node-red-contrib-prib-functions 0.18.0 → 0.20.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.github/workflows/codeql-analysis.yml +3 -3
- package/.github/workflows/npmpublish.yml +6 -6
- package/.vs/VSWorkspaceState.json +7 -0
- package/.vs/node-red-contrib-prib-functions/v17/.wsuo +0 -0
- package/README.md +22 -19
- package/arima/index.js +18 -0
- package/dataAnalysis/arrayAllRowsSwap.js +15 -0
- package/dataAnalysis/arrayCompareToPrecision.js +34 -0
- package/dataAnalysis/arrayDifference.js +14 -0
- package/dataAnalysis/arrayDifferenceSeasonal.js +15 -0
- package/dataAnalysis/arrayDifferenceSeasonalSecondOrder.js +20 -0
- package/dataAnalysis/arrayDifferenceSecondOrder.js +14 -0
- package/dataAnalysis/arrayForEachRange.js +38 -0
- package/dataAnalysis/arrayOverlay.js +13 -0
- package/dataAnalysis/arrayProduct.js +11 -0
- package/dataAnalysis/arrayRandom.js +14 -0
- package/dataAnalysis/arrayReduceRange.js +11 -0
- package/dataAnalysis/arrayScale.js +11 -0
- package/dataAnalysis/arraySum.js +11 -0
- package/dataAnalysis/arraySumSquared.js +11 -0
- package/dataAnalysis/arraySwap.js +11 -0
- package/dataAnalysis/dataAnalysis.html +31 -14
- package/dataAnalysis/dataAnalysis.js +10 -1
- package/dataAnalysis/generateMatrixFunction.js +89 -0
- package/dataAnalysis/generateVectorFunction.js +25 -0
- package/dataAnalysis/pca.js +546 -0
- package/dataAnalysis/svd.js +239 -0
- package/documentation/loadInjector.png +0 -0
- package/echart/echart.html +68 -0
- package/echart/echart.js +85 -0
- package/echart/icons/chart-671.png +0 -0
- package/echart/lib/echarts.js +95886 -0
- package/lib/Chart.js +177 -0
- package/lib/Column.js +99 -0
- package/lib/GraphDB.js +14 -0
- package/lib/Table.js +185 -0
- package/lib/objectExtensions.js +361 -0
- package/matrix/matrix.js +50 -50
- package/matrix/matrixNode.html +144 -154
- package/matrix/matrixNode.js +26 -9
- package/monitor/BarGauge.js +8 -0
- package/monitor/Dataset.js +29 -0
- package/monitor/DialGauge.js +109 -0
- package/monitor/DialNeedle.js +36 -0
- package/monitor/Format.js +74 -0
- package/monitor/centerElement.js +14 -0
- package/monitor/compareElements.js +95 -0
- package/monitor/defs.js +23 -0
- package/monitor/extensions.js +906 -0
- package/monitor/functions.js +36 -0
- package/monitor/json2xml.js +103 -0
- package/monitor/monitorSystem.html +198 -0
- package/monitor/monitorSystem.js +322 -0
- package/monitor/svgHTML.js +179 -0
- package/monitor/svgObjects.js +64 -0
- package/package.json +31 -8
- package/test/00-objectExtensions.js +94 -0
- package/test/01-base.js +88 -0
- package/test/04-tables.js +33 -0
- package/test/data/.config.nodes.json +608 -0
- package/test/data/.config.nodes.json.backup +608 -0
- package/test/data/.config.runtime.json +4 -0
- package/test/data/.config.runtime.json.backup +3 -0
- package/test/data/.config.users.json +21 -0
- package/test/data/.config.users.json.backup +21 -0
- package/test/data/.flow.json.backup +3433 -0
- package/test/data/float32vector10.npy +0 -0
- package/test/data/flow.json +3433 -0
- package/test/data/int2matrix2x3.npy +0 -0
- package/test/data/package-lock.json +158 -0
- package/test/data/package.json +11 -0
- package/test/data/settings.js +544 -0
- package/test/dataAnalysisExtensions.js +472 -0
- package/test/dataAnalysisPCA.js +54 -0
- package/test/dataAnalysisSVD.js +31 -0
- package/test/euclideanDistance.js +2 -2
- package/test/matrix/02base.js +36 -0
- package/test/transformNumPy.js +132 -0
- package/testing/data/countries.csv +250 -0
- package/testing/hostAvailable.html +0 -2
- package/testing/load-injector.html +76 -21
- package/testing/load-injector.js +35 -54
- package/testing/test.js +1 -0
- package/transform/NumPy.js +303 -0
- package/transform/transform.html +73 -19
- package/transform/transform.js +144 -8
- package/documentation/LoadInjector.JPG +0 -0
|
@@ -0,0 +1,472 @@
|
|
|
1
|
+
const assert=require('assert');
|
|
2
|
+
const should=require("should");
|
|
3
|
+
const m2x2=[[11,12],[21,22]]
|
|
4
|
+
const m2x3=[[11,12,13],[21,22,23]]
|
|
5
|
+
|
|
6
|
+
describe('generatedVectorFunction', function(){
|
|
7
|
+
const generateVectorFunction=require("../dataAnalysis/generateVectorFunction.js");
|
|
8
|
+
it("error gen", function(done){
|
|
9
|
+
assert.throws(()=>generateVectorFunction({
|
|
10
|
+
code:"=a deliberate error in test",
|
|
11
|
+
args:["arg1,arg2"]
|
|
12
|
+
}),Error("code failed"))
|
|
13
|
+
done();
|
|
14
|
+
});
|
|
15
|
+
it("for each", function(done){
|
|
16
|
+
const forEach=generateVectorFunction({
|
|
17
|
+
code:"vector[index]+=(index+1)*10",
|
|
18
|
+
args:["arg1,arg2"]
|
|
19
|
+
})
|
|
20
|
+
const vector=[1,2,3,4]
|
|
21
|
+
forEach(vector)
|
|
22
|
+
assert.deepEqual(vector,[11,22,33,44])
|
|
23
|
+
done();
|
|
24
|
+
});
|
|
25
|
+
it("for each range", function(done){
|
|
26
|
+
const forEach=generateVectorFunction({code:"vector[index]+=(index+1)*10"})
|
|
27
|
+
const vector=[1,2,3,4]
|
|
28
|
+
forEach(vector,1,2)
|
|
29
|
+
assert.deepEqual(vector,[1,22,33,4])
|
|
30
|
+
done();
|
|
31
|
+
});
|
|
32
|
+
it("sumVector", function(done){
|
|
33
|
+
const sumVector=generateVectorFunction({code:"returnValue+=vector[index]",args:[],returnValue:0})
|
|
34
|
+
const vector=[1,2,3,4]
|
|
35
|
+
assert.deepEqual(sumVector(vector),1+2+3+4)
|
|
36
|
+
done();
|
|
37
|
+
});
|
|
38
|
+
it("sumVector range", function(done){
|
|
39
|
+
const sumVector=generateVectorFunction({code:"returnValue+=vector[index]",returnValue:10})
|
|
40
|
+
const vector=[1,2,3,4]
|
|
41
|
+
assert.deepEqual(sumVector(vector,1,2,20),20+2+3)
|
|
42
|
+
done();
|
|
43
|
+
});
|
|
44
|
+
it("mapVector range", function(done){
|
|
45
|
+
const mapVector=generateVectorFunction({
|
|
46
|
+
code:"returnValue[index-startOffset]=vector[index]",
|
|
47
|
+
args:["dataType=Array"],
|
|
48
|
+
returnValue:"new dataType(1+endOffset-startOffset)"
|
|
49
|
+
})
|
|
50
|
+
const vector=[1,2,3,4]
|
|
51
|
+
assert.deepEqual(mapVector(vector,Array,1,2),[2,3])
|
|
52
|
+
done();
|
|
53
|
+
});
|
|
54
|
+
it("mapVector range Float32Array", function(done){
|
|
55
|
+
const mapVector=generateVectorFunction({
|
|
56
|
+
code:"returnValue[index-startOffset]=vector[index]",
|
|
57
|
+
args:["dataType=Array"],returnValue:"new dataType(1+endOffset-startOffset)"
|
|
58
|
+
})
|
|
59
|
+
const vector=[1,2,3,4]
|
|
60
|
+
assert.deepEqual(mapVector(vector,Float32Array,1,2),new Float32Array([2,3]))
|
|
61
|
+
done();
|
|
62
|
+
});
|
|
63
|
+
});
|
|
64
|
+
describe('generateMatrixFunction', function(){
|
|
65
|
+
const generateMatrixFunction=require("../dataAnalysis/generateMatrixFunction.js")
|
|
66
|
+
const breakLogic="\nconsole.log({loop:loop});if(--loop<0) throw Error('break loop');\n"
|
|
67
|
+
const debugScript="console.log({rowOffset:rowOffset,rowEndOffset:rowEndOffset});"+
|
|
68
|
+
"console.log({columnOffset:columnOffset,columnEndOffset:columnEndOffset});"+
|
|
69
|
+
"console.log({elementOffset:elementOffset,matrixEndOffset:matrixEndOffset,element:element});"
|
|
70
|
+
it("error gen", function(done){
|
|
71
|
+
assert.throws(()=>generateMatrixFunction({
|
|
72
|
+
code:"=a deliberate error in test ",
|
|
73
|
+
args:["arg1,arg2"]
|
|
74
|
+
}),Error("code failed"))
|
|
75
|
+
done();
|
|
76
|
+
});
|
|
77
|
+
it("for each", function(done){
|
|
78
|
+
const forEach=generateMatrixFunction({
|
|
79
|
+
code:"row[columnOffset]=rowOffset*10+columnOffset"+breakLogic,
|
|
80
|
+
args:["loop=111"],
|
|
81
|
+
debug:true
|
|
82
|
+
})
|
|
83
|
+
const vector=[[1,2],[3,4]]
|
|
84
|
+
forEach(vector)
|
|
85
|
+
assert.deepEqual(vector,[[0,1],[10,11]])
|
|
86
|
+
done();
|
|
87
|
+
});
|
|
88
|
+
it("for each setElement", function(done){
|
|
89
|
+
const forEach=generateMatrixFunction({
|
|
90
|
+
code:"setElement(rowOffset*10+columnOffset)"
|
|
91
|
+
})
|
|
92
|
+
const vector=[[1,2],[3,4]]
|
|
93
|
+
forEach(vector)
|
|
94
|
+
assert.deepEqual(vector,[[0,1],[10,11]])
|
|
95
|
+
done();
|
|
96
|
+
});
|
|
97
|
+
it("for each vector", function(done){
|
|
98
|
+
const forEach=generateMatrixFunction({
|
|
99
|
+
code:"matrix[elementOffset]=rowOffset*10+columnOffset"+breakLogic,
|
|
100
|
+
args:["loop=111"],
|
|
101
|
+
debug:true
|
|
102
|
+
})
|
|
103
|
+
const vector=new Float32Array([1,2,3,4,5,6])
|
|
104
|
+
try{
|
|
105
|
+
forEach(vector,3,2)
|
|
106
|
+
} catch(ex){
|
|
107
|
+
console.error("error: "+ex.message)
|
|
108
|
+
console.error(ex.stack)
|
|
109
|
+
console.error(forEach.toString())
|
|
110
|
+
done("failed")
|
|
111
|
+
}
|
|
112
|
+
assert.deepEqual(vector,new Float32Array([0,1,10,11,20,21]))
|
|
113
|
+
done();
|
|
114
|
+
});
|
|
115
|
+
it("for each vector range row 1:1", function(done){
|
|
116
|
+
const forEach=generateMatrixFunction({
|
|
117
|
+
code:"matrix[elementOffset]=rowOffset*10+columnOffset"+breakLogic,
|
|
118
|
+
args:["loop=111"],
|
|
119
|
+
debug:true
|
|
120
|
+
})
|
|
121
|
+
const vector=new Float32Array([1,2,3,4,5,6])
|
|
122
|
+
forEach(vector,3,2,111,1,1)
|
|
123
|
+
assert.deepEqual(vector,new Float32Array([1,2,10,11,5,6]))
|
|
124
|
+
done();
|
|
125
|
+
});
|
|
126
|
+
it("for each vector range row 1:1 assign", function(done){
|
|
127
|
+
const forEach=generateMatrixFunction({
|
|
128
|
+
code:"matrix[elementOffset]=rowOffset*10+columnOffset"+breakLogic,
|
|
129
|
+
args:["loop=111"],
|
|
130
|
+
debug:true});
|
|
131
|
+
const vector=new Float32Array([1,2,3,4,5,6])
|
|
132
|
+
forEach(vector,3,2,111,1,1)
|
|
133
|
+
assert.deepEqual(vector,new Float32Array([1,2,10,11,5,6]))
|
|
134
|
+
done();
|
|
135
|
+
});
|
|
136
|
+
it("for each vector", function(done){
|
|
137
|
+
const forEach=generateMatrixFunction({
|
|
138
|
+
code:"console.log(matrix);setElement(rowOffset*10+columnOffset);console.log(matrix)"
|
|
139
|
+
})
|
|
140
|
+
const vector=new Float32Array([1,2,3,4,5,6])
|
|
141
|
+
forEach(vector,3,2)
|
|
142
|
+
assert.deepEqual(vector,new Float32Array([0,1,10,11,20,21]))
|
|
143
|
+
done();
|
|
144
|
+
});
|
|
145
|
+
});
|
|
146
|
+
|
|
147
|
+
describe('sum', function(){
|
|
148
|
+
require("../dataAnalysis/arraySum.js");
|
|
149
|
+
it("array 1 to 4", function(done){
|
|
150
|
+
assert.deepEqual([1,2,3,4].sum(),1+2+3+4)
|
|
151
|
+
done();
|
|
152
|
+
});
|
|
153
|
+
it("array 2 to 4", function(done){
|
|
154
|
+
assert.deepEqual([1,2,3,4].sum(1),2+3+4)
|
|
155
|
+
done();
|
|
156
|
+
});
|
|
157
|
+
it("array 2 to 3", function(done){
|
|
158
|
+
assert.deepEqual([1,2,3,4].sum(1,2),2+3)
|
|
159
|
+
done();
|
|
160
|
+
});
|
|
161
|
+
});
|
|
162
|
+
describe('sumSquared', function(){
|
|
163
|
+
require("../dataAnalysis/arraySumSquared.js");
|
|
164
|
+
it("array 1 to 4", function(done){
|
|
165
|
+
assert.deepEqual([1,2,3,4].sumSquared(),1**2+2**2+3**2+4**2)
|
|
166
|
+
done();
|
|
167
|
+
});
|
|
168
|
+
it("array 2 to 4", function(done){
|
|
169
|
+
assert.deepEqual([1,2,3,4].sumSquared(1),2**2+3**2+4**2)
|
|
170
|
+
done();
|
|
171
|
+
});
|
|
172
|
+
it("array 2 to 3", function(done){
|
|
173
|
+
assert.deepEqual([1,2,3,4].sumSquared(1,2),2**2+3**2)
|
|
174
|
+
done();
|
|
175
|
+
});
|
|
176
|
+
});
|
|
177
|
+
describe('product', function(){
|
|
178
|
+
require("../dataAnalysis/arrayProduct.js");
|
|
179
|
+
it("array 1 to 4", function(done){
|
|
180
|
+
assert.deepEqual([1,2,3,4].product(),1*2*3*4)
|
|
181
|
+
done();
|
|
182
|
+
});
|
|
183
|
+
it("array 2 to 4", function(done){
|
|
184
|
+
assert.deepEqual([1,2,3,4].product(1),2*3*4)
|
|
185
|
+
done();
|
|
186
|
+
});
|
|
187
|
+
it("array 2 to 3", function(done){
|
|
188
|
+
assert.deepEqual([1,2,3,4].product(1,2),2*3)
|
|
189
|
+
done();
|
|
190
|
+
});
|
|
191
|
+
});
|
|
192
|
+
describe('arrayDifference', function(){
|
|
193
|
+
require("../dataAnalysis/arrayDifference.js");
|
|
194
|
+
it("empty", function(done){
|
|
195
|
+
const result=[].difference();
|
|
196
|
+
console.log(result)
|
|
197
|
+
assert.deepEqual(result,[])
|
|
198
|
+
done();
|
|
199
|
+
});
|
|
200
|
+
it("1 value", function(done){
|
|
201
|
+
const result=[1].difference();
|
|
202
|
+
console.log(result)
|
|
203
|
+
assert.deepEqual(result,[])
|
|
204
|
+
done();
|
|
205
|
+
});
|
|
206
|
+
it("zero", function(done){
|
|
207
|
+
const result=[1,1,1,1,1].difference();
|
|
208
|
+
console.log(result)
|
|
209
|
+
assert.deepEqual(result,[0,0,0,0])
|
|
210
|
+
done();
|
|
211
|
+
});
|
|
212
|
+
it("equal 1", function(done){
|
|
213
|
+
const result=[0,1,2,3,4].difference();
|
|
214
|
+
console.log(result)
|
|
215
|
+
assert.deepEqual(result,[1,1,1,1])
|
|
216
|
+
done();
|
|
217
|
+
});
|
|
218
|
+
it("variance", function(done){
|
|
219
|
+
const result=[0,0,1,3,6].difference();
|
|
220
|
+
console.log(result)
|
|
221
|
+
assert.deepEqual(result,[0,1,2,3])
|
|
222
|
+
done();
|
|
223
|
+
});
|
|
224
|
+
});
|
|
225
|
+
describe('arrayDifferenceSecondOrder', function(){
|
|
226
|
+
require("../dataAnalysis/arrayDifferenceSecondOrder.js");
|
|
227
|
+
it("empty", function(done){
|
|
228
|
+
const result=[].differenceSecondOrder();
|
|
229
|
+
console.log(result)
|
|
230
|
+
assert.deepEqual(result,[])
|
|
231
|
+
done();
|
|
232
|
+
});
|
|
233
|
+
it("1 value", function(done){
|
|
234
|
+
const result=[1].differenceSecondOrder();
|
|
235
|
+
console.log(result)
|
|
236
|
+
assert.deepEqual(result,[])
|
|
237
|
+
done();
|
|
238
|
+
});
|
|
239
|
+
it("2 values", function(done){
|
|
240
|
+
const result=[1,2].differenceSecondOrder();
|
|
241
|
+
console.log(result)
|
|
242
|
+
assert.deepEqual(result,[])
|
|
243
|
+
done();
|
|
244
|
+
});
|
|
245
|
+
it("zero", function(done){
|
|
246
|
+
const result=[1,1,1].differenceSecondOrder();
|
|
247
|
+
console.log(result)
|
|
248
|
+
assert.deepEqual(result,[1-1-1+1]) //[0]
|
|
249
|
+
done();
|
|
250
|
+
});
|
|
251
|
+
it("zero x 2", function(done){
|
|
252
|
+
const result=[1,1,1,1].differenceSecondOrder();
|
|
253
|
+
console.log(result)
|
|
254
|
+
assert.deepEqual(result,[0,0])
|
|
255
|
+
done();
|
|
256
|
+
});
|
|
257
|
+
it("one", function(done){
|
|
258
|
+
const result=[0,1,2].differenceSecondOrder();
|
|
259
|
+
console.log(result)
|
|
260
|
+
assert.deepEqual(result,[(0-1)-(1-2)])
|
|
261
|
+
done();
|
|
262
|
+
});
|
|
263
|
+
it("one x 2", function(done){
|
|
264
|
+
const result=[0,1,2,3].differenceSecondOrder();
|
|
265
|
+
console.log(result)
|
|
266
|
+
assert.deepEqual(result,[(0-1)-(1-2),(1-2)-(2-3)])
|
|
267
|
+
done();
|
|
268
|
+
});
|
|
269
|
+
it("variance", function(done){
|
|
270
|
+
const result=[1,2,3,5,9].differenceSecondOrder();
|
|
271
|
+
console.log(result)
|
|
272
|
+
assert.deepEqual(result,[(1-2)-(2-3),(2-3)-(3-5),(3-5)-(5-9)])
|
|
273
|
+
done();
|
|
274
|
+
});
|
|
275
|
+
it("differenceSecondOrder=difference(1)", function(done){
|
|
276
|
+
const result1=[1,2,3,5,9].differenceSecondOrder();
|
|
277
|
+
const result2=[1,2,3,5,9].difference(1);
|
|
278
|
+
console.log(result1,result2)
|
|
279
|
+
assert.deepEqual(result1,result2)
|
|
280
|
+
done();
|
|
281
|
+
});
|
|
282
|
+
});
|
|
283
|
+
describe('arrayDifferenceSeasonal', function(){
|
|
284
|
+
require("../dataAnalysis/arrayDifferenceSeasonal.js");
|
|
285
|
+
it("value=[]", function(done){
|
|
286
|
+
const result=[].differenceSeasonal();
|
|
287
|
+
assert.deepEqual(result,[])
|
|
288
|
+
const result1=[].differenceSeasonal(2);
|
|
289
|
+
assert.deepEqual(result1,[])
|
|
290
|
+
const result11=[].differenceSeasonal(1,1);
|
|
291
|
+
assert.deepEqual(result11,[])
|
|
292
|
+
done();
|
|
293
|
+
});
|
|
294
|
+
it("value=[1]", function(done){
|
|
295
|
+
const v=[1]
|
|
296
|
+
const result=v.differenceSeasonal();
|
|
297
|
+
assert.deepEqual(result,[])
|
|
298
|
+
const result1=v.differenceSeasonal(2);
|
|
299
|
+
assert.deepEqual(result1,[])
|
|
300
|
+
const result11=v.differenceSeasonal(1,1);
|
|
301
|
+
assert.deepEqual(result11,[])
|
|
302
|
+
done();
|
|
303
|
+
});
|
|
304
|
+
it("value=[1,2]", function(done){
|
|
305
|
+
const v=[1,2]
|
|
306
|
+
const result=v.differenceSeasonal();
|
|
307
|
+
assert.deepEqual(result,[1])
|
|
308
|
+
const result1=v.differenceSeasonal(2);
|
|
309
|
+
assert.deepEqual(result1,[])
|
|
310
|
+
const result11=v.differenceSeasonal(1,1);
|
|
311
|
+
assert.deepEqual(result11,[])
|
|
312
|
+
done();
|
|
313
|
+
});
|
|
314
|
+
it("value=[1,2,3,1,2,3] lag 3", function(done){
|
|
315
|
+
const v=[1,2,3,1,2,3]
|
|
316
|
+
const result=v.differenceSeasonal(3);
|
|
317
|
+
assert.deepEqual(result,[0,0,0])
|
|
318
|
+
done();
|
|
319
|
+
});
|
|
320
|
+
it("value=[1,2,3,2,3,4] lag 3", function(done){
|
|
321
|
+
const v=[1,2,3,2,3,4]
|
|
322
|
+
const result=v.differenceSeasonal(3);
|
|
323
|
+
assert.deepEqual(result,[1,1,1])
|
|
324
|
+
done();
|
|
325
|
+
});
|
|
326
|
+
});
|
|
327
|
+
describe('arrayForEachRange', function(){
|
|
328
|
+
require("../dataAnalysis/arrayForEachRange.js");
|
|
329
|
+
it("array 2 to 3", function(done){
|
|
330
|
+
const result=[];
|
|
331
|
+
[0,1,2,3,4].forEachRange(2,3,(v,i,a)=>result.push(v));
|
|
332
|
+
assert.deepEqual(result,[2,3])
|
|
333
|
+
done();
|
|
334
|
+
});
|
|
335
|
+
it("array 3 to 2", function(done){
|
|
336
|
+
const result=[];
|
|
337
|
+
[0,1,2,3,4].forEachRange(3,2,(v,i,a)=>result.push(v));
|
|
338
|
+
assert.deepEqual(result,[3,2])
|
|
339
|
+
done();
|
|
340
|
+
});
|
|
341
|
+
it("array ", function(done){
|
|
342
|
+
const result=[];
|
|
343
|
+
[0,1,2,3,4].forEachRange(2,3,(v,i,a)=>result.push(v));
|
|
344
|
+
assert.deepEqual(result,[2,3])
|
|
345
|
+
done();
|
|
346
|
+
});
|
|
347
|
+
});
|
|
348
|
+
describe('arrayReduceRange', function(){
|
|
349
|
+
require("../dataAnalysis/arrayReduceRange.js");
|
|
350
|
+
it("array 3", function(done){
|
|
351
|
+
const result=[0,1,2,3,4].reduceRange(3,3,(a,value,i,vector)=>a+value);
|
|
352
|
+
assert.deepEqual(result,3)
|
|
353
|
+
done();
|
|
354
|
+
});
|
|
355
|
+
it("array ", function(done){
|
|
356
|
+
const result=[0,1,2,3,4].reduceRange(2,3,(a,value,i,vector)=>a+value);
|
|
357
|
+
assert.deepEqual(result,2+3)
|
|
358
|
+
done();
|
|
359
|
+
});
|
|
360
|
+
});
|
|
361
|
+
describe('arrayRandom', function(){
|
|
362
|
+
require("../dataAnalysis/arrayRandom.js");
|
|
363
|
+
it("array 3", function(done){
|
|
364
|
+
const result=[0,1,2,3,4].random();
|
|
365
|
+
console.log(result)
|
|
366
|
+
assert.notDeepEqual(result,[0,1,2,3,4])
|
|
367
|
+
done();
|
|
368
|
+
});
|
|
369
|
+
});
|
|
370
|
+
describe('arraySwap', function(){
|
|
371
|
+
require("../dataAnalysis/arraySwap.js");
|
|
372
|
+
it("array 2 to 3", function(done){
|
|
373
|
+
const result=[];
|
|
374
|
+
[0,1,2,3,4].swap(2,3);
|
|
375
|
+
assert.deepEqual([0,1,2,3,4].swap(2,3),[0,1,3,2,4])
|
|
376
|
+
done();
|
|
377
|
+
});
|
|
378
|
+
});
|
|
379
|
+
describe('arrayScale', function(){
|
|
380
|
+
require("../dataAnalysis/arrayScale.js");
|
|
381
|
+
it("array all", function(done){
|
|
382
|
+
const result=[];
|
|
383
|
+
[0,1,2,3,4].scale(2);
|
|
384
|
+
assert.deepEqual([0,1,2,3,4].scale(2),[0,1*2,2*2,3*2,4*2])
|
|
385
|
+
done();
|
|
386
|
+
});
|
|
387
|
+
it("array 1,2", function(done){
|
|
388
|
+
const result=[];
|
|
389
|
+
[0,1,2,3,4].scale(2);
|
|
390
|
+
assert.deepEqual([0,1,2,3,4].scale(2,1,2),[0,1*2,2*2,3,4])
|
|
391
|
+
done();
|
|
392
|
+
});
|
|
393
|
+
});
|
|
394
|
+
describe('arrayCompareToPrecision', function(){
|
|
395
|
+
require("../dataAnalysis/arrayCompareToPrecision.js");
|
|
396
|
+
const arrayl=[0.12];
|
|
397
|
+
const array1=[0.12,1.123];
|
|
398
|
+
const array2=[0.12,1.124];
|
|
399
|
+
it("length mismatch", function(done){
|
|
400
|
+
assert.throws(()=>arrayl.compareToPrecision(array1,2))
|
|
401
|
+
done();
|
|
402
|
+
});
|
|
403
|
+
it("vector precision 2", function(done){
|
|
404
|
+
assert.doesNotThrow(()=>array1.compareToPrecision(array2,2))
|
|
405
|
+
done();
|
|
406
|
+
});
|
|
407
|
+
it("vector precision 3", function(done){
|
|
408
|
+
assert.throws(()=>array1.compareToPrecision(array2,4))
|
|
409
|
+
done();
|
|
410
|
+
});
|
|
411
|
+
});
|
|
412
|
+
describe('arrayCompareToPrecision Float', function(){
|
|
413
|
+
require("../dataAnalysis/arrayCompareToPrecision.js");
|
|
414
|
+
const arrayl=new Float32Array([0.12]);
|
|
415
|
+
const array1=new Float32Array([0.12,1.123]);
|
|
416
|
+
const array2=new Float32Array([0.12,1.125]);
|
|
417
|
+
it("length mismatch", function(done){
|
|
418
|
+
assert.throws(()=>arrayl.compareToPrecision(array1,2))
|
|
419
|
+
done();
|
|
420
|
+
});
|
|
421
|
+
it("vector precision 2", function(done){
|
|
422
|
+
assert.doesNotThrow(()=>array1.compareToPrecision(array2,2))
|
|
423
|
+
done();
|
|
424
|
+
});
|
|
425
|
+
it("vector precision 3", function(done){
|
|
426
|
+
assert.throws(()=>array1.compareToPrecision(array2,3))
|
|
427
|
+
done();
|
|
428
|
+
});
|
|
429
|
+
});
|
|
430
|
+
describe('pca', function(){
|
|
431
|
+
const PCA=require("../dataAnalysis/pca.js");
|
|
432
|
+
const pca=new PCA();
|
|
433
|
+
it("getMatrix", function(done){
|
|
434
|
+
assert.equal(JSON.stringify(pca.getMatrix(2,2,1)),"[[1,1],[1,1]]")
|
|
435
|
+
done();
|
|
436
|
+
})
|
|
437
|
+
it("multipe ", function(done){
|
|
438
|
+
assert.equal(JSON.stringify(pca.multiply([[1,2],[3,4],[5,1]],[[2],[4]]))
|
|
439
|
+
,JSON.stringify([[10],[22],[14]]));
|
|
440
|
+
done();
|
|
441
|
+
})
|
|
442
|
+
it("transpose ", function(done){
|
|
443
|
+
assert.equal(JSON.stringify(pca.transpose([[1,2],[3,4],[5,1]],[[2],[4]]))
|
|
444
|
+
,JSON.stringify([[1,3,5],[2,4,1]]));
|
|
445
|
+
done();
|
|
446
|
+
})
|
|
447
|
+
it("x 1 matrices", function(done){
|
|
448
|
+
assert.equal(JSON.stringify(pca.multiply(m2x2,pca.getMatrix(2,1,1))),JSON.stringify([[23],[43]]));
|
|
449
|
+
assert.equal(JSON.stringify(pca.multiply(m2x2,pca.getMatrix(2,2,1))),JSON.stringify([[23,23],[43,43]]));
|
|
450
|
+
assert.equal(JSON.stringify(pca.multiply(m2x3,pca.getMatrix(3,3,1))),JSON.stringify([[36,36,36],[66,66,66]]));
|
|
451
|
+
done();
|
|
452
|
+
})
|
|
453
|
+
const generateVectorFunction=require("../dataAnalysis/generateVectorFunction.js");
|
|
454
|
+
const generateMatrixFunction=require("../dataAnalysis/generateMatrixFunction.js");
|
|
455
|
+
|
|
456
|
+
it("multiplyMatrix", function(done){
|
|
457
|
+
const sumVector=generateVectorFunction({
|
|
458
|
+
code:"returnValue+=vector[index]*matrix[index][column]; console.log({row:index,column:column,returnValue:returnValue})",
|
|
459
|
+
args:["matrix","column"],
|
|
460
|
+
returnValue:"0"
|
|
461
|
+
})
|
|
462
|
+
const multiplyMatrix=generateMatrixFunction({
|
|
463
|
+
code:"setElement(sumVector(element,bMatrix,columnOffset));",
|
|
464
|
+
args:["bMatrix"],
|
|
465
|
+
sumVector:sumVector,
|
|
466
|
+
returnValue:"()=>getMatrix()"
|
|
467
|
+
})
|
|
468
|
+
const matrix=[[1,2],[3,4],[5,6]];
|
|
469
|
+
console.log(multiplyMatrix(matrix,3,2,[[1,1],[1,1]]));
|
|
470
|
+
done();
|
|
471
|
+
})
|
|
472
|
+
});
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
const assert=require('assert');
|
|
2
|
+
const should=require("should");
|
|
3
|
+
require("../dataAnalysis/arrayCompareToPrecision.js");
|
|
4
|
+
const PCA=require("../dataAnalysis/pca.js");
|
|
5
|
+
const pca=new PCA();
|
|
6
|
+
|
|
7
|
+
const m2x2=[[11,12],[21,22]]
|
|
8
|
+
const m2x3=[[11,12,13],[21,22,23]]
|
|
9
|
+
|
|
10
|
+
describe('pca', function(){
|
|
11
|
+
it("getMatrix", function(done){
|
|
12
|
+
assert.equal(JSON.stringify(pca.getMatrix(2,2,1)),"[[1,1],[1,1]]")
|
|
13
|
+
done();
|
|
14
|
+
})
|
|
15
|
+
it("multipe ", function(done){
|
|
16
|
+
assert.equal(JSON.stringify(pca.multiply([[1,2],[3,4],[5,1]],[[2],[4]]))
|
|
17
|
+
,JSON.stringify([[10],[22],[14]]));
|
|
18
|
+
done();
|
|
19
|
+
})
|
|
20
|
+
it("transpose ", function(done){
|
|
21
|
+
assert.equal(JSON.stringify(pca.transpose([[1,2],[3,4],[5,1]],[[2],[4]]))
|
|
22
|
+
,JSON.stringify([[1,3,5],[2,4,1]]));
|
|
23
|
+
done();
|
|
24
|
+
})
|
|
25
|
+
it("x 1 matrices", function(done){
|
|
26
|
+
assert.equal(JSON.stringify(pca.multiply(m2x2,pca.getMatrix(2,1,1))),JSON.stringify([[23],[43]]));
|
|
27
|
+
assert.equal(JSON.stringify(pca.multiply(m2x2,pca.getMatrix(2,2,1))),JSON.stringify([[23,23],[43,43]]));
|
|
28
|
+
assert.equal(JSON.stringify(pca.multiply(m2x3,pca.getMatrix(3,3,1))),JSON.stringify([[36,36,36],[66,66,66]]));
|
|
29
|
+
done();
|
|
30
|
+
})
|
|
31
|
+
it("getEigenVectors", function(done){
|
|
32
|
+
const data = [[40,50,60],[50,70,60],[80,70,90],[50,60,80]];
|
|
33
|
+
const expected=
|
|
34
|
+
[{
|
|
35
|
+
"eigenvalue": 520.0992658908312,
|
|
36
|
+
"vector": [0.744899700771276, 0.2849796479974595, 0.6032503924724023]
|
|
37
|
+
}, {
|
|
38
|
+
"eigenvalue": 78.10455398035167,
|
|
39
|
+
"vector": [0.2313199078283626, 0.7377809866160473, -0.6341689964277106]
|
|
40
|
+
}, {
|
|
41
|
+
"eigenvalue": 18.462846795484058,
|
|
42
|
+
"vector": [0.6257919271076777, -0.6119361208615616, -0.4836513702572988]
|
|
43
|
+
}];
|
|
44
|
+
const expectedEigenvalues=expected.map(element=>element.eigenvalue);
|
|
45
|
+
const expectedVectors=expected.map(element=>element.vector);
|
|
46
|
+
const result = pca.getEigenVectors(data);
|
|
47
|
+
console.log(result);
|
|
48
|
+
const eigenvalues=result.map(element=>element.eigenvalue);
|
|
49
|
+
const vectors=result.map(element=>element.vector);
|
|
50
|
+
expectedEigenvalues.compareToPrecision(eigenvalues,6);
|
|
51
|
+
expectedVectors.compareToPrecision(vectors,6);
|
|
52
|
+
done();
|
|
53
|
+
});
|
|
54
|
+
});
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
const assert=require('assert');
|
|
2
|
+
const should=require("should");
|
|
3
|
+
const svd=require("../dataAnalysis/svd.js");
|
|
4
|
+
require("../dataAnalysis/arrayCompareToPrecision.js");
|
|
5
|
+
|
|
6
|
+
const expected={
|
|
7
|
+
orthonormalizedColumns: [
|
|
8
|
+
[ -0.3913289321676804, 0.3487948014410755, 0.10448989927485411 ],
|
|
9
|
+
[ -0.4639397307294648, -0.34948424610207607, 0.7962721013609022 ],
|
|
10
|
+
[ -0.6197155556759748, -0.5188940242462491, -0.5888137410546312 ],
|
|
11
|
+
[ -0.4975683100363125, 0.6978194177691509, -0.0912742016622088 ]
|
|
12
|
+
],
|
|
13
|
+
singularValues: [ 223.85445199527607, 13.695880509722402, 17.366841363876695 ],
|
|
14
|
+
orthogonalMatrix: [
|
|
15
|
+
[ -0.5061583666044986, -0.7405855572048029, -0.44196916224541927 ],
|
|
16
|
+
[ -0.5596333427471312, -0.10788454127728717, 0.8216881692217926 ],
|
|
17
|
+
[ -0.6562120309792694, 0.6632450212500965, -0.35984970777398323 ]
|
|
18
|
+
]
|
|
19
|
+
}
|
|
20
|
+
|
|
21
|
+
describe('SVD', function(){
|
|
22
|
+
it("getEigenVectors", function(done){
|
|
23
|
+
const data = [[40,50,60],[50,70,60],[80,70,90],[50,60,80]];
|
|
24
|
+
const vectors = svd(data);
|
|
25
|
+
console.log(vectors)
|
|
26
|
+
vectors.orthonormalizedColumns.compareToPrecision(expected.orthonormalizedColumns)
|
|
27
|
+
vectors.singularValues.compareToPrecision(expected.singularValues)
|
|
28
|
+
vectors.orthogonalMatrix.compareToPrecision(expected.orthogonalMatrix)
|
|
29
|
+
done();
|
|
30
|
+
});
|
|
31
|
+
});
|
|
@@ -1,8 +1,8 @@
|
|
|
1
|
-
|
|
1
|
+
onst assert=require('assert');
|
|
2
2
|
const should=require("should");
|
|
3
3
|
const ed=require("../dataAnalysis/euclideanDistance.js");
|
|
4
4
|
require("../dataAnalysis/forNestedEach");
|
|
5
|
-
|
|
5
|
+
c
|
|
6
6
|
describe('euclideanDistance', function() {
|
|
7
7
|
it("array forNestedEach", function(done) {
|
|
8
8
|
const atest=[1,2,3,4];
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
const assert=require('assert');
|
|
2
|
+
const Matrix=require("../../matrix/matrix");
|
|
3
|
+
|
|
4
|
+
const m22=new Matrix([[1,2],[3,4]]);
|
|
5
|
+
const m44=new Matrix([
|
|
6
|
+
[ 1, 0, 2, -1 ],
|
|
7
|
+
[ 3, 0, 0, 5 ],
|
|
8
|
+
[ 2, 1, 4, -3 ],
|
|
9
|
+
[ 1, 0, 5, 0 ]]);
|
|
10
|
+
|
|
11
|
+
describe("matrix 02base", function() {
|
|
12
|
+
it('norm', function(done) {
|
|
13
|
+
const m=new Matrix([[2,3,-1], [0,-1,4]])
|
|
14
|
+
assert.strictEqual(m.norm(),5.5677643628300215);
|
|
15
|
+
done();
|
|
16
|
+
});
|
|
17
|
+
it('norm', function(done) {
|
|
18
|
+
const m=new Matrix({rows:4,columns:4});
|
|
19
|
+
assert.doesNotThrow(()=>m.setRunningSum().equalsNearly([
|
|
20
|
+
[1,0,0,0],
|
|
21
|
+
[1,1,0,0],
|
|
22
|
+
[1,1,1,0],
|
|
23
|
+
[1,1,1,1]]));
|
|
24
|
+
done();
|
|
25
|
+
});
|
|
26
|
+
it('getVandermonde', function(done) {
|
|
27
|
+
const m=(new Matrix(1,1)).getVandermonde([-1,0,0.5,1],5);
|
|
28
|
+
assert.doesNotThrow(()=>m.equalsNearly([
|
|
29
|
+
[ 1. , -1. , 1. , -1. , 1. ],
|
|
30
|
+
[ 1. , 0. , 0. , 0. , 0. ],
|
|
31
|
+
[ 1. , 0.5 , 0.25 , 0.125 , 0.0625],
|
|
32
|
+
[ 1. , 1. , 1. , 1. , 1. ]]));
|
|
33
|
+
done();
|
|
34
|
+
});
|
|
35
|
+
|
|
36
|
+
});
|