omgkit 2.11.0 → 2.13.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +48 -1
- package/package.json +1 -1
- package/plugin/templates/autonomous/archetypes/ai-model-building.yaml +443 -0
- package/plugin/templates/autonomous/archetypes/ai-powered-app.yaml +420 -0
- package/plugin/templates/autonomous/archetypes/desktop-app.yaml +371 -0
- package/plugin/templates/autonomous/archetypes/event-driven-app.yaml +460 -0
- package/plugin/templates/autonomous/archetypes/game-app.yaml +428 -0
- package/plugin/templates/autonomous/archetypes/iot-app.yaml +415 -0
- package/plugin/templates/autonomous/archetypes/microservices-app.yaml +431 -0
- package/plugin/templates/autonomous/archetypes/mobile-app.yaml +356 -0
- package/plugin/templates/autonomous/archetypes/simulation-app.yaml +428 -0
- package/plugin/templates/autonomous/artifacts-schema.yaml +465 -0
- package/plugin/templates/autonomous/state-schema.yaml +105 -1
package/README.md
CHANGED
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
[](LICENSE)
|
|
8
8
|
|
|
9
9
|
> **AI Team System for Claude Code**
|
|
10
|
-
> 23 Agents • 58 Commands • 29 Workflows • 88 Skills • 10 Modes
|
|
10
|
+
> 23 Agents • 58 Commands • 29 Workflows • 88 Skills • 10 Modes • 14 Archetypes
|
|
11
11
|
> *"Think Omega. Build Omega. Be Omega."*
|
|
12
12
|
|
|
13
13
|
OMGKIT transforms Claude Code into an autonomous AI development team with sprint management, specialized agents, and Omega-level thinking for 10x-1000x productivity improvements.
|
|
@@ -21,8 +21,10 @@ OMGKIT transforms Claude Code into an autonomous AI development team with sprint
|
|
|
21
21
|
| **Workflows** | 29 | Complete development processes |
|
|
22
22
|
| **Skills** | 88 | Domain expertise modules |
|
|
23
23
|
| **Modes** | 10 | Behavioral configurations |
|
|
24
|
+
| **Archetypes** | 14 | Project templates for autonomous dev |
|
|
24
25
|
| **Sprint Management** | ✅ | Vision, backlog, team autonomy |
|
|
25
26
|
| **Omega Thinking** | ✅ | 7 modes for 10x-1000x solutions |
|
|
27
|
+
| **Autonomous Dev** | ✅ | Build complete apps from idea to deploy |
|
|
26
28
|
|
|
27
29
|
## 🚀 Installation
|
|
28
30
|
|
|
@@ -164,6 +166,51 @@ After installation, use these commands in Claude Code:
|
|
|
164
166
|
/team:status # Show team activity
|
|
165
167
|
```
|
|
166
168
|
|
|
169
|
+
### Autonomous Development
|
|
170
|
+
```bash
|
|
171
|
+
/auto:init <idea> # Start discovery for new project
|
|
172
|
+
/auto:start # Begin/continue autonomous execution
|
|
173
|
+
/auto:status # Check project progress
|
|
174
|
+
/auto:approve # Approve checkpoint to continue
|
|
175
|
+
/auto:reject # Request changes with feedback
|
|
176
|
+
/auto:resume # Resume from saved state
|
|
177
|
+
```
|
|
178
|
+
|
|
179
|
+
## 🤖 Autonomous Development (14 Archetypes)
|
|
180
|
+
|
|
181
|
+
Build complete applications autonomously from idea to deployment.
|
|
182
|
+
|
|
183
|
+
| Archetype | Description |
|
|
184
|
+
|-----------|-------------|
|
|
185
|
+
| **SaaS MVP** | Multi-tenant SaaS with auth, payments |
|
|
186
|
+
| **API Service** | Backend APIs for web/mobile apps |
|
|
187
|
+
| **CLI Tool** | Command-line utilities |
|
|
188
|
+
| **Library/SDK** | Reusable npm packages |
|
|
189
|
+
| **Full-Stack App** | Complete web applications |
|
|
190
|
+
| **Mobile App** | iOS/Android with React Native |
|
|
191
|
+
| **AI-Powered App** | LLM apps with RAG, function calling |
|
|
192
|
+
| **AI Model Building** | ML model training pipelines |
|
|
193
|
+
| **Desktop App** | Electron cross-platform apps |
|
|
194
|
+
| **IoT App** | Device management, real-time data |
|
|
195
|
+
| **Game** | Unity/Godot game development |
|
|
196
|
+
| **Simulation** | Scientific/engineering simulations |
|
|
197
|
+
| **Microservices** | Distributed services with K8s, API gateway |
|
|
198
|
+
| **Event-Driven** | Async systems with Kafka, CQRS, sagas |
|
|
199
|
+
|
|
200
|
+
### Artifacts System
|
|
201
|
+
|
|
202
|
+
Provide project context through artifacts:
|
|
203
|
+
|
|
204
|
+
```
|
|
205
|
+
.omgkit/artifacts/
|
|
206
|
+
├── data/ # Sample data, schemas
|
|
207
|
+
├── docs/ # Requirements, user stories
|
|
208
|
+
├── knowledge/ # Glossary, business rules
|
|
209
|
+
├── research/ # Competitor analysis
|
|
210
|
+
├── assets/ # Images, templates
|
|
211
|
+
└── examples/ # Code samples
|
|
212
|
+
```
|
|
213
|
+
|
|
167
214
|
## 📋 Workflows (29)
|
|
168
215
|
|
|
169
216
|
Workflows are orchestrated sequences of agents, commands, and skills that guide complete development processes.
|
package/package.json
CHANGED
|
@@ -0,0 +1,443 @@
|
|
|
1
|
+
name: "AI Model Building"
|
|
2
|
+
id: ai-model-building
|
|
3
|
+
description: "ML/AI model development with training pipelines, experiment tracking, and model deployment"
|
|
4
|
+
estimated_duration: "4-8 weeks"
|
|
5
|
+
icon: "brain"
|
|
6
|
+
|
|
7
|
+
# Default technology recommendations
|
|
8
|
+
defaults:
|
|
9
|
+
framework: pytorch
|
|
10
|
+
experiment_tracking: wandb
|
|
11
|
+
data_versioning: dvc
|
|
12
|
+
model_registry: mlflow
|
|
13
|
+
compute: aws_sagemaker
|
|
14
|
+
serving: vllm
|
|
15
|
+
language: python
|
|
16
|
+
|
|
17
|
+
# Alternative technology stacks
|
|
18
|
+
alternatives:
|
|
19
|
+
framework:
|
|
20
|
+
- id: pytorch
|
|
21
|
+
name: "PyTorch"
|
|
22
|
+
description: "Most flexible, research-friendly"
|
|
23
|
+
- id: tensorflow
|
|
24
|
+
name: "TensorFlow"
|
|
25
|
+
description: "Production-ready, TFX ecosystem"
|
|
26
|
+
- id: jax
|
|
27
|
+
name: "JAX"
|
|
28
|
+
description: "High-performance, functional approach"
|
|
29
|
+
- id: huggingface
|
|
30
|
+
name: "Hugging Face Transformers"
|
|
31
|
+
description: "Best for NLP/LLM work"
|
|
32
|
+
|
|
33
|
+
experiment_tracking:
|
|
34
|
+
- id: wandb
|
|
35
|
+
name: "Weights & Biases"
|
|
36
|
+
description: "Most popular, excellent visualization"
|
|
37
|
+
- id: mlflow
|
|
38
|
+
name: "MLflow"
|
|
39
|
+
description: "Open-source, self-hosted option"
|
|
40
|
+
- id: comet
|
|
41
|
+
name: "Comet ML"
|
|
42
|
+
description: "Good for teams"
|
|
43
|
+
- id: neptune
|
|
44
|
+
name: "Neptune.ai"
|
|
45
|
+
description: "Lightweight, flexible"
|
|
46
|
+
|
|
47
|
+
compute:
|
|
48
|
+
- id: aws_sagemaker
|
|
49
|
+
name: "AWS SageMaker"
|
|
50
|
+
description: "Managed ML platform"
|
|
51
|
+
- id: gcp_vertex
|
|
52
|
+
name: "GCP Vertex AI"
|
|
53
|
+
description: "Google's ML platform"
|
|
54
|
+
- id: azure_ml
|
|
55
|
+
name: "Azure ML"
|
|
56
|
+
description: "Microsoft's ML platform"
|
|
57
|
+
- id: local_gpu
|
|
58
|
+
name: "Local GPU"
|
|
59
|
+
description: "On-premise training"
|
|
60
|
+
|
|
61
|
+
# Phases of development
|
|
62
|
+
phases:
|
|
63
|
+
- id: discovery
|
|
64
|
+
name: "Problem Definition"
|
|
65
|
+
description: "Define ML problem, success metrics, and data availability"
|
|
66
|
+
order: 1
|
|
67
|
+
checkpoint: true
|
|
68
|
+
checkpoint_message: |
|
|
69
|
+
Problem definition complete. Review:
|
|
70
|
+
- ML task definition and approach
|
|
71
|
+
- Success metrics and baselines
|
|
72
|
+
- Data availability and quality
|
|
73
|
+
|
|
74
|
+
Approve to proceed with data engineering.
|
|
75
|
+
|
|
76
|
+
steps:
|
|
77
|
+
- id: problem_definition
|
|
78
|
+
name: "Problem Definition"
|
|
79
|
+
agent: planner
|
|
80
|
+
description: "Define the ML problem clearly"
|
|
81
|
+
|
|
82
|
+
- id: success_metrics
|
|
83
|
+
name: "Success Metrics"
|
|
84
|
+
agent: planner
|
|
85
|
+
description: "Define metrics and baselines"
|
|
86
|
+
|
|
87
|
+
- id: data_audit
|
|
88
|
+
name: "Data Audit"
|
|
89
|
+
agent: researcher
|
|
90
|
+
description: "Audit available data sources"
|
|
91
|
+
|
|
92
|
+
- id: feasibility
|
|
93
|
+
name: "Feasibility Analysis"
|
|
94
|
+
agent: architect
|
|
95
|
+
description: "Assess technical feasibility"
|
|
96
|
+
|
|
97
|
+
outputs:
|
|
98
|
+
- ".omgkit/generated/ml-problem-definition.md"
|
|
99
|
+
- ".omgkit/generated/metrics-baseline.md"
|
|
100
|
+
- ".omgkit/generated/data-audit.md"
|
|
101
|
+
|
|
102
|
+
- id: data_engineering
|
|
103
|
+
name: "Data Engineering"
|
|
104
|
+
description: "Collect, clean, and version data"
|
|
105
|
+
order: 2
|
|
106
|
+
checkpoint: true
|
|
107
|
+
checkpoint_message: |
|
|
108
|
+
Data engineering complete. Review:
|
|
109
|
+
- Data pipeline
|
|
110
|
+
- Data quality metrics
|
|
111
|
+
- Train/val/test splits
|
|
112
|
+
|
|
113
|
+
Approve to begin exploration.
|
|
114
|
+
|
|
115
|
+
steps:
|
|
116
|
+
- id: data_collection
|
|
117
|
+
name: "Data Collection"
|
|
118
|
+
agent: fullstack-developer
|
|
119
|
+
description: "Set up data collection pipelines"
|
|
120
|
+
|
|
121
|
+
- id: data_cleaning
|
|
122
|
+
name: "Data Cleaning"
|
|
123
|
+
agent: fullstack-developer
|
|
124
|
+
description: "Clean and preprocess data"
|
|
125
|
+
|
|
126
|
+
- id: data_versioning
|
|
127
|
+
name: "Data Versioning"
|
|
128
|
+
agent: fullstack-developer
|
|
129
|
+
description: "Set up DVC for data versioning"
|
|
130
|
+
|
|
131
|
+
- id: data_splits
|
|
132
|
+
name: "Data Splits"
|
|
133
|
+
agent: fullstack-developer
|
|
134
|
+
description: "Create train/val/test splits"
|
|
135
|
+
|
|
136
|
+
- id: data_validation
|
|
137
|
+
name: "Data Validation"
|
|
138
|
+
agent: tester
|
|
139
|
+
description: "Validate data quality"
|
|
140
|
+
|
|
141
|
+
outputs:
|
|
142
|
+
- "data/"
|
|
143
|
+
- "dvc.yaml"
|
|
144
|
+
- "src/data/"
|
|
145
|
+
|
|
146
|
+
- id: exploration
|
|
147
|
+
name: "Exploration"
|
|
148
|
+
description: "EDA, baseline models, and feature engineering"
|
|
149
|
+
order: 3
|
|
150
|
+
checkpoint: true
|
|
151
|
+
checkpoint_message: |
|
|
152
|
+
Exploration complete. Review:
|
|
153
|
+
- EDA findings
|
|
154
|
+
- Baseline model results
|
|
155
|
+
- Feature engineering approach
|
|
156
|
+
|
|
157
|
+
Approve to begin model development.
|
|
158
|
+
|
|
159
|
+
steps:
|
|
160
|
+
- id: eda
|
|
161
|
+
name: "Exploratory Data Analysis"
|
|
162
|
+
agent: researcher
|
|
163
|
+
description: "Analyze data distributions and patterns"
|
|
164
|
+
|
|
165
|
+
- id: baseline
|
|
166
|
+
name: "Baseline Models"
|
|
167
|
+
agent: fullstack-developer
|
|
168
|
+
description: "Train simple baseline models"
|
|
169
|
+
|
|
170
|
+
- id: feature_engineering
|
|
171
|
+
name: "Feature Engineering"
|
|
172
|
+
agent: fullstack-developer
|
|
173
|
+
description: "Engineer features from raw data"
|
|
174
|
+
|
|
175
|
+
- id: experiment_setup
|
|
176
|
+
name: "Experiment Setup"
|
|
177
|
+
agent: fullstack-developer
|
|
178
|
+
description: "Set up experiment tracking"
|
|
179
|
+
|
|
180
|
+
outputs:
|
|
181
|
+
- "notebooks/eda.ipynb"
|
|
182
|
+
- "notebooks/baseline.ipynb"
|
|
183
|
+
- "src/features/"
|
|
184
|
+
|
|
185
|
+
- id: model_development
|
|
186
|
+
name: "Model Development"
|
|
187
|
+
description: "Design and implement model architecture"
|
|
188
|
+
order: 4
|
|
189
|
+
checkpoint: true
|
|
190
|
+
checkpoint_message: |
|
|
191
|
+
Model architecture complete. Review:
|
|
192
|
+
- Model architecture design
|
|
193
|
+
- Training configuration
|
|
194
|
+
- Resource requirements
|
|
195
|
+
|
|
196
|
+
Approve to begin training.
|
|
197
|
+
|
|
198
|
+
steps:
|
|
199
|
+
- id: architecture_design
|
|
200
|
+
name: "Architecture Design"
|
|
201
|
+
agent: architect
|
|
202
|
+
description: "Design model architecture"
|
|
203
|
+
|
|
204
|
+
- id: model_implementation
|
|
205
|
+
name: "Model Implementation"
|
|
206
|
+
agent: fullstack-developer
|
|
207
|
+
description: "Implement model in code"
|
|
208
|
+
|
|
209
|
+
- id: training_pipeline
|
|
210
|
+
name: "Training Pipeline"
|
|
211
|
+
agent: fullstack-developer
|
|
212
|
+
description: "Build training pipeline"
|
|
213
|
+
|
|
214
|
+
- id: config_system
|
|
215
|
+
name: "Config System"
|
|
216
|
+
agent: fullstack-developer
|
|
217
|
+
description: "Set up hyperparameter configuration"
|
|
218
|
+
|
|
219
|
+
outputs:
|
|
220
|
+
- "src/models/"
|
|
221
|
+
- "src/training/"
|
|
222
|
+
- "configs/"
|
|
223
|
+
|
|
224
|
+
- id: training
|
|
225
|
+
name: "Training"
|
|
226
|
+
description: "Train models with hyperparameter tuning"
|
|
227
|
+
order: 5
|
|
228
|
+
checkpoint: true
|
|
229
|
+
checkpoint_message: |
|
|
230
|
+
Training complete. Review:
|
|
231
|
+
- Training metrics and curves
|
|
232
|
+
- Best hyperparameters found
|
|
233
|
+
- Model checkpoints
|
|
234
|
+
|
|
235
|
+
Approve to proceed with evaluation.
|
|
236
|
+
|
|
237
|
+
steps:
|
|
238
|
+
- id: initial_training
|
|
239
|
+
name: "Initial Training"
|
|
240
|
+
agent: fullstack-developer
|
|
241
|
+
description: "Run initial training experiments"
|
|
242
|
+
|
|
243
|
+
- id: hyperparameter_tuning
|
|
244
|
+
name: "Hyperparameter Tuning"
|
|
245
|
+
agent: fullstack-developer
|
|
246
|
+
description: "Tune hyperparameters"
|
|
247
|
+
|
|
248
|
+
- id: distributed_training
|
|
249
|
+
name: "Distributed Training"
|
|
250
|
+
agent: fullstack-developer
|
|
251
|
+
description: "Scale training if needed"
|
|
252
|
+
|
|
253
|
+
- id: checkpoint_management
|
|
254
|
+
name: "Checkpoint Management"
|
|
255
|
+
agent: fullstack-developer
|
|
256
|
+
description: "Manage model checkpoints"
|
|
257
|
+
|
|
258
|
+
outputs:
|
|
259
|
+
- "checkpoints/"
|
|
260
|
+
- "wandb/"
|
|
261
|
+
- "results/"
|
|
262
|
+
|
|
263
|
+
- id: evaluation
|
|
264
|
+
name: "Evaluation"
|
|
265
|
+
description: "Comprehensive model evaluation"
|
|
266
|
+
order: 6
|
|
267
|
+
checkpoint: true
|
|
268
|
+
checkpoint_message: |
|
|
269
|
+
Evaluation complete. Review:
|
|
270
|
+
- Evaluation metrics
|
|
271
|
+
- Bias analysis
|
|
272
|
+
- Error analysis
|
|
273
|
+
|
|
274
|
+
Approve to proceed with deployment.
|
|
275
|
+
|
|
276
|
+
steps:
|
|
277
|
+
- id: metrics_evaluation
|
|
278
|
+
name: "Metrics Evaluation"
|
|
279
|
+
agent: tester
|
|
280
|
+
description: "Calculate evaluation metrics"
|
|
281
|
+
|
|
282
|
+
- id: bias_testing
|
|
283
|
+
name: "Bias Testing"
|
|
284
|
+
agent: tester
|
|
285
|
+
description: "Test for model bias"
|
|
286
|
+
|
|
287
|
+
- id: interpretability
|
|
288
|
+
name: "Interpretability"
|
|
289
|
+
agent: researcher
|
|
290
|
+
description: "Analyze model interpretability"
|
|
291
|
+
|
|
292
|
+
- id: error_analysis
|
|
293
|
+
name: "Error Analysis"
|
|
294
|
+
agent: tester
|
|
295
|
+
description: "Analyze failure cases"
|
|
296
|
+
|
|
297
|
+
outputs:
|
|
298
|
+
- "reports/evaluation.md"
|
|
299
|
+
- "reports/bias-analysis.md"
|
|
300
|
+
- "reports/errors/"
|
|
301
|
+
|
|
302
|
+
- id: deployment
|
|
303
|
+
name: "Model Deployment"
|
|
304
|
+
description: "Deploy model for inference"
|
|
305
|
+
order: 7
|
|
306
|
+
checkpoint: true
|
|
307
|
+
checkpoint_message: |
|
|
308
|
+
Deployment preparation complete. Review:
|
|
309
|
+
- Inference optimization
|
|
310
|
+
- Serving configuration
|
|
311
|
+
- API design
|
|
312
|
+
|
|
313
|
+
Approve for production deployment.
|
|
314
|
+
|
|
315
|
+
steps:
|
|
316
|
+
- id: model_optimization
|
|
317
|
+
name: "Model Optimization"
|
|
318
|
+
agent: fullstack-developer
|
|
319
|
+
description: "Optimize model for inference"
|
|
320
|
+
|
|
321
|
+
- id: serving_setup
|
|
322
|
+
name: "Serving Setup"
|
|
323
|
+
agent: cicd-manager
|
|
324
|
+
description: "Set up model serving"
|
|
325
|
+
|
|
326
|
+
- id: api_implementation
|
|
327
|
+
name: "API Implementation"
|
|
328
|
+
agent: fullstack-developer
|
|
329
|
+
description: "Build inference API"
|
|
330
|
+
|
|
331
|
+
- id: load_testing
|
|
332
|
+
name: "Load Testing"
|
|
333
|
+
agent: tester
|
|
334
|
+
description: "Test inference performance"
|
|
335
|
+
|
|
336
|
+
outputs:
|
|
337
|
+
- "src/serving/"
|
|
338
|
+
- "src/api/"
|
|
339
|
+
- "Dockerfile"
|
|
340
|
+
|
|
341
|
+
- id: monitoring
|
|
342
|
+
name: "Production Monitoring"
|
|
343
|
+
description: "Set up drift detection and retraining"
|
|
344
|
+
order: 8
|
|
345
|
+
checkpoint: true
|
|
346
|
+
checkpoint_message: |
|
|
347
|
+
Monitoring setup complete. Review:
|
|
348
|
+
- Drift detection configuration
|
|
349
|
+
- Alerting setup
|
|
350
|
+
- Retraining triggers
|
|
351
|
+
|
|
352
|
+
This is the final checkpoint.
|
|
353
|
+
|
|
354
|
+
steps:
|
|
355
|
+
- id: drift_detection
|
|
356
|
+
name: "Drift Detection"
|
|
357
|
+
agent: fullstack-developer
|
|
358
|
+
description: "Implement drift detection"
|
|
359
|
+
|
|
360
|
+
- id: monitoring_dashboard
|
|
361
|
+
name: "Monitoring Dashboard"
|
|
362
|
+
agent: fullstack-developer
|
|
363
|
+
description: "Build monitoring dashboard"
|
|
364
|
+
|
|
365
|
+
- id: alerting
|
|
366
|
+
name: "Alerting"
|
|
367
|
+
agent: cicd-manager
|
|
368
|
+
description: "Set up alerts"
|
|
369
|
+
|
|
370
|
+
- id: retraining_pipeline
|
|
371
|
+
name: "Retraining Pipeline"
|
|
372
|
+
agent: fullstack-developer
|
|
373
|
+
description: "Set up automated retraining"
|
|
374
|
+
|
|
375
|
+
outputs:
|
|
376
|
+
- "src/monitoring/"
|
|
377
|
+
- "src/retraining/"
|
|
378
|
+
|
|
379
|
+
# Autonomy rules for this archetype
|
|
380
|
+
autonomy_rules:
|
|
381
|
+
- pattern: "**/models/**"
|
|
382
|
+
level: 3
|
|
383
|
+
reason: "Model architecture needs review"
|
|
384
|
+
- pattern: "**/training/**"
|
|
385
|
+
level: 2
|
|
386
|
+
reason: "Training code needs quick review"
|
|
387
|
+
- pattern: "**/data/**"
|
|
388
|
+
level: 2
|
|
389
|
+
reason: "Data processing needs review"
|
|
390
|
+
- pattern: "configs/**"
|
|
391
|
+
level: 2
|
|
392
|
+
reason: "Configs affect training outcomes"
|
|
393
|
+
- pattern: "**/serving/**"
|
|
394
|
+
level: 3
|
|
395
|
+
reason: "Serving infrastructure is critical"
|
|
396
|
+
- pattern: "dvc.yaml"
|
|
397
|
+
level: 3
|
|
398
|
+
reason: "Data versioning config is important"
|
|
399
|
+
|
|
400
|
+
# Quality gates
|
|
401
|
+
quality_gates:
|
|
402
|
+
after_feature:
|
|
403
|
+
- "pytest tests/"
|
|
404
|
+
- "mypy src/"
|
|
405
|
+
- "black --check src/"
|
|
406
|
+
before_checkpoint:
|
|
407
|
+
- "data validation passes"
|
|
408
|
+
- "model validation passes"
|
|
409
|
+
before_deploy:
|
|
410
|
+
- "evaluation metrics >= baseline"
|
|
411
|
+
- "bias tests pass"
|
|
412
|
+
- "load test passes"
|
|
413
|
+
|
|
414
|
+
# ML-specific discovery questions
|
|
415
|
+
discovery_additions:
|
|
416
|
+
- category: "ML Task"
|
|
417
|
+
questions:
|
|
418
|
+
- "What type of ML task? (classification, regression, generation, etc.)"
|
|
419
|
+
- "What's the input data format?"
|
|
420
|
+
- "What's the expected output?"
|
|
421
|
+
- "Is this supervised, unsupervised, or reinforcement learning?"
|
|
422
|
+
|
|
423
|
+
- category: "Data"
|
|
424
|
+
questions:
|
|
425
|
+
- "How much labeled data do you have?"
|
|
426
|
+
- "How is the data currently stored?"
|
|
427
|
+
- "Are there any data privacy requirements?"
|
|
428
|
+
- "How often does the data change?"
|
|
429
|
+
- "What's the data quality like?"
|
|
430
|
+
|
|
431
|
+
- category: "Performance Requirements"
|
|
432
|
+
questions:
|
|
433
|
+
- "What's the target accuracy/performance metric?"
|
|
434
|
+
- "What's the acceptable inference latency?"
|
|
435
|
+
- "What's the expected query volume?"
|
|
436
|
+
- "Are there model size constraints?"
|
|
437
|
+
|
|
438
|
+
- category: "Infrastructure"
|
|
439
|
+
questions:
|
|
440
|
+
- "What compute resources are available for training?"
|
|
441
|
+
- "Where will the model be deployed?"
|
|
442
|
+
- "Do you need real-time or batch inference?"
|
|
443
|
+
- "What's the MLOps maturity level?"
|