native-vector-store 0.1.0 → 0.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +242 -12
- package/binding.gyp +22 -10
- package/deps/simdjson/simdjson.cpp +56403 -0
- package/deps/simdjson/simdjson.h +123534 -0
- package/docs/PERFORMANCE_CASE_STUDY.md +130 -0
- package/docs/PREBUILDS.md +69 -0
- package/docs/VectorStore.html +180 -0
- package/docs/VectorStoreWrapper.html +1356 -0
- package/docs/fonts/OpenSans-Bold-webfont.eot +0 -0
- package/docs/fonts/OpenSans-Bold-webfont.svg +1830 -0
- package/docs/fonts/OpenSans-Bold-webfont.woff +0 -0
- package/docs/fonts/OpenSans-BoldItalic-webfont.eot +0 -0
- package/docs/fonts/OpenSans-BoldItalic-webfont.svg +1830 -0
- package/docs/fonts/OpenSans-BoldItalic-webfont.woff +0 -0
- package/docs/fonts/OpenSans-Italic-webfont.eot +0 -0
- package/docs/fonts/OpenSans-Italic-webfont.svg +1830 -0
- package/docs/fonts/OpenSans-Italic-webfont.woff +0 -0
- package/docs/fonts/OpenSans-Light-webfont.eot +0 -0
- package/docs/fonts/OpenSans-Light-webfont.svg +1831 -0
- package/docs/fonts/OpenSans-Light-webfont.woff +0 -0
- package/docs/fonts/OpenSans-LightItalic-webfont.eot +0 -0
- package/docs/fonts/OpenSans-LightItalic-webfont.svg +1835 -0
- package/docs/fonts/OpenSans-LightItalic-webfont.woff +0 -0
- package/docs/fonts/OpenSans-Regular-webfont.eot +0 -0
- package/docs/fonts/OpenSans-Regular-webfont.svg +1831 -0
- package/docs/fonts/OpenSans-Regular-webfont.woff +0 -0
- package/docs/global.html +561 -0
- package/docs/index.html +570 -0
- package/docs/scripts/linenumber.js +25 -0
- package/docs/scripts/prettify/Apache-License-2.0.txt +202 -0
- package/docs/scripts/prettify/lang-css.js +2 -0
- package/docs/scripts/prettify/prettify.js +28 -0
- package/docs/styles/jsdoc-default.css +358 -0
- package/docs/styles/prettify-jsdoc.css +111 -0
- package/docs/styles/prettify-tomorrow.css +132 -0
- package/index.js +162 -0
- package/package.json +30 -7
- package/prebuilds/darwin-arm64/native-vector-store.node +0 -0
- package/prebuilds/darwin-x64/native-vector-store.node +0 -0
- package/prebuilds/linux-arm64/native-vector-store.node +0 -0
- package/prebuilds/linux-x64/native-vector-store.node +0 -0
- package/prebuilds/linux-x64-musl/napi-v9/native-vector-store.node +0 -0
- package/prebuilds/linux-x64-musl/native-vector-store.node +0 -0
- package/prebuilds/win32-x64/native-vector-store.node +0 -0
- package/src/Makefile +87 -0
- package/src/test_main.cpp +173 -0
- package/src/test_stress.cpp +394 -0
- package/src/vector_store.cpp +344 -0
- package/src/vector_store.h +21 -323
- package/native-vector-store-0.1.0.tgz +0 -0
- package/scripts/build-prebuilds.sh +0 -23
- /package/{src → deps/atomic_queue}/atomic_queue.h +0 -0
- /package/{src → deps/atomic_queue}/defs.h +0 -0
package/README.md
CHANGED
@@ -2,6 +2,17 @@
|
|
2
2
|
|
3
3
|
High-performance vector store with SIMD optimization for MCP servers and local RAG applications.
|
4
4
|
|
5
|
+
## Design Philosophy
|
6
|
+
|
7
|
+
This vector store is designed for **immutable, one-time loading** scenarios common in modern cloud deployments:
|
8
|
+
|
9
|
+
- **📚 Load Once, Query Many**: Documents are loaded at startup and remain immutable during serving
|
10
|
+
- **🚀 Optimized for Cold Starts**: Perfect for serverless functions and containerized deployments
|
11
|
+
- **📁 File-Based Organization**: Leverages filesystem for natural document organization and versioning
|
12
|
+
- **🎯 Focused API**: Does one thing exceptionally well - fast similarity search over focused corpora (sweet spot: <100k documents)
|
13
|
+
|
14
|
+
This design eliminates complex state management, ensures consistent performance, and aligns perfectly with cloud-native deployment patterns where domain-specific knowledge bases are the norm.
|
15
|
+
|
5
16
|
## Features
|
6
17
|
|
7
18
|
- **🚀 High Performance**: C++ implementation with OpenMP SIMD optimization
|
@@ -17,7 +28,7 @@ High-performance vector store with SIMD optimization for MCP servers and local R
|
|
17
28
|
- **Load Time**: <1 second for 100,000 documents (achieved: ~560ms)
|
18
29
|
- **Search Latency**: <10ms for top-k similarity search (achieved: 1-2ms)
|
19
30
|
- **Memory Efficiency**: Minimal fragmentation via arena allocation
|
20
|
-
- **Scalability**: Designed for <1M
|
31
|
+
- **Scalability**: Designed for focused corpora (<100k documents optimal, <1M maximum)
|
21
32
|
- **Throughput**: 178k+ documents per second with parallel loading
|
22
33
|
|
23
34
|
## Installation
|
@@ -28,15 +39,22 @@ npm install native-vector-store
|
|
28
39
|
|
29
40
|
### Prerequisites
|
30
41
|
|
31
|
-
|
32
|
-
-
|
42
|
+
**Runtime Requirements:**
|
43
|
+
- OpenMP runtime library (for parallel processing)
|
44
|
+
- **Linux**: `sudo apt-get install libgomp1` (Ubuntu/Debian) or `dnf install libgomp` (Fedora)
|
45
|
+
- **Alpine**: `apk add libgomp`
|
46
|
+
- **macOS**: `brew install libomp`
|
47
|
+
- **Windows**: Included with Visual C++ runtime
|
48
|
+
|
49
|
+
Prebuilt binaries are included for:
|
50
|
+
- Linux (x64, arm64, musl/Alpine)
|
33
51
|
- macOS (x64, arm64/Apple Silicon)
|
34
52
|
- Windows (x64)
|
35
53
|
|
36
54
|
If building from source, you'll need:
|
37
55
|
- Node.js ≥14.0.0
|
38
56
|
- C++ compiler with OpenMP support
|
39
|
-
- simdjson library (
|
57
|
+
- simdjson library (vendored, no installation needed)
|
40
58
|
|
41
59
|
## Quick Start
|
42
60
|
|
@@ -69,6 +87,164 @@ const results = store.search(queryEmbedding, 5); // Top 5 results
|
|
69
87
|
console.log(results[0]); // { score: 0.95, id: 'doc-1', text: '...', metadata_json: '...' }
|
70
88
|
```
|
71
89
|
|
90
|
+
## Usage Patterns
|
91
|
+
|
92
|
+
### Serverless Deployment (AWS Lambda, Vercel)
|
93
|
+
|
94
|
+
```javascript
|
95
|
+
// Initialize once during cold start
|
96
|
+
let store;
|
97
|
+
|
98
|
+
async function initializeStore() {
|
99
|
+
if (!store) {
|
100
|
+
store = new VectorStore(1536);
|
101
|
+
store.loadDir('./knowledge-base'); // Loads and finalizes
|
102
|
+
}
|
103
|
+
return store;
|
104
|
+
}
|
105
|
+
|
106
|
+
// Handler reuses the store across invocations
|
107
|
+
export async function handler(event) {
|
108
|
+
const store = await initializeStore();
|
109
|
+
const embedding = new Float32Array(event.embedding);
|
110
|
+
return store.search(embedding, 10);
|
111
|
+
}
|
112
|
+
```
|
113
|
+
|
114
|
+
### Local MCP Server
|
115
|
+
|
116
|
+
```javascript
|
117
|
+
const { VectorStore } = require('native-vector-store');
|
118
|
+
|
119
|
+
// Load different knowledge domains at startup
|
120
|
+
const stores = {
|
121
|
+
products: new VectorStore(1536),
|
122
|
+
support: new VectorStore(1536),
|
123
|
+
general: new VectorStore(1536)
|
124
|
+
};
|
125
|
+
|
126
|
+
stores.products.loadDir('./knowledge/products');
|
127
|
+
stores.support.loadDir('./knowledge/support');
|
128
|
+
stores.general.loadDir('./knowledge/general');
|
129
|
+
|
130
|
+
// Route searches to appropriate domain
|
131
|
+
server.on('search', (query) => {
|
132
|
+
const store = stores[query.domain] || stores.general;
|
133
|
+
const results = store.search(query.embedding, 5);
|
134
|
+
return results.filter(r => r.score > 0.7);
|
135
|
+
});
|
136
|
+
```
|
137
|
+
|
138
|
+
### CLI Tool with Persistent Context
|
139
|
+
|
140
|
+
```javascript
|
141
|
+
#!/usr/bin/env node
|
142
|
+
const { VectorStore } = require('native-vector-store');
|
143
|
+
|
144
|
+
// Load knowledge base once
|
145
|
+
const store = new VectorStore(1536);
|
146
|
+
store.loadDir(process.env.KNOWLEDGE_PATH || './docs');
|
147
|
+
|
148
|
+
// Interactive REPL with fast responses
|
149
|
+
const repl = require('repl');
|
150
|
+
const r = repl.start('> ');
|
151
|
+
r.context.search = (embedding, k = 5) => store.search(embedding, k);
|
152
|
+
```
|
153
|
+
|
154
|
+
### File Organization Best Practices
|
155
|
+
|
156
|
+
Structure your documents by category for separate vector stores:
|
157
|
+
|
158
|
+
```
|
159
|
+
knowledge-base/
|
160
|
+
├── products/ # Product documentation
|
161
|
+
│ ├── api-reference.json
|
162
|
+
│ └── user-guide.json
|
163
|
+
├── support/ # Support articles
|
164
|
+
│ ├── faq.json
|
165
|
+
│ └── troubleshooting.json
|
166
|
+
└── context/ # Context-specific docs
|
167
|
+
├── company-info.json
|
168
|
+
└── policies.json
|
169
|
+
```
|
170
|
+
|
171
|
+
Load each category into its own VectorStore:
|
172
|
+
|
173
|
+
```javascript
|
174
|
+
// Create separate stores for different domains
|
175
|
+
const productStore = new VectorStore(1536);
|
176
|
+
const supportStore = new VectorStore(1536);
|
177
|
+
const contextStore = new VectorStore(1536);
|
178
|
+
|
179
|
+
// Load each category independently
|
180
|
+
productStore.loadDir('./knowledge-base/products');
|
181
|
+
supportStore.loadDir('./knowledge-base/support');
|
182
|
+
contextStore.loadDir('./knowledge-base/context');
|
183
|
+
|
184
|
+
// Search specific domains
|
185
|
+
const productResults = productStore.search(queryEmbedding, 5);
|
186
|
+
const supportResults = supportStore.search(queryEmbedding, 5);
|
187
|
+
```
|
188
|
+
|
189
|
+
Each JSON file contains self-contained documents with embeddings:
|
190
|
+
|
191
|
+
```json
|
192
|
+
{
|
193
|
+
"id": "unique-id",
|
194
|
+
"text": "Document content...",
|
195
|
+
"metadata": {
|
196
|
+
"embedding": [0.1, 0.2, ...],
|
197
|
+
"category": "product",
|
198
|
+
"lastUpdated": "2024-01-01"
|
199
|
+
}
|
200
|
+
}
|
201
|
+
```
|
202
|
+
|
203
|
+
### Deployment Strategies
|
204
|
+
|
205
|
+
#### Blue-Green Deployment
|
206
|
+
|
207
|
+
```javascript
|
208
|
+
// Load new version without downtime
|
209
|
+
const newStore = new VectorStore(1536);
|
210
|
+
newStore.loadDir('./knowledge-base-v2');
|
211
|
+
|
212
|
+
// Atomic switch
|
213
|
+
app.locals.store = newStore;
|
214
|
+
```
|
215
|
+
|
216
|
+
#### Versioned Directories
|
217
|
+
|
218
|
+
```
|
219
|
+
deployments/
|
220
|
+
├── v1.0.0/
|
221
|
+
│ └── documents/
|
222
|
+
├── v1.1.0/
|
223
|
+
│ └── documents/
|
224
|
+
└── current -> v1.1.0 # Symlink to active version
|
225
|
+
```
|
226
|
+
|
227
|
+
#### Watch for Updates (Development)
|
228
|
+
|
229
|
+
```javascript
|
230
|
+
const fs = require('fs');
|
231
|
+
|
232
|
+
function reloadStore() {
|
233
|
+
const newStore = new VectorStore(1536);
|
234
|
+
newStore.loadDir('./documents');
|
235
|
+
global.store = newStore;
|
236
|
+
console.log(`Reloaded ${newStore.size()} documents`);
|
237
|
+
}
|
238
|
+
|
239
|
+
// Initial load
|
240
|
+
reloadStore();
|
241
|
+
|
242
|
+
// Watch for changes in development
|
243
|
+
if (process.env.NODE_ENV === 'development') {
|
244
|
+
fs.watch('./documents', { recursive: true }, reloadStore);
|
245
|
+
}
|
246
|
+
```
|
247
|
+
|
72
248
|
## MCP Server Integration
|
73
249
|
|
74
250
|
Perfect for building local RAG capabilities in MCP servers:
|
@@ -141,6 +317,60 @@ Check if the store has been finalized and is ready for searching.
|
|
141
317
|
##### `size(): number`
|
142
318
|
Get the number of documents in the store.
|
143
319
|
|
320
|
+
## Performance
|
321
|
+
|
322
|
+
### Why It's Fast
|
323
|
+
|
324
|
+
The native-vector-store achieves exceptional performance through:
|
325
|
+
|
326
|
+
1. **Producer-Consumer Loading**: Parallel file I/O and JSON parsing achieve 178k+ documents/second
|
327
|
+
2. **SIMD Optimizations**: OpenMP vectorization for dot product calculations
|
328
|
+
3. **Arena Allocation**: Contiguous memory layout with 64MB chunks for cache efficiency
|
329
|
+
4. **Zero-Copy Design**: String views and pre-allocated buffers minimize allocations
|
330
|
+
5. **Two-Phase Architecture**: Loading phase allows concurrent writes, serving phase optimizes for reads
|
331
|
+
|
332
|
+
### Benchmarks
|
333
|
+
|
334
|
+
Performance on typical hardware (M1 MacBook Pro):
|
335
|
+
|
336
|
+
| Operation | Documents | Time | Throughput |
|
337
|
+
|-----------|-----------|------|------------|
|
338
|
+
| Loading (from disk) | 100,000 | ~560ms | 178k docs/sec |
|
339
|
+
| Search (k=10) | 10,000 corpus | 1-2ms | 500-1000 queries/sec |
|
340
|
+
| Search (k=100) | 100,000 corpus | 8-12ms | 80-125 queries/sec |
|
341
|
+
| Normalization | 100,000 | <100ms | 1M+ docs/sec |
|
342
|
+
|
343
|
+
### Performance Tips
|
344
|
+
|
345
|
+
1. **Optimal File Organization**:
|
346
|
+
- Keep 1000-10000 documents per JSON file for best I/O performance
|
347
|
+
- Use arrays of documents in each file rather than one file per document
|
348
|
+
|
349
|
+
2. **Memory Considerations**:
|
350
|
+
- Each document requires: `embedding_size * 4 bytes + metadata_size + text_size`
|
351
|
+
- 100k documents with 1536-dim embeddings ≈ 600MB embeddings + metadata
|
352
|
+
|
353
|
+
3. **Search Performance**:
|
354
|
+
- Scales linearly with corpus size and k value
|
355
|
+
- Use smaller k values (5-20) for interactive applications
|
356
|
+
- Pre-normalize query embeddings if making multiple searches
|
357
|
+
|
358
|
+
4. **Corpus Size Optimization**:
|
359
|
+
- Sweet spot: <100k documents for optimal load/search balance
|
360
|
+
- Beyond 100k: Consider if your use case truly needs all documents
|
361
|
+
- Focus on curated, domain-specific content rather than exhaustive datasets
|
362
|
+
|
363
|
+
### Comparison with Alternatives
|
364
|
+
|
365
|
+
| Feature | native-vector-store | Faiss | ChromaDB | Pinecone |
|
366
|
+
|---------|-------------------|--------|----------|----------|
|
367
|
+
| Load 100k docs | <1s | 2-5s | 30-60s | N/A (API) |
|
368
|
+
| Search latency | 1-2ms | 0.5-1ms | 50-200ms | 50-300ms |
|
369
|
+
| Memory efficiency | High | Medium | Low | N/A |
|
370
|
+
| Dependencies | Minimal | Heavy | Heavy | None |
|
371
|
+
| Deployment | Simple | Complex | Complex | SaaS |
|
372
|
+
| Sweet spot | <100k docs | Any size | Any size | Any size |
|
373
|
+
|
144
374
|
## Building from Source
|
145
375
|
|
146
376
|
```bash
|
@@ -181,21 +411,21 @@ npm run example
|
|
181
411
|
|
182
412
|
### MCP Servers
|
183
413
|
Ideal for building local RAG (Retrieval-Augmented Generation) capabilities:
|
184
|
-
- Fast document loading from knowledge bases
|
414
|
+
- Fast document loading from focused knowledge bases
|
185
415
|
- Low-latency similarity search for context retrieval
|
186
|
-
- Memory-efficient storage for
|
416
|
+
- Memory-efficient storage for domain-specific corpora
|
187
417
|
|
188
418
|
### Knowledge Management
|
189
419
|
Perfect for personal knowledge management systems:
|
190
|
-
- Index personal documents and notes
|
191
|
-
- Fast semantic search across content
|
420
|
+
- Index personal documents and notes (typically <10k documents)
|
421
|
+
- Fast semantic search across focused content
|
192
422
|
- Offline operation without external dependencies
|
193
423
|
|
194
424
|
### Research Applications
|
195
|
-
Suitable for academic and research projects:
|
196
|
-
- Literature review
|
197
|
-
- Semantic clustering of
|
198
|
-
- Cross-reference discovery in
|
425
|
+
Suitable for academic and research projects with focused datasets:
|
426
|
+
- Literature review within specific domains
|
427
|
+
- Semantic clustering of curated paper collections
|
428
|
+
- Cross-reference discovery in specialized corpora
|
199
429
|
|
200
430
|
## Contributing
|
201
431
|
|
package/binding.gyp
CHANGED
@@ -2,10 +2,12 @@
|
|
2
2
|
"targets": [
|
3
3
|
{
|
4
4
|
"target_name": "vector_store",
|
5
|
-
"sources": ["src/binding.cc", "src/vector_store_loader.cpp", "src/vector_store_loader_mmap.cpp", "src/vector_store_loader_adaptive.cpp"],
|
5
|
+
"sources": ["src/binding.cc", "src/vector_store.cpp", "src/vector_store_loader.cpp", "src/vector_store_loader_mmap.cpp", "src/vector_store_loader_adaptive.cpp", "deps/simdjson/simdjson.cpp"],
|
6
6
|
"include_dirs": [
|
7
7
|
"<!@(node -p \"require('node-addon-api').include\")",
|
8
|
-
"src"
|
8
|
+
"src",
|
9
|
+
"deps/simdjson",
|
10
|
+
"deps/atomic_queue"
|
9
11
|
],
|
10
12
|
"dependencies": ["<!(node -p \"require('node-addon-api').gyp\")"],
|
11
13
|
"cflags_cc": [
|
@@ -17,27 +19,37 @@
|
|
17
19
|
"defines": ["NAPI_DISABLE_CPP_EXCEPTIONS"],
|
18
20
|
"conditions": [
|
19
21
|
["OS=='mac'", {
|
20
|
-
"include_dirs": [
|
22
|
+
"include_dirs": [
|
23
|
+
"/opt/homebrew/opt/libomp/include",
|
24
|
+
"/usr/local/opt/libomp/include"
|
25
|
+
],
|
21
26
|
"xcode_settings": {
|
22
27
|
"GCC_ENABLE_CPP_EXCEPTIONS": "NO",
|
23
28
|
"OTHER_CFLAGS": ["-Xpreprocessor", "-fopenmp"],
|
24
|
-
"OTHER_CPLUSPLUSFLAGS": ["-Xpreprocessor", "-fopenmp"],
|
25
|
-
"OTHER_LDFLAGS": ["-
|
29
|
+
"OTHER_CPLUSPLUSFLAGS": ["-Xpreprocessor", "-fopenmp", "-std=c++17"],
|
30
|
+
"OTHER_LDFLAGS": ["-lomp"],
|
31
|
+
"CLANG_CXX_LANGUAGE_STANDARD": "c++17"
|
26
32
|
},
|
27
|
-
"libraries": ["-
|
33
|
+
"libraries": ["-lomp"],
|
34
|
+
"library_dirs": [
|
35
|
+
"/opt/homebrew/opt/libomp/lib",
|
36
|
+
"/usr/local/opt/libomp/lib"
|
37
|
+
]
|
28
38
|
}],
|
29
39
|
["OS=='linux'", {
|
30
40
|
"cflags_cc": ["-fopenmp"],
|
31
|
-
"libraries": ["-lgomp"
|
41
|
+
"libraries": ["-lgomp"]
|
32
42
|
}],
|
33
43
|
["OS=='win'", {
|
34
44
|
"msvs_settings": {
|
35
45
|
"VCCLCompilerTool": {
|
36
46
|
"ExceptionHandling": 0,
|
37
|
-
"OpenMP": "true"
|
47
|
+
"OpenMP": "true",
|
48
|
+
"AdditionalOptions": [
|
49
|
+
"/openmp:experimental"
|
50
|
+
]
|
38
51
|
}
|
39
|
-
}
|
40
|
-
"libraries": ["simdjson.lib"]
|
52
|
+
}
|
41
53
|
}]
|
42
54
|
]
|
43
55
|
}
|