nodebench-mcp 1.4.0 → 1.4.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +47 -6
- package/package.json +1 -1
package/README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# NodeBench MCP Server
|
|
2
2
|
|
|
3
|
-
A fully local, zero-config MCP server with
|
|
3
|
+
A fully local, zero-config MCP server with **60 tools** for AI-powered development workflows.
|
|
4
4
|
|
|
5
5
|
**Features:**
|
|
6
6
|
- Web search (Gemini/OpenAI/Perplexity)
|
|
@@ -9,13 +9,23 @@ A fully local, zero-config MCP server with 46 tools for AI-powered development w
|
|
|
9
9
|
- AGENTS.md self-maintenance
|
|
10
10
|
- AI vision for screenshot analysis
|
|
11
11
|
- 6-phase verification flywheel
|
|
12
|
+
- Self-reinforced learning (trajectory analysis, health reports, improvement recommendations)
|
|
13
|
+
- Autonomous agent bootstrap and self-maintenance
|
|
12
14
|
- SQLite-backed learning database
|
|
13
15
|
|
|
14
|
-
## Quick Start (
|
|
16
|
+
## Quick Start (30 seconds)
|
|
15
17
|
|
|
16
|
-
###
|
|
18
|
+
### Option A: Claude Code CLI (recommended)
|
|
17
19
|
|
|
18
|
-
|
|
20
|
+
```bash
|
|
21
|
+
claude mcp add nodebench -- npx -y nodebench-mcp
|
|
22
|
+
```
|
|
23
|
+
|
|
24
|
+
That's it. One command, 60 tools. No restart needed.
|
|
25
|
+
|
|
26
|
+
### Option B: Manual config
|
|
27
|
+
|
|
28
|
+
Add to `~/.claude/settings.json` (global) or `.claude.json` (per-project):
|
|
19
29
|
|
|
20
30
|
```json
|
|
21
31
|
{
|
|
@@ -28,7 +38,7 @@ Add to `~/.claude/settings.json`:
|
|
|
28
38
|
}
|
|
29
39
|
```
|
|
30
40
|
|
|
31
|
-
|
|
41
|
+
Then restart Claude Code.
|
|
32
42
|
|
|
33
43
|
---
|
|
34
44
|
|
|
@@ -114,11 +124,14 @@ In Claude Code, try these prompts:
|
|
|
114
124
|
| **Learning** | `record_learning`, `search_learnings`, `search_all_knowledge` | Persistent knowledge base |
|
|
115
125
|
| **Flywheel** | `run_closed_loop`, `check_framework_updates` | Automated workflows |
|
|
116
126
|
| **Recon** | `run_recon`, `log_recon_finding`, `log_gap` | Discovery and gap tracking |
|
|
127
|
+
| **Agent Bootstrap** | `bootstrap_project`, `setup_local_env`, `triple_verify`, `self_implement` | Self-discover infrastructure, auto-configure |
|
|
128
|
+
| **Autonomous** | `assess_risk`, `decide_re_update`, `run_self_maintenance`, `run_autonomous_loop` | Risk-tiered autonomous execution |
|
|
129
|
+
| **Self-Eval** | `log_tool_call`, `get_trajectory_analysis`, `get_self_eval_report`, `get_improvement_recommendations` | Self-reinforced learning loop |
|
|
117
130
|
| **Meta** | `findTools`, `getMethodology` | Tool discovery, methodology guides |
|
|
118
131
|
|
|
119
132
|
---
|
|
120
133
|
|
|
121
|
-
## Methodology Topics (
|
|
134
|
+
## Methodology Topics (17 total)
|
|
122
135
|
|
|
123
136
|
Ask Claude: `Use getMethodology("topic_name")`
|
|
124
137
|
|
|
@@ -137,6 +150,34 @@ Ask Claude: `Use getMethodology("topic_name")`
|
|
|
137
150
|
- `tech_stack_2026` — Dependency management
|
|
138
151
|
- `telemetry_setup` — Observability setup
|
|
139
152
|
- `agents_md_maintenance` — Keep docs in sync
|
|
153
|
+
- `agent_bootstrap` — Self-discover and auto-configure infrastructure
|
|
154
|
+
- `autonomous_maintenance` — Risk-tiered autonomous execution
|
|
155
|
+
- `self_reinforced_learning` — Trajectory analysis and improvement loop
|
|
156
|
+
|
|
157
|
+
---
|
|
158
|
+
|
|
159
|
+
## Self-Reinforced Learning (v1.4.0)
|
|
160
|
+
|
|
161
|
+
The MCP learns from its own usage. As you develop with the tools, the system accumulates trajectory data and surfaces recommendations.
|
|
162
|
+
|
|
163
|
+
```
|
|
164
|
+
Use → Log → Analyze → Recommend → Apply → Re-analyze
|
|
165
|
+
```
|
|
166
|
+
|
|
167
|
+
**Try it:**
|
|
168
|
+
```
|
|
169
|
+
> Use getMethodology("self_reinforced_learning") for the 5-step guide
|
|
170
|
+
> Use get_self_eval_report to see your project's health score
|
|
171
|
+
> Use get_improvement_recommendations to find actionable improvements
|
|
172
|
+
> Use get_trajectory_analysis to see your tool usage patterns
|
|
173
|
+
```
|
|
174
|
+
|
|
175
|
+
The health score is a weighted composite:
|
|
176
|
+
- Cycle completion (25%) — Are verification cycles being completed?
|
|
177
|
+
- Eval pass rate (25%) — Are eval runs succeeding?
|
|
178
|
+
- Gap resolution (20%) — Are logged gaps getting resolved?
|
|
179
|
+
- Gate pass rate (15%) — Are quality gates passing?
|
|
180
|
+
- Tool error rate (15%) — Are tools running without errors?
|
|
140
181
|
|
|
141
182
|
---
|
|
142
183
|
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "nodebench-mcp",
|
|
3
|
-
"version": "1.4.
|
|
3
|
+
"version": "1.4.1",
|
|
4
4
|
"description": "NodeBench MCP server — 60 tools for AI-powered development. Self-reinforced learning, trajectory analysis, web search, GitHub discovery, vision analysis, verification flywheel, autonomous self-maintenance.",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"bin": {
|