node-red-contrib-ai-agent 0.0.7 → 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +22 -0
- package/orchestrator/orchestrator.html +76 -0
- package/orchestrator/orchestrator.js +186 -0
- package/package.json +5 -3
package/README.md
CHANGED
|
@@ -23,6 +23,7 @@ Your feedback and contributions are highly appreciated!
|
|
|
23
23
|
- **In-Memory**: Store conversation context in memory (volatile)
|
|
24
24
|
- **File-based**: Persist conversation context to disk
|
|
25
25
|
- **AI Model Node**: Configure AI models and API settings
|
|
26
|
+
- **AI Orchestrator Node**: Coordinate multiple agents and create autonomous plans
|
|
26
27
|
- **Tool Integration**: Extend functionality with custom tools
|
|
27
28
|
- **Stateless Design**: Memory nodes are stateless, making them more reliable and scalable
|
|
28
29
|
- **Context Management**: Automatic conversation history management with configurable retention
|
|
@@ -89,6 +90,15 @@ Configures the AI model and API settings.
|
|
|
89
90
|
- **API Key**: Your OpenRouter API key
|
|
90
91
|
- **Name**: Display name for the node
|
|
91
92
|
|
|
93
|
+
### AI Orchestrator
|
|
94
|
+
Coordinates multiple AI agents by creating and executing plans. It uses an autonomy loop (observe-think-act-reflect) to achieve complex goals.
|
|
95
|
+
|
|
96
|
+
**Properties:**
|
|
97
|
+
- **Max Iterations**: Maximum cycles for the autonomy loop
|
|
98
|
+
- **Planning Strategy**: Simple (linear) or Advanced
|
|
99
|
+
- **Default Goal**: Optional fallback goal
|
|
100
|
+
- **Name**: Display name for the node
|
|
101
|
+
|
|
92
102
|
### AI Tool Function
|
|
93
103
|
Creates a JavaScript function tool that can be used by the AI Agent.
|
|
94
104
|
|
|
@@ -159,6 +169,18 @@ For more complex scenarios, you can chain multiple agents to process messages in
|
|
|
159
169
|
|
|
160
170
|
Each agent will maintain its own conversation context based on its memory configuration.
|
|
161
171
|
|
|
172
|
+
## Example: Autonomous Orchestration
|
|
173
|
+
|
|
174
|
+
The AI Orchestrator can manage complex, multi-step tasks:
|
|
175
|
+
|
|
176
|
+
1. Add an **AI Orchestrator** node
|
|
177
|
+
2. Connect its first output to an **AI Agent**
|
|
178
|
+
3. Connect the agent's output back to the **AI Orchestrator** input
|
|
179
|
+
4. Connect the orchestrator's second output to a **Debug** node
|
|
180
|
+
5. Configure the orchestrator with a goal (e.g., "Write a blog post and then translate it to Spanish")
|
|
181
|
+
|
|
182
|
+
The orchestrator will create a plan, dispatch the first task to the agent, reflect on the result, and then dispatch the next task until completion.
|
|
183
|
+
|
|
162
184
|
## Best Practices
|
|
163
185
|
|
|
164
186
|
### Memory Management
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
<script type="text/javascript">
|
|
2
|
+
RED.nodes.registerType('ai-orchestrator', {
|
|
3
|
+
category: 'ai agent',
|
|
4
|
+
color: '#E2D96E',
|
|
5
|
+
defaults: {
|
|
6
|
+
name: { value: "" },
|
|
7
|
+
maxIterations: { value: 5, validate: RED.validators.number() },
|
|
8
|
+
planningStrategy: { value: "simple" },
|
|
9
|
+
defaultGoal: { value: "" }
|
|
10
|
+
},
|
|
11
|
+
inputs: 1,
|
|
12
|
+
outputs: 2,
|
|
13
|
+
outputLabels: ["Task Dispatch", "Final Result"],
|
|
14
|
+
icon: "font-awesome/fa-sitemap",
|
|
15
|
+
label: function () {
|
|
16
|
+
return this.name || "ai orchestrator";
|
|
17
|
+
},
|
|
18
|
+
paletteLabel: "ai orchestrator"
|
|
19
|
+
});
|
|
20
|
+
</script>
|
|
21
|
+
|
|
22
|
+
<script type="text/html" data-template-name="ai-orchestrator">
|
|
23
|
+
<div class="form-row">
|
|
24
|
+
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
|
|
25
|
+
<input type="text" id="node-input-name" placeholder="Name">
|
|
26
|
+
</div>
|
|
27
|
+
<div class="form-row">
|
|
28
|
+
<label for="node-input-maxIterations"><i class="fa fa-repeat"></i> Max Iterations</label>
|
|
29
|
+
<input type="number" id="node-input-maxIterations" placeholder="5">
|
|
30
|
+
</div>
|
|
31
|
+
<div class="form-row">
|
|
32
|
+
<label for="node-input-planningStrategy"><i class="fa fa-cog"></i> Planning Strategy</label>
|
|
33
|
+
<select id="node-input-planningStrategy">
|
|
34
|
+
<option value="simple">Simple (Linear)</option>
|
|
35
|
+
<option value="advanced">Advanced (LLM-optimized)</option>
|
|
36
|
+
</select>
|
|
37
|
+
</div>
|
|
38
|
+
<div class="form-row">
|
|
39
|
+
<label for="node-input-defaultGoal"><i class="fa fa-bullseye"></i> Default Goal</label>
|
|
40
|
+
<textarea id="node-input-defaultGoal" style="width: 100%" rows="3" placeholder="Optional default goal for the orchestrator"></textarea>
|
|
41
|
+
</div>
|
|
42
|
+
</script>
|
|
43
|
+
|
|
44
|
+
<script type="text/html" data-content-help-name="ai-orchestrator">
|
|
45
|
+
<p>The AI Orchestrator node manages complex tasks by decomposing them into a plan and dispatching individual tasks to other AI agents.</p>
|
|
46
|
+
|
|
47
|
+
<h3>Inputs</h3>
|
|
48
|
+
<dl class="message-properties">
|
|
49
|
+
<dt>payload <span class="property-type">string | object</span></dt>
|
|
50
|
+
<dd>The goal or task description if starting a new plan.</dd>
|
|
51
|
+
<dt>orchestration <span class="property-type">object</span></dt>
|
|
52
|
+
<dd>The internal state of the orchestration loop (passed back from agents).</dd>
|
|
53
|
+
<dt>aiagent <span class="property-type">object</span></dt>
|
|
54
|
+
<dd>The AI model configuration (required for planning and reflection).</dd>
|
|
55
|
+
</dl>
|
|
56
|
+
|
|
57
|
+
<h3>Outputs</h3>
|
|
58
|
+
<ol class="node-ports">
|
|
59
|
+
<li>Task Dispatch
|
|
60
|
+
<dl class="message-properties">
|
|
61
|
+
<dt>msg.payload <span class="property-type">string</span></dt>
|
|
62
|
+
<dd>The instruction for the next task.</dd>
|
|
63
|
+
</dl>
|
|
64
|
+
</li>
|
|
65
|
+
<li>Final Result
|
|
66
|
+
<dl class="message-properties">
|
|
67
|
+
<dt>msg.orchestration <span class="property-type">object</span></dt>
|
|
68
|
+
<dd>The full orchestration history and final result status.</dd>
|
|
69
|
+
</dl>
|
|
70
|
+
</li>
|
|
71
|
+
</ol>
|
|
72
|
+
|
|
73
|
+
<h3>Details</h3>
|
|
74
|
+
<p>Connect this node to one or more AI agents. The first output should flow into an agent, and the agent's output should loop back to this node's input.</p>
|
|
75
|
+
<p>When the goal is achieved or max iterations are reached, the final message is sent to the second output.</p>
|
|
76
|
+
</script>
|
|
@@ -0,0 +1,186 @@
|
|
|
1
|
+
const axios = require('axios');
|
|
2
|
+
|
|
3
|
+
module.exports = function (RED) {
|
|
4
|
+
function AiOrchestratorNode(config) {
|
|
5
|
+
RED.nodes.createNode(this, config);
|
|
6
|
+
const node = this;
|
|
7
|
+
|
|
8
|
+
this.name = config.name || 'AI Orchestrator';
|
|
9
|
+
this.maxIterations = parseInt(config.maxIterations) || 5;
|
|
10
|
+
this.planningStrategy = config.planningStrategy || 'simple';
|
|
11
|
+
this.defaultGoal = config.defaultGoal || '';
|
|
12
|
+
|
|
13
|
+
node.on('input', async function (msg, send, done) {
|
|
14
|
+
send = send || function () { node.send.apply(node, arguments) };
|
|
15
|
+
node.status({ fill: 'blue', shape: 'dot', text: 'thinking...' });
|
|
16
|
+
|
|
17
|
+
try {
|
|
18
|
+
// Initialize orchestration state if not present
|
|
19
|
+
if (!msg.orchestration) {
|
|
20
|
+
msg.orchestration = {
|
|
21
|
+
planId: 'plan-' + Date.now(),
|
|
22
|
+
iterations: 0,
|
|
23
|
+
goal: msg.payload || node.defaultGoal,
|
|
24
|
+
status: 'planning',
|
|
25
|
+
history: [],
|
|
26
|
+
plan: null
|
|
27
|
+
};
|
|
28
|
+
} else {
|
|
29
|
+
msg.orchestration.iterations++;
|
|
30
|
+
}
|
|
31
|
+
|
|
32
|
+
// Check for max iterations
|
|
33
|
+
if (msg.orchestration.iterations >= node.maxIterations) {
|
|
34
|
+
node.warn('Max iterations reached');
|
|
35
|
+
msg.orchestration.status = 'failed';
|
|
36
|
+
msg.orchestration.error = 'Max iterations reached';
|
|
37
|
+
node.status({ fill: 'red', shape: 'dot', text: 'max iterations' });
|
|
38
|
+
send([null, msg]); // Output 2 for final result
|
|
39
|
+
if (done) done();
|
|
40
|
+
return;
|
|
41
|
+
}
|
|
42
|
+
|
|
43
|
+
// AI Configuration check
|
|
44
|
+
if (!msg.aiagent || !msg.aiagent.apiKey) {
|
|
45
|
+
throw new Error('AI Model configuration missing or API key not found.');
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
// Logic based on current status
|
|
49
|
+
if (msg.orchestration.status === 'planning' || !msg.orchestration.plan) {
|
|
50
|
+
await createInitialPlan(node, msg);
|
|
51
|
+
} else {
|
|
52
|
+
await reflectAndRefine(node, msg);
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
// Dispatch or Finalize
|
|
56
|
+
if (msg.orchestration.status === 'completed' || msg.orchestration.status === 'failed') {
|
|
57
|
+
node.status({ fill: 'green', shape: 'dot', text: msg.orchestration.status });
|
|
58
|
+
send([null, msg]); // Output 2
|
|
59
|
+
} else {
|
|
60
|
+
const nextTask = getNextTask(msg.orchestration.plan);
|
|
61
|
+
if (nextTask) {
|
|
62
|
+
msg.payload = nextTask.input;
|
|
63
|
+
msg.topic = nextTask.type;
|
|
64
|
+
msg.orchestration.currentTaskId = nextTask.id;
|
|
65
|
+
node.status({ fill: 'blue', shape: 'ring', text: `dispatching: ${nextTask.id}` });
|
|
66
|
+
send([msg, null]); // Output 1
|
|
67
|
+
} else {
|
|
68
|
+
msg.orchestration.status = 'completed';
|
|
69
|
+
node.status({ fill: 'green', shape: 'dot', text: 'completed' });
|
|
70
|
+
send([null, msg]); // Output 2
|
|
71
|
+
}
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
if (done) done();
|
|
75
|
+
} catch (error) {
|
|
76
|
+
node.status({ fill: 'red', shape: 'ring', text: 'error' });
|
|
77
|
+
node.error(error.message, msg);
|
|
78
|
+
if (done) done(error);
|
|
79
|
+
}
|
|
80
|
+
});
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
async function createInitialPlan(node, msg) {
|
|
84
|
+
const goal = msg.orchestration.goal;
|
|
85
|
+
const prompt = `Goal: ${goal}\n\nDecompose this goal into a series of tasks for AI agents.
|
|
86
|
+
Return a JSON object with a "tasks" array. Each task should have:
|
|
87
|
+
- "id": a short string id
|
|
88
|
+
- "type": the type of task
|
|
89
|
+
- "input": what the agent should do
|
|
90
|
+
- "status": "pending"
|
|
91
|
+
|
|
92
|
+
Example:
|
|
93
|
+
{
|
|
94
|
+
"tasks": [
|
|
95
|
+
{"id": "t1", "type": "research", "input": "Find information about X", "status": "pending"},
|
|
96
|
+
{"id": "t2", "type": "summary", "input": "Summarize the findings", "status": "pending"}
|
|
97
|
+
]
|
|
98
|
+
}`;
|
|
99
|
+
|
|
100
|
+
try {
|
|
101
|
+
const response = await callAI(msg.aiagent, prompt, "You are an AI Orchestrator that creates plans.");
|
|
102
|
+
const planData = JSON.parse(extractJson(response));
|
|
103
|
+
msg.orchestration.plan = planData;
|
|
104
|
+
msg.orchestration.status = 'executing';
|
|
105
|
+
} catch (error) {
|
|
106
|
+
throw new Error(`Planning failed: ${error.message}`);
|
|
107
|
+
}
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
async function reflectAndRefine(node, msg) {
|
|
111
|
+
const currentTaskId = msg.orchestration.currentTaskId;
|
|
112
|
+
const taskResult = msg.payload;
|
|
113
|
+
|
|
114
|
+
// Update history
|
|
115
|
+
msg.orchestration.history.push({
|
|
116
|
+
taskId: currentTaskId,
|
|
117
|
+
result: taskResult,
|
|
118
|
+
timestamp: new Date().toISOString()
|
|
119
|
+
});
|
|
120
|
+
|
|
121
|
+
// Update task status in plan
|
|
122
|
+
const task = msg.orchestration.plan.tasks.find(t => t.id === currentTaskId);
|
|
123
|
+
if (task) {
|
|
124
|
+
task.status = 'completed';
|
|
125
|
+
task.output = taskResult;
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
const prompt = `Current Goal: ${msg.orchestration.goal}
|
|
129
|
+
Current Plan: ${JSON.stringify(msg.orchestration.plan)}
|
|
130
|
+
Last Task Result: ${JSON.stringify(taskResult)}
|
|
131
|
+
|
|
132
|
+
Evaluate the progress. Should we continue with the current plan, refine it, or is the goal achieved?
|
|
133
|
+
Return a JSON object:
|
|
134
|
+
{
|
|
135
|
+
"analysis": "string evaluation",
|
|
136
|
+
"status": "executing" | "completed" | "failed",
|
|
137
|
+
"updatedPlan": { ... same structure as plan ... }
|
|
138
|
+
}`;
|
|
139
|
+
|
|
140
|
+
try {
|
|
141
|
+
const response = await callAI(msg.aiagent, prompt, "You are an AI Orchestrator that reflects on progress.");
|
|
142
|
+
const reflection = JSON.parse(extractJson(response));
|
|
143
|
+
|
|
144
|
+
msg.orchestration.status = reflection.status;
|
|
145
|
+
if (reflection.updatedPlan) {
|
|
146
|
+
msg.orchestration.plan = reflection.updatedPlan;
|
|
147
|
+
}
|
|
148
|
+
} catch (error) {
|
|
149
|
+
node.warn(`Reflection failed, continuing with current plan: ${error.message}`);
|
|
150
|
+
// Fallback: just move to next task if possible
|
|
151
|
+
}
|
|
152
|
+
}
|
|
153
|
+
|
|
154
|
+
function getNextTask(plan) {
|
|
155
|
+
if (!plan || !plan.tasks) return null;
|
|
156
|
+
return plan.tasks.find(t => t.status === 'pending');
|
|
157
|
+
}
|
|
158
|
+
|
|
159
|
+
async function callAI(aiConfig, prompt, systemPrompt) {
|
|
160
|
+
const response = await axios.post(
|
|
161
|
+
'https://openrouter.ai/api/v1/chat/completions',
|
|
162
|
+
{
|
|
163
|
+
model: aiConfig.model,
|
|
164
|
+
messages: [
|
|
165
|
+
{ role: 'system', content: systemPrompt },
|
|
166
|
+
{ role: 'user', content: prompt }
|
|
167
|
+
],
|
|
168
|
+
response_format: { type: 'json_object' }
|
|
169
|
+
},
|
|
170
|
+
{
|
|
171
|
+
headers: {
|
|
172
|
+
'Authorization': `Bearer ${aiConfig.apiKey}`,
|
|
173
|
+
'Content-Type': 'application/json'
|
|
174
|
+
}
|
|
175
|
+
}
|
|
176
|
+
);
|
|
177
|
+
return response.data.choices[0]?.message?.content || '';
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
function extractJson(text) {
|
|
181
|
+
const match = text.match(/\{[\s\S]*\}/);
|
|
182
|
+
return match ? match[0] : text;
|
|
183
|
+
}
|
|
184
|
+
|
|
185
|
+
RED.nodes.registerType('ai-orchestrator', AiOrchestratorNode);
|
|
186
|
+
};
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "node-red-contrib-ai-agent",
|
|
3
|
-
"version": "0.0
|
|
3
|
+
"version": "0.2.0",
|
|
4
4
|
"description": "AI Agent for Node-RED",
|
|
5
5
|
"repository": {
|
|
6
6
|
"type": "git",
|
|
@@ -32,7 +32,8 @@
|
|
|
32
32
|
"tool-function/*",
|
|
33
33
|
"tool-http/*",
|
|
34
34
|
"memory-file/*",
|
|
35
|
-
"memory-inmem/*"
|
|
35
|
+
"memory-inmem/*",
|
|
36
|
+
"orchestrator/*"
|
|
36
37
|
],
|
|
37
38
|
"dependencies": {
|
|
38
39
|
"axios": "^1.6.0",
|
|
@@ -60,7 +61,8 @@
|
|
|
60
61
|
"ai-tool-function": "./tool-function/ai-tool-function.js",
|
|
61
62
|
"ai-tool-http": "./tool-http/ai-tool-http.js",
|
|
62
63
|
"ai-memory-file": "./memory-file/memory-file.js",
|
|
63
|
-
"ai-memory-inmem": "./memory-inmem/memory-inmem.js"
|
|
64
|
+
"ai-memory-inmem": "./memory-inmem/memory-inmem.js",
|
|
65
|
+
"ai-orchestrator": "./orchestrator/orchestrator.js"
|
|
64
66
|
}
|
|
65
67
|
}
|
|
66
68
|
}
|