nostr-double-ratchet 0.0.24 → 0.0.25

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -214,13 +214,13 @@ let Ii = class extends Ci {
214
214
  for (let u = 0; u < 16; u++, n += 4)
215
215
  ve[u] = t.getUint32(n, !1);
216
216
  for (let u = 16; u < 64; u++) {
217
- const p = ve[u - 15], b = ve[u - 2], y = re(p, 7) ^ re(p, 18) ^ p >>> 3, h = re(b, 17) ^ re(b, 19) ^ b >>> 10;
217
+ const g = ve[u - 15], w = ve[u - 2], y = re(g, 7) ^ re(g, 18) ^ g >>> 3, h = re(w, 17) ^ re(w, 19) ^ w >>> 10;
218
218
  ve[u] = h + ve[u - 7] + y + ve[u - 16] | 0;
219
219
  }
220
220
  let { A: r, B: i, C: s, D: o, E: c, F: a, G: l, H: f } = this;
221
221
  for (let u = 0; u < 64; u++) {
222
- const p = re(c, 6) ^ re(c, 11) ^ re(c, 25), b = f + p + Bi(c, a, l) + _i[u] + ve[u] | 0, h = (re(r, 2) ^ re(r, 13) ^ re(r, 22)) + ki(r, i, s) | 0;
223
- f = l, l = a, a = c, c = o + b | 0, o = s, s = i, i = r, r = b + h | 0;
222
+ const g = re(c, 6) ^ re(c, 11) ^ re(c, 25), w = f + g + Bi(c, a, l) + _i[u] + ve[u] | 0, h = (re(r, 2) ^ re(r, 13) ^ re(r, 22)) + ki(r, i, s) | 0;
223
+ f = l, l = a, a = c, c = o + w | 0, o = s, s = i, i = r, r = w + h | 0;
224
224
  }
225
225
  r = r + this.A | 0, i = i + this.B | 0, s = s + this.C | 0, o = o + this.D | 0, c = c + this.E | 0, a = a + this.F | 0, l = l + this.G | 0, f = f + this.H | 0, this.set(r, i, s, o, c, a, l, f);
226
226
  }
@@ -348,20 +348,20 @@ function Jn(e, t, n) {
348
348
  if (s++ >= 1e3)
349
349
  throw new Error("drbg: tried 1000 values");
350
350
  let u = 0;
351
- const p = [];
351
+ const g = [];
352
352
  for (; u < t; ) {
353
353
  r = c();
354
- const b = r.slice();
355
- p.push(b), u += r.length;
354
+ const w = r.slice();
355
+ g.push(w), u += r.length;
356
356
  }
357
- return _e(...p);
357
+ return _e(...g);
358
358
  };
359
- return (u, p) => {
359
+ return (u, g) => {
360
360
  o(), a(u);
361
- let b;
362
- for (; !(b = p(l())); )
361
+ let w;
362
+ for (; !(w = g(l())); )
363
363
  a();
364
- return o(), b;
364
+ return o(), w;
365
365
  };
366
366
  }
367
367
  const Hi = {
@@ -468,15 +468,15 @@ function zi(e) {
468
468
  return function(c, a) {
469
469
  if (c.pow(a, t) === c.neg(c.ONE))
470
470
  throw new Error("Cannot find square root");
471
- let l = r, f = c.pow(c.mul(c.ONE, i), n), u = c.pow(a, s), p = c.pow(a, n);
472
- for (; !c.eql(p, c.ONE); ) {
473
- if (c.eql(p, c.ZERO))
471
+ let l = r, f = c.pow(c.mul(c.ONE, i), n), u = c.pow(a, s), g = c.pow(a, n);
472
+ for (; !c.eql(g, c.ONE); ) {
473
+ if (c.eql(g, c.ZERO))
474
474
  return c.ZERO;
475
- let b = 1;
476
- for (let h = c.sqr(p); b < l && !c.eql(h, c.ONE); b++)
475
+ let w = 1;
476
+ for (let h = c.sqr(g); w < l && !c.eql(h, c.ONE); w++)
477
477
  h = c.sqr(h);
478
- const y = c.pow(f, j << BigInt(l - b - 1));
479
- f = c.sqr(y), u = c.mul(u, y), p = c.mul(p, f), l = b;
478
+ const y = c.pow(f, j << BigInt(l - w - 1));
479
+ f = c.sqr(y), u = c.mul(u, y), g = c.mul(g, f), l = w;
480
480
  }
481
481
  return u;
482
482
  };
@@ -650,7 +650,7 @@ function Qi(e, t) {
650
650
  let l = i, f = l;
651
651
  for (let u = 0; u < o; u++) {
652
652
  f = l, a.push(f);
653
- for (let p = 1; p < c; p++)
653
+ for (let g = 1; g < c; g++)
654
654
  f = f.add(l), a.push(f);
655
655
  l = f.double();
656
656
  }
@@ -666,13 +666,13 @@ function Qi(e, t) {
666
666
  wNAF(i, s, o) {
667
667
  const { windows: c, windowSize: a } = r(i);
668
668
  let l = e.ZERO, f = e.BASE;
669
- const u = BigInt(2 ** i - 1), p = 2 ** i, b = BigInt(i);
669
+ const u = BigInt(2 ** i - 1), g = 2 ** i, w = BigInt(i);
670
670
  for (let y = 0; y < c; y++) {
671
671
  const h = y * a;
672
672
  let d = Number(o & u);
673
- o >>= b, d > a && (d -= p, o += St);
674
- const g = h, E = h + Math.abs(d) - 1, S = y % 2 !== 0, I = d < 0;
675
- d === 0 ? f = f.add(n(S, s[g])) : l = l.add(n(I, s[E]));
673
+ o >>= w, d > a && (d -= g, o += St);
674
+ const p = h, E = h + Math.abs(d) - 1, S = y % 2 !== 0, I = d < 0;
675
+ d === 0 ? f = f.add(n(S, s[p])) : l = l.add(n(I, s[E]));
676
676
  }
677
677
  return { p: l, f };
678
678
  },
@@ -769,14 +769,14 @@ const kn = BigInt(3);
769
769
  BigInt(4);
770
770
  function rs(e) {
771
771
  const t = es(e), { Fp: n } = t, r = t.toBytes || ((y, h, d) => {
772
- const g = h.toAffine();
773
- return _e(Uint8Array.from([4]), n.toBytes(g.x), n.toBytes(g.y));
772
+ const p = h.toAffine();
773
+ return _e(Uint8Array.from([4]), n.toBytes(p.x), n.toBytes(p.y));
774
774
  }), i = t.fromBytes || ((y) => {
775
- const h = y.subarray(1), d = n.fromBytes(h.subarray(0, n.BYTES)), g = n.fromBytes(h.subarray(n.BYTES, 2 * n.BYTES));
776
- return { x: d, y: g };
775
+ const h = y.subarray(1), d = n.fromBytes(h.subarray(0, n.BYTES)), p = n.fromBytes(h.subarray(n.BYTES, 2 * n.BYTES));
776
+ return { x: d, y: p };
777
777
  });
778
778
  function s(y) {
779
- const { a: h, b: d } = t, g = n.sqr(y), E = n.mul(g, y);
779
+ const { a: h, b: d } = t, p = n.sqr(y), E = n.mul(p, y);
780
780
  return n.add(n.add(E, n.mul(y, h)), d);
781
781
  }
782
782
  if (!n.eql(n.sqr(t.Gy), s(t.Gx)))
@@ -789,7 +789,7 @@ function rs(e) {
789
789
  throw new Error("Expected valid bigint: 0 < bigint < curve.n");
790
790
  }
791
791
  function a(y) {
792
- const { allowedPrivateKeyLengths: h, nByteLength: d, wrapPrivateKey: g, n: E } = t;
792
+ const { allowedPrivateKeyLengths: h, nByteLength: d, wrapPrivateKey: p, n: E } = t;
793
793
  if (h && typeof y != "bigint") {
794
794
  if (y instanceof Uint8Array && (y = De(y)), typeof y != "string" || !h.includes(y.length))
795
795
  throw new Error("Invalid key");
@@ -801,7 +801,7 @@ function rs(e) {
801
801
  } catch {
802
802
  throw new Error(`private key must be ${d} bytes, hex or bigint, not ${typeof y}`);
803
803
  }
804
- return g && (S = W(S, E)), c(S), S;
804
+ return p && (S = W(S, E)), c(S), S;
805
805
  }
806
806
  const l = /* @__PURE__ */ new Map();
807
807
  function f(y) {
@@ -809,24 +809,24 @@ function rs(e) {
809
809
  throw new Error("ProjectivePoint expected");
810
810
  }
811
811
  class u {
812
- constructor(h, d, g) {
813
- if (this.px = h, this.py = d, this.pz = g, h == null || !n.isValid(h))
812
+ constructor(h, d, p) {
813
+ if (this.px = h, this.py = d, this.pz = p, h == null || !n.isValid(h))
814
814
  throw new Error("x required");
815
815
  if (d == null || !n.isValid(d))
816
816
  throw new Error("y required");
817
- if (g == null || !n.isValid(g))
817
+ if (p == null || !n.isValid(p))
818
818
  throw new Error("z required");
819
819
  }
820
820
  // Does not validate if the point is on-curve.
821
821
  // Use fromHex instead, or call assertValidity() later.
822
822
  static fromAffine(h) {
823
- const { x: d, y: g } = h || {};
824
- if (!h || !n.isValid(d) || !n.isValid(g))
823
+ const { x: d, y: p } = h || {};
824
+ if (!h || !n.isValid(d) || !n.isValid(p))
825
825
  throw new Error("invalid affine point");
826
826
  if (h instanceof u)
827
827
  throw new Error("projective point not allowed");
828
828
  const E = (S) => n.eql(S, n.ZERO);
829
- return E(d) && E(g) ? u.ZERO : new u(d, g, n.ONE);
829
+ return E(d) && E(p) ? u.ZERO : new u(d, p, n.ONE);
830
830
  }
831
831
  get x() {
832
832
  return this.toAffine().x;
@@ -841,8 +841,8 @@ function rs(e) {
841
841
  * Optimization: converts a list of projective points to a list of identical points with Z=1.
842
842
  */
843
843
  static normalizeZ(h) {
844
- const d = n.invertBatch(h.map((g) => g.pz));
845
- return h.map((g, E) => g.toAffine(d[E])).map(u.fromAffine);
844
+ const d = n.invertBatch(h.map((p) => p.pz));
845
+ return h.map((p, E) => p.toAffine(d[E])).map(u.fromAffine);
846
846
  }
847
847
  /**
848
848
  * Converts hash string or Uint8Array to Point.
@@ -870,8 +870,8 @@ function rs(e) {
870
870
  const { x: h, y: d } = this.toAffine();
871
871
  if (!n.isValid(h) || !n.isValid(d))
872
872
  throw new Error("bad point: x or y not FE");
873
- const g = n.sqr(d), E = s(h);
874
- if (!n.eql(g, E))
873
+ const p = n.sqr(d), E = s(h);
874
+ if (!n.eql(p, E))
875
875
  throw new Error("bad point: equation left != right");
876
876
  if (!this.isTorsionFree())
877
877
  throw new Error("bad point: not in prime-order subgroup");
@@ -887,7 +887,7 @@ function rs(e) {
887
887
  */
888
888
  equals(h) {
889
889
  f(h);
890
- const { px: d, py: g, pz: E } = this, { px: S, py: I, pz: B } = h, m = n.eql(n.mul(d, B), n.mul(S, E)), x = n.eql(n.mul(g, B), n.mul(I, E));
890
+ const { px: d, py: p, pz: E } = this, { px: S, py: I, pz: B } = h, m = n.eql(n.mul(d, B), n.mul(S, E)), x = n.eql(n.mul(p, B), n.mul(I, E));
891
891
  return m && x;
892
892
  }
893
893
  /**
@@ -901,9 +901,9 @@ function rs(e) {
901
901
  // https://eprint.iacr.org/2015/1060, algorithm 3
902
902
  // Cost: 8M + 3S + 3*a + 2*b3 + 15add.
903
903
  double() {
904
- const { a: h, b: d } = t, g = n.mul(d, kn), { px: E, py: S, pz: I } = this;
904
+ const { a: h, b: d } = t, p = n.mul(d, kn), { px: E, py: S, pz: I } = this;
905
905
  let B = n.ZERO, m = n.ZERO, x = n.ZERO, K = n.mul(E, E), M = n.mul(S, S), _ = n.mul(I, I), A = n.mul(E, S);
906
- return A = n.add(A, A), x = n.mul(E, I), x = n.add(x, x), B = n.mul(h, x), m = n.mul(g, _), m = n.add(B, m), B = n.sub(M, m), m = n.add(M, m), m = n.mul(B, m), B = n.mul(A, B), x = n.mul(g, x), _ = n.mul(h, _), A = n.sub(K, _), A = n.mul(h, A), A = n.add(A, x), x = n.add(K, K), K = n.add(x, K), K = n.add(K, _), K = n.mul(K, A), m = n.add(m, K), _ = n.mul(S, I), _ = n.add(_, _), K = n.mul(_, A), B = n.sub(B, K), x = n.mul(_, M), x = n.add(x, x), x = n.add(x, x), new u(B, m, x);
906
+ return A = n.add(A, A), x = n.mul(E, I), x = n.add(x, x), B = n.mul(h, x), m = n.mul(p, _), m = n.add(B, m), B = n.sub(M, m), m = n.add(M, m), m = n.mul(B, m), B = n.mul(A, B), x = n.mul(p, x), _ = n.mul(h, _), A = n.sub(K, _), A = n.mul(h, A), A = n.add(A, x), x = n.add(K, K), K = n.add(x, K), K = n.add(K, _), K = n.mul(K, A), m = n.add(m, K), _ = n.mul(S, I), _ = n.add(_, _), K = n.mul(_, A), B = n.sub(B, K), x = n.mul(_, M), x = n.add(x, x), x = n.add(x, x), new u(B, m, x);
907
907
  }
908
908
  // Renes-Costello-Batina exception-free addition formula.
909
909
  // There is 30% faster Jacobian formula, but it is not complete.
@@ -911,13 +911,13 @@ function rs(e) {
911
911
  // Cost: 12M + 0S + 3*a + 3*b3 + 23add.
912
912
  add(h) {
913
913
  f(h);
914
- const { px: d, py: g, pz: E } = this, { px: S, py: I, pz: B } = h;
914
+ const { px: d, py: p, pz: E } = this, { px: S, py: I, pz: B } = h;
915
915
  let m = n.ZERO, x = n.ZERO, K = n.ZERO;
916
916
  const M = t.a, _ = n.mul(t.b, kn);
917
- let A = n.mul(d, S), T = n.mul(g, I), R = n.mul(E, B), H = n.add(d, g), w = n.add(S, I);
918
- H = n.mul(H, w), w = n.add(A, T), H = n.sub(H, w), w = n.add(d, E);
917
+ let A = n.mul(d, S), T = n.mul(p, I), R = n.mul(E, B), H = n.add(d, p), b = n.add(S, I);
918
+ H = n.mul(H, b), b = n.add(A, T), H = n.sub(H, b), b = n.add(d, E);
919
919
  let v = n.add(S, B);
920
- return w = n.mul(w, v), v = n.add(A, R), w = n.sub(w, v), v = n.add(g, E), m = n.add(I, B), v = n.mul(v, m), m = n.add(T, R), v = n.sub(v, m), K = n.mul(M, w), m = n.mul(_, R), K = n.add(m, K), m = n.sub(T, K), K = n.add(T, K), x = n.mul(m, K), T = n.add(A, A), T = n.add(T, A), R = n.mul(M, R), w = n.mul(_, w), T = n.add(T, R), R = n.sub(A, R), R = n.mul(M, R), w = n.add(w, R), A = n.mul(T, w), x = n.add(x, A), A = n.mul(v, w), m = n.mul(H, m), m = n.sub(m, A), A = n.mul(H, T), K = n.mul(v, K), K = n.add(K, A), new u(m, x, K);
920
+ return b = n.mul(b, v), v = n.add(A, R), b = n.sub(b, v), v = n.add(p, E), m = n.add(I, B), v = n.mul(v, m), m = n.add(T, R), v = n.sub(v, m), K = n.mul(M, b), m = n.mul(_, R), K = n.add(m, K), m = n.sub(T, K), K = n.add(T, K), x = n.mul(m, K), T = n.add(A, A), T = n.add(T, A), R = n.mul(M, R), b = n.mul(_, b), T = n.add(T, R), R = n.sub(A, R), R = n.mul(M, R), b = n.add(b, R), A = n.mul(T, b), x = n.add(x, A), A = n.mul(v, b), m = n.mul(H, m), m = n.sub(m, A), A = n.mul(H, T), K = n.mul(v, K), K = n.add(K, A), new u(m, x, K);
921
921
  }
922
922
  subtract(h) {
923
923
  return this.add(h.negate());
@@ -926,9 +926,9 @@ function rs(e) {
926
926
  return this.equals(u.ZERO);
927
927
  }
928
928
  wNAF(h) {
929
- return b.wNAFCached(this, l, h, (d) => {
930
- const g = n.invertBatch(d.map((E) => E.pz));
931
- return d.map((E, S) => E.toAffine(g[S])).map(u.fromAffine);
929
+ return w.wNAFCached(this, l, h, (d) => {
930
+ const p = n.invertBatch(d.map((E) => E.pz));
931
+ return d.map((E, S) => E.toAffine(p[S])).map(u.fromAffine);
932
932
  });
933
933
  }
934
934
  /**
@@ -942,13 +942,13 @@ function rs(e) {
942
942
  return d;
943
943
  if (c(h), h === X)
944
944
  return this;
945
- const { endo: g } = t;
946
- if (!g)
947
- return b.unsafeLadder(this, h);
948
- let { k1neg: E, k1: S, k2neg: I, k2: B } = g.splitScalar(h), m = d, x = d, K = this;
945
+ const { endo: p } = t;
946
+ if (!p)
947
+ return w.unsafeLadder(this, h);
948
+ let { k1neg: E, k1: S, k2neg: I, k2: B } = p.splitScalar(h), m = d, x = d, K = this;
949
949
  for (; S > ae || B > ae; )
950
950
  S & X && (m = m.add(K)), B & X && (x = x.add(K)), K = K.double(), S >>= X, B >>= X;
951
- return E && (m = m.negate()), I && (x = x.negate()), x = new u(n.mul(x.px, g.beta), x.py, x.pz), m.add(x);
951
+ return E && (m = m.negate()), I && (x = x.negate()), x = new u(n.mul(x.px, p.beta), x.py, x.pz), m.add(x);
952
952
  }
953
953
  /**
954
954
  * Constant time multiplication.
@@ -961,17 +961,17 @@ function rs(e) {
961
961
  */
962
962
  multiply(h) {
963
963
  c(h);
964
- let d = h, g, E;
964
+ let d = h, p, E;
965
965
  const { endo: S } = t;
966
966
  if (S) {
967
967
  const { k1neg: I, k1: B, k2neg: m, k2: x } = S.splitScalar(d);
968
968
  let { p: K, f: M } = this.wNAF(B), { p: _, f: A } = this.wNAF(x);
969
- K = b.constTimeNegate(I, K), _ = b.constTimeNegate(m, _), _ = new u(n.mul(_.px, S.beta), _.py, _.pz), g = K.add(_), E = M.add(A);
969
+ K = w.constTimeNegate(I, K), _ = w.constTimeNegate(m, _), _ = new u(n.mul(_.px, S.beta), _.py, _.pz), p = K.add(_), E = M.add(A);
970
970
  } else {
971
971
  const { p: I, f: B } = this.wNAF(d);
972
- g = I, E = B;
972
+ p = I, E = B;
973
973
  }
974
- return u.normalizeZ([g, E])[0];
974
+ return u.normalizeZ([p, E])[0];
975
975
  }
976
976
  /**
977
977
  * Efficiently calculate `aP + bQ`. Unsafe, can expose private key, if used incorrectly.
@@ -979,17 +979,17 @@ function rs(e) {
979
979
  * The trick could be useful if both P and Q are not G (not in our case).
980
980
  * @returns non-zero affine point
981
981
  */
982
- multiplyAndAddUnsafe(h, d, g) {
983
- const E = u.BASE, S = (B, m) => m === ae || m === X || !B.equals(E) ? B.multiplyUnsafe(m) : B.multiply(m), I = S(this, d).add(S(h, g));
982
+ multiplyAndAddUnsafe(h, d, p) {
983
+ const E = u.BASE, S = (B, m) => m === ae || m === X || !B.equals(E) ? B.multiplyUnsafe(m) : B.multiply(m), I = S(this, d).add(S(h, p));
984
984
  return I.is0() ? void 0 : I;
985
985
  }
986
986
  // Converts Projective point to affine (x, y) coordinates.
987
987
  // Can accept precomputed Z^-1 - for example, from invertBatch.
988
988
  // (x, y, z) ∋ (x=x/z, y=y/z)
989
989
  toAffine(h) {
990
- const { px: d, py: g, pz: E } = this, S = this.is0();
990
+ const { px: d, py: p, pz: E } = this, S = this.is0();
991
991
  h == null && (h = S ? n.ONE : n.inv(E));
992
- const I = n.mul(d, h), B = n.mul(g, h), m = n.mul(E, h);
992
+ const I = n.mul(d, h), B = n.mul(p, h), m = n.mul(E, h);
993
993
  if (S)
994
994
  return { x: n.ZERO, y: n.ZERO };
995
995
  if (!n.eql(m, n.ONE))
@@ -1016,7 +1016,7 @@ function rs(e) {
1016
1016
  }
1017
1017
  }
1018
1018
  u.BASE = new u(t.Gx, t.Gy, n.ONE), u.ZERO = new u(n.ZERO, n.ONE, n.ZERO);
1019
- const p = t.nBitLength, b = Qi(u, t.endo ? Math.ceil(p / 2) : p);
1019
+ const g = t.nBitLength, w = Qi(u, t.endo ? Math.ceil(g / 2) : g);
1020
1020
  return {
1021
1021
  CURVE: t,
1022
1022
  ProjectivePoint: u,
@@ -1039,23 +1039,23 @@ function is(e) {
1039
1039
  }
1040
1040
  function ss(e) {
1041
1041
  const t = is(e), { Fp: n, n: r } = t, i = n.BYTES + 1, s = 2 * n.BYTES + 1;
1042
- function o(w) {
1043
- return ae < w && w < n.ORDER;
1042
+ function o(b) {
1043
+ return ae < b && b < n.ORDER;
1044
1044
  }
1045
- function c(w) {
1046
- return W(w, r);
1045
+ function c(b) {
1046
+ return W(b, r);
1047
1047
  }
1048
- function a(w) {
1049
- return Tt(w, r);
1048
+ function a(b) {
1049
+ return Tt(b, r);
1050
1050
  }
1051
- const { ProjectivePoint: l, normPrivateKeyToScalar: f, weierstrassEquation: u, isWithinCurveOrder: p } = rs({
1051
+ const { ProjectivePoint: l, normPrivateKeyToScalar: f, weierstrassEquation: u, isWithinCurveOrder: g } = rs({
1052
1052
  ...t,
1053
- toBytes(w, v, N) {
1053
+ toBytes(b, v, N) {
1054
1054
  const k = v.toAffine(), C = n.toBytes(k.x), U = _e;
1055
1055
  return N ? U(Uint8Array.from([v.hasEvenY() ? 2 : 3]), C) : U(Uint8Array.from([4]), C, n.toBytes(k.y));
1056
1056
  },
1057
- fromBytes(w) {
1058
- const v = w.length, N = w[0], k = w.subarray(1);
1057
+ fromBytes(b) {
1058
+ const v = b.length, N = b[0], k = b.subarray(1);
1059
1059
  if (v === i && (N === 2 || N === 3)) {
1060
1060
  const C = F(k);
1061
1061
  if (!o(C))
@@ -1070,38 +1070,38 @@ function ss(e) {
1070
1070
  } else
1071
1071
  throw new Error(`Point of length ${v} was invalid. Expected ${i} compressed bytes or ${s} uncompressed bytes`);
1072
1072
  }
1073
- }), b = (w) => De(Ne(w, t.nByteLength));
1074
- function y(w) {
1073
+ }), w = (b) => De(Ne(b, t.nByteLength));
1074
+ function y(b) {
1075
1075
  const v = r >> X;
1076
- return w > v;
1076
+ return b > v;
1077
1077
  }
1078
- function h(w) {
1079
- return y(w) ? c(-w) : w;
1078
+ function h(b) {
1079
+ return y(b) ? c(-b) : b;
1080
1080
  }
1081
- const d = (w, v, N) => F(w.slice(v, N));
1082
- class g {
1081
+ const d = (b, v, N) => F(b.slice(v, N));
1082
+ class p {
1083
1083
  constructor(v, N, k) {
1084
1084
  this.r = v, this.s = N, this.recovery = k, this.assertValidity();
1085
1085
  }
1086
1086
  // pair (bytes of r, bytes of s)
1087
1087
  static fromCompact(v) {
1088
1088
  const N = t.nByteLength;
1089
- return v = Z("compactSignature", v, N * 2), new g(d(v, 0, N), d(v, N, 2 * N));
1089
+ return v = Z("compactSignature", v, N * 2), new p(d(v, 0, N), d(v, N, 2 * N));
1090
1090
  }
1091
1091
  // DER encoded ECDSA signature
1092
1092
  // https://bitcoin.stackexchange.com/questions/57644/what-are-the-parts-of-a-bitcoin-transaction-input-script
1093
1093
  static fromDER(v) {
1094
1094
  const { r: N, s: k } = Be.toSig(Z("DER", v));
1095
- return new g(N, k);
1095
+ return new p(N, k);
1096
1096
  }
1097
1097
  assertValidity() {
1098
- if (!p(this.r))
1098
+ if (!g(this.r))
1099
1099
  throw new Error("r must be 0 < r < CURVE.n");
1100
- if (!p(this.s))
1100
+ if (!g(this.s))
1101
1101
  throw new Error("s must be 0 < s < CURVE.n");
1102
1102
  }
1103
1103
  addRecoveryBit(v) {
1104
- return new g(this.r, this.s, v);
1104
+ return new p(this.r, this.s, v);
1105
1105
  }
1106
1106
  recoverPublicKey(v) {
1107
1107
  const { r: N, s: k, recovery: C } = this, U = x(Z("msgHash", v));
@@ -1110,7 +1110,7 @@ function ss(e) {
1110
1110
  const O = C === 2 || C === 3 ? N + t.n : N;
1111
1111
  if (O >= n.ORDER)
1112
1112
  throw new Error("recovery id 2 or 3 invalid");
1113
- const $ = C & 1 ? "03" : "02", ee = l.fromHex($ + b(O)), ge = a(O), Ue = c(-U * ge), We = c(k * ge), we = l.BASE.multiplyAndAddUnsafe(ee, Ue, We);
1113
+ const $ = C & 1 ? "03" : "02", ee = l.fromHex($ + w(O)), ge = a(O), Ue = c(-U * ge), We = c(k * ge), we = l.BASE.multiplyAndAddUnsafe(ee, Ue, We);
1114
1114
  if (!we)
1115
1115
  throw new Error("point at infinify");
1116
1116
  return we.assertValidity(), we;
@@ -1120,7 +1120,7 @@ function ss(e) {
1120
1120
  return y(this.s);
1121
1121
  }
1122
1122
  normalizeS() {
1123
- return this.hasHighS() ? new g(this.r, c(-this.s), this.recovery) : this;
1123
+ return this.hasHighS() ? new p(this.r, c(-this.s), this.recovery) : this;
1124
1124
  }
1125
1125
  // DER-encoded
1126
1126
  toDERRawBytes() {
@@ -1134,13 +1134,13 @@ function ss(e) {
1134
1134
  return je(this.toCompactHex());
1135
1135
  }
1136
1136
  toCompactHex() {
1137
- return b(this.r) + b(this.s);
1137
+ return w(this.r) + w(this.s);
1138
1138
  }
1139
1139
  }
1140
1140
  const E = {
1141
- isValidPrivateKey(w) {
1141
+ isValidPrivateKey(b) {
1142
1142
  try {
1143
- return f(w), !0;
1143
+ return f(b), !0;
1144
1144
  } catch {
1145
1145
  return !1;
1146
1146
  }
@@ -1151,8 +1151,8 @@ function ss(e) {
1151
1151
  * (groupLen + ceil(groupLen / 2)) with modulo bias being negligible.
1152
1152
  */
1153
1153
  randomPrivateKey: () => {
1154
- const w = Qn(t.n);
1155
- return Yi(t.randomBytes(w), t.n);
1154
+ const b = Qn(t.n);
1155
+ return Yi(t.randomBytes(b), t.n);
1156
1156
  },
1157
1157
  /**
1158
1158
  * Creates precompute table for an arbitrary EC point. Makes point "cached".
@@ -1162,44 +1162,44 @@ function ss(e) {
1162
1162
  * const fast = utils.precompute(8, ProjectivePoint.fromHex(someonesPubKey));
1163
1163
  * fast.multiply(privKey); // much faster ECDH now
1164
1164
  */
1165
- precompute(w = 8, v = l.BASE) {
1166
- return v._setWindowSize(w), v.multiply(BigInt(3)), v;
1165
+ precompute(b = 8, v = l.BASE) {
1166
+ return v._setWindowSize(b), v.multiply(BigInt(3)), v;
1167
1167
  }
1168
1168
  };
1169
- function S(w, v = !0) {
1170
- return l.fromPrivateKey(w).toRawBytes(v);
1169
+ function S(b, v = !0) {
1170
+ return l.fromPrivateKey(b).toRawBytes(v);
1171
1171
  }
1172
- function I(w) {
1173
- const v = w instanceof Uint8Array, N = typeof w == "string", k = (v || N) && w.length;
1174
- return v ? k === i || k === s : N ? k === 2 * i || k === 2 * s : w instanceof l;
1172
+ function I(b) {
1173
+ const v = b instanceof Uint8Array, N = typeof b == "string", k = (v || N) && b.length;
1174
+ return v ? k === i || k === s : N ? k === 2 * i || k === 2 * s : b instanceof l;
1175
1175
  }
1176
- function B(w, v, N = !0) {
1177
- if (I(w))
1176
+ function B(b, v, N = !0) {
1177
+ if (I(b))
1178
1178
  throw new Error("first arg must be private key");
1179
1179
  if (!I(v))
1180
1180
  throw new Error("second arg must be public key");
1181
- return l.fromHex(v).multiply(f(w)).toRawBytes(N);
1181
+ return l.fromHex(v).multiply(f(b)).toRawBytes(N);
1182
1182
  }
1183
- const m = t.bits2int || function(w) {
1184
- const v = F(w), N = w.length * 8 - t.nBitLength;
1183
+ const m = t.bits2int || function(b) {
1184
+ const v = F(b), N = b.length * 8 - t.nBitLength;
1185
1185
  return N > 0 ? v >> BigInt(N) : v;
1186
- }, x = t.bits2int_modN || function(w) {
1187
- return c(m(w));
1186
+ }, x = t.bits2int_modN || function(b) {
1187
+ return c(m(b));
1188
1188
  }, K = Jt(t.nBitLength);
1189
- function M(w) {
1190
- if (typeof w != "bigint")
1189
+ function M(b) {
1190
+ if (typeof b != "bigint")
1191
1191
  throw new Error("bigint expected");
1192
- if (!(ae <= w && w < K))
1192
+ if (!(ae <= b && b < K))
1193
1193
  throw new Error(`bigint expected < 2^${t.nBitLength}`);
1194
- return Ne(w, t.nByteLength);
1194
+ return Ne(b, t.nByteLength);
1195
1195
  }
1196
- function _(w, v, N = A) {
1196
+ function _(b, v, N = A) {
1197
1197
  if (["recovered", "canonical"].some((Ae) => Ae in N))
1198
1198
  throw new Error("sign() legacy options not supported");
1199
1199
  const { hash: k, randomBytes: C } = t;
1200
1200
  let { lowS: U, prehash: O, extraEntropy: $ } = N;
1201
- U == null && (U = !0), w = Z("msgHash", w), O && (w = Z("prehashed msgHash", k(w)));
1202
- const ee = x(w), ge = f(v), Ue = [M(ge), M(ee)];
1201
+ U == null && (U = !0), b = Z("msgHash", b), O && (b = Z("prehashed msgHash", k(b)));
1202
+ const ee = x(b), ge = f(v), Ue = [M(ge), M(ee)];
1203
1203
  if ($ != null) {
1204
1204
  const Ae = $ === !0 ? C(n.BYTES) : $;
1205
1205
  Ue.push(Z("extraEntropy", Ae));
@@ -1207,7 +1207,7 @@ function ss(e) {
1207
1207
  const We = _e(...Ue), we = ee;
1208
1208
  function Et(Ae) {
1209
1209
  const Le = m(Ae);
1210
- if (!p(Le))
1210
+ if (!g(Le))
1211
1211
  return;
1212
1212
  const xn = a(Le), $e = l.BASE.multiply(Le).toAffine(), te = c($e.x);
1213
1213
  if (te === ae)
@@ -1216,19 +1216,19 @@ function ss(e) {
1216
1216
  if (Te === ae)
1217
1217
  return;
1218
1218
  let Kn = ($e.x === te ? 0 : 2) | Number($e.y & X), Nn = Te;
1219
- return U && y(Te) && (Nn = h(Te), Kn ^= 1), new g(te, Nn, Kn);
1219
+ return U && y(Te) && (Nn = h(Te), Kn ^= 1), new p(te, Nn, Kn);
1220
1220
  }
1221
1221
  return { seed: We, k2sig: Et };
1222
1222
  }
1223
1223
  const A = { lowS: t.lowS, prehash: !1 }, T = { lowS: t.lowS, prehash: !1 };
1224
- function R(w, v, N = A) {
1225
- const { seed: k, k2sig: C } = _(w, v, N), U = t;
1224
+ function R(b, v, N = A) {
1225
+ const { seed: k, k2sig: C } = _(b, v, N), U = t;
1226
1226
  return Jn(U.hash.outputLen, U.nByteLength, U.hmac)(k, C);
1227
1227
  }
1228
1228
  l.BASE._setWindowSize(8);
1229
- function H(w, v, N, k = T) {
1229
+ function H(b, v, N, k = T) {
1230
1230
  var $e;
1231
- const C = w;
1231
+ const C = b;
1232
1232
  if (v = Z("msgHash", v), N = Z("publicKey", N), "strict" in k)
1233
1233
  throw new Error("options.strict was renamed to lowS");
1234
1234
  const { lowS: U, prehash: O } = k;
@@ -1236,15 +1236,15 @@ function ss(e) {
1236
1236
  try {
1237
1237
  if (typeof C == "string" || C instanceof Uint8Array)
1238
1238
  try {
1239
- $ = g.fromDER(C);
1239
+ $ = p.fromDER(C);
1240
1240
  } catch (te) {
1241
1241
  if (!(te instanceof Be.Err))
1242
1242
  throw te;
1243
- $ = g.fromCompact(C);
1243
+ $ = p.fromCompact(C);
1244
1244
  }
1245
1245
  else if (typeof C == "object" && typeof C.r == "bigint" && typeof C.s == "bigint") {
1246
1246
  const { r: te, s: Te } = C;
1247
- $ = new g(te, Te);
1247
+ $ = new p(te, Te);
1248
1248
  } else
1249
1249
  throw new Error("PARSE");
1250
1250
  ee = l.fromHex(N);
@@ -1266,7 +1266,7 @@ function ss(e) {
1266
1266
  sign: R,
1267
1267
  verify: H,
1268
1268
  ProjectivePoint: l,
1269
- Signature: g,
1269
+ Signature: p,
1270
1270
  utils: E
1271
1271
  };
1272
1272
  }
@@ -1322,7 +1322,7 @@ function as(e, t) {
1322
1322
  /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
1323
1323
  const ct = BigInt("0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"), tt = BigInt("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"), rr = BigInt(1), nt = BigInt(2), _n = (e, t) => (e + t / nt) / t;
1324
1324
  function ir(e) {
1325
- const t = ct, n = BigInt(3), r = BigInt(6), i = BigInt(11), s = BigInt(22), o = BigInt(23), c = BigInt(44), a = BigInt(88), l = e * e * e % t, f = l * l * e % t, u = Y(f, n, t) * f % t, p = Y(u, n, t) * f % t, b = Y(p, nt, t) * l % t, y = Y(b, i, t) * b % t, h = Y(y, s, t) * y % t, d = Y(h, c, t) * h % t, g = Y(d, a, t) * d % t, E = Y(g, c, t) * h % t, S = Y(E, n, t) * f % t, I = Y(S, o, t) * y % t, B = Y(I, r, t) * l % t, m = Y(B, nt, t);
1325
+ const t = ct, n = BigInt(3), r = BigInt(6), i = BigInt(11), s = BigInt(22), o = BigInt(23), c = BigInt(44), a = BigInt(88), l = e * e * e % t, f = l * l * e % t, u = Y(f, n, t) * f % t, g = Y(u, n, t) * f % t, w = Y(g, nt, t) * l % t, y = Y(w, i, t) * w % t, h = Y(y, s, t) * y % t, d = Y(h, c, t) * h % t, p = Y(d, a, t) * d % t, E = Y(p, c, t) * h % t, S = Y(E, n, t) * f % t, I = Y(S, o, t) * y % t, B = Y(I, r, t) * l % t, m = Y(B, nt, t);
1326
1326
  if (!Rt.eql(Rt.sqr(m), e))
1327
1327
  throw new Error("Cannot find square root");
1328
1328
  return m;
@@ -1348,10 +1348,10 @@ const Rt = Ji(ct, void 0, void 0, { sqrt: ir }), Ie = as({
1348
1348
  splitScalar: (e) => {
1349
1349
  const t = tt, n = BigInt("0x3086d221a7d46bcde86c90e49284eb15"), r = -rr * BigInt("0xe4437ed6010e88286f547fa90abfe4c3"), i = BigInt("0x114ca50f7a8e2f3f657c1108d9d44cfd8"), s = n, o = BigInt("0x100000000000000000000000000000000"), c = _n(s * e, t), a = _n(-r * e, t);
1350
1350
  let l = W(e - c * n - a * i, t), f = W(-c * r - a * s, t);
1351
- const u = l > o, p = f > o;
1352
- if (u && (l = t - l), p && (f = t - f), l > o || f > o)
1351
+ const u = l > o, g = f > o;
1352
+ if (u && (l = t - l), g && (f = t - f), l > o || f > o)
1353
1353
  throw new Error("splitScalar: Endomorphism failed, k=" + e);
1354
- return { k1neg: u, k1: l, k2neg: p, k2: f };
1354
+ return { k1neg: u, k1: l, k2neg: g, k2: f };
1355
1355
  }
1356
1356
  }
1357
1357
  }, Lt), ut = BigInt(0), sr = (e) => typeof e == "bigint" && ut < e && e < ct, cs = (e) => typeof e == "bigint" && ut < e && e < tt, In = {};
@@ -1387,10 +1387,10 @@ function fs(e, t, n = Zn(32)) {
1387
1387
  const r = Z("message", e), { bytes: i, scalar: s } = Pt(t), o = Z("auxRand", n, 32), c = Ot(s ^ F(rt("BIP0340/aux", o))), a = rt("BIP0340/nonce", c, i, r), l = Fe(F(a));
1388
1388
  if (l === ut)
1389
1389
  throw new Error("sign failed: k is zero");
1390
- const { bytes: f, scalar: u } = Pt(l), p = ar(f, i, r), b = new Uint8Array(64);
1391
- if (b.set(f, 0), b.set(Ot(Fe(u + p * s)), 32), !cr(b, r, i))
1390
+ const { bytes: f, scalar: u } = Pt(l), g = ar(f, i, r), w = new Uint8Array(64);
1391
+ if (w.set(f, 0), w.set(Ot(Fe(u + g * s)), 32), !cr(w, r, i))
1392
1392
  throw new Error("sign: Invalid signature produced");
1393
- return b;
1393
+ return w;
1394
1394
  }
1395
1395
  function cr(e, t, n) {
1396
1396
  const r = Z("signature", e, 64), i = Z("message", t), s = Z("publicKey", n, 32);
@@ -1669,13 +1669,13 @@ class dr extends ms {
1669
1669
  for (let u = 0; u < 16; u++, n += 4)
1670
1670
  Ee[u] = t.getUint32(n, !1);
1671
1671
  for (let u = 16; u < 64; u++) {
1672
- const p = Ee[u - 15], b = Ee[u - 2], y = ie(p, 7) ^ ie(p, 18) ^ p >>> 3, h = ie(b, 17) ^ ie(b, 19) ^ b >>> 10;
1672
+ const g = Ee[u - 15], w = Ee[u - 2], y = ie(g, 7) ^ ie(g, 18) ^ g >>> 3, h = ie(w, 17) ^ ie(w, 19) ^ w >>> 10;
1673
1673
  Ee[u] = h + Ee[u - 7] + y + Ee[u - 16] | 0;
1674
1674
  }
1675
1675
  let { A: r, B: i, C: s, D: o, E: c, F: a, G: l, H: f } = this;
1676
1676
  for (let u = 0; u < 64; u++) {
1677
- const p = ie(c, 6) ^ ie(c, 11) ^ ie(c, 25), b = f + p + Es(c, a, l) + Ks[u] + Ee[u] | 0, h = (ie(r, 2) ^ ie(r, 13) ^ ie(r, 22)) + xs(r, i, s) | 0;
1678
- f = l, l = a, a = c, c = o + b | 0, o = s, s = i, i = r, r = b + h | 0;
1677
+ const g = ie(c, 6) ^ ie(c, 11) ^ ie(c, 25), w = f + g + Es(c, a, l) + Ks[u] + Ee[u] | 0, h = (ie(r, 2) ^ ie(r, 13) ^ ie(r, 22)) + xs(r, i, s) | 0;
1678
+ f = l, l = a, a = c, c = o + w | 0, o = s, s = i, i = r, r = w + h | 0;
1679
1679
  }
1680
1680
  r = r + this.A | 0, i = i + this.B | 0, s = s + this.C | 0, o = o + this.D | 0, c = c + this.E | 0, a = a + this.F | 0, l = l + this.G | 0, f = f + this.H | 0, this.set(r, i, s, o, c, a, l, f);
1681
1681
  }
@@ -1937,14 +1937,14 @@ function Rn(e, t, n = 1) {
1937
1937
  }
1938
1938
  function gr(e) {
1939
1939
  const t = e === "bech32" ? 1 : 734539939, n = Se(5), r = n.decode, i = n.encode, s = Ln(r);
1940
- function o(f, u, p = 90) {
1940
+ function o(f, u, g = 90) {
1941
1941
  if (typeof f != "string")
1942
1942
  throw new Error(`bech32.encode prefix should be string, not ${typeof f}`);
1943
1943
  if (!Array.isArray(u) || u.length && typeof u[0] != "number")
1944
1944
  throw new Error(`bech32.encode words should be array of numbers, not ${typeof u}`);
1945
- const b = f.length + 7 + u.length;
1946
- if (p !== !1 && b > p)
1947
- throw new TypeError(`Length ${b} exceeds limit ${p}`);
1945
+ const w = f.length + 7 + u.length;
1946
+ if (g !== !1 && w > g)
1947
+ throw new TypeError(`Length ${w} exceeds limit ${g}`);
1948
1948
  return f = f.toLowerCase(), `${f}1${Dt.encode(u)}${Rn(f, u, t)}`;
1949
1949
  }
1950
1950
  function c(f, u = 90) {
@@ -1952,25 +1952,25 @@ function gr(e) {
1952
1952
  throw new Error(`bech32.decode input should be string, not ${typeof f}`);
1953
1953
  if (f.length < 8 || u !== !1 && f.length > u)
1954
1954
  throw new TypeError(`Wrong string length: ${f.length} (${f}). Expected (8..${u})`);
1955
- const p = f.toLowerCase();
1956
- if (f !== p && f !== f.toUpperCase())
1955
+ const g = f.toLowerCase();
1956
+ if (f !== g && f !== f.toUpperCase())
1957
1957
  throw new Error("String must be lowercase or uppercase");
1958
- f = p;
1959
- const b = f.lastIndexOf("1");
1960
- if (b === 0 || b === -1)
1958
+ f = g;
1959
+ const w = f.lastIndexOf("1");
1960
+ if (w === 0 || w === -1)
1961
1961
  throw new Error('Letter "1" must be present between prefix and data only');
1962
- const y = f.slice(0, b), h = f.slice(b + 1);
1962
+ const y = f.slice(0, w), h = f.slice(w + 1);
1963
1963
  if (h.length < 6)
1964
1964
  throw new Error("Data must be at least 6 characters long");
1965
- const d = Dt.decode(h).slice(0, -6), g = Rn(y, d, t);
1966
- if (!h.endsWith(g))
1967
- throw new Error(`Invalid checksum in ${f}: expected "${g}"`);
1965
+ const d = Dt.decode(h).slice(0, -6), p = Rn(y, d, t);
1966
+ if (!h.endsWith(p))
1967
+ throw new Error(`Invalid checksum in ${f}: expected "${p}"`);
1968
1968
  return { prefix: y, words: d };
1969
1969
  }
1970
1970
  const a = Ln(c);
1971
1971
  function l(f) {
1972
- const { prefix: u, words: p } = c(f, !1);
1973
- return { prefix: u, words: p, bytes: r(p) };
1972
+ const { prefix: u, words: g } = c(f, !1);
1973
+ return { prefix: u, words: g, bytes: r(g) };
1974
1974
  }
1975
1975
  return { encode: o, decode: c, decodeToBytes: l, decodeUnsafe: a, fromWords: r, fromWordsUnsafe: s, toWords: i };
1976
1976
  }
@@ -2104,11 +2104,11 @@ function Pn(e, t, n, r, i) {
2104
2104
  t ^= e[a++], n ^= e[a++], r ^= e[a++], i ^= e[a++];
2105
2105
  const l = e.length / 4 - 2;
2106
2106
  for (let y = 0; y < l; y++) {
2107
- const h = e[a++] ^ xe(o, c, t, n, r, i), d = e[a++] ^ xe(o, c, n, r, i, t), g = e[a++] ^ xe(o, c, r, i, t, n), E = e[a++] ^ xe(o, c, i, t, n, r);
2108
- t = h, n = d, r = g, i = E;
2107
+ const h = e[a++] ^ xe(o, c, t, n, r, i), d = e[a++] ^ xe(o, c, n, r, i, t), p = e[a++] ^ xe(o, c, r, i, t, n), E = e[a++] ^ xe(o, c, i, t, n, r);
2108
+ t = h, n = d, r = p, i = E;
2109
2109
  }
2110
- const f = e[a++] ^ oe(s, t, n, r, i), u = e[a++] ^ oe(s, n, r, i, t), p = e[a++] ^ oe(s, r, i, t, n), b = e[a++] ^ oe(s, i, t, n, r);
2111
- return { s0: f, s1: u, s2: p, s3: b };
2110
+ const f = e[a++] ^ oe(s, t, n, r, i), u = e[a++] ^ oe(s, n, r, i, t), g = e[a++] ^ oe(s, r, i, t, n), w = e[a++] ^ oe(s, i, t, n, r);
2111
+ return { s0: f, s1: u, s2: g, s3: w };
2112
2112
  }
2113
2113
  function js(e, t, n, r, i) {
2114
2114
  const { sbox2: s, T01: o, T23: c } = br;
@@ -2116,11 +2116,11 @@ function js(e, t, n, r, i) {
2116
2116
  t ^= e[a++], n ^= e[a++], r ^= e[a++], i ^= e[a++];
2117
2117
  const l = e.length / 4 - 2;
2118
2118
  for (let y = 0; y < l; y++) {
2119
- const h = e[a++] ^ xe(o, c, t, i, r, n), d = e[a++] ^ xe(o, c, n, t, i, r), g = e[a++] ^ xe(o, c, r, n, t, i), E = e[a++] ^ xe(o, c, i, r, n, t);
2120
- t = h, n = d, r = g, i = E;
2119
+ const h = e[a++] ^ xe(o, c, t, i, r, n), d = e[a++] ^ xe(o, c, n, t, i, r), p = e[a++] ^ xe(o, c, r, n, t, i), E = e[a++] ^ xe(o, c, i, r, n, t);
2120
+ t = h, n = d, r = p, i = E;
2121
2121
  }
2122
- const f = e[a++] ^ oe(s, t, i, r, n), u = e[a++] ^ oe(s, n, t, i, r), p = e[a++] ^ oe(s, r, n, t, i), b = e[a++] ^ oe(s, i, r, n, t);
2123
- return { s0: f, s1: u, s2: p, s3: b };
2122
+ const f = e[a++] ^ oe(s, t, i, r, n), u = e[a++] ^ oe(s, n, t, i, r), g = e[a++] ^ oe(s, r, n, t, i), w = e[a++] ^ oe(s, i, r, n, t);
2123
+ return { s0: f, s1: u, s2: g, s3: w };
2124
2124
  }
2125
2125
  function mr(e, t) {
2126
2126
  if (!t)
@@ -2175,24 +2175,24 @@ const Er = /* @__PURE__ */ Os({ blockSize: 16, nonceLength: 16 }, function(t, n,
2175
2175
  return {
2176
2176
  encrypt: (s, o) => {
2177
2177
  const c = vr(t), { b: a, o: l, out: f } = Vs(s, i, o), u = G(n);
2178
- let p = u[0], b = u[1], y = u[2], h = u[3], d = 0;
2178
+ let g = u[0], w = u[1], y = u[2], h = u[3], d = 0;
2179
2179
  for (; d + 4 <= a.length; )
2180
- p ^= a[d + 0], b ^= a[d + 1], y ^= a[d + 2], h ^= a[d + 3], { s0: p, s1: b, s2: y, s3: h } = Pn(c, p, b, y, h), l[d++] = p, l[d++] = b, l[d++] = y, l[d++] = h;
2180
+ g ^= a[d + 0], w ^= a[d + 1], y ^= a[d + 2], h ^= a[d + 3], { s0: g, s1: w, s2: y, s3: h } = Pn(c, g, w, y, h), l[d++] = g, l[d++] = w, l[d++] = y, l[d++] = h;
2181
2181
  if (i) {
2182
- const g = Zs(s.subarray(d * 4));
2183
- p ^= g[0], b ^= g[1], y ^= g[2], h ^= g[3], { s0: p, s1: b, s2: y, s3: h } = Pn(c, p, b, y, h), l[d++] = p, l[d++] = b, l[d++] = y, l[d++] = h;
2182
+ const p = Zs(s.subarray(d * 4));
2183
+ g ^= p[0], w ^= p[1], y ^= p[2], h ^= p[3], { s0: g, s1: w, s2: y, s3: h } = Pn(c, g, w, y, h), l[d++] = g, l[d++] = w, l[d++] = y, l[d++] = h;
2184
2184
  }
2185
2185
  return c.fill(0), f;
2186
2186
  },
2187
2187
  decrypt: (s, o) => {
2188
2188
  zs(s);
2189
2189
  const c = Ds(t), a = G(n), l = mr(s.length, o), f = G(s), u = G(l);
2190
- let p = a[0], b = a[1], y = a[2], h = a[3];
2190
+ let g = a[0], w = a[1], y = a[2], h = a[3];
2191
2191
  for (let d = 0; d + 4 <= f.length; ) {
2192
- const g = p, E = b, S = y, I = h;
2193
- p = f[d + 0], b = f[d + 1], y = f[d + 2], h = f[d + 3];
2194
- const { s0: B, s1: m, s2: x, s3: K } = js(c, p, b, y, h);
2195
- u[d++] = B ^ g, u[d++] = m ^ E, u[d++] = x ^ S, u[d++] = K ^ I;
2192
+ const p = g, E = w, S = y, I = h;
2193
+ g = f[d + 0], w = f[d + 1], y = f[d + 2], h = f[d + 3];
2194
+ const { s0: B, s1: m, s2: x, s3: K } = js(c, g, w, y, h);
2195
+ u[d++] = B ^ p, u[d++] = m ^ E, u[d++] = x ^ S, u[d++] = K ^ I;
2196
2196
  }
2197
2197
  return c.fill(0), Ws(l, i);
2198
2198
  }
@@ -2207,7 +2207,7 @@ function zt(e) {
2207
2207
  }
2208
2208
  const Xe = 64, Ys = 16, Nr = 2 ** 32 - 1, Mn = new Uint32Array();
2209
2209
  function Xs(e, t, n, r, i, s, o, c) {
2210
- const a = i.length, l = new Uint8Array(Xe), f = G(l), u = zt(i) && zt(s), p = u ? G(i) : Mn, b = u ? G(s) : Mn;
2210
+ const a = i.length, l = new Uint8Array(Xe), f = G(l), u = zt(i) && zt(s), g = u ? G(i) : Mn, w = u ? G(s) : Mn;
2211
2211
  for (let y = 0; y < a; o++) {
2212
2212
  if (e(t, n, r, f, o, c), o >= Nr)
2213
2213
  throw new Error("arx: counter overflow");
@@ -2216,13 +2216,13 @@ function Xs(e, t, n, r, i, s, o, c) {
2216
2216
  const d = y / 4;
2217
2217
  if (y % 4 !== 0)
2218
2218
  throw new Error("arx: invalid block position");
2219
- for (let g = 0, E; g < Ys; g++)
2220
- E = d + g, b[E] = p[E] ^ f[g];
2219
+ for (let p = 0, E; p < Ys; p++)
2220
+ E = d + p, w[E] = g[E] ^ f[p];
2221
2221
  y += Xe;
2222
2222
  continue;
2223
2223
  }
2224
- for (let d = 0, g; d < h; d++)
2225
- g = y + d, s[g] = i[g] ^ l[d];
2224
+ for (let d = 0, p; d < h; d++)
2225
+ p = y + d, s[p] = i[p] ^ l[d];
2226
2226
  y += h;
2227
2227
  }
2228
2228
  }
@@ -2232,45 +2232,45 @@ function Qs(e, t) {
2232
2232
  throw new Error("core must be a function");
2233
2233
  return kt(i), kt(o), On(s), On(n), (c, a, l, f, u = 0) => {
2234
2234
  ce(c), ce(a), ce(l);
2235
- const p = l.length;
2236
- if (f || (f = new Uint8Array(p)), ce(f), kt(u), u < 0 || u >= Nr)
2235
+ const g = l.length;
2236
+ if (f || (f = new Uint8Array(g)), ce(f), kt(u), u < 0 || u >= Nr)
2237
2237
  throw new Error("arx: counter overflow");
2238
- if (f.length < p)
2239
- throw new Error(`arx: output (${f.length}) is shorter than data (${p})`);
2240
- const b = [];
2238
+ if (f.length < g)
2239
+ throw new Error(`arx: output (${f.length}) is shorter than data (${g})`);
2240
+ const w = [];
2241
2241
  let y = c.length, h, d;
2242
2242
  if (y === 32)
2243
- h = c.slice(), b.push(h), d = Kr;
2243
+ h = c.slice(), w.push(h), d = Kr;
2244
2244
  else if (y === 16 && n)
2245
- h = new Uint8Array(32), h.set(c), h.set(c, 16), d = Js, b.push(h);
2245
+ h = new Uint8Array(32), h.set(c), h.set(c, 16), d = Js, w.push(h);
2246
2246
  else
2247
2247
  throw new Error(`arx: invalid 32-byte key, got length=${y}`);
2248
- zt(a) || (a = a.slice(), b.push(a));
2249
- const g = G(h);
2248
+ zt(a) || (a = a.slice(), w.push(a));
2249
+ const p = G(h);
2250
2250
  if (r) {
2251
2251
  if (a.length !== 24)
2252
2252
  throw new Error("arx: extended nonce must be 24 bytes");
2253
- r(d, g, G(a.subarray(0, 16)), g), a = a.subarray(16);
2253
+ r(d, p, G(a.subarray(0, 16)), p), a = a.subarray(16);
2254
2254
  }
2255
2255
  const E = 16 - i;
2256
2256
  if (E !== a.length)
2257
2257
  throw new Error(`arx: nonce must be ${E} or 16 bytes`);
2258
2258
  if (E !== 12) {
2259
2259
  const I = new Uint8Array(12);
2260
- I.set(a, s ? 0 : 12 - a.length), a = I, b.push(a);
2260
+ I.set(a, s ? 0 : 12 - a.length), a = I, w.push(a);
2261
2261
  }
2262
2262
  const S = G(a);
2263
- for (Xs(e, d, g, S, l, f, u, o); b.length > 0; )
2264
- b.pop().fill(0);
2263
+ for (Xs(e, d, p, S, l, f, u, o); w.length > 0; )
2264
+ w.pop().fill(0);
2265
2265
  return f;
2266
2266
  };
2267
2267
  }
2268
2268
  function eo(e, t, n, r, i, s = 20) {
2269
- let o = e[0], c = e[1], a = e[2], l = e[3], f = t[0], u = t[1], p = t[2], b = t[3], y = t[4], h = t[5], d = t[6], g = t[7], E = i, S = n[0], I = n[1], B = n[2], m = o, x = c, K = a, M = l, _ = f, A = u, T = p, R = b, H = y, w = h, v = d, N = g, k = E, C = S, U = I, O = B;
2269
+ let o = e[0], c = e[1], a = e[2], l = e[3], f = t[0], u = t[1], g = t[2], w = t[3], y = t[4], h = t[5], d = t[6], p = t[7], E = i, S = n[0], I = n[1], B = n[2], m = o, x = c, K = a, M = l, _ = f, A = u, T = g, R = w, H = y, b = h, v = d, N = p, k = E, C = S, U = I, O = B;
2270
2270
  for (let ee = 0; ee < s; ee += 2)
2271
- m = m + _ | 0, k = L(k ^ m, 16), H = H + k | 0, _ = L(_ ^ H, 12), m = m + _ | 0, k = L(k ^ m, 8), H = H + k | 0, _ = L(_ ^ H, 7), x = x + A | 0, C = L(C ^ x, 16), w = w + C | 0, A = L(A ^ w, 12), x = x + A | 0, C = L(C ^ x, 8), w = w + C | 0, A = L(A ^ w, 7), K = K + T | 0, U = L(U ^ K, 16), v = v + U | 0, T = L(T ^ v, 12), K = K + T | 0, U = L(U ^ K, 8), v = v + U | 0, T = L(T ^ v, 7), M = M + R | 0, O = L(O ^ M, 16), N = N + O | 0, R = L(R ^ N, 12), M = M + R | 0, O = L(O ^ M, 8), N = N + O | 0, R = L(R ^ N, 7), m = m + A | 0, O = L(O ^ m, 16), v = v + O | 0, A = L(A ^ v, 12), m = m + A | 0, O = L(O ^ m, 8), v = v + O | 0, A = L(A ^ v, 7), x = x + T | 0, k = L(k ^ x, 16), N = N + k | 0, T = L(T ^ N, 12), x = x + T | 0, k = L(k ^ x, 8), N = N + k | 0, T = L(T ^ N, 7), K = K + R | 0, C = L(C ^ K, 16), H = H + C | 0, R = L(R ^ H, 12), K = K + R | 0, C = L(C ^ K, 8), H = H + C | 0, R = L(R ^ H, 7), M = M + _ | 0, U = L(U ^ M, 16), w = w + U | 0, _ = L(_ ^ w, 12), M = M + _ | 0, U = L(U ^ M, 8), w = w + U | 0, _ = L(_ ^ w, 7);
2271
+ m = m + _ | 0, k = L(k ^ m, 16), H = H + k | 0, _ = L(_ ^ H, 12), m = m + _ | 0, k = L(k ^ m, 8), H = H + k | 0, _ = L(_ ^ H, 7), x = x + A | 0, C = L(C ^ x, 16), b = b + C | 0, A = L(A ^ b, 12), x = x + A | 0, C = L(C ^ x, 8), b = b + C | 0, A = L(A ^ b, 7), K = K + T | 0, U = L(U ^ K, 16), v = v + U | 0, T = L(T ^ v, 12), K = K + T | 0, U = L(U ^ K, 8), v = v + U | 0, T = L(T ^ v, 7), M = M + R | 0, O = L(O ^ M, 16), N = N + O | 0, R = L(R ^ N, 12), M = M + R | 0, O = L(O ^ M, 8), N = N + O | 0, R = L(R ^ N, 7), m = m + A | 0, O = L(O ^ m, 16), v = v + O | 0, A = L(A ^ v, 12), m = m + A | 0, O = L(O ^ m, 8), v = v + O | 0, A = L(A ^ v, 7), x = x + T | 0, k = L(k ^ x, 16), N = N + k | 0, T = L(T ^ N, 12), x = x + T | 0, k = L(k ^ x, 8), N = N + k | 0, T = L(T ^ N, 7), K = K + R | 0, C = L(C ^ K, 16), H = H + C | 0, R = L(R ^ H, 12), K = K + R | 0, C = L(C ^ K, 8), H = H + C | 0, R = L(R ^ H, 7), M = M + _ | 0, U = L(U ^ M, 16), b = b + U | 0, _ = L(_ ^ b, 12), M = M + _ | 0, U = L(U ^ M, 8), b = b + U | 0, _ = L(_ ^ b, 7);
2272
2272
  let $ = 0;
2273
- r[$++] = o + m | 0, r[$++] = c + x | 0, r[$++] = a + K | 0, r[$++] = l + M | 0, r[$++] = f + _ | 0, r[$++] = u + A | 0, r[$++] = p + T | 0, r[$++] = b + R | 0, r[$++] = y + H | 0, r[$++] = h + w | 0, r[$++] = d + v | 0, r[$++] = g + N | 0, r[$++] = E + k | 0, r[$++] = S + C | 0, r[$++] = I + U | 0, r[$++] = B + O | 0;
2273
+ r[$++] = o + m | 0, r[$++] = c + x | 0, r[$++] = a + K | 0, r[$++] = l + M | 0, r[$++] = f + _ | 0, r[$++] = u + A | 0, r[$++] = g + T | 0, r[$++] = w + R | 0, r[$++] = y + H | 0, r[$++] = h + b | 0, r[$++] = d + v | 0, r[$++] = p + N | 0, r[$++] = E + k | 0, r[$++] = S + C | 0, r[$++] = I + U | 0, r[$++] = B + O | 0;
2274
2274
  }
2275
2275
  const Sr = /* @__PURE__ */ Qs(eo, {
2276
2276
  counterRight: !1,
@@ -2651,7 +2651,7 @@ function gt(e) {
2651
2651
  type: "nprofile",
2652
2652
  data: {
2653
2653
  pubkey: P(u[0][0]),
2654
- relays: u[1] ? u[1].map((p) => ue.decode(p)) : []
2654
+ relays: u[1] ? u[1].map((g) => ue.decode(g)) : []
2655
2655
  }
2656
2656
  };
2657
2657
  }
@@ -2669,7 +2669,7 @@ function gt(e) {
2669
2669
  type: "nevent",
2670
2670
  data: {
2671
2671
  id: P(u[0][0]),
2672
- relays: u[1] ? u[1].map((p) => ue.decode(p)) : [],
2672
+ relays: u[1] ? u[1].map((g) => ue.decode(g)) : [],
2673
2673
  author: (o = u[2]) != null && o[0] ? P(u[2][0]) : void 0,
2674
2674
  kind: (c = u[3]) != null && c[0] ? parseInt(P(u[3][0]), 16) : void 0
2675
2675
  }
@@ -2693,7 +2693,7 @@ function gt(e) {
2693
2693
  identifier: ue.decode(u[0][0]),
2694
2694
  pubkey: P(u[2][0]),
2695
2695
  kind: parseInt(P(u[3][0]), 16),
2696
- relays: u[1] ? u[1].map((p) => ue.decode(p)) : []
2696
+ relays: u[1] ? u[1].map((g) => ue.decode(g)) : []
2697
2697
  }
2698
2698
  };
2699
2699
  }
@@ -3579,7 +3579,7 @@ async function wi(e, t, n, r) {
3579
3579
  throw new Error("Invalid nostr event, payload tag does not match request body hash");
3580
3580
  return !0;
3581
3581
  }
3582
- const Oe = 30078, Dn = 30078, jn = 1059, Gc = 14, au = 100, Fc = 1;
3582
+ const Oe = 1060, Dn = 30078, jn = 1059, Gc = 14, au = 100, Fc = 1;
3583
3583
  function cu(e) {
3584
3584
  return JSON.stringify({
3585
3585
  version: Fc,
@@ -3733,7 +3733,7 @@ class st {
3733
3733
  const c = ke(), [a, l] = Pe(s, q.getConversationKey(c, n), 2);
3734
3734
  let f, u;
3735
3735
  i ? (f = { publicKey: le(r), privateKey: r }, u = { publicKey: le(c), privateKey: c }) : u = { publicKey: le(r), privateKey: r };
3736
- const p = {
3736
+ const g = {
3737
3737
  rootKey: i ? a : s,
3738
3738
  theirNextNostrPublicKey: n,
3739
3739
  ourCurrentNostrKey: f,
@@ -3744,8 +3744,8 @@ class st {
3744
3744
  receivingChainMessageNumber: 0,
3745
3745
  previousSendingChainMessageCount: 0,
3746
3746
  skippedKeys: {}
3747
- }, b = new st(t, p);
3748
- return o && (b.name = o), b;
3747
+ }, w = new st(t, g);
3748
+ return o && (w.name = o), w;
3749
3749
  }
3750
3750
  /**
3751
3751
  * Sends a text message through the encrypted session.
@@ -4079,18 +4079,18 @@ class Me {
4079
4079
  * so the inviter can create the session on their side.
4080
4080
  */
4081
4081
  async accept(t, n, r) {
4082
- const i = ke(), s = le(i), o = this.inviter || this.inviterEphemeralPublicKey, c = z(this.sharedSecret), a = st.init(t, this.inviterEphemeralPublicKey, i, !0, c, void 0), f = await (typeof r == "function" ? r : (h, d) => Promise.resolve(q.encrypt(h, Qe(r, d))))(s, o), u = {
4082
+ const i = ke(), s = le(i), o = this.inviter || this.inviterEphemeralPublicKey, c = z(this.sharedSecret), a = st.init(t, this.inviterEphemeralPublicKey, i, !0, c, void 0), f = await (typeof r == "function" ? r : (d, p) => Promise.resolve(q.encrypt(d, Qe(r, p))))(s, o), u = {
4083
4083
  pubkey: n,
4084
4084
  content: await q.encrypt(f, c),
4085
4085
  created_at: Math.floor(Date.now() / 1e3)
4086
- }, p = ke(), b = le(p), y = {
4086
+ }, g = JSON.stringify(u), w = ke(), y = le(w), h = {
4087
4087
  kind: jn,
4088
- pubkey: b,
4089
- content: q.encrypt(JSON.stringify(u), Qe(p, this.inviterEphemeralPublicKey)),
4088
+ pubkey: y,
4089
+ content: q.encrypt(g, Qe(w, this.inviterEphemeralPublicKey)),
4090
4090
  created_at: eu(),
4091
4091
  tags: [["p", this.inviterEphemeralPublicKey]]
4092
4092
  };
4093
- return { session: a, event: Q(y, p) };
4093
+ return { session: a, event: Q(h, w) };
4094
4094
  }
4095
4095
  listen(t, n, r) {
4096
4096
  if (!this.inviterEphemeralPrivateKey)
@@ -4107,7 +4107,7 @@ class Me {
4107
4107
  }
4108
4108
  const o = await q.decrypt(s.content, Qe(this.inviterEphemeralPrivateKey, s.pubkey)), c = JSON.parse(o), a = z(this.sharedSecret), l = c.pubkey;
4109
4109
  this.usedBy.push(l);
4110
- const f = await q.decrypt(c.content, a), p = await (typeof t == "function" ? t : (h, d) => Promise.resolve(q.decrypt(h, Qe(t, d))))(f, l), b = s.id, y = st.init(n, p, this.inviterEphemeralPrivateKey, !1, a, b);
4110
+ const f = await q.decrypt(c.content, a), g = await (typeof t == "function" ? t : (h, d) => Promise.resolve(q.decrypt(h, Qe(t, d))))(f, l), w = s.id, y = st.init(n, g, this.inviterEphemeralPrivateKey, !1, a, w);
4111
4111
  r(y, l);
4112
4112
  } catch (o) {
4113
4113
  console.error("Error processing invite message:", o, "event", s);