ocpipe 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md ADDED
@@ -0,0 +1,334 @@
1
+ # DSTS
2
+
3
+ <div align="center">
4
+ <h3>Declarative Self-Improving TypeScript</h3>
5
+ <p>A DSPy-inspired SDK for building LLM workflow pipelines with <a href="https://opencode.ai">OpenCode</a>.</p>
6
+ <p>
7
+ <a href="https://github.com/s4wave/dsts">GitHub</a> |
8
+ <a href="https://github.com/s4wave/dsts/blob/main/GETTING_STARTED.md">Getting Started</a> |
9
+ <a href="https://github.com/s4wave/dsts/blob/main/LICENSE">MIT License</a>
10
+ </p>
11
+ </div>
12
+
13
+ <div align="center">
14
+
15
+ ```
16
+ Signature → Predict → Module → Pipeline
17
+ │ │ │ │
18
+ what execute compose orchestrate
19
+ ```
20
+
21
+ </div>
22
+
23
+ DSTS separates the **what** (Signatures declare input/output contracts), the **how** (Modules compose predictors), and the **when** (Pipelines orchestrate execution). This separation enables clean composition, rich debugging, and maintainable LLM workflow code.
24
+
25
+ ## Features
26
+
27
+ - **Type-safe signatures** - Define input/output contracts with Zod schemas
28
+ - **Automatic prompt generation** - Signatures become structured prompts
29
+ - **JSON output parsing** - Automatic extraction and validation of JSON responses
30
+ - **Session continuity** - Reuse OpenCode sessions across steps
31
+ - **Checkpointing** - Automatic state persistence after each step
32
+ - **Retry logic** - Configurable retries with parse error handling
33
+ - **Sub-pipelines** - Compose complex workflows from smaller pieces
34
+ - **Testing utilities** - Mock backends for unit testing
35
+
36
+ ## Quick Start
37
+
38
+ ```typescript
39
+ import { signature, field, SignatureModule, Pipeline, createBaseState } from 'dsts'
40
+ import { z } from 'zod'
41
+
42
+ // 1. Define a signature (the contract)
43
+ const ParseIntent = signature({
44
+ doc: 'Parse user intent from a natural language description.',
45
+ inputs: {
46
+ description: field.string('User description in natural language'),
47
+ },
48
+ outputs: {
49
+ intent: field.string('Parsed intent category'),
50
+ confidence: field.number('Confidence score 0-1'),
51
+ keywords: field.array(z.string(), 'Extracted keywords'),
52
+ },
53
+ })
54
+
55
+ // 2. Create a module (the logic)
56
+ class IntentParser extends SignatureModule<typeof ParseIntent> {
57
+ constructor() {
58
+ super(ParseIntent)
59
+ }
60
+
61
+ async forward(input, ctx) {
62
+ const result = await this.predictor.execute(input, ctx)
63
+ return result.data // Full signature output
64
+ }
65
+ }
66
+
67
+ // 3. Run in a pipeline (the orchestration)
68
+ const pipeline = new Pipeline({
69
+ name: 'my-workflow',
70
+ defaultModel: { providerID: 'anthropic', modelID: 'claude-sonnet-4-5' },
71
+ defaultAgent: 'general',
72
+ checkpointDir: './ckpt',
73
+ logDir: './logs',
74
+ }, createBaseState)
75
+
76
+ const result = await pipeline.run(new IntentParser(), { description: 'Hello world' })
77
+ console.log(result.data.intent)
78
+ ```
79
+
80
+ ## Core Concepts
81
+
82
+ ### Signatures
83
+
84
+ A Signature declares **what** an LLM interaction does - its inputs, outputs, and purpose. This is separate from *how* it executes.
85
+
86
+ ```typescript
87
+ import { signature, field } from 'dsts'
88
+ import { z } from 'zod'
89
+
90
+ const AnalyzeCode = signature({
91
+ doc: 'Analyze code for potential issues and improvements.',
92
+ inputs: {
93
+ code: field.string('Source code to analyze'),
94
+ language: field.enum(['typescript', 'python', 'rust'] as const),
95
+ },
96
+ outputs: {
97
+ issues: field.array(z.object({
98
+ severity: z.enum(['error', 'warning', 'info']),
99
+ message: z.string(),
100
+ line: z.number(),
101
+ }), 'List of issues found'),
102
+ suggestions: field.array(z.string(), 'Improvement suggestions'),
103
+ score: field.number('Code quality score 0-100'),
104
+ },
105
+ })
106
+ ```
107
+
108
+ **Field helpers:**
109
+ - `field.string(desc?)` - String field
110
+ - `field.number(desc?)` - Number field
111
+ - `field.boolean(desc?)` - Boolean field
112
+ - `field.array(itemType, desc?)` - Array field
113
+ - `field.object(shape, desc?)` - Object field
114
+ - `field.enum(values, desc?)` - Enum field
115
+ - `field.optional(field)` - Optional wrapper
116
+ - `field.nullable(field)` - Nullable wrapper
117
+ - `field.custom(zodType, desc?)` - Custom Zod type
118
+
119
+ ### Predict
120
+
121
+ `Predict` is the bridge between a Signature (the contract) and OpenCode (the execution). It handles prompt generation, response parsing, and validation.
122
+
123
+ ```typescript
124
+ import { Predict } from 'dsts'
125
+
126
+ // Basic usage
127
+ const predict = new Predict(AnalyzeCode)
128
+ const result = await predict.execute({ code: '...', language: 'typescript' }, ctx)
129
+
130
+ // With configuration
131
+ const predict = new Predict(AnalyzeCode, {
132
+ agent: 'code-reviewer', // Override default agent
133
+ model: { providerID: 'anthropic', modelID: 'claude-opus-4-5' },
134
+ newSession: true, // Don't reuse existing session
135
+ template: (inputs) => `...`, // Custom prompt template
136
+ })
137
+ ```
138
+
139
+ **Output format:**
140
+
141
+ The LLM is prompted to return a JSON object:
142
+ ```
143
+ OUTPUT FORMAT:
144
+ Return a JSON object with EXACTLY these field names and types.
145
+
146
+ ```json
147
+ {
148
+ "issues": <array<object{severity, message, line}>>, // List of issues found
149
+ "suggestions": <array<string>>, // Improvement suggestions
150
+ "score": <number> // Code quality score 0-100
151
+ }
152
+ ```
153
+ ```
154
+
155
+ ### Module
156
+
157
+ A Module encapsulates a logical unit of work that may use one or more Predictors. Modules can call other Modules, enabling composition.
158
+
159
+ **SignatureModule** - For simple modules that wrap a single signature with pass-through types:
160
+
161
+ ```typescript
162
+ import { SignatureModule } from 'dsts'
163
+
164
+ class IntentParser extends SignatureModule<typeof ParseIntent> {
165
+ constructor() {
166
+ super(ParseIntent)
167
+ }
168
+
169
+ async forward(input, ctx) {
170
+ const result = await this.predictor.execute(input, ctx)
171
+ return result.data // Types inferred from ParseIntent
172
+ }
173
+ }
174
+ ```
175
+
176
+ **Module** - For complex modules with multiple predictors or transformed outputs:
177
+
178
+ ```typescript
179
+ import { Module } from 'dsts'
180
+
181
+ class CodeAnalyzer extends Module<
182
+ { code: string; language: string },
183
+ { issues: Issue[]; score: number }
184
+ > {
185
+ private analyze = this.predict(AnalyzeCode)
186
+ private suggest = this.predict(SuggestFixes, { agent: 'code-fixer' })
187
+
188
+ async forward(input: { code: string; language: string }, ctx: ExecutionContext) {
189
+ // First, analyze the code
190
+ const analysis = await this.analyze.execute(input, ctx)
191
+
192
+ // If there are critical issues, get fix suggestions
193
+ if (analysis.data.issues.some(i => i.severity === 'error')) {
194
+ const fixes = await this.suggest.execute({
195
+ code: input.code,
196
+ issues: analysis.data.issues,
197
+ }, ctx)
198
+
199
+ return {
200
+ issues: analysis.data.issues,
201
+ fixes: fixes.data.suggestions,
202
+ score: analysis.data.score,
203
+ }
204
+ }
205
+
206
+ return {
207
+ issues: analysis.data.issues,
208
+ score: analysis.data.score,
209
+ }
210
+ }
211
+ }
212
+ ```
213
+
214
+ ### Pipeline
215
+
216
+ Pipeline is the top-level orchestrator. It manages execution context, state, checkpointing, logging, and retry logic.
217
+
218
+ ```typescript
219
+ import { Pipeline, createBaseState } from 'dsts'
220
+
221
+ // Create pipeline with configuration
222
+ const pipeline = new Pipeline({
223
+ name: 'code-review',
224
+ defaultModel: { providerID: 'anthropic', modelID: 'claude-sonnet-4-5' },
225
+ defaultAgent: 'general',
226
+ checkpointDir: './ckpt',
227
+ logDir: './logs',
228
+ retry: { maxAttempts: 2, onParseError: true },
229
+ timeoutSec: 300,
230
+ }, createBaseState)
231
+
232
+ // Run modules
233
+ const result = await pipeline.run(new CodeAnalyzer(), {
234
+ code: sourceCode,
235
+ language: 'typescript',
236
+ })
237
+
238
+ // Run with step options
239
+ const result = await pipeline.run(new CodeAnalyzer(), input, {
240
+ name: 'analyze-main', // Custom step name
241
+ model: { providerID: 'anthropic', modelID: 'claude-opus-4-5' }, // Override model
242
+ newSession: true, // Fresh session
243
+ retry: { maxAttempts: 3 }, // Override retry
244
+ })
245
+
246
+ // Access state
247
+ console.log(pipeline.state.steps) // Completed steps
248
+ console.log(pipeline.getSessionId()) // Current OpenCode session
249
+
250
+ // Resume from checkpoint
251
+ const resumed = await Pipeline.loadCheckpoint(config, sessionId)
252
+ ```
253
+
254
+ ### State Management
255
+
256
+ DSTS automatically checkpoints state after each step:
257
+
258
+ ```typescript
259
+ import { createBaseState, extendBaseState } from 'dsts'
260
+
261
+ // Basic state
262
+ const state = createBaseState()
263
+ // { sessionId, startedAt, phase, steps, subPipelines }
264
+
265
+ // Extended state for your workflow
266
+ interface MyState extends BaseState {
267
+ inputPath: string
268
+ results: AnalysisResult[]
269
+ }
270
+
271
+ const pipeline = new Pipeline(config, () => ({
272
+ ...createBaseState(),
273
+ inputPath: '/path/to/input',
274
+ results: [],
275
+ }))
276
+ ```
277
+
278
+ ## Testing
279
+
280
+ DSTS provides testing utilities for unit testing without hitting real LLMs:
281
+
282
+ ```typescript
283
+ import { MockAgentBackend, createMockContext, generateMockOutputs } from 'dsts'
284
+ import { vi } from 'vitest'
285
+
286
+ // Create mock backend
287
+ const mock = new MockAgentBackend()
288
+
289
+ // Add mock responses
290
+ mock.addJsonResponse({
291
+ intent: 'greeting',
292
+ confidence: 0.95,
293
+ keywords: ['hello', 'world'],
294
+ })
295
+
296
+ // Mock the agent module
297
+ vi.mock('./agent.js', () => ({
298
+ runAgent: mock.createRunner(),
299
+ }))
300
+
301
+ // Create test context
302
+ const ctx = createMockContext({
303
+ defaultModel: { providerID: 'anthropic', modelID: 'claude-sonnet-4-5' },
304
+ })
305
+
306
+ // Auto-generate mock outputs from schema
307
+ const mockData = generateMockOutputs(ParseIntent.outputs)
308
+ ```
309
+
310
+ ## Why Not ChainOfThought or ReAct?
311
+
312
+ Unlike DSPy, DSTS does not provide `ChainOfThought` or `ReAct` variants. This is intentional:
313
+
314
+ - **OpenCode agents already do chain-of-thought reasoning** - they think before acting
315
+ - **OpenCode agents already do ReAct** - they have access to tools and use them iteratively
316
+ - **Adding these would duplicate functionality** and create confusion
317
+
318
+ If you need tool access, configure your OpenCode agent appropriately. The agent handles the complexity; DSTS just structures the input/output contract.
319
+
320
+ ## Requirements
321
+
322
+ - [Bun](https://bun.sh) runtime
323
+ - [OpenCode](https://opencode.ai) CLI installed and configured
324
+ - [Zod](https://zod.dev) for schema validation
325
+
326
+ ## Installation
327
+
328
+ ```bash
329
+ bun add dsts zod
330
+ ```
331
+
332
+ ## License
333
+
334
+ MIT - see [LICENSE](https://github.com/s4wave/dsts/blob/main/LICENSE) for details.
package/agent.ts ADDED
@@ -0,0 +1,176 @@
1
+ /**
2
+ * DSTS SDK OpenCode agent integration.
3
+ *
4
+ * Wraps the OpenCode CLI for running LLM agents with session management.
5
+ */
6
+
7
+ import { spawn } from 'child_process'
8
+ import { mkdir } from 'fs/promises'
9
+ import { PROJECT_ROOT, TMP_DIR } from '../paths.js'
10
+ import type { RunAgentOptions, RunAgentResult } from './types.js'
11
+
12
+ /** runAgent executes an OpenCode agent with a prompt, streaming output in real-time. */
13
+ export async function runAgent(
14
+ options: RunAgentOptions,
15
+ ): Promise<RunAgentResult> {
16
+ const { prompt, agent, model, sessionId, timeoutSec = 300 } = options
17
+
18
+ const modelStr = `${model.providerID}/${model.modelID}`
19
+ const sessionInfo = sessionId ? `[session:${sessionId}]` : '[new session]'
20
+ const promptPreview = prompt.slice(0, 50).replace(/\n/g, ' ')
21
+
22
+ console.error(
23
+ `\n>>> OpenCode [${agent}] [${modelStr}] ${sessionInfo}: ${promptPreview}...`,
24
+ )
25
+
26
+ const args = ['run', '--format', 'default', '--agent', agent, '--model', modelStr]
27
+
28
+ if (sessionId) {
29
+ args.push('--session', sessionId)
30
+ }
31
+
32
+ return new Promise((resolve, reject) => {
33
+ const proc = spawn('opencode', args, {
34
+ cwd: PROJECT_ROOT,
35
+ stdio: ['pipe', 'pipe', 'pipe'],
36
+ })
37
+
38
+ let newSessionId = sessionId || ''
39
+ const stdoutChunks: string[] = []
40
+
41
+ // Stream stderr in real-time (OpenCode progress output)
42
+ proc.stderr.on('data', (data: Buffer) => {
43
+ const text = data.toString()
44
+
45
+ // Parse session ID from output
46
+ for (const line of text.split('\n')) {
47
+ if (line.startsWith('[session:')) {
48
+ newSessionId = line.trim().slice(9, -1)
49
+ continue
50
+ }
51
+ // Filter noise
52
+ if (line.includes('baseline-browser-mapping')) continue
53
+ if (line.startsWith('$ bun run')) continue
54
+ if (line.trim()) {
55
+ process.stderr.write(line + '\n')
56
+ }
57
+ }
58
+ })
59
+
60
+ // Collect stdout
61
+ proc.stdout.on('data', (data: Buffer) => {
62
+ const text = data.toString()
63
+ stdoutChunks.push(text)
64
+ process.stderr.write(text)
65
+ })
66
+
67
+ // Send prompt to stdin
68
+ proc.stdin.write(prompt)
69
+ proc.stdin.end()
70
+
71
+ // Timeout handling
72
+ const timeout = setTimeout(() => {
73
+ proc.kill()
74
+ reject(new Error(`Timeout after ${timeoutSec}s`))
75
+ }, timeoutSec * 1000)
76
+
77
+ proc.on('close', async (code) => {
78
+ clearTimeout(timeout)
79
+
80
+ if (code !== 0) {
81
+ reject(new Error(`OpenCode exited with code ${code}`))
82
+ return
83
+ }
84
+
85
+ // Export session to get structured response
86
+ let response = stdoutChunks.join('').trim()
87
+
88
+ if (newSessionId) {
89
+ const exported = await exportSession(newSessionId)
90
+ if (exported) {
91
+ response = exported
92
+ }
93
+ }
94
+
95
+ const sessionStr = newSessionId || 'none'
96
+ console.error(
97
+ `<<< OpenCode done (${response.length} chars) [session:${sessionStr}]`,
98
+ )
99
+
100
+ resolve({
101
+ text: response,
102
+ sessionId: newSessionId,
103
+ })
104
+ })
105
+
106
+ proc.on('error', (err) => {
107
+ clearTimeout(timeout)
108
+ reject(err)
109
+ })
110
+ })
111
+ }
112
+
113
+ /** exportSession exports a session and extracts assistant text responses. */
114
+ async function exportSession(sessionId: string): Promise<string | null> {
115
+ const tmpPath = `${TMP_DIR}/opencode_export_${Date.now()}.json`
116
+
117
+ try {
118
+ await mkdir(TMP_DIR, { recursive: true })
119
+ const proc = Bun.spawn(
120
+ [
121
+ 'opencode',
122
+ 'session',
123
+ 'export',
124
+ sessionId,
125
+ '--format',
126
+ 'json',
127
+ '-o',
128
+ tmpPath,
129
+ ],
130
+ {
131
+ cwd: PROJECT_ROOT,
132
+ stdout: 'pipe',
133
+ stderr: 'pipe',
134
+ },
135
+ )
136
+
137
+ await proc.exited
138
+
139
+ const file = Bun.file(tmpPath)
140
+ if (!(await file.exists())) return null
141
+
142
+ const data = (await file.json()) as {
143
+ messages?: Array<{
144
+ info?: { role?: string }
145
+ parts?: Array<{ type?: string; text?: string }>
146
+ }>
147
+ }
148
+ await Bun.write(tmpPath, '') // Clean up
149
+
150
+ // Extract all assistant text parts
151
+ const messages = data.messages || []
152
+ const textParts: string[] = []
153
+
154
+ for (const msg of messages) {
155
+ if (msg.info?.role === 'assistant') {
156
+ for (const part of msg.parts || []) {
157
+ if (part.type === 'text' && part.text) {
158
+ textParts.push(part.text)
159
+ }
160
+ }
161
+ }
162
+ }
163
+
164
+ return textParts.length > 0 ? textParts.join('\n') : null
165
+ } catch {
166
+ return null
167
+ }
168
+ }
169
+
170
+ /** logStep logs a step header for workflow progress. */
171
+ export function logStep(step: number, title: string, detail = ''): void {
172
+ const detailStr = detail ? ` (${detail})` : ''
173
+ console.log(`\n${'='.repeat(60)}`)
174
+ console.log(`STEP ${step}: ${title}${detailStr}`)
175
+ console.log('='.repeat(60))
176
+ }
@@ -0,0 +1,85 @@
1
+ /**
2
+ * Auto-correction example.
3
+ *
4
+ * Demonstrates DSTS's automatic schema correction.
5
+ * This example uses a schema with specific field names that LLMs
6
+ * sometimes get wrong (e.g., "type" instead of "issue_type").
7
+ *
8
+ * DSTS supports two correction methods:
9
+ * - 'json-patch' (default): RFC 6902 JSON Patch, no external dependencies
10
+ * - 'jq': jq-style expressions, requires jq binary installed
11
+ *
12
+ * Usage:
13
+ * bun run example/correction.ts # Uses default (json-patch)
14
+ * bun run example/correction.ts --jq # Uses jq method
15
+ */
16
+
17
+ import { z } from 'zod'
18
+ import { Pipeline, createBaseState, signature, field, SignatureModule } from '../index.js'
19
+ import type { CorrectionMethod, ExecutionContext } from '../types.js'
20
+
21
+ // A signature with field names that LLMs often get wrong
22
+ const AnalyzeIssue = signature({
23
+ doc: `Analyze the given code issue and categorize it.
24
+
25
+ IMPORTANT: Use the EXACT field names specified in the schema.`,
26
+ inputs: {
27
+ description: field.string('Description of the code issue'),
28
+ },
29
+ outputs: {
30
+ // LLMs often return "type" instead of "issue_type"
31
+ issue_type: field.enum(['bug', 'feature', 'refactor', 'docs'] as const, 'Category of the issue'),
32
+ // LLMs often return "priority" instead of "severity"
33
+ severity: field.enum(['low', 'medium', 'high', 'critical'] as const, 'How severe is the issue'),
34
+ // LLMs often return "description" or "reason" instead of "explanation"
35
+ explanation: field.string('Detailed explanation of the issue'),
36
+ // LLMs often return just "tags" or "labels"
37
+ suggested_tags: field.array(z.string(), 'Tags to apply to this issue'),
38
+ },
39
+ })
40
+
41
+ class IssueAnalyzer extends SignatureModule<typeof AnalyzeIssue> {
42
+ constructor(method: CorrectionMethod = 'json-patch') {
43
+ super(AnalyzeIssue, {
44
+ correction: { method },
45
+ })
46
+ }
47
+
48
+ async forward(input: { description: string }, ctx: ExecutionContext) {
49
+ const result = await this.predictor.execute(input, ctx)
50
+ return result.data
51
+ }
52
+ }
53
+
54
+ async function main() {
55
+ // Check for --jq flag
56
+ const method: CorrectionMethod = process.argv.includes('--jq') ? 'jq' : 'json-patch'
57
+
58
+ const pipeline = new Pipeline(
59
+ {
60
+ name: 'correction-demo',
61
+ defaultModel: { providerID: 'anthropic', modelID: 'claude-haiku-4-5' },
62
+ defaultAgent: 'code',
63
+ checkpointDir: './ckpt',
64
+ logDir: './logs',
65
+ },
66
+ createBaseState,
67
+ )
68
+
69
+ console.log('=== Auto-Correction Demo ===')
70
+ console.log(`Correction method: ${method}`)
71
+ console.log('This example uses field names that LLMs often get wrong.')
72
+ console.log('Watch the correction rounds fix schema mismatches.\n')
73
+
74
+ const result = await pipeline.run(new IssueAnalyzer(method), {
75
+ description: 'The login button does not respond when clicked on mobile devices',
76
+ })
77
+
78
+ console.log('\n=== Final Result ===')
79
+ console.log(`Issue Type: ${result.data.issue_type}`)
80
+ console.log(`Severity: ${result.data.severity}`)
81
+ console.log(`Explanation: ${result.data.explanation}`)
82
+ console.log(`Tags: ${result.data.suggested_tags.join(', ')}`)
83
+ }
84
+
85
+ main().catch(console.error)
@@ -0,0 +1,31 @@
1
+ /**
2
+ * Hello World example runner.
3
+ *
4
+ * Demonstrates running a DSTS module in a pipeline.
5
+ */
6
+
7
+ import { Pipeline, createBaseState } from '../index.js'
8
+ import { Greeter } from './module.js'
9
+
10
+ async function main() {
11
+ // Create a pipeline with configuration
12
+ const pipeline = new Pipeline(
13
+ {
14
+ name: 'hello-world',
15
+ defaultModel: { providerID: 'anthropic', modelID: 'claude-haiku-4-5' },
16
+ defaultAgent: 'code',
17
+ checkpointDir: './ckpt',
18
+ logDir: './logs',
19
+ },
20
+ createBaseState,
21
+ )
22
+
23
+ // Run the greeter module
24
+ const result = await pipeline.run(new Greeter(), { name: 'World' })
25
+
26
+ console.log('\n=== Result ===')
27
+ console.log(`Greeting: ${result.data.greeting}`)
28
+ console.log(`Emoji: ${result.data.emoji}`)
29
+ }
30
+
31
+ main().catch(console.error)
@@ -0,0 +1,20 @@
1
+ /**
2
+ * Hello World module.
3
+ *
4
+ * Wraps the Greet signature with execution logic.
5
+ */
6
+
7
+ import { SignatureModule } from '../index.js'
8
+ import type { ExecutionContext } from '../types.js'
9
+ import { Greet } from './signature.js'
10
+
11
+ export class Greeter extends SignatureModule<typeof Greet> {
12
+ constructor() {
13
+ super(Greet)
14
+ }
15
+
16
+ async forward(input: { name: string }, ctx: ExecutionContext) {
17
+ const result = await this.predictor.execute(input, ctx)
18
+ return result.data
19
+ }
20
+ }
@@ -0,0 +1,18 @@
1
+ /**
2
+ * Hello World signature.
3
+ *
4
+ * Defines the input/output contract for greeting generation.
5
+ */
6
+
7
+ import { signature, field } from '../index.js'
8
+
9
+ export const Greet = signature({
10
+ doc: 'Generate a friendly greeting for the given name.',
11
+ inputs: {
12
+ name: field.string('The name of the person to greet'),
13
+ },
14
+ outputs: {
15
+ greeting: field.string('A friendly greeting message'),
16
+ emoji: field.string('An appropriate emoji for the greeting'),
17
+ },
18
+ })