musubix 3.3.8 → 3.3.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (92) hide show
  1. package/README.md +50 -305
  2. package/bin/musubix.js +1 -9
  3. package/dist/index.d.ts +25 -0
  4. package/dist/index.d.ts.map +1 -0
  5. package/dist/index.js +74 -0
  6. package/dist/index.js.map +1 -0
  7. package/package.json +49 -55
  8. package/.github/AGENTS.md +0 -949
  9. package/.github/prompts/sdd-change-apply.prompt.md +0 -283
  10. package/.github/prompts/sdd-change-archive.prompt.md +0 -241
  11. package/.github/prompts/sdd-change-init.prompt.md +0 -269
  12. package/.github/prompts/sdd-design.prompt.md +0 -250
  13. package/.github/prompts/sdd-implement.prompt.md +0 -387
  14. package/.github/prompts/sdd-requirements.prompt.md +0 -193
  15. package/.github/prompts/sdd-review.prompt.md +0 -155
  16. package/.github/prompts/sdd-security.prompt.md +0 -228
  17. package/.github/prompts/sdd-steering.prompt.md +0 -269
  18. package/.github/prompts/sdd-tasks.prompt.md +0 -255
  19. package/.github/prompts/sdd-test.prompt.md +0 -230
  20. package/.github/prompts/sdd-validate.prompt.md +0 -304
  21. package/.github/skills/musubix-adr-generation/SKILL.md +0 -209
  22. package/.github/skills/musubix-best-practices/SKILL.md +0 -315
  23. package/.github/skills/musubix-c4-design/SKILL.md +0 -162
  24. package/.github/skills/musubix-code-generation/SKILL.md +0 -237
  25. package/.github/skills/musubix-domain-inference/SKILL.md +0 -196
  26. package/.github/skills/musubix-ears-validation/SKILL.md +0 -161
  27. package/.github/skills/musubix-sdd-workflow/SKILL.md +0 -217
  28. package/.github/skills/musubix-technical-writing/SKILL.md +0 -444
  29. package/.github/skills/musubix-test-generation/SKILL.md +0 -212
  30. package/.github/skills/musubix-traceability/SKILL.md +0 -141
  31. package/AGENTS.md +0 -1065
  32. package/LICENSE +0 -21
  33. package/README.ja.md +0 -296
  34. package/bin/musubix-mcp.js +0 -15
  35. package/docs/API-REFERENCE.md +0 -1425
  36. package/docs/GITHUB-ACTIONS-NPM-SETUP.md +0 -132
  37. package/docs/INSTALL-GUIDE.ja.md +0 -459
  38. package/docs/INSTALL-GUIDE.md +0 -459
  39. package/docs/MIGRATION-v3.0.md +0 -324
  40. package/docs/MUSUBI-enhancement_roadmap_20260105.md +0 -651
  41. package/docs/MUSUBIX-v3.0-User-Guide.md +0 -1357
  42. package/docs/MUSUBIXv2.2.0-Manual-outline.md +0 -136
  43. package/docs/MUSUBIXv2.2.0-Manual.md +0 -3123
  44. package/docs/MUSUBIXv2.3.5-Refactering.md +0 -1310
  45. package/docs/MUSUBIv1.6.1-enhancement_roadmap_20260105.md +0 -291
  46. package/docs/MUSUBIv2.2.0-USERGUIDE.md +0 -2079
  47. package/docs/ROADMAP-v1.5.md +0 -116
  48. package/docs/SwarmCoding.md +0 -1284
  49. package/docs/Test-prompt.md +0 -105
  50. package/docs/USER-GUIDE-v1.8.0.md +0 -2371
  51. package/docs/USER-GUIDE.ja.md +0 -2147
  52. package/docs/USER-GUIDE.md +0 -3022
  53. package/docs/YATA-GLOBAL-GUIDE.ja.md +0 -750
  54. package/docs/YATA-GLOBAL-GUIDE.md +0 -595
  55. package/docs/YATA-LOCAL-GUIDE.ja.md +0 -989
  56. package/docs/YATA-LOCAL-GUIDE.md +0 -730
  57. package/docs/adr/0001-real-time-pattern-learning-architecture-for-v1-5-0.md +0 -75
  58. package/docs/adr/0002-pattern-sharing-protocol-for-cross-team-collaborat.md +0 -79
  59. package/docs/adr/0003-owl-2-rl-implementation-strategy-for-advanced-infe.md +0 -90
  60. package/docs/enterprise-knowledge-management.md +0 -1737
  61. package/docs/evolution-from-musubi-to-musubix.md +0 -2170
  62. package/docs/getting-started-with-sdd.md +0 -1602
  63. package/docs/moodle-refactering-codegraph-musubix.md +0 -391
  64. package/docs/moodle-refactering-codegraph.md +0 -278
  65. package/docs/overview/MUSUBIX-CodeGraph.md +0 -322
  66. package/docs/overview/MUSUBIX-Core.md +0 -671
  67. package/docs/overview/MUSUBIX-Decisions.md +0 -494
  68. package/docs/overview/MUSUBIX-FormalVerify.md +0 -566
  69. package/docs/overview/MUSUBIX-Knowledge.md +0 -1231
  70. package/docs/overview/MUSUBIX-Learning.md +0 -837
  71. package/docs/overview/MUSUBIX-MCP-Server.md +0 -535
  72. package/docs/overview/MUSUBIX-Overview.md +0 -264
  73. package/docs/overview/MUSUBIX-Phase1-Complete.md +0 -271
  74. package/docs/overview/MUSUBIX-Phase2-Complete.md +0 -310
  75. package/docs/overview/MUSUBIX-Policy.md +0 -477
  76. package/docs/overview/MUSUBIX-Roadmap-v2.md +0 -399
  77. package/docs/overview/MUSUBIX-Security-Plan.md +0 -939
  78. package/docs/overview/MUSUBIX-Security-v2.1.md +0 -668
  79. package/docs/overview/MUSUBIX-Security.md +0 -891
  80. package/docs/overview/MUSUBIX-YATA.md +0 -666
  81. package/docs/overview/MUSUBIX-v2.2.0-Advanced-Learning.md +0 -513
  82. package/docs/overview/Neuro-SymbolicAI.md +0 -159
  83. package/docs/packages/knowledge.md +0 -594
  84. package/docs/qiita-linux-kernel-knowledge-graph.md +0 -596
  85. package/scripts/generate-quality-gate-report.ts +0 -106
  86. package/scripts/postinstall.js +0 -94
  87. package/steering/.musubi-version +0 -1
  88. package/steering/product.ja.md +0 -572
  89. package/steering/project.yml +0 -66
  90. package/steering/rules/constitution.md +0 -491
  91. package/steering/structure.ja.md +0 -503
  92. package/steering/tech.ja.md +0 -208
@@ -1,399 +0,0 @@
1
- # MUSUBIX 次世代ロードマップ v2.x
2
-
3
- **作成日**: 2026-01-06
4
- **現行バージョン**: 1.7.5 (Formal Verification Edition)
5
- **基準文書**: Neuro-SymbolicAI.md vs MUSUBIX実装比較
6
-
7
- ---
8
-
9
- ## 1. 現状分析:MUSUBIXと先行事例の比較
10
-
11
- ### 1.1 統合パターン分析
12
-
13
- Neuro-SymbolicAI.mdで識別された6つの統合パターンとMUSUBIXの対応状況:
14
-
15
- | 統合パターン | 先行事例 | MUSUBIX対応 | 成熟度 |
16
- |-------------|---------|------------|-------|
17
- | **Neural as Search Guidance** | DeepCoder, DreamCoder | ❌ 未実装 | - |
18
- | **Neural Generator + Symbolic Filter** | AlphaCode, Snyk DeepCode | ✅ 実装済み(Confidence Router) | 70% |
19
- | **Symbolic Context Augmentation** | JetBrains AI, GraphCodeBERT | ⚠️ 部分実装(YATA KG) | 50% |
20
- | **Interleaved Wake-Sleep** | DreamCoder, GPT-f | ✅ 実装済み(wake-sleep pkg) | 60% |
21
- | **Formal Proof in the Loop** | AutoVerus, LeanDojo | ✅ 実装済み(formal-verify) | 80% |
22
- | **Differentiable Symbolic** | IBM LNN, ∂ILP | ❌ 未実装 | - |
23
-
24
- ### 1.2 機能別ギャップ分析
25
-
26
- | 機能領域 | 先行事例のベスト | MUSUBIX現状 | ギャップ |
27
- |---------|----------------|------------|---------|
28
- | **形式検証** | AlphaProof (IMO銀メダル) | Z3 SMT統合 | 定理証明システム未連携 |
29
- | **知識グラフ** | GraphGen4Code (20億トリプル) | YATA Local/Global | スケール、DFG統合なし |
30
- | **プログラム合成** | PROSE (Excel搭載) | コード生成のみ | DSL合成・ライブラリ学習なし |
31
- | **コード理解** | GraphCodeBERT (DFG統合) | AST解析のみ | データフローグラフ未対応 |
32
- | **パターン学習** | DreamCoder (10^72探索削減) | Wake-Sleep基本実装 | 階層的ライブラリ学習なし |
33
- | **静的解析** | JetBrains PSI (20年蓄積) | 基本的な検証 | 深い型・依存関係分析なし |
34
-
35
- ### 1.3 商用化レベル比較
36
-
37
- | 製品 | 記号統合度 | MUSUBIX比較 |
38
- |-----|----------|------------|
39
- | JetBrains AI Assistant | ★★★★★ | PSI統合に相当する機能なし |
40
- | Microsoft PROSE | ★★★★★ | 演繹的合成なし |
41
- | Sourcegraph Cody | ★★★★☆ | コードグラフ規模で劣る |
42
- | GitHub Copilot | ★★☆☆☆ | 同等〜やや上(憲法検証) |
43
- | Snyk DeepCode AI | ★★★★☆ | セキュリティ特化機能なし |
44
-
45
- ---
46
-
47
- ## 2. ロードマップ概要
48
-
49
- ### 2.1 フェーズ構成
50
-
51
- ```
52
- ┌─────────────────────────────────────────────────────────────┐
53
- │ Phase 1: Deep Symbolic Integration (v2.0) │
54
- │ 2026 Q1-Q2 │
55
- │ • データフローグラフ統合 │
56
- │ • 定理証明システム連携 (Lean 4) │
57
- │ • 知識グラフスケールアップ │
58
- └─────────────────────────────────────────────────────────────┘
59
-
60
- ┌─────────────────────────────────────────────────────────────┐
61
- │ Phase 2: Advanced Learning (v2.5) │
62
- │ 2026 Q3-Q4 │
63
- │ • DreamCoder式ライブラリ学習 │
64
- │ • Neural Search Guidance │
65
- │ • プログラム合成DSL │
66
- └─────────────────────────────────────────────────────────────┘
67
-
68
- ┌─────────────────────────────────────────────────────────────┐
69
- │ Phase 3: Enterprise Ready (v3.0) │
70
- │ 2027 Q1-Q2 │
71
- │ • JetBrains/VS Code深い統合 │
72
- │ • セキュリティ特化機能 │
73
- │ • 大規模知識グラフ (1億+トリプル) │
74
- └─────────────────────────────────────────────────────────────┘
75
- ```
76
-
77
- ---
78
-
79
- ## 3. Phase 1: Deep Symbolic Integration (v2.0)
80
-
81
- **目標**: 記号的分析の深化と形式検証の拡張
82
-
83
- ### 3.1 データフローグラフ統合
84
-
85
- **参考**: GraphCodeBERT、JetBrains PSI
86
-
87
- | 機能 | 説明 | 優先度 |
88
- |------|------|--------|
89
- | **DFG抽出** | コードからデータフローグラフを抽出 | P0 |
90
- | **CFG抽出** | 制御フローグラフの抽出 | P0 |
91
- | **依存関係分析** | 変数・関数間の依存関係マップ | P0 |
92
- | **YATA DFG連携** | DFGを知識グラフに統合 | P1 |
93
- | **Transformer注意機構** | DFGをLLMコンテキストとして供給 | P2 |
94
-
95
- ```typescript
96
- // 目標API
97
- import { DataFlowAnalyzer } from '@nahisaho/musubix-core';
98
-
99
- const analyzer = new DataFlowAnalyzer();
100
- const dfg = await analyzer.extractDFG('src/user-service.ts');
101
-
102
- // YATAに統合
103
- await yata.importDFG(dfg, { namespace: 'code:dfg' });
104
-
105
- // LLMコンテキストとして供給
106
- const context = await dfg.toPromptContext();
107
- ```
108
-
109
- ### 3.2 定理証明システム連携 (Lean 4)
110
-
111
- **参考**: LeanDojo/ReProver、AlphaProof
112
-
113
- | 機能 | 説明 | 優先度 |
114
- |------|------|--------|
115
- | **Lean 4統合** | Lean証明支援系との連携 | P1 |
116
- | **ReProver統合** | ベストファースト証明探索 | P1 |
117
- | **EARS→Lean変換** | 要件を形式仕様に変換 | P0 |
118
- | **証明検索** | 証明候補の自動探索 | P2 |
119
- | **証明フィードバック** | 検証失敗時の修正提案 | P2 |
120
-
121
- ```typescript
122
- // 目標API
123
- import { LeanIntegration } from '@nahisaho/musubix-formal-verify';
124
-
125
- const lean = new LeanIntegration();
126
-
127
- // EARS要件をLean定理に変換
128
- const theorem = await lean.earsToTheorem(requirement);
129
-
130
- // 証明探索
131
- const proof = await lean.proveWithReProver(theorem, {
132
- maxDepth: 10,
133
- timeout: 30000,
134
- });
135
- ```
136
-
137
- ### 3.3 知識グラフスケールアップ
138
-
139
- **参考**: GraphGen4Code (20億トリプル)
140
-
141
- | 機能 | 説明 | 優先度 |
142
- |------|------|--------|
143
- | **分散ストレージ** | PostgreSQL/ScyllaDBバックエンド | P1 |
144
- | **シャーディング** | 大規模データのパーティショニング | P1 |
145
- | **キャッシュ層** | Redis/Memcachedによる高速化 | P1 |
146
- | **ストリーミングインジェスト** | 大量データの効率的取り込み | P2 |
147
- | **グラフ圧縮** | 重複排除と圧縮アルゴリズム | P2 |
148
-
149
- **目標メトリクス**:
150
- - トリプル数: 1000万+ (現状: 数万)
151
- - クエリ応答時間: <100ms (p99)
152
- - 同時接続: 1000+
153
-
154
- ---
155
-
156
- ## 4. Phase 2: Advanced Learning (v2.5)
157
-
158
- **目標**: 学習システムの高度化とプログラム合成
159
-
160
- ### 4.1 DreamCoder式ライブラリ学習
161
-
162
- **参考**: DreamCoder (10^72探索削減)
163
-
164
- | 機能 | 説明 | 優先度 |
165
- |------|------|--------|
166
- | **階層的抽象化** | パターンから高次抽象概念を学習 | P0 |
167
- | **ライブラリ成長** | 学習済みパターンのライブラリ自動拡張 | P0 |
168
- | **型指向探索** | 型システムによる探索空間削減 | P1 |
169
- | **E-graph最適化** | 等価性グラフによる表現最適化 | P2 |
170
-
171
- ```typescript
172
- // 目標API
173
- import { LibraryLearner } from '@nahisaho/musubix-wake-sleep';
174
-
175
- const learner = new LibraryLearner({
176
- abstractionLevels: 3,
177
- minOccurrences: 5,
178
- });
179
-
180
- // Wake-Sleep + ライブラリ学習
181
- await learner.learnFromCorpus(codeCorpus);
182
-
183
- // 学習済みライブラリで探索
184
- const solution = await learner.synthesize(specification, {
185
- useLearnedPrimitives: true,
186
- });
187
- ```
188
-
189
- ### 4.2 Neural Search Guidance
190
-
191
- **参考**: DeepCoder、NGDS
192
-
193
- | 機能 | 説明 | 優先度 |
194
- |------|------|--------|
195
- | **分岐スコアリング** | ニューラルモデルで探索分岐を評価 | P0 |
196
- | **探索優先順位付け** | 有望な探索パスを優先 | P0 |
197
- | **学習ベースプルーニング** | 不毛な探索を早期打ち切り | P1 |
198
- | **探索履歴学習** | 過去の探索から学習 | P2 |
199
-
200
- ```typescript
201
- // 目標API
202
- import { GuidedSearch } from '@nahisaho/musubix-core';
203
-
204
- const search = new GuidedSearch({
205
- neuralScorer: embeddingModel,
206
- symbolicVerifier: z3Adapter,
207
- });
208
-
209
- // ニューラル誘導探索
210
- const result = await search.synthesize(spec, {
211
- beamWidth: 10,
212
- maxDepth: 20,
213
- });
214
- ```
215
-
216
- ### 4.3 プログラム合成DSL
217
-
218
- **参考**: Microsoft PROSE/FlashMeta
219
-
220
- | 機能 | 説明 | 優先度 |
221
- |------|------|--------|
222
- | **DSL定義フレームワーク** | ドメイン固有言語の定義 | P0 |
223
- | **Witness関数** | 演繹的合成のためのWitness関数 | P1 |
224
- | **例示合成** | 入出力例からの合成 (PBE) | P1 |
225
- | **合成ルール学習** | 合成ルールの自動学習 | P2 |
226
-
227
- ```typescript
228
- // 目標API
229
- import { DSLFramework, ProgramSynthesizer } from '@nahisaho/musubix-synthesis';
230
-
231
- // DSL定義
232
- const transformDSL = new DSLFramework()
233
- .addOperator('map', ['list', 'func'], 'list')
234
- .addOperator('filter', ['list', 'pred'], 'list')
235
- .addOperator('reduce', ['list', 'func', 'init'], 'any');
236
-
237
- // 例示合成
238
- const synthesizer = new ProgramSynthesizer(transformDSL);
239
- const program = await synthesizer.synthesizeFromExamples([
240
- { input: [1, 2, 3], output: [2, 4, 6] },
241
- { input: [5, 10], output: [10, 20] },
242
- ]);
243
- // => map(x => x * 2)
244
- ```
245
-
246
- ---
247
-
248
- ## 5. Phase 3: Enterprise Ready (v3.0)
249
-
250
- **目標**: 商用レベルの統合と大規模対応
251
-
252
- ### 5.1 IDE深い統合
253
-
254
- **参考**: JetBrains PSI (20年蓄積)
255
-
256
- | 機能 | 説明 | 優先度 |
257
- |------|------|--------|
258
- | **VS Code Extension** | Language Server Protocol完全実装 | P0 |
259
- | **JetBrains Plugin** | IntelliJ IDEA/WebStorm対応 | P1 |
260
- | **リアルタイム検証** | 編集中の継続的検証 | P0 |
261
- | **インライン提案** | コンテキスト認識型の提案 | P1 |
262
- | **リファクタリング支援** | 記号分析に基づくリファクタ | P2 |
263
-
264
- ### 5.2 セキュリティ特化機能
265
-
266
- **参考**: Snyk DeepCode AI、Amazon CodeGuru
267
-
268
- | 機能 | 説明 | 優先度 |
269
- |------|------|--------|
270
- | **テイント分析** | 汚染データの追跡 | P0 |
271
- | **脆弱性検出** | CVEデータベース連携 | P0 |
272
- | **自動修正提案** | LLM生成→記号検証→適用 | P1 |
273
- | **コンプライアンス検証** | OWASP、CWE準拠チェック | P1 |
274
- | **セキュアコード生成** | セキュリティ考慮したコード生成 | P2 |
275
-
276
- ```typescript
277
- // 目標API
278
- import { SecurityAnalyzer } from '@nahisaho/musubix-security';
279
-
280
- const analyzer = new SecurityAnalyzer({
281
- rules: ['owasp-top-10', 'cwe-top-25'],
282
- cveDatabase: 'nvd',
283
- });
284
-
285
- const vulnerabilities = await analyzer.scan('src/');
286
-
287
- // 自動修正(LLM生成→記号検証)
288
- for (const vuln of vulnerabilities) {
289
- const fix = await analyzer.generateFix(vuln);
290
- if (await analyzer.verifyFix(fix)) {
291
- await analyzer.applyFix(fix);
292
- }
293
- }
294
- ```
295
-
296
- ### 5.3 大規模知識グラフ
297
-
298
- **目標**: 1億トリプル以上のスケール
299
-
300
- | 機能 | 説明 | 優先度 |
301
- |------|------|--------|
302
- | **分散推論** | 複数ノードでの推論分散 | P1 |
303
- | **増分更新** | 差分のみの効率的更新 | P0 |
304
- | **クエリ最適化** | コストベースオプティマイザ | P1 |
305
- | **マルチテナント** | 組織別の分離 | P1 |
306
-
307
- ---
308
-
309
- ## 6. 新パッケージ計画
310
-
311
- ### 6.1 Phase 1 新パッケージ
312
-
313
- | パッケージ | 役割 |
314
- |-----------|------|
315
- | `@nahisaho/musubix-dfg` | データフロー・制御フローグラフ |
316
- | `@nahisaho/musubix-lean` | Lean 4 / ReProver統合 |
317
- | `@nahisaho/yata-scale` | 大規模知識グラフバックエンド |
318
-
319
- ### 6.2 Phase 2 新パッケージ
320
-
321
- | パッケージ | 役割 |
322
- |-----------|------|
323
- | `@nahisaho/musubix-synthesis` | プログラム合成・DSLフレームワーク |
324
- | `@nahisaho/musubix-neural-guide` | Neural Search Guidance |
325
- | `@nahisaho/musubix-library-learner` | 階層的ライブラリ学習 |
326
-
327
- ### 6.3 Phase 3 新パッケージ
328
-
329
- | パッケージ | 役割 |
330
- |-----------|------|
331
- | `@nahisaho/musubix-vscode` | VS Code Extension |
332
- | `@nahisaho/musubix-jetbrains` | JetBrains Plugin |
333
- | `@nahisaho/musubix-security` | セキュリティ分析・修正 |
334
-
335
- ---
336
-
337
- ## 7. 成功指標(KPI)
338
-
339
- ### 7.1 技術指標
340
-
341
- | フェーズ | 指標 | 目標値 |
342
- |---------|------|--------|
343
- | **v2.0** | DFG抽出精度 | >95% |
344
- | **v2.0** | Lean証明成功率 | >60% |
345
- | **v2.0** | KGトリプル数 | 1000万+ |
346
- | **v2.5** | ライブラリ学習削減率 | 10^6以上 |
347
- | **v2.5** | PBE合成成功率 | >80% |
348
- | **v3.0** | セキュリティ検出率 | >90% |
349
- | **v3.0** | 偽陽性率 | <5% |
350
-
351
- ### 7.2 ユーザー指標
352
-
353
- | フェーズ | 指標 | 目標値 |
354
- |---------|------|--------|
355
- | **v2.0** | npm週間DL数 | 5,000+ |
356
- | **v2.5** | npm週間DL数 | 20,000+ |
357
- | **v3.0** | npm週間DL数 | 100,000+ |
358
- | **v3.0** | GitHub Stars | 5,000+ |
359
-
360
- ---
361
-
362
- ## 8. リスクと対策
363
-
364
- | リスク | 影響 | 対策 |
365
- |--------|------|------|
366
- | Lean 4統合の複雑性 | 遅延 | 段階的統合、コミュニティ協力 |
367
- | 大規模KGパフォーマンス | 性能低下 | ベンチマーク先行、適切な技術選定 |
368
- | ライブラリ学習の収束 | 品質問題 | DreamCoder論文の忠実な実装 |
369
- | セキュリティ偽陽性 | ユーザー離反 | 記号検証による二重チェック |
370
- | IDE統合の維持コスト | リソース不足 | LSP標準化、プラグイン共通化 |
371
-
372
- ---
373
-
374
- ## 9. タイムライン
375
-
376
- ```
377
- 2026 Q1 │ v2.0-alpha │ DFG抽出、Lean 4基本統合
378
- 2026 Q2 │ v2.0 │ Deep Symbolic Integration リリース
379
- 2026 Q3 │ v2.5-alpha │ ライブラリ学習、Neural Search
380
- 2026 Q4 │ v2.5 │ Advanced Learning リリース
381
- 2027 Q1 │ v3.0-alpha │ IDE統合、セキュリティ機能
382
- 2027 Q2 │ v3.0 │ Enterprise Ready リリース
383
- ```
384
-
385
- ---
386
-
387
- ## 10. 関連ドキュメント
388
-
389
- | ドキュメント | 説明 |
390
- |-------------|------|
391
- | [Neuro-SymbolicAI.md](Neuro-SymbolicAI.md) | 先行事例調査 |
392
- | [MUSUBIX-Overview.md](MUSUBIX-Overview.md) | 現行システム概要 |
393
- | [MUSUBIX-FormalVerify.md](MUSUBIX-FormalVerify.md) | 形式検証(拡張対象) |
394
- | [MUSUBIX-Learning.md](MUSUBIX-Learning.md) | 学習システム(拡張対象) |
395
- | [MUSUBIX-YATA.md](MUSUBIX-YATA.md) | 知識グラフ(拡張対象) |
396
-
397
- ---
398
-
399
- **© 2026 MUSUBIX Project**