Execution Loop
97
+ **Agent:** fullstack-developer
98
+ **Duration:** 2-4 hours
99
+
100
+ Build execution:
101
+ - Action selection
102
+ - Tool invocation
103
+ - Result processing
104
+ - Loop control
105
+
106
+ **Output:** Execution loop
107
+
108
+ ### Step 6: Memory System
109
+ **Agent:** fullstack-developer
110
+ **Duration:** 1-2 hours
111
+
112
+ Implement memory:
113
+ - Short-term context
114
+ - Long-term storage
115
+ - Memory retrieval
116
+ - Context management
117
+
118
+ **Output:** Memory system
119
+
120
+ ### Step 7: Safety Implementation
121
+ **Agent:** security-auditor
122
+ **Duration:** 1-2 hours
123
+
124
+ Add safety:
125
+ - Input validation
126
+ - Output filtering
127
+ - Action limits
128
+ - Guardrails
129
+
130
+ **Output:** Safety layer
131
+
132
+ ### Step 8: Testing
133
+ **Agent:** tester
134
+ **Command:** `/dev:test`
135
+ **Duration:** 2-4 hours
136
+
137
+ Test agent:
138
+ - Unit tests for tools
139
+ - Integration tests
140
+ - Behavior tests
141
+ - Safety tests
142
+
143
+ **Output:** Test suite
144
+
145
+ ### Step 9: Security Review
146
+ **Agent:** security-auditor
147
+ **Command:** `/quality:security-scan`
148
+ **Duration:** 1-2 hours
149
+
150
+ Security review:
151
+ - Prompt injection prevention
152
+ - Tool abuse prevention
153
+ - Data leak prevention
154
+ - Access control
155
+
156
+ **Output:** Security report
157
+
158
+ ## Quality Gates
159
+
160
+ - [ ] Architecture documented and approved
161
+ - [ ] All tools implemented and tested
162
+ - [ ] Planning system working
163
+ - [ ] Execution loop reliable
164
+ - [ ] Memory system functional
165
+ - [ ] Safety measures in place
166
+ - [ ] Security review passed
167
+ - [ ] All tests passing
168
+
169
+ ## Agent Architecture
170
+
171
+ ```
172
+ AI Agent Architecture
173
+ =====================
174
+
175
+ ┌─────────────────────────────────────────┐
176
+ │ AGENT │
177
+ │ ┌─────────────────────────────────┐ │
178
+ │ │ PLANNER │ │
179
+ │ │ Task → Steps → Actions │ │
180
+ │ └─────────────────────────────────┘ │
181
+ │ ↓ │
182
+ │ ┌─────────────────────────────────┐ │
183
+ │ │ EXECUTOR │ │
184
+ │ │ Select → Execute → Observe │ │
185
+ │ └─────────────────────────────────┘ │
186
+ │ ↓ │
187
+ │ ┌─────────────────────────────────┐ │
188
+ │ │ TOOLS │ │
189
+ │ │ [Search] [Code] [API] [DB] │ │
190
+ │ └─────────────────────────────────┘ │
191
+ │ ↓ │
192
+ │ ┌─────────────────────────────────┐ │
193
+ │ │ MEMORY │ │
194
+ │ │ Short-term │ Long-term │ │
195
+ │ └─────────────────────────────────┘ │
196
+ └─────────────────────────────────────────┘
197
+ ```
198
+
199
+ ## Safety Considerations
200
+
201
+ ```
202
+ Agent Safety Checklist
203
+ ======================
204
+ [ ] Rate limiting implemented
205
+ [ ] Action scope restricted
206
+ [ ] Sensitive data protected
207
+ [ ] Prompt injection mitigated
208
+ [ ] Human-in-the-loop for risky actions
209
+ [ ] Audit logging enabled
210
+ [ ] Rollback capability
211
+ [ ] Kill switch available
212
+ ```
213
+
214
+ ## Tips
215
+
216
+ - Start with limited tools
217
+ - Add comprehensive logging
218
+ - Implement human approval for risky actions
219
+ - Test extensively with edge cases
220
+ - Monitor agent behavior in production
221
+ - Version control agent prompts
222
+
223
+ ## Example Usage
224
+
225
+ ```bash
226
+ # Build code assistant agent
227
+ /workflow:agent-development "code review agent with git, search, and code tools"
228
+
229
+ # Build data analysis agent
230
+ /workflow:agent-development "data analyst with SQL, Python, and visualization tools"
231
+
232
+ # Build customer service agent
233
+ /workflow:agent-development "support agent with knowledge base and ticketing tools"
234
+ ```
235
+
236
+ ## Related Workflows
237
+
238
+ - `rag-development` - For knowledge-augmented agents
239
+ - `prompt-engineering` - For agent prompts
240
+ - `security-audit` - For agent security
@@ -0,0 +1,212 @@
1
+ ---
2
+ name: fine-tuning
3
+ description: Fine-tune foundation models for specific tasks
4
+ category: ai-engineering
5
+ complexity: high
6
+ estimated-time: 4-16 hours
7
+ agents:
8
+ - researcher
9
+ - planner
10
+ - fullstack-developer
11
+ - tester
12
+ skills:
13
+ - finetuning
14
+ - dataset-engineering
15
+ - evaluation-methodology
16
+ commands:
17
+ - /planning:plan
18
+ - /dev:feature
19
+ - /dev:test
20
+ prerequisites:
21
+ - Training data available
22
+ - Compute resources allocated
23
+ - Base model selected
24
+ ---
25
+
26
+ # Fine-tuning Workflow
27
+
28
+ ## Overview
29
+
30
+ The Fine-tuning workflow guides you through fine-tuning foundation models for specific domains or tasks. It covers data preparation, training configuration, execution, evaluation, and deployment.
31
+
32
+ ## When to Use
33
+
34
+ - Adapting models to domains
35
+ - Improving task-specific performance
36
+ - Reducing inference costs
37
+ - Creating specialized assistants
38
+ - Achieving better quality/latency
39
+
40
+ ## Steps
41
+
42
+ ### Step 1: Strategy Planning
43
+ **Agent:** planner
44
+ **Command:** `/planning:plan "fine-tuning strategy"`
45
+ **Duration:** 30-60 minutes
46
+
47
+ Define strategy:
48
+ - Identify fine-tuning goals
49
+ - Select base model
50
+ - Choose technique (LoRA, QLoRA, full)
51
+ - Estimate resources
52
+
53
+ **Output:** Fine-tuning strategy
54
+
55
+ ### Step 2: Data Preparation
56
+ **Agent:** fullstack-developer
57
+ **Duration:** 2-6 hours
58
+
59
+ Prepare data:
60
+ - Collect training examples
61
+ - Format for fine-tuning
62
+ - Quality filtering
63
+ - Train/val/test split
64
+
65
+ **Output:** Training dataset
66
+
67
+ ### Step 3: Configuration
68
+ **Agent:** fullstack-developer
69
+ **Duration:** 30-60 minutes
70
+
71
+ Configure training:
72
+ - Set hyperparameters
73
+ - Configure LoRA/QLoRA settings
74
+ - Setup logging
75
+ - Define checkpoints
76
+
77
+ **Output:** Training configuration
78
+
79
+ ### Step 4: Training
80
+ **Agent:** fullstack-developer
81
+ **Duration:** 1-8 hours
82
+
83
+ Run training:
84
+ - Execute training job
85
+ - Monitor metrics
86
+ - Save checkpoints
87
+ - Handle errors
88
+
89
+ **Output:** Trained model
90
+
91
+ ### Step 5: Evaluation
92
+ **Agent:** tester
93
+ **Command:** `/dev:test`
94
+ **Duration:** 1-2 hours
95
+
96
+ Evaluate model:
97
+ - Run evaluation suite
98
+ - Compare to baseline
99
+ - Analyze improvements
100
+ - Check for regressions
101
+
102
+ **Output:** Evaluation report
103
+
104
+ ### Step 6: Deployment
105
+ **Agent:** fullstack-developer
106
+ **Duration:** 1-2 hours
107
+
108
+ Deploy model:
109
+ - Export model
110
+ - Setup inference
111
+ - Configure serving
112
+ - Validate deployment
113
+
114
+ **Output:** Deployed model
115
+
116
+ ## Quality Gates
117
+
118
+ - [ ] Strategy approved
119
+ - [ ] Dataset quality verified
120
+ - [ ] Training completed
121
+ - [ ] Evaluation targets met
122
+ - [ ] No harmful behaviors
123
+ - [ ] Deployment successful
124
+
125
+ ## Fine-tuning Techniques
126
+
127
+ ```
128
+ Fine-tuning Techniques Comparison
129
+ =================================
130
+
131
+ FULL FINE-TUNING:
132
+ - Updates all parameters
133
+ - Highest quality potential
134
+ - Most compute/memory
135
+ - Best for small models
136
+
137
+ LoRA (Low-Rank Adaptation):
138
+ - Updates small adapters
139
+ - Good quality/efficiency
140
+ - Lower memory needs
141
+ - Works with large models
142
+
143
+ QLoRA (Quantized LoRA):
144
+ - LoRA + 4-bit quantization
145
+ - Very memory efficient
146
+ - Good for consumer GPUs
147
+ - Slight quality tradeoff
148
+
149
+ PROMPT TUNING:
150
+ - Only tunes prompt embeddings
151
+ - Very parameter efficient
152
+ - Limited adaptation
153
+ - Fast training
154
+ ```
155
+
156
+ ## Data Format
157
+
158
+ ```json
159
+ // Chat fine-tuning format
160
+ {
161
+ "messages": [
162
+ {"role": "system", "content": "You are..."},
163
+ {"role": "user", "content": "Question..."},
164
+ {"role": "assistant", "content": "Answer..."}
165
+ ]
166
+ }
167
+
168
+ // Instruction fine-tuning format
169
+ {
170
+ "instruction": "Task description",
171
+ "input": "Input data",
172
+ "output": "Expected output"
173
+ }
174
+ ```
175
+
176
+ ## Hyperparameters
177
+
178
+ | Parameter | Typical Range | Notes |
179
+ |-----------|---------------|-------|
180
+ | Learning Rate | 1e-5 to 5e-4 | Lower for larger models |
181
+ | Batch Size | 4-32 | Depends on memory |
182
+ | Epochs | 1-5 | Watch for overfitting |
183
+ | LoRA Rank | 8-64 | Higher = more capacity |
184
+ | LoRA Alpha | 16-128 | Usually 2x rank |
185
+
186
+ ## Tips
187
+
188
+ - Start with small dataset
189
+ - Use validation set
190
+ - Monitor for overfitting
191
+ - Save checkpoints frequently
192
+ - Compare to baseline early
193
+ - Document everything
194
+
195
+ ## Example Usage
196
+
197
+ ```bash
198
+ # Fine-tune for customer support
199
+ /workflow:fine-tuning "customer support model with company FAQ and tone"
200
+
201
+ # Fine-tune for code generation
202
+ /workflow:fine-tuning "code completion model for Python with company patterns"
203
+
204
+ # Fine-tune for domain adaptation
205
+ /workflow:fine-tuning "legal document analyzer with contract examples"
206
+ ```
207
+
208
+ ## Related Workflows
209
+
210
+ - `dataset-engineering` - For data preparation
211
+ - `model-evaluation` - For comprehensive evaluation
212
+ - `prompt-engineering` - Alternative to fine-tuning