nodebench-mcp 1.4.0 → 1.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (2) hide show
  1. package/README.md +47 -6
  2. package/package.json +1 -1
package/README.md CHANGED
@@ -1,6 +1,6 @@
1
1
  # NodeBench MCP Server
2
2
 
3
- A fully local, zero-config MCP server with 46 tools for AI-powered development workflows.
3
+ A fully local, zero-config MCP server with **60 tools** for AI-powered development workflows.
4
4
 
5
5
  **Features:**
6
6
  - Web search (Gemini/OpenAI/Perplexity)
@@ -9,13 +9,23 @@ A fully local, zero-config MCP server with 46 tools for AI-powered development w
9
9
  - AGENTS.md self-maintenance
10
10
  - AI vision for screenshot analysis
11
11
  - 6-phase verification flywheel
12
+ - Self-reinforced learning (trajectory analysis, health reports, improvement recommendations)
13
+ - Autonomous agent bootstrap and self-maintenance
12
14
  - SQLite-backed learning database
13
15
 
14
- ## Quick Start (1 minute)
16
+ ## Quick Start (30 seconds)
15
17
 
16
- ### 1. Add to Claude Code settings
18
+ ### Option A: Claude Code CLI (recommended)
17
19
 
18
- Add to `~/.claude/settings.json`:
20
+ ```bash
21
+ claude mcp add nodebench -- npx -y nodebench-mcp
22
+ ```
23
+
24
+ That's it. One command, 60 tools. No restart needed.
25
+
26
+ ### Option B: Manual config
27
+
28
+ Add to `~/.claude/settings.json` (global) or `.claude.json` (per-project):
19
29
 
20
30
  ```json
21
31
  {
@@ -28,7 +38,7 @@ Add to `~/.claude/settings.json`:
28
38
  }
29
39
  ```
30
40
 
31
- That's it. Restart Claude Code and you have 46 tools.
41
+ Then restart Claude Code.
32
42
 
33
43
  ---
34
44
 
@@ -114,11 +124,14 @@ In Claude Code, try these prompts:
114
124
  | **Learning** | `record_learning`, `search_learnings`, `search_all_knowledge` | Persistent knowledge base |
115
125
  | **Flywheel** | `run_closed_loop`, `check_framework_updates` | Automated workflows |
116
126
  | **Recon** | `run_recon`, `log_recon_finding`, `log_gap` | Discovery and gap tracking |
127
+ | **Agent Bootstrap** | `bootstrap_project`, `setup_local_env`, `triple_verify`, `self_implement` | Self-discover infrastructure, auto-configure |
128
+ | **Autonomous** | `assess_risk`, `decide_re_update`, `run_self_maintenance`, `run_autonomous_loop` | Risk-tiered autonomous execution |
129
+ | **Self-Eval** | `log_tool_call`, `get_trajectory_analysis`, `get_self_eval_report`, `get_improvement_recommendations` | Self-reinforced learning loop |
117
130
  | **Meta** | `findTools`, `getMethodology` | Tool discovery, methodology guides |
118
131
 
119
132
  ---
120
133
 
121
- ## Methodology Topics (15 total)
134
+ ## Methodology Topics (17 total)
122
135
 
123
136
  Ask Claude: `Use getMethodology("topic_name")`
124
137
 
@@ -137,6 +150,34 @@ Ask Claude: `Use getMethodology("topic_name")`
137
150
  - `tech_stack_2026` — Dependency management
138
151
  - `telemetry_setup` — Observability setup
139
152
  - `agents_md_maintenance` — Keep docs in sync
153
+ - `agent_bootstrap` — Self-discover and auto-configure infrastructure
154
+ - `autonomous_maintenance` — Risk-tiered autonomous execution
155
+ - `self_reinforced_learning` — Trajectory analysis and improvement loop
156
+
157
+ ---
158
+
159
+ ## Self-Reinforced Learning (v1.4.0)
160
+
161
+ The MCP learns from its own usage. As you develop with the tools, the system accumulates trajectory data and surfaces recommendations.
162
+
163
+ ```
164
+ Use → Log → Analyze → Recommend → Apply → Re-analyze
165
+ ```
166
+
167
+ **Try it:**
168
+ ```
169
+ > Use getMethodology("self_reinforced_learning") for the 5-step guide
170
+ > Use get_self_eval_report to see your project's health score
171
+ > Use get_improvement_recommendations to find actionable improvements
172
+ > Use get_trajectory_analysis to see your tool usage patterns
173
+ ```
174
+
175
+ The health score is a weighted composite:
176
+ - Cycle completion (25%) — Are verification cycles being completed?
177
+ - Eval pass rate (25%) — Are eval runs succeeding?
178
+ - Gap resolution (20%) — Are logged gaps getting resolved?
179
+ - Gate pass rate (15%) — Are quality gates passing?
180
+ - Tool error rate (15%) — Are tools running without errors?
140
181
 
141
182
  ---
142
183
 
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "nodebench-mcp",
3
- "version": "1.4.0",
3
+ "version": "1.4.1",
4
4
  "description": "NodeBench MCP server — 60 tools for AI-powered development. Self-reinforced learning, trajectory analysis, web search, GitHub discovery, vision analysis, verification flywheel, autonomous self-maintenance.",
5
5
  "type": "module",
6
6
  "bin": {