oci-generativeaiinference 2.86.3 → 2.88.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/index.d.ts +1 -1
- package/index.js +1 -1
- package/lib/client.d.ts +5 -5
- package/lib/client.js +5 -5
- package/lib/model/assistant-message.d.ts +35 -0
- package/lib/model/assistant-message.js +57 -0
- package/lib/model/assistant-message.js.map +1 -0
- package/lib/model/base-chat-request.d.ts +2 -2
- package/lib/model/base-chat-request.js +1 -1
- package/lib/model/base-chat-response.d.ts +2 -2
- package/lib/model/base-chat-response.js +1 -1
- package/lib/model/chat-choice.d.ts +2 -2
- package/lib/model/chat-choice.js +1 -1
- package/lib/model/chat-content.d.ts +1 -1
- package/lib/model/chat-content.js +1 -1
- package/lib/model/chat-details.d.ts +3 -3
- package/lib/model/chat-details.js +1 -1
- package/lib/model/chat-result.d.ts +2 -2
- package/lib/model/chat-result.js +1 -1
- package/lib/model/choice.d.ts +2 -2
- package/lib/model/choice.js +1 -1
- package/lib/model/citation.d.ts +6 -6
- package/lib/model/citation.js +1 -1
- package/lib/model/cohere-chat-bot-message.d.ts +39 -0
- package/lib/model/cohere-chat-bot-message.js +71 -0
- package/lib/model/cohere-chat-bot-message.js.map +1 -0
- package/lib/model/cohere-chat-request.d.ts +74 -18
- package/lib/model/cohere-chat-request.js +31 -1
- package/lib/model/cohere-chat-request.js.map +1 -1
- package/lib/model/cohere-chat-response.d.ts +39 -10
- package/lib/model/cohere-chat-response.js +21 -1
- package/lib/model/cohere-chat-response.js.map +1 -1
- package/lib/model/cohere-llm-inference-request.d.ts +1 -1
- package/lib/model/cohere-llm-inference-request.js +1 -1
- package/lib/model/cohere-llm-inference-response.d.ts +1 -1
- package/lib/model/cohere-llm-inference-response.js +1 -1
- package/lib/model/cohere-message.d.ts +3 -14
- package/lib/model/cohere-message.js +52 -6
- package/lib/model/cohere-message.js.map +1 -1
- package/lib/model/cohere-parameter-definition.d.ts +40 -0
- package/lib/model/cohere-parameter-definition.js +36 -0
- package/lib/model/cohere-parameter-definition.js.map +1 -0
- package/lib/model/cohere-system-message.d.ts +35 -0
- package/lib/model/cohere-system-message.js +59 -0
- package/lib/model/cohere-system-message.js.map +1 -0
- package/lib/model/cohere-tool-call.d.ts +36 -0
- package/lib/model/cohere-tool-call.js +36 -0
- package/lib/model/cohere-tool-call.js.map +1 -0
- package/lib/model/cohere-tool-message.d.ts +35 -0
- package/lib/model/cohere-tool-message.js +71 -0
- package/lib/model/cohere-tool-message.js.map +1 -0
- package/lib/model/cohere-tool-result.d.ts +34 -0
- package/lib/model/cohere-tool-result.js +60 -0
- package/lib/model/cohere-tool-result.js.map +1 -0
- package/lib/model/cohere-tool.d.ts +43 -0
- package/lib/model/cohere-tool.js +65 -0
- package/lib/model/cohere-tool.js.map +1 -0
- package/lib/model/cohere-user-message.d.ts +35 -0
- package/lib/model/cohere-user-message.js +59 -0
- package/lib/model/cohere-user-message.js.map +1 -0
- package/lib/model/dedicated-serving-mode.d.ts +1 -1
- package/lib/model/dedicated-serving-mode.js +1 -1
- package/lib/model/embed-text-details.d.ts +3 -3
- package/lib/model/embed-text-details.js +1 -1
- package/lib/model/embed-text-result.d.ts +1 -1
- package/lib/model/embed-text-result.js +1 -1
- package/lib/model/generate-text-details.d.ts +2 -2
- package/lib/model/generate-text-details.js +1 -1
- package/lib/model/generate-text-result.d.ts +1 -1
- package/lib/model/generate-text-result.js +1 -1
- package/lib/model/generated-text.d.ts +1 -1
- package/lib/model/generated-text.js +1 -1
- package/lib/model/generic-chat-request.d.ts +12 -7
- package/lib/model/generic-chat-request.js +1 -1
- package/lib/model/generic-chat-request.js.map +1 -1
- package/lib/model/generic-chat-response.d.ts +3 -3
- package/lib/model/generic-chat-response.js +1 -1
- package/lib/model/index.d.ts +23 -1
- package/lib/model/index.js +24 -2
- package/lib/model/index.js.map +1 -1
- package/lib/model/llama-llm-inference-request.d.ts +2 -2
- package/lib/model/llama-llm-inference-request.js +1 -1
- package/lib/model/llama-llm-inference-response.d.ts +1 -1
- package/lib/model/llama-llm-inference-response.js +1 -1
- package/lib/model/llm-inference-request.d.ts +1 -1
- package/lib/model/llm-inference-request.js +1 -1
- package/lib/model/llm-inference-response.d.ts +1 -1
- package/lib/model/llm-inference-response.js +1 -1
- package/lib/model/logprobs.d.ts +6 -3
- package/lib/model/logprobs.js +1 -1
- package/lib/model/logprobs.js.map +1 -1
- package/lib/model/message.d.ts +4 -7
- package/lib/model/message.js +28 -1
- package/lib/model/message.js.map +1 -1
- package/lib/model/on-demand-serving-mode.d.ts +2 -2
- package/lib/model/on-demand-serving-mode.js +1 -1
- package/lib/model/search-query.d.ts +1 -1
- package/lib/model/search-query.js +1 -1
- package/lib/model/serving-mode.d.ts +2 -2
- package/lib/model/serving-mode.js +1 -1
- package/lib/model/summarize-text-details.d.ts +2 -2
- package/lib/model/summarize-text-details.js +1 -1
- package/lib/model/summarize-text-result.d.ts +1 -1
- package/lib/model/summarize-text-result.js +1 -1
- package/lib/model/system-message.d.ts +35 -0
- package/lib/model/system-message.js +57 -0
- package/lib/model/system-message.js.map +1 -0
- package/lib/model/text-content.d.ts +2 -2
- package/lib/model/text-content.js +1 -1
- package/lib/model/token-likelihood.d.ts +1 -1
- package/lib/model/token-likelihood.js +1 -1
- package/lib/model/user-message.d.ts +35 -0
- package/lib/model/user-message.js +57 -0
- package/lib/model/user-message.js.map +1 -0
- package/lib/request/chat-request.d.ts +3 -4
- package/lib/request/embed-text-request.d.ts +3 -4
- package/lib/request/generate-text-request.d.ts +3 -4
- package/lib/request/index.d.ts +1 -1
- package/lib/request/index.js +1 -1
- package/lib/request/summarize-text-request.d.ts +3 -4
- package/lib/response/index.d.ts +1 -1
- package/lib/response/index.js +1 -1
- package/package.json +3 -3
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
/**
|
|
3
|
+
* Generative AI Service Inference API
|
|
4
|
+
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
|
+
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
|
+
|
|
8
|
+
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
|
+
|
|
10
|
+
To learn more about the service, see the [Generative AI documentation](/iaas/Content/generative-ai/home.htm).
|
|
11
|
+
|
|
12
|
+
* OpenAPI spec version: 20231130
|
|
13
|
+
*
|
|
14
|
+
*
|
|
15
|
+
* NOTE: This class is auto generated by OracleSDKGenerator.
|
|
16
|
+
* Do not edit the class manually.
|
|
17
|
+
*
|
|
18
|
+
* Copyright (c) 2020, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
19
|
+
* This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
|
|
20
|
+
*/
|
|
21
|
+
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
|
|
22
|
+
if (k2 === undefined) k2 = k;
|
|
23
|
+
Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });
|
|
24
|
+
}) : (function(o, m, k, k2) {
|
|
25
|
+
if (k2 === undefined) k2 = k;
|
|
26
|
+
o[k2] = m[k];
|
|
27
|
+
}));
|
|
28
|
+
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
|
|
29
|
+
Object.defineProperty(o, "default", { enumerable: true, value: v });
|
|
30
|
+
}) : function(o, v) {
|
|
31
|
+
o["default"] = v;
|
|
32
|
+
});
|
|
33
|
+
var __importStar = (this && this.__importStar) || function (mod) {
|
|
34
|
+
if (mod && mod.__esModule) return mod;
|
|
35
|
+
var result = {};
|
|
36
|
+
if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
|
|
37
|
+
__setModuleDefault(result, mod);
|
|
38
|
+
return result;
|
|
39
|
+
};
|
|
40
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
|
41
|
+
exports.CohereTool = void 0;
|
|
42
|
+
const model = __importStar(require("../model"));
|
|
43
|
+
const common = require("oci-common");
|
|
44
|
+
var CohereTool;
|
|
45
|
+
(function (CohereTool) {
|
|
46
|
+
function getJsonObj(obj) {
|
|
47
|
+
const jsonObj = Object.assign(Object.assign({}, obj), {
|
|
48
|
+
"parameterDefinitions": obj.parameterDefinitions
|
|
49
|
+
? common.mapContainer(obj.parameterDefinitions, model.CohereParameterDefinition.getJsonObj)
|
|
50
|
+
: undefined
|
|
51
|
+
});
|
|
52
|
+
return jsonObj;
|
|
53
|
+
}
|
|
54
|
+
CohereTool.getJsonObj = getJsonObj;
|
|
55
|
+
function getDeserializedJsonObj(obj) {
|
|
56
|
+
const jsonObj = Object.assign(Object.assign({}, obj), {
|
|
57
|
+
"parameterDefinitions": obj.parameterDefinitions
|
|
58
|
+
? common.mapContainer(obj.parameterDefinitions, model.CohereParameterDefinition.getDeserializedJsonObj)
|
|
59
|
+
: undefined
|
|
60
|
+
});
|
|
61
|
+
return jsonObj;
|
|
62
|
+
}
|
|
63
|
+
CohereTool.getDeserializedJsonObj = getDeserializedJsonObj;
|
|
64
|
+
})(CohereTool = exports.CohereTool || (exports.CohereTool = {}));
|
|
65
|
+
//# sourceMappingURL=cohere-tool.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"cohere-tool.js","sourceRoot":"","sources":["../../../../../lib/generativeaiinference/lib/model/cohere-tool.ts"],"names":[],"mappings":";AAAA;;;;;;;;;;;;;;;;;;GAkBG;;;;;;;;;;;;;;;;;;;;;;AAEH,gDAAkC;AAClC,qCAAsC;AAoBtC,IAAiB,UAAU,CA+B1B;AA/BD,WAAiB,UAAU;IACzB,SAAgB,UAAU,CAAC,GAAe;QACxC,MAAM,OAAO,mCACR,GAAG,GACH;YACD,sBAAsB,EAAE,GAAG,CAAC,oBAAoB;gBAC9C,CAAC,CAAC,MAAM,CAAC,YAAY,CACjB,GAAG,CAAC,oBAAoB,EACxB,KAAK,CAAC,yBAAyB,CAAC,UAAU,CAC3C;gBACH,CAAC,CAAC,SAAS;SACd,CACF,CAAC;QAEF,OAAO,OAAO,CAAC;IACjB,CAAC;IAde,qBAAU,aAczB,CAAA;IACD,SAAgB,sBAAsB,CAAC,GAAe;QACpD,MAAM,OAAO,mCACR,GAAG,GACH;YACD,sBAAsB,EAAE,GAAG,CAAC,oBAAoB;gBAC9C,CAAC,CAAC,MAAM,CAAC,YAAY,CACjB,GAAG,CAAC,oBAAoB,EACxB,KAAK,CAAC,yBAAyB,CAAC,sBAAsB,CACvD;gBACH,CAAC,CAAC,SAAS;SACd,CACF,CAAC;QAEF,OAAO,OAAO,CAAC;IACjB,CAAC;IAde,iCAAsB,yBAcrC,CAAA;AACH,CAAC,EA/BgB,UAAU,GAAV,kBAAU,KAAV,kBAAU,QA+B1B"}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
/**
|
|
2
|
+
* Generative AI Service Inference API
|
|
3
|
+
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
|
+
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
|
|
7
|
+
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
|
+
|
|
9
|
+
To learn more about the service, see the [Generative AI documentation](/iaas/Content/generative-ai/home.htm).
|
|
10
|
+
|
|
11
|
+
* OpenAPI spec version: 20231130
|
|
12
|
+
*
|
|
13
|
+
*
|
|
14
|
+
* NOTE: This class is auto generated by OracleSDKGenerator.
|
|
15
|
+
* Do not edit the class manually.
|
|
16
|
+
*
|
|
17
|
+
* Copyright (c) 2020, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
18
|
+
* This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
|
|
19
|
+
*/
|
|
20
|
+
import * as model from "../model";
|
|
21
|
+
/**
|
|
22
|
+
* A message that represents a single chat dialog as USER role.
|
|
23
|
+
*/
|
|
24
|
+
export interface CohereUserMessage extends model.CohereMessage {
|
|
25
|
+
/**
|
|
26
|
+
* Contents of the chat message.
|
|
27
|
+
*/
|
|
28
|
+
"message": string;
|
|
29
|
+
"role": string;
|
|
30
|
+
}
|
|
31
|
+
export declare namespace CohereUserMessage {
|
|
32
|
+
function getJsonObj(obj: CohereUserMessage, isParentJsonObj?: boolean): object;
|
|
33
|
+
const role = "USER";
|
|
34
|
+
function getDeserializedJsonObj(obj: CohereUserMessage, isParentJsonObj?: boolean): object;
|
|
35
|
+
}
|
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
/**
|
|
3
|
+
* Generative AI Service Inference API
|
|
4
|
+
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
|
+
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
|
+
|
|
8
|
+
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
|
+
|
|
10
|
+
To learn more about the service, see the [Generative AI documentation](/iaas/Content/generative-ai/home.htm).
|
|
11
|
+
|
|
12
|
+
* OpenAPI spec version: 20231130
|
|
13
|
+
*
|
|
14
|
+
*
|
|
15
|
+
* NOTE: This class is auto generated by OracleSDKGenerator.
|
|
16
|
+
* Do not edit the class manually.
|
|
17
|
+
*
|
|
18
|
+
* Copyright (c) 2020, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
19
|
+
* This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
|
|
20
|
+
*/
|
|
21
|
+
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
|
|
22
|
+
if (k2 === undefined) k2 = k;
|
|
23
|
+
Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });
|
|
24
|
+
}) : (function(o, m, k, k2) {
|
|
25
|
+
if (k2 === undefined) k2 = k;
|
|
26
|
+
o[k2] = m[k];
|
|
27
|
+
}));
|
|
28
|
+
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
|
|
29
|
+
Object.defineProperty(o, "default", { enumerable: true, value: v });
|
|
30
|
+
}) : function(o, v) {
|
|
31
|
+
o["default"] = v;
|
|
32
|
+
});
|
|
33
|
+
var __importStar = (this && this.__importStar) || function (mod) {
|
|
34
|
+
if (mod && mod.__esModule) return mod;
|
|
35
|
+
var result = {};
|
|
36
|
+
if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
|
|
37
|
+
__setModuleDefault(result, mod);
|
|
38
|
+
return result;
|
|
39
|
+
};
|
|
40
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
|
41
|
+
exports.CohereUserMessage = void 0;
|
|
42
|
+
const model = __importStar(require("../model"));
|
|
43
|
+
var CohereUserMessage;
|
|
44
|
+
(function (CohereUserMessage) {
|
|
45
|
+
function getJsonObj(obj, isParentJsonObj) {
|
|
46
|
+
const jsonObj = Object.assign(Object.assign({}, (isParentJsonObj ? obj : model.CohereMessage.getJsonObj(obj))), {});
|
|
47
|
+
return jsonObj;
|
|
48
|
+
}
|
|
49
|
+
CohereUserMessage.getJsonObj = getJsonObj;
|
|
50
|
+
CohereUserMessage.role = "USER";
|
|
51
|
+
function getDeserializedJsonObj(obj, isParentJsonObj) {
|
|
52
|
+
const jsonObj = Object.assign(Object.assign({}, (isParentJsonObj
|
|
53
|
+
? obj
|
|
54
|
+
: model.CohereMessage.getDeserializedJsonObj(obj))), {});
|
|
55
|
+
return jsonObj;
|
|
56
|
+
}
|
|
57
|
+
CohereUserMessage.getDeserializedJsonObj = getDeserializedJsonObj;
|
|
58
|
+
})(CohereUserMessage = exports.CohereUserMessage || (exports.CohereUserMessage = {}));
|
|
59
|
+
//# sourceMappingURL=cohere-user-message.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"cohere-user-message.js","sourceRoot":"","sources":["../../../../../lib/generativeaiinference/lib/model/cohere-user-message.ts"],"names":[],"mappings":";AAAA;;;;;;;;;;;;;;;;;;GAkBG;;;;;;;;;;;;;;;;;;;;;;AAEH,gDAAkC;AAelC,IAAiB,iBAAiB,CAuBjC;AAvBD,WAAiB,iBAAiB;IAChC,SAAgB,UAAU,CAAC,GAAsB,EAAE,eAAyB;QAC1E,MAAM,OAAO,mCACR,CAAC,eAAe,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAE,KAAK,CAAC,aAAa,CAAC,UAAU,CAAC,GAAG,CAAuB,CAAC,GACpF,EAAE,CACN,CAAC;QAEF,OAAO,OAAO,CAAC;IACjB,CAAC;IAPe,4BAAU,aAOzB,CAAA;IACY,sBAAI,GAAG,MAAM,CAAC;IAC3B,SAAgB,sBAAsB,CACpC,GAAsB,EACtB,eAAyB;QAEzB,MAAM,OAAO,mCACR,CAAC,eAAe;YACjB,CAAC,CAAC,GAAG;YACL,CAAC,CAAE,KAAK,CAAC,aAAa,CAAC,sBAAsB,CAAC,GAAG,CAAuB,CAAC,GACxE,EAAE,CACN,CAAC;QAEF,OAAO,OAAO,CAAC;IACjB,CAAC;IAZe,wCAAsB,yBAYrC,CAAA;AACH,CAAC,EAvBgB,iBAAiB,GAAjB,yBAAiB,KAAjB,yBAAiB,QAuBjC"}
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -23,12 +23,12 @@ import * as model from "../model";
|
|
|
23
23
|
*/
|
|
24
24
|
export interface EmbedTextDetails {
|
|
25
25
|
/**
|
|
26
|
-
* Provide a list of strings
|
|
26
|
+
* Provide a list of strings. Each string can be words, a phrase, or a paragraph. The maximum length of each string entry in the list is 512 tokens.
|
|
27
27
|
*/
|
|
28
28
|
"inputs": Array<string>;
|
|
29
29
|
"servingMode": model.DedicatedServingMode | model.OnDemandServingMode;
|
|
30
30
|
/**
|
|
31
|
-
* The OCID of compartment
|
|
31
|
+
* The OCID of compartment in which to call the Generative AI service to create text embeddings.
|
|
32
32
|
*/
|
|
33
33
|
"compartmentId": string;
|
|
34
34
|
/**
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -23,7 +23,7 @@ import * as model from "../model";
|
|
|
23
23
|
*/
|
|
24
24
|
export interface GenerateTextDetails {
|
|
25
25
|
/**
|
|
26
|
-
* The OCID of compartment
|
|
26
|
+
* The OCID of compartment in which to call the Generative AI service to generate text.
|
|
27
27
|
*/
|
|
28
28
|
"compartmentId": string;
|
|
29
29
|
"servingMode": model.DedicatedServingMode | model.OnDemandServingMode;
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -23,11 +23,11 @@ import * as model from "../model";
|
|
|
23
23
|
*/
|
|
24
24
|
export interface GenericChatRequest extends model.BaseChatRequest {
|
|
25
25
|
/**
|
|
26
|
-
* The series of messages
|
|
26
|
+
* The series of messages in a chat request. Includes the previous messages in a conversation. Each message includes a role ({@code USER} or the {@code CHATBOT}) and content.
|
|
27
27
|
*/
|
|
28
28
|
"messages"?: Array<model.Message>;
|
|
29
29
|
/**
|
|
30
|
-
* Whether to stream back partial progress. If set, tokens are sent as data-only server-sent events
|
|
30
|
+
* Whether to stream back partial progress. If set to true, as tokens become available, they are sent as data-only server-sent events.
|
|
31
31
|
*/
|
|
32
32
|
"isStream"?: boolean;
|
|
33
33
|
/**
|
|
@@ -35,7 +35,7 @@ export interface GenericChatRequest extends model.BaseChatRequest {
|
|
|
35
35
|
*/
|
|
36
36
|
"numGenerations"?: number;
|
|
37
37
|
/**
|
|
38
|
-
* Whether
|
|
38
|
+
* Whether to include the user prompt in the response. Applies only to non-stream results.
|
|
39
39
|
*/
|
|
40
40
|
"isEcho"?: boolean;
|
|
41
41
|
/**
|
|
@@ -82,12 +82,17 @@ export interface GenericChatRequest extends model.BaseChatRequest {
|
|
|
82
82
|
*/
|
|
83
83
|
"logProbs"?: number;
|
|
84
84
|
/**
|
|
85
|
-
* The maximum number of tokens that can be generated per output sequence. The token count of your prompt plus
|
|
85
|
+
* The maximum number of tokens that can be generated per output sequence. The token count of your prompt plus {@code maxTokens} must not exceed the model's context length.
|
|
86
|
+
* Not setting a value for maxTokens results in the possible use of model's full context length.
|
|
87
|
+
* Note: Numbers greater than Number.MAX_SAFE_INTEGER will result in rounding issues.
|
|
86
88
|
*/
|
|
87
89
|
"maxTokens"?: number;
|
|
88
90
|
/**
|
|
89
|
-
|
|
90
|
-
|
|
91
|
+
* Modifies the likelihood of specified tokens that appear in the completion.
|
|
92
|
+
* <p>
|
|
93
|
+
Example: '{\"6395\": 2, \"8134\": 1, \"21943\": 0.5, \"5923\": -100}'
|
|
94
|
+
*
|
|
95
|
+
*/
|
|
91
96
|
"logitBias"?: any;
|
|
92
97
|
"apiFormat": string;
|
|
93
98
|
}
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"generic-chat-request.js","sourceRoot":"","sources":["../../../../../lib/generativeaiinference/lib/model/generic-chat-request.ts"],"names":[],"mappings":";AAAA;;;;;;;;;;;;;;;;;;GAkBG;;;;;;;;;;;;;;;;;;;;;;AAEH,gDAAkC;
|
|
1
|
+
{"version":3,"file":"generic-chat-request.js","sourceRoot":"","sources":["../../../../../lib/generativeaiinference/lib/model/generic-chat-request.ts"],"names":[],"mappings":";AAAA;;;;;;;;;;;;;;;;;;GAkBG;;;;;;;;;;;;;;;;;;;;;;AAEH,gDAAkC;AAmFlC,IAAiB,kBAAkB,CAmClC;AAnCD,WAAiB,kBAAkB;IACjC,SAAgB,UAAU,CAAC,GAAuB,EAAE,eAAyB;QAC3E,MAAM,OAAO,mCACR,CAAC,eAAe,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAE,KAAK,CAAC,eAAe,CAAC,UAAU,CAAC,GAAG,CAAwB,CAAC,GACvF;YACD,UAAU,EAAE,GAAG,CAAC,QAAQ;gBACtB,CAAC,CAAC,GAAG,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE;oBACtB,OAAO,KAAK,CAAC,OAAO,CAAC,UAAU,CAAC,IAAI,CAAC,CAAC;gBACxC,CAAC,CAAC;gBACJ,CAAC,CAAC,SAAS;SACd,CACF,CAAC;QAEF,OAAO,OAAO,CAAC;IACjB,CAAC;IAbe,6BAAU,aAazB,CAAA;IACY,4BAAS,GAAG,SAAS,CAAC;IACnC,SAAgB,sBAAsB,CACpC,GAAuB,EACvB,eAAyB;QAEzB,MAAM,OAAO,mCACR,CAAC,eAAe;YACjB,CAAC,CAAC,GAAG;YACL,CAAC,CAAE,KAAK,CAAC,eAAe,CAAC,sBAAsB,CAAC,GAAG,CAAwB,CAAC,GAC3E;YACD,UAAU,EAAE,GAAG,CAAC,QAAQ;gBACtB,CAAC,CAAC,GAAG,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE;oBACtB,OAAO,KAAK,CAAC,OAAO,CAAC,sBAAsB,CAAC,IAAI,CAAC,CAAC;gBACpD,CAAC,CAAC;gBACJ,CAAC,CAAC,SAAS;SACd,CACF,CAAC;QAEF,OAAO,OAAO,CAAC;IACjB,CAAC;IAlBe,yCAAsB,yBAkBrC,CAAA;AACH,CAAC,EAnCgB,kBAAkB,GAAlB,0BAAkB,KAAlB,0BAAkB,QAmClC"}
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -19,11 +19,11 @@ To learn more about the service, see the [Generative AI documentation](/iaas/Con
|
|
|
19
19
|
*/
|
|
20
20
|
import * as model from "../model";
|
|
21
21
|
/**
|
|
22
|
-
* The response
|
|
22
|
+
* The response for a chat conversation.
|
|
23
23
|
*/
|
|
24
24
|
export interface GenericChatResponse extends model.BaseChatResponse {
|
|
25
25
|
/**
|
|
26
|
-
* The Unix timestamp (in seconds) of when the
|
|
26
|
+
* The Unix timestamp (in seconds) of when the response text was generated.
|
|
27
27
|
*/
|
|
28
28
|
"timeCreated": Date;
|
|
29
29
|
/**
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
package/lib/model/index.d.ts
CHANGED
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
* Generative AI Service Inference API
|
|
3
3
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
4
4
|
|
|
5
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
5
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
6
|
|
|
7
7
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
8
8
|
|
|
@@ -35,6 +35,14 @@ import * as Citation from "./citation";
|
|
|
35
35
|
export import Citation = Citation.Citation;
|
|
36
36
|
import * as CohereMessage from "./cohere-message";
|
|
37
37
|
export import CohereMessage = CohereMessage.CohereMessage;
|
|
38
|
+
import * as CohereParameterDefinition from "./cohere-parameter-definition";
|
|
39
|
+
export import CohereParameterDefinition = CohereParameterDefinition.CohereParameterDefinition;
|
|
40
|
+
import * as CohereTool from "./cohere-tool";
|
|
41
|
+
export import CohereTool = CohereTool.CohereTool;
|
|
42
|
+
import * as CohereToolCall from "./cohere-tool-call";
|
|
43
|
+
export import CohereToolCall = CohereToolCall.CohereToolCall;
|
|
44
|
+
import * as CohereToolResult from "./cohere-tool-result";
|
|
45
|
+
export import CohereToolResult = CohereToolResult.CohereToolResult;
|
|
38
46
|
import * as EmbedTextDetails from "./embed-text-details";
|
|
39
47
|
export import EmbedTextDetails = EmbedTextDetails.EmbedTextDetails;
|
|
40
48
|
import * as EmbedTextResult from "./embed-text-result";
|
|
@@ -63,6 +71,10 @@ import * as SummarizeTextResult from "./summarize-text-result";
|
|
|
63
71
|
export import SummarizeTextResult = SummarizeTextResult.SummarizeTextResult;
|
|
64
72
|
import * as TokenLikelihood from "./token-likelihood";
|
|
65
73
|
export import TokenLikelihood = TokenLikelihood.TokenLikelihood;
|
|
74
|
+
import * as AssistantMessage from "./assistant-message";
|
|
75
|
+
export import AssistantMessage = AssistantMessage.AssistantMessage;
|
|
76
|
+
import * as CohereChatBotMessage from "./cohere-chat-bot-message";
|
|
77
|
+
export import CohereChatBotMessage = CohereChatBotMessage.CohereChatBotMessage;
|
|
66
78
|
import * as CohereChatRequest from "./cohere-chat-request";
|
|
67
79
|
export import CohereChatRequest = CohereChatRequest.CohereChatRequest;
|
|
68
80
|
import * as CohereChatResponse from "./cohere-chat-response";
|
|
@@ -71,6 +83,12 @@ import * as CohereLlmInferenceRequest from "./cohere-llm-inference-request";
|
|
|
71
83
|
export import CohereLlmInferenceRequest = CohereLlmInferenceRequest.CohereLlmInferenceRequest;
|
|
72
84
|
import * as CohereLlmInferenceResponse from "./cohere-llm-inference-response";
|
|
73
85
|
export import CohereLlmInferenceResponse = CohereLlmInferenceResponse.CohereLlmInferenceResponse;
|
|
86
|
+
import * as CohereSystemMessage from "./cohere-system-message";
|
|
87
|
+
export import CohereSystemMessage = CohereSystemMessage.CohereSystemMessage;
|
|
88
|
+
import * as CohereToolMessage from "./cohere-tool-message";
|
|
89
|
+
export import CohereToolMessage = CohereToolMessage.CohereToolMessage;
|
|
90
|
+
import * as CohereUserMessage from "./cohere-user-message";
|
|
91
|
+
export import CohereUserMessage = CohereUserMessage.CohereUserMessage;
|
|
74
92
|
import * as DedicatedServingMode from "./dedicated-serving-mode";
|
|
75
93
|
export import DedicatedServingMode = DedicatedServingMode.DedicatedServingMode;
|
|
76
94
|
import * as GenericChatRequest from "./generic-chat-request";
|
|
@@ -83,5 +101,9 @@ import * as LlamaLlmInferenceResponse from "./llama-llm-inference-response";
|
|
|
83
101
|
export import LlamaLlmInferenceResponse = LlamaLlmInferenceResponse.LlamaLlmInferenceResponse;
|
|
84
102
|
import * as OnDemandServingMode from "./on-demand-serving-mode";
|
|
85
103
|
export import OnDemandServingMode = OnDemandServingMode.OnDemandServingMode;
|
|
104
|
+
import * as SystemMessage from "./system-message";
|
|
105
|
+
export import SystemMessage = SystemMessage.SystemMessage;
|
|
86
106
|
import * as TextContent from "./text-content";
|
|
87
107
|
export import TextContent = TextContent.TextContent;
|
|
108
|
+
import * as UserMessage from "./user-message";
|
|
109
|
+
export import UserMessage = UserMessage.UserMessage;
|
package/lib/model/index.js
CHANGED
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
* Generative AI Service Inference API
|
|
4
4
|
* OCI Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases for text generation, summarization, and text embeddings.
|
|
5
5
|
|
|
6
|
-
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
6
|
+
Use the Generative AI service inference API to access your custom model endpoints, or to try the out-of-the-box models to [chat](#/en/generative-ai-inference/latest/ChatResult/Chat), [generate text](#/en/generative-ai-inference/latest/GenerateTextResult/GenerateText), [summarize](#/en/generative-ai-inference/latest/SummarizeTextResult/SummarizeText), and [create text embeddings](#/en/generative-ai-inference/latest/EmbedTextResult/EmbedText).
|
|
7
7
|
|
|
8
8
|
To use a Generative AI custom model for inference, you must first create an endpoint for that model. Use the [Generative AI service management API](/#/en/generative-ai/latest/) to [create a custom model](#/en/generative-ai/latest/Model/) by fine-tuning an out-of-the-box model, or a previous version of a custom model, using your own data. Fine-tune the custom model on a [fine-tuning dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/). Then, create a [hosting dedicated AI cluster](#/en/generative-ai/latest/DedicatedAiCluster/) with an [endpoint](#/en/generative-ai/latest/Endpoint/) to host your custom model. For resource management in the Generative AI service, use the [Generative AI service management API](/#/en/generative-ai/latest/).
|
|
9
9
|
|
|
@@ -38,7 +38,7 @@ var __importStar = (this && this.__importStar) || function (mod) {
|
|
|
38
38
|
return result;
|
|
39
39
|
};
|
|
40
40
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
41
|
-
exports.TextContent = exports.OnDemandServingMode = exports.LlamaLlmInferenceResponse = exports.LlamaLlmInferenceRequest = exports.GenericChatResponse = exports.GenericChatRequest = exports.DedicatedServingMode = exports.CohereLlmInferenceResponse = exports.CohereLlmInferenceRequest = exports.CohereChatResponse = exports.CohereChatRequest = exports.TokenLikelihood = exports.SummarizeTextResult = exports.SummarizeTextDetails = exports.ServingMode = exports.SearchQuery = exports.Message = exports.Logprobs = exports.LlmInferenceResponse = exports.LlmInferenceRequest = exports.GeneratedText = exports.GenerateTextResult = exports.GenerateTextDetails = exports.EmbedTextResult = exports.EmbedTextDetails = exports.CohereMessage = exports.Citation = exports.Choice = exports.ChatResult = exports.ChatDetails = exports.ChatContent = exports.ChatChoice = exports.BaseChatResponse = exports.BaseChatRequest = void 0;
|
|
41
|
+
exports.UserMessage = exports.TextContent = exports.SystemMessage = exports.OnDemandServingMode = exports.LlamaLlmInferenceResponse = exports.LlamaLlmInferenceRequest = exports.GenericChatResponse = exports.GenericChatRequest = exports.DedicatedServingMode = exports.CohereUserMessage = exports.CohereToolMessage = exports.CohereSystemMessage = exports.CohereLlmInferenceResponse = exports.CohereLlmInferenceRequest = exports.CohereChatResponse = exports.CohereChatRequest = exports.CohereChatBotMessage = exports.AssistantMessage = exports.TokenLikelihood = exports.SummarizeTextResult = exports.SummarizeTextDetails = exports.ServingMode = exports.SearchQuery = exports.Message = exports.Logprobs = exports.LlmInferenceResponse = exports.LlmInferenceRequest = exports.GeneratedText = exports.GenerateTextResult = exports.GenerateTextDetails = exports.EmbedTextResult = exports.EmbedTextDetails = exports.CohereToolResult = exports.CohereToolCall = exports.CohereTool = exports.CohereParameterDefinition = exports.CohereMessage = exports.Citation = exports.Choice = exports.ChatResult = exports.ChatDetails = exports.ChatContent = exports.ChatChoice = exports.BaseChatResponse = exports.BaseChatRequest = void 0;
|
|
42
42
|
const BaseChatRequest = __importStar(require("./base-chat-request"));
|
|
43
43
|
exports.BaseChatRequest = BaseChatRequest.BaseChatRequest;
|
|
44
44
|
const BaseChatResponse = __importStar(require("./base-chat-response"));
|
|
@@ -57,6 +57,14 @@ const Citation = __importStar(require("./citation"));
|
|
|
57
57
|
exports.Citation = Citation.Citation;
|
|
58
58
|
const CohereMessage = __importStar(require("./cohere-message"));
|
|
59
59
|
exports.CohereMessage = CohereMessage.CohereMessage;
|
|
60
|
+
const CohereParameterDefinition = __importStar(require("./cohere-parameter-definition"));
|
|
61
|
+
exports.CohereParameterDefinition = CohereParameterDefinition.CohereParameterDefinition;
|
|
62
|
+
const CohereTool = __importStar(require("./cohere-tool"));
|
|
63
|
+
exports.CohereTool = CohereTool.CohereTool;
|
|
64
|
+
const CohereToolCall = __importStar(require("./cohere-tool-call"));
|
|
65
|
+
exports.CohereToolCall = CohereToolCall.CohereToolCall;
|
|
66
|
+
const CohereToolResult = __importStar(require("./cohere-tool-result"));
|
|
67
|
+
exports.CohereToolResult = CohereToolResult.CohereToolResult;
|
|
60
68
|
const EmbedTextDetails = __importStar(require("./embed-text-details"));
|
|
61
69
|
exports.EmbedTextDetails = EmbedTextDetails.EmbedTextDetails;
|
|
62
70
|
const EmbedTextResult = __importStar(require("./embed-text-result"));
|
|
@@ -85,6 +93,10 @@ const SummarizeTextResult = __importStar(require("./summarize-text-result"));
|
|
|
85
93
|
exports.SummarizeTextResult = SummarizeTextResult.SummarizeTextResult;
|
|
86
94
|
const TokenLikelihood = __importStar(require("./token-likelihood"));
|
|
87
95
|
exports.TokenLikelihood = TokenLikelihood.TokenLikelihood;
|
|
96
|
+
const AssistantMessage = __importStar(require("./assistant-message"));
|
|
97
|
+
exports.AssistantMessage = AssistantMessage.AssistantMessage;
|
|
98
|
+
const CohereChatBotMessage = __importStar(require("./cohere-chat-bot-message"));
|
|
99
|
+
exports.CohereChatBotMessage = CohereChatBotMessage.CohereChatBotMessage;
|
|
88
100
|
const CohereChatRequest = __importStar(require("./cohere-chat-request"));
|
|
89
101
|
exports.CohereChatRequest = CohereChatRequest.CohereChatRequest;
|
|
90
102
|
const CohereChatResponse = __importStar(require("./cohere-chat-response"));
|
|
@@ -93,6 +105,12 @@ const CohereLlmInferenceRequest = __importStar(require("./cohere-llm-inference-r
|
|
|
93
105
|
exports.CohereLlmInferenceRequest = CohereLlmInferenceRequest.CohereLlmInferenceRequest;
|
|
94
106
|
const CohereLlmInferenceResponse = __importStar(require("./cohere-llm-inference-response"));
|
|
95
107
|
exports.CohereLlmInferenceResponse = CohereLlmInferenceResponse.CohereLlmInferenceResponse;
|
|
108
|
+
const CohereSystemMessage = __importStar(require("./cohere-system-message"));
|
|
109
|
+
exports.CohereSystemMessage = CohereSystemMessage.CohereSystemMessage;
|
|
110
|
+
const CohereToolMessage = __importStar(require("./cohere-tool-message"));
|
|
111
|
+
exports.CohereToolMessage = CohereToolMessage.CohereToolMessage;
|
|
112
|
+
const CohereUserMessage = __importStar(require("./cohere-user-message"));
|
|
113
|
+
exports.CohereUserMessage = CohereUserMessage.CohereUserMessage;
|
|
96
114
|
const DedicatedServingMode = __importStar(require("./dedicated-serving-mode"));
|
|
97
115
|
exports.DedicatedServingMode = DedicatedServingMode.DedicatedServingMode;
|
|
98
116
|
const GenericChatRequest = __importStar(require("./generic-chat-request"));
|
|
@@ -105,6 +123,10 @@ const LlamaLlmInferenceResponse = __importStar(require("./llama-llm-inference-re
|
|
|
105
123
|
exports.LlamaLlmInferenceResponse = LlamaLlmInferenceResponse.LlamaLlmInferenceResponse;
|
|
106
124
|
const OnDemandServingMode = __importStar(require("./on-demand-serving-mode"));
|
|
107
125
|
exports.OnDemandServingMode = OnDemandServingMode.OnDemandServingMode;
|
|
126
|
+
const SystemMessage = __importStar(require("./system-message"));
|
|
127
|
+
exports.SystemMessage = SystemMessage.SystemMessage;
|
|
108
128
|
const TextContent = __importStar(require("./text-content"));
|
|
109
129
|
exports.TextContent = TextContent.TextContent;
|
|
130
|
+
const UserMessage = __importStar(require("./user-message"));
|
|
131
|
+
exports.UserMessage = UserMessage.UserMessage;
|
|
110
132
|
//# sourceMappingURL=index.js.map
|