node-red-contrib-ai-agent 0.2.0 → 0.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +8 -2
- package/orchestrator/orchestrator.html +6 -0
- package/orchestrator/orchestrator.js +62 -19
- package/package.json +1 -1
package/README.md
CHANGED
|
@@ -93,9 +93,15 @@ Configures the AI model and API settings.
|
|
|
93
93
|
### AI Orchestrator
|
|
94
94
|
Coordinates multiple AI agents by creating and executing plans. It uses an autonomy loop (observe-think-act-reflect) to achieve complex goals.
|
|
95
95
|
|
|
96
|
+
**Key Features:**
|
|
97
|
+
- **Non-linear Planning**: Supports task dependencies (tasks wait for their predecessors).
|
|
98
|
+
- **Task Prioritization**: Executes higher priority tasks first within dependency constraints.
|
|
99
|
+
- **Dynamic Plan Revision**: Refines the plan based on task outcomes and agent feedback.
|
|
100
|
+
- **Error Recovery**: Automatically handles task failures with recovery strategies (retry, pivot, or fail).
|
|
101
|
+
|
|
96
102
|
**Properties:**
|
|
97
103
|
- **Max Iterations**: Maximum cycles for the autonomy loop
|
|
98
|
-
- **Planning Strategy**: Simple (linear) or Advanced
|
|
104
|
+
- **Planning Strategy**: Simple (linear) or Advanced (dependency-aware)
|
|
99
105
|
- **Default Goal**: Optional fallback goal
|
|
100
106
|
- **Name**: Display name for the node
|
|
101
107
|
|
|
@@ -179,7 +185,7 @@ The AI Orchestrator can manage complex, multi-step tasks:
|
|
|
179
185
|
4. Connect the orchestrator's second output to a **Debug** node
|
|
180
186
|
5. Configure the orchestrator with a goal (e.g., "Write a blog post and then translate it to Spanish")
|
|
181
187
|
|
|
182
|
-
The orchestrator will create a plan, dispatch the first task to the agent, reflect on the result, and then dispatch the next task until completion.
|
|
188
|
+
The orchestrator will create a plan (optionally with dependencies and priorities), dispatch the first available task to the agent, reflect on the result, and then dispatch the next task until completion. If a task fails, it can revise the plan to recover.
|
|
183
189
|
|
|
184
190
|
## Best Practices
|
|
185
191
|
|
|
@@ -72,5 +72,11 @@
|
|
|
72
72
|
|
|
73
73
|
<h3>Details</h3>
|
|
74
74
|
<p>Connect this node to one or more AI agents. The first output should flow into an agent, and the agent's output should loop back to this node's input.</p>
|
|
75
|
+
<p>The orchestrator supports advanced planning features in "Advanced" mode:</p>
|
|
76
|
+
<ul>
|
|
77
|
+
<li><strong>Dependencies:</strong> Tasks can wait for other tasks to complete (<code>dependsOn</code> array).</li>
|
|
78
|
+
<li><strong>Priorities:</strong> Tasks with higher <code>priority</code> numbers are executed first.</li>
|
|
79
|
+
<li><strong>Error Recovery:</strong> If a task fails, the orchestrator reflects on the error and can revise the plan to retry or try an alternative approach.</li>
|
|
80
|
+
</ul>
|
|
75
81
|
<p>When the goal is achieved or max iterations are reached, the final message is sent to the second output.</p>
|
|
76
82
|
</script>
|
|
@@ -48,7 +48,7 @@ module.exports = function (RED) {
|
|
|
48
48
|
// Logic based on current status
|
|
49
49
|
if (msg.orchestration.status === 'planning' || !msg.orchestration.plan) {
|
|
50
50
|
await createInitialPlan(node, msg);
|
|
51
|
-
} else {
|
|
51
|
+
} else if (msg.orchestration.currentTaskId) {
|
|
52
52
|
await reflectAndRefine(node, msg);
|
|
53
53
|
}
|
|
54
54
|
|
|
@@ -82,23 +82,31 @@ module.exports = function (RED) {
|
|
|
82
82
|
|
|
83
83
|
async function createInitialPlan(node, msg) {
|
|
84
84
|
const goal = msg.orchestration.goal;
|
|
85
|
-
const
|
|
85
|
+
const strategy = node.planningStrategy;
|
|
86
|
+
|
|
87
|
+
let prompt = `Goal: ${goal}\n\nDecompose this goal into a series of tasks for AI agents.
|
|
86
88
|
Return a JSON object with a "tasks" array. Each task should have:
|
|
87
|
-
- "id": a short string id
|
|
88
|
-
- "type": the type of task
|
|
89
|
-
- "input":
|
|
89
|
+
- "id": a short string id (e.g., "t1", "t2")
|
|
90
|
+
- "type": the type of task (e.g., "research", "code", "review")
|
|
91
|
+
- "input": detailed instruction for the agent
|
|
90
92
|
- "status": "pending"
|
|
93
|
+
- "priority": a number (1-10, default 5)
|
|
94
|
+
- "dependsOn": an array of IDs of tasks that must be completed BEFORE this task can start (empty array if none)`;
|
|
95
|
+
|
|
96
|
+
if (strategy === 'advanced') {
|
|
97
|
+
prompt += `\n\nThink about parallel execution. Group related tasks and identify bottlenecks. Ensure dependencies are logical.`;
|
|
98
|
+
}
|
|
91
99
|
|
|
92
|
-
|
|
100
|
+
prompt += `\n\nExample:
|
|
93
101
|
{
|
|
94
102
|
"tasks": [
|
|
95
|
-
{"id": "t1", "type": "research", "input": "
|
|
96
|
-
{"id": "t2", "type": "
|
|
103
|
+
{"id": "t1", "type": "research", "input": "...", "status": "pending", "priority": 10, "dependsOn": []},
|
|
104
|
+
{"id": "t2", "type": "implementation", "input": "...", "status": "pending", "priority": 5, "dependsOn": ["t1"]}
|
|
97
105
|
]
|
|
98
106
|
}`;
|
|
99
107
|
|
|
100
108
|
try {
|
|
101
|
-
const response = await callAI(msg.aiagent, prompt, "You are an AI Orchestrator that creates plans.");
|
|
109
|
+
const response = await callAI(msg.aiagent, prompt, "You are an AI Orchestrator that creates non-linear plans with dependencies.");
|
|
102
110
|
const planData = JSON.parse(extractJson(response));
|
|
103
111
|
msg.orchestration.plan = planData;
|
|
104
112
|
msg.orchestration.status = 'executing';
|
|
@@ -110,35 +118,47 @@ Example:
|
|
|
110
118
|
async function reflectAndRefine(node, msg) {
|
|
111
119
|
const currentTaskId = msg.orchestration.currentTaskId;
|
|
112
120
|
const taskResult = msg.payload;
|
|
121
|
+
const isError = msg.error ? true : false;
|
|
113
122
|
|
|
114
123
|
// Update history
|
|
115
124
|
msg.orchestration.history.push({
|
|
116
125
|
taskId: currentTaskId,
|
|
117
126
|
result: taskResult,
|
|
127
|
+
error: msg.error,
|
|
118
128
|
timestamp: new Date().toISOString()
|
|
119
129
|
});
|
|
120
130
|
|
|
121
131
|
// Update task status in plan
|
|
122
132
|
const task = msg.orchestration.plan.tasks.find(t => t.id === currentTaskId);
|
|
123
133
|
if (task) {
|
|
124
|
-
|
|
125
|
-
|
|
134
|
+
if (isError) {
|
|
135
|
+
task.status = 'failed';
|
|
136
|
+
task.error = msg.error;
|
|
137
|
+
} else {
|
|
138
|
+
task.status = 'completed';
|
|
139
|
+
task.output = taskResult;
|
|
140
|
+
}
|
|
126
141
|
}
|
|
127
142
|
|
|
128
143
|
const prompt = `Current Goal: ${msg.orchestration.goal}
|
|
129
144
|
Current Plan: ${JSON.stringify(msg.orchestration.plan)}
|
|
130
|
-
Last Task
|
|
145
|
+
Last Task ID: ${currentTaskId}
|
|
146
|
+
Last Task ${isError ? 'Error' : 'Result'}: ${JSON.stringify(isError ? msg.error : taskResult)}
|
|
147
|
+
|
|
148
|
+
Evaluate the progress.
|
|
149
|
+
1. If the last task failed, propose a recovery strategy (retry, alternative task, or fail the goal).
|
|
150
|
+
2. If the goal is achieved, set status to "completed".
|
|
151
|
+
3. Otherwise, continue execution. You may refine the plan by adding, removing, or modifying tasks.
|
|
131
152
|
|
|
132
|
-
Evaluate the progress. Should we continue with the current plan, refine it, or is the goal achieved?
|
|
133
153
|
Return a JSON object:
|
|
134
154
|
{
|
|
135
|
-
"analysis": "
|
|
155
|
+
"analysis": "detailed evaluation of progress and next steps",
|
|
136
156
|
"status": "executing" | "completed" | "failed",
|
|
137
|
-
"updatedPlan": {
|
|
157
|
+
"updatedPlan": { "tasks": [...] }
|
|
138
158
|
}`;
|
|
139
159
|
|
|
140
160
|
try {
|
|
141
|
-
const response = await callAI(msg.aiagent, prompt, "You are an AI Orchestrator that reflects on progress.");
|
|
161
|
+
const response = await callAI(msg.aiagent, prompt, "You are an AI Orchestrator that reflects on progress and manages plan revisions.");
|
|
142
162
|
const reflection = JSON.parse(extractJson(response));
|
|
143
163
|
|
|
144
164
|
msg.orchestration.status = reflection.status;
|
|
@@ -146,14 +166,37 @@ Return a JSON object:
|
|
|
146
166
|
msg.orchestration.plan = reflection.updatedPlan;
|
|
147
167
|
}
|
|
148
168
|
} catch (error) {
|
|
149
|
-
node.warn(`Reflection failed, continuing with current plan: ${error.message}`);
|
|
150
|
-
// Fallback:
|
|
169
|
+
node.warn(`Reflection failed, continuing with current plan state: ${error.message}`);
|
|
170
|
+
// Fallback: stay in executing status if it was executing, let getNextTask decide
|
|
151
171
|
}
|
|
152
172
|
}
|
|
153
173
|
|
|
154
174
|
function getNextTask(plan) {
|
|
155
175
|
if (!plan || !plan.tasks) return null;
|
|
156
|
-
|
|
176
|
+
|
|
177
|
+
// Find tasks that are pending AND all their dependencies are completed
|
|
178
|
+
const eligibleTasks = plan.tasks.filter(t => {
|
|
179
|
+
if (t.status !== 'pending') return false;
|
|
180
|
+
|
|
181
|
+
if (!t.dependsOn || t.dependsOn.length === 0) return true;
|
|
182
|
+
|
|
183
|
+
return t.dependsOn.every(depId => {
|
|
184
|
+
const depTask = plan.tasks.find(pt => pt.id === depId);
|
|
185
|
+
return depTask && depTask.status === 'completed';
|
|
186
|
+
});
|
|
187
|
+
});
|
|
188
|
+
|
|
189
|
+
if (eligibleTasks.length === 0) return null;
|
|
190
|
+
|
|
191
|
+
// Sort by priority (descending) then by ID
|
|
192
|
+
eligibleTasks.sort((a, b) => {
|
|
193
|
+
const priorityA = a.priority || 5;
|
|
194
|
+
const priorityB = b.priority || 5;
|
|
195
|
+
if (priorityB !== priorityA) return priorityB - priorityA;
|
|
196
|
+
return a.id.localeCompare(b.id);
|
|
197
|
+
});
|
|
198
|
+
|
|
199
|
+
return eligibleTasks[0];
|
|
157
200
|
}
|
|
158
201
|
|
|
159
202
|
async function callAI(aiConfig, prompt, systemPrompt) {
|