musubix 1.7.0 → 1.8.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,264 @@
1
+ # MUSUBIX - Neuro-Symbolic AI Integration System
2
+
3
+ **バージョン**: 1.7.5 (Formal Verification Edition)
4
+ **最終更新**: 2026-01-06
5
+
6
+ ---
7
+
8
+ ## 1. 概要
9
+
10
+ **MUSUBIX**(ムスビックス)は、**Neural(LLM/大規模言語モデル)** と **Symbolic(Knowledge Graph/知識グラフ)** 推論を統合した次世代AIコーディング支援システムです。
11
+
12
+ MUSUBI SDD(Specification-Driven Development)方法論とYATA知識グラフ推論エンジンを組み合わせ、高品質なソフトウェア開発を実現します。
13
+
14
+ ### 1.1 主要な特徴
15
+
16
+ | 特徴 | 説明 |
17
+ |------|------|
18
+ | **Neuro-Symbolic統合** | LLMの創造性とシンボリック推論の精密性を融合 |
19
+ | **EARS形式要件** | 5パターンの形式的要件記述(Easy Approach to Requirements Syntax) |
20
+ | **9条憲法** | 開発プロセスを統治する9つの不変ルール |
21
+ | **完全トレーサビリティ** | 要件→設計→コード→テストの100%追跡 |
22
+ | **形式検証** | Z3 SMTソルバによる数学的正確性の検証 |
23
+ | **自己学習** | フィードバックに基づくパターン学習と適応 |
24
+ | **知識グラフ** | SQLiteベースのローカル知識グラフとグローバル共有 |
25
+
26
+ ### 1.2 システム要件
27
+
28
+ | 項目 | 要件 |
29
+ |------|------|
30
+ | **ランタイム** | Node.js >= 20.0.0 |
31
+ | **パッケージマネージャ** | npm >= 10.0.0 |
32
+ | **言語** | TypeScript 5.x |
33
+ | **ビルドシステム** | npm workspaces(モノレポ) |
34
+ | **テストフレームワーク** | Vitest |
35
+
36
+ ---
37
+
38
+ ## 2. アーキテクチャ
39
+
40
+ ### 2.1 パッケージ構成
41
+
42
+ ```
43
+ packages/
44
+ ├── core/ # @nahisaho/musubix-core
45
+ ├── mcp-server/ # @nahisaho/musubix-mcp-server
46
+ ├── formal-verify/ # @nahisaho/musubix-formal-verify
47
+ ├── yata-client/ # @nahisaho/musubix-yata-client
48
+ ├── yata-local/ # @nahisaho/yata-local
49
+ ├── yata-global/ # @nahisaho/yata-global
50
+ ├── yata-ui/ # @nahisaho/yata-ui
51
+ ├── pattern-mcp/ # @nahisaho/musubix-pattern-mcp
52
+ ├── ontology-mcp/ # @nahisaho/musubix-ontology-mcp
53
+ ├── wake-sleep/ # @nahisaho/musubix-wake-sleep
54
+ └── sdd-ontology/ # @nahisaho/musubix-sdd-ontology
55
+ ```
56
+
57
+ ### 2.2 パッケージ一覧
58
+
59
+ | パッケージ | npm | 役割 |
60
+ |-----------|-----|------|
61
+ | **core** | `@nahisaho/musubix-core` | コアライブラリ - CLI、EARS検証、コード生成、設計パターン |
62
+ | **mcp-server** | `@nahisaho/musubix-mcp-server` | MCPサーバー - AIエージェント連携 |
63
+ | **formal-verify** | `@nahisaho/musubix-formal-verify` | 形式検証 - Z3統合、Hoare検証 |
64
+ | **yata-client** | `@nahisaho/musubix-yata-client` | YATAクライアント - 知識グラフAPI |
65
+ | **yata-local** | `@nahisaho/yata-local` | ローカル知識グラフ - SQLiteベース |
66
+ | **yata-global** | `@nahisaho/yata-global` | グローバル知識グラフ - 分散共有 |
67
+ | **yata-ui** | `@nahisaho/yata-ui` | Web UI - 可視化・管理 |
68
+ | **pattern-mcp** | `@nahisaho/musubix-pattern-mcp` | パターン学習 - 抽出・圧縮 |
69
+ | **ontology-mcp** | `@nahisaho/musubix-ontology-mcp` | オントロジー - N3Store・推論 |
70
+ | **wake-sleep** | `@nahisaho/musubix-wake-sleep` | Wake-Sleep学習サイクル |
71
+ | **sdd-ontology** | `@nahisaho/musubix-sdd-ontology` | SDD方法論オントロジー |
72
+
73
+ ### 2.3 依存関係図
74
+
75
+ ```
76
+ ┌─────────────────────────────────────────────────────────────┐
77
+ │ MCP Server │
78
+ │ ┌─────────────────────────────────────────────────────┐ │
79
+ │ │ Claude Code / GitHub Copilot / Cursor / Gemini CLI │ │
80
+ │ └─────────────────────────────────────────────────────┘ │
81
+ └──────────────────────┬──────────────────────────────────────┘
82
+
83
+ ┌──────────────────────▼──────────────────────────────────────┐
84
+ │ MUSUBIX Core │
85
+ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────────────┐ │
86
+ │ │Symbolic │ │ CodeGen │ │ Design │ │ Traceability │ │
87
+ │ └────┬────┘ └────┬────┘ └────┬────┘ └────────┬────────┘ │
88
+ │ │ │ │ │ │
89
+ │ ┌────▼───────────▼───────────▼───────────────▼──────────┐ │
90
+ │ │ Learning System │ │
91
+ │ └───────────────────────────┬───────────────────────────┘ │
92
+ └──────────────────────────────┼──────────────────────────────┘
93
+
94
+ ┌──────────────────────────────▼──────────────────────────────┐
95
+ │ YATA Knowledge Graph │
96
+ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────┐ │
97
+ │ │ YATA Local │◄──►│ YATA Global │◄──►│ YATA UI │ │
98
+ │ │ (SQLite) │ │ (Distributed)│ │ (Web) │ │
99
+ │ └─────────────┘ └──────────────┘ └─────────────┘ │
100
+ └─────────────────────────────────────────────────────────────┘
101
+ ```
102
+
103
+ ---
104
+
105
+ ## 3. 9条憲法(Constitutional Articles)
106
+
107
+ MUSUBIXのすべての開発活動を統治する不変のルールです。
108
+
109
+ | 条項 | 名称 | 概要 |
110
+ |------|------|------|
111
+ | **I** | Library-First | 機能は独立ライブラリとして開始 |
112
+ | **II** | CLI Interface | すべてのライブラリはCLI公開必須 |
113
+ | **III** | Test-First | Red-Green-Blueサイクルでテスト先行 |
114
+ | **IV** | EARS Format | 要件はEARS形式で記述 |
115
+ | **V** | Traceability | 要件↔設計↔コード↔テストの100%追跡 |
116
+ | **VI** | Project Memory | steering/を参照してから決定 |
117
+ | **VII** | Design Patterns | 設計パターン適用の文書化 |
118
+ | **VIII** | Decision Records | すべての決定をADRで記録 |
119
+ | **IX** | Quality Gates | フェーズ移行前の品質検証 |
120
+
121
+ ---
122
+
123
+ ## 4. EARS要件形式
124
+
125
+ 5つのEARSパターンで要件を形式化します。
126
+
127
+ | パターン | 構文 | 用途 |
128
+ |---------|------|------|
129
+ | **Ubiquitous** | `THE [system] SHALL [requirement]` | システムが常に満たすべき要件 |
130
+ | **Event-driven** | `WHEN [event], THE [system] SHALL [response]` | 特定イベント発生時の要件 |
131
+ | **State-driven** | `WHILE [state], THE [system] SHALL [response]` | 特定状態における要件 |
132
+ | **Unwanted** | `THE [system] SHALL NOT [behavior]` | 回避すべき動作の要件 |
133
+ | **Optional** | `IF [condition], THEN THE [system] SHALL [response]` | 条件付き要件 |
134
+
135
+ ### 例
136
+
137
+ ```
138
+ # Ubiquitous(常時)
139
+ THE system SHALL encrypt all user data at rest.
140
+
141
+ # Event-driven(イベント駆動)
142
+ WHEN a user submits a login form, THE system SHALL validate credentials within 2 seconds.
143
+
144
+ # State-driven(状態駆動)
145
+ WHILE the system is in maintenance mode, THE system SHALL reject all API requests.
146
+
147
+ # Unwanted(禁止)
148
+ THE system SHALL NOT store passwords in plain text.
149
+
150
+ # Optional(条件付き)
151
+ IF the user has admin privileges, THEN THE system SHALL display the admin dashboard.
152
+ ```
153
+
154
+ ---
155
+
156
+ ## 5. Neuro-Symbolic統合
157
+
158
+ ### 5.1 統合アーキテクチャ
159
+
160
+ MUSUBIXは、LLM(Neural)の創造性とシンボリック推論の精密性を組み合わせます。
161
+
162
+ ```
163
+ ┌─────────────────────────────────────────────────────────────┐
164
+ │ User Request │
165
+ └──────────────────────┬──────────────────────────────────────┘
166
+
167
+ ┌──────────────────────▼──────────────────────────────────────┐
168
+ │ Neural (LLM) │
169
+ │ • コード生成 │
170
+ │ • 自然言語理解 │
171
+ │ • 創造的問題解決 │
172
+ └──────────────────────┬──────────────────────────────────────┘
173
+
174
+ ┌──────────────────────▼──────────────────────────────────────┐
175
+ │ Symbolic Verification │
176
+ │ • 知識グラフ検証 │
177
+ │ • 憲法準拠チェック │
178
+ │ • ハルシネーション検出 │
179
+ │ • 形式検証(Z3) │
180
+ └──────────────────────┬──────────────────────────────────────┘
181
+
182
+ ┌──────────────────────▼──────────────────────────────────────┐
183
+ │ Confidence Router │
184
+ │ ┌─────────────────────────────────────────────────────┐ │
185
+ │ │ Symbolic結果 Neural信頼度 最終決定 │ │
186
+ │ │ ───────────── ───────────── ───────────── │ │
187
+ │ │ invalid - Neural結果を棄却 │ │
188
+ │ │ valid ≥0.8 Neural結果を採用 │ │
189
+ │ │ valid <0.8 Symbolic結果を優先 │ │
190
+ │ └─────────────────────────────────────────────────────┘ │
191
+ └─────────────────────────────────────────────────────────────┘
192
+ ```
193
+
194
+ ### 5.2 信頼度評価
195
+
196
+ | シンボリック結果 | ニューラル信頼度 | 最終決定 |
197
+ |-----------------|-----------------|---------|
198
+ | `invalid` | - | ニューラル結果を**棄却** |
199
+ | `valid` | ≥0.8 | ニューラル結果を**採用** |
200
+ | `valid` | <0.8 | シンボリック結果を**優先** |
201
+
202
+ ---
203
+
204
+ ## 6. クイックスタート
205
+
206
+ ### 6.1 インストール
207
+
208
+ ```bash
209
+ # グローバルインストール
210
+ npm install -g @nahisaho/musubix-core
211
+
212
+ # プロジェクトにインストール
213
+ npm install @nahisaho/musubix-core
214
+ ```
215
+
216
+ ### 6.2 プロジェクト初期化
217
+
218
+ ```bash
219
+ npx musubix init my-project
220
+ cd my-project
221
+ ```
222
+
223
+ ### 6.3 基本的なワークフロー
224
+
225
+ ```bash
226
+ # 1. 要件をEARS形式で定義
227
+ npx musubix requirements analyze requirements.md
228
+
229
+ # 2. 設計を生成
230
+ npx musubix design generate requirements.md
231
+
232
+ # 3. コードを生成
233
+ npx musubix codegen generate design.md
234
+
235
+ # 4. テストを生成
236
+ npx musubix test generate src/
237
+
238
+ # 5. トレーサビリティを検証
239
+ npx musubix trace validate
240
+ ```
241
+
242
+ ---
243
+
244
+ ## 7. 関連ドキュメント
245
+
246
+ | ドキュメント | 説明 |
247
+ |-------------|------|
248
+ | [MUSUBIX-Core.md](MUSUBIX-Core.md) | Coreパッケージ詳細 |
249
+ | [MUSUBIX-FormalVerify.md](MUSUBIX-FormalVerify.md) | 形式検証パッケージ |
250
+ | [MUSUBIX-MCP-Server.md](MUSUBIX-MCP-Server.md) | MCPサーバー |
251
+ | [MUSUBIX-YATA.md](MUSUBIX-YATA.md) | YATA知識グラフ |
252
+ | [MUSUBIX-Learning.md](MUSUBIX-Learning.md) | 学習システム |
253
+ | [USER-GUIDE.md](USER-GUIDE.md) | ユーザーガイド |
254
+ | [API-REFERENCE.md](API-REFERENCE.md) | APIリファレンス |
255
+
256
+ ---
257
+
258
+ ## 8. ライセンス
259
+
260
+ MIT License
261
+
262
+ ---
263
+
264
+ **© 2026 MUSUBIX Project**
@@ -0,0 +1,399 @@
1
+ # MUSUBIX 次世代ロードマップ v2.x
2
+
3
+ **作成日**: 2026-01-06
4
+ **現行バージョン**: 1.7.5 (Formal Verification Edition)
5
+ **基準文書**: Neuro-SymbolicAI.md vs MUSUBIX実装比較
6
+
7
+ ---
8
+
9
+ ## 1. 現状分析:MUSUBIXと先行事例の比較
10
+
11
+ ### 1.1 統合パターン分析
12
+
13
+ Neuro-SymbolicAI.mdで識別された6つの統合パターンとMUSUBIXの対応状況:
14
+
15
+ | 統合パターン | 先行事例 | MUSUBIX対応 | 成熟度 |
16
+ |-------------|---------|------------|-------|
17
+ | **Neural as Search Guidance** | DeepCoder, DreamCoder | ❌ 未実装 | - |
18
+ | **Neural Generator + Symbolic Filter** | AlphaCode, Snyk DeepCode | ✅ 実装済み(Confidence Router) | 70% |
19
+ | **Symbolic Context Augmentation** | JetBrains AI, GraphCodeBERT | ⚠️ 部分実装(YATA KG) | 50% |
20
+ | **Interleaved Wake-Sleep** | DreamCoder, GPT-f | ✅ 実装済み(wake-sleep pkg) | 60% |
21
+ | **Formal Proof in the Loop** | AutoVerus, LeanDojo | ✅ 実装済み(formal-verify) | 80% |
22
+ | **Differentiable Symbolic** | IBM LNN, ∂ILP | ❌ 未実装 | - |
23
+
24
+ ### 1.2 機能別ギャップ分析
25
+
26
+ | 機能領域 | 先行事例のベスト | MUSUBIX現状 | ギャップ |
27
+ |---------|----------------|------------|---------|
28
+ | **形式検証** | AlphaProof (IMO銀メダル) | Z3 SMT統合 | 定理証明システム未連携 |
29
+ | **知識グラフ** | GraphGen4Code (20億トリプル) | YATA Local/Global | スケール、DFG統合なし |
30
+ | **プログラム合成** | PROSE (Excel搭載) | コード生成のみ | DSL合成・ライブラリ学習なし |
31
+ | **コード理解** | GraphCodeBERT (DFG統合) | AST解析のみ | データフローグラフ未対応 |
32
+ | **パターン学習** | DreamCoder (10^72探索削減) | Wake-Sleep基本実装 | 階層的ライブラリ学習なし |
33
+ | **静的解析** | JetBrains PSI (20年蓄積) | 基本的な検証 | 深い型・依存関係分析なし |
34
+
35
+ ### 1.3 商用化レベル比較
36
+
37
+ | 製品 | 記号統合度 | MUSUBIX比較 |
38
+ |-----|----------|------------|
39
+ | JetBrains AI Assistant | ★★★★★ | PSI統合に相当する機能なし |
40
+ | Microsoft PROSE | ★★★★★ | 演繹的合成なし |
41
+ | Sourcegraph Cody | ★★★★☆ | コードグラフ規模で劣る |
42
+ | GitHub Copilot | ★★☆☆☆ | 同等〜やや上(憲法検証) |
43
+ | Snyk DeepCode AI | ★★★★☆ | セキュリティ特化機能なし |
44
+
45
+ ---
46
+
47
+ ## 2. ロードマップ概要
48
+
49
+ ### 2.1 フェーズ構成
50
+
51
+ ```
52
+ ┌─────────────────────────────────────────────────────────────┐
53
+ │ Phase 1: Deep Symbolic Integration (v2.0) │
54
+ │ 2026 Q1-Q2 │
55
+ │ • データフローグラフ統合 │
56
+ │ • 定理証明システム連携 (Lean 4) │
57
+ │ • 知識グラフスケールアップ │
58
+ └─────────────────────────────────────────────────────────────┘
59
+
60
+ ┌─────────────────────────────────────────────────────────────┐
61
+ │ Phase 2: Advanced Learning (v2.5) │
62
+ │ 2026 Q3-Q4 │
63
+ │ • DreamCoder式ライブラリ学習 │
64
+ │ • Neural Search Guidance │
65
+ │ • プログラム合成DSL │
66
+ └─────────────────────────────────────────────────────────────┘
67
+
68
+ ┌─────────────────────────────────────────────────────────────┐
69
+ │ Phase 3: Enterprise Ready (v3.0) │
70
+ │ 2027 Q1-Q2 │
71
+ │ • JetBrains/VS Code深い統合 │
72
+ │ • セキュリティ特化機能 │
73
+ │ • 大規模知識グラフ (1億+トリプル) │
74
+ └─────────────────────────────────────────────────────────────┘
75
+ ```
76
+
77
+ ---
78
+
79
+ ## 3. Phase 1: Deep Symbolic Integration (v2.0)
80
+
81
+ **目標**: 記号的分析の深化と形式検証の拡張
82
+
83
+ ### 3.1 データフローグラフ統合
84
+
85
+ **参考**: GraphCodeBERT、JetBrains PSI
86
+
87
+ | 機能 | 説明 | 優先度 |
88
+ |------|------|--------|
89
+ | **DFG抽出** | コードからデータフローグラフを抽出 | P0 |
90
+ | **CFG抽出** | 制御フローグラフの抽出 | P0 |
91
+ | **依存関係分析** | 変数・関数間の依存関係マップ | P0 |
92
+ | **YATA DFG連携** | DFGを知識グラフに統合 | P1 |
93
+ | **Transformer注意機構** | DFGをLLMコンテキストとして供給 | P2 |
94
+
95
+ ```typescript
96
+ // 目標API
97
+ import { DataFlowAnalyzer } from '@nahisaho/musubix-core';
98
+
99
+ const analyzer = new DataFlowAnalyzer();
100
+ const dfg = await analyzer.extractDFG('src/user-service.ts');
101
+
102
+ // YATAに統合
103
+ await yata.importDFG(dfg, { namespace: 'code:dfg' });
104
+
105
+ // LLMコンテキストとして供給
106
+ const context = await dfg.toPromptContext();
107
+ ```
108
+
109
+ ### 3.2 定理証明システム連携 (Lean 4)
110
+
111
+ **参考**: LeanDojo/ReProver、AlphaProof
112
+
113
+ | 機能 | 説明 | 優先度 |
114
+ |------|------|--------|
115
+ | **Lean 4統合** | Lean証明支援系との連携 | P1 |
116
+ | **ReProver統合** | ベストファースト証明探索 | P1 |
117
+ | **EARS→Lean変換** | 要件を形式仕様に変換 | P0 |
118
+ | **証明検索** | 証明候補の自動探索 | P2 |
119
+ | **証明フィードバック** | 検証失敗時の修正提案 | P2 |
120
+
121
+ ```typescript
122
+ // 目標API
123
+ import { LeanIntegration } from '@nahisaho/musubix-formal-verify';
124
+
125
+ const lean = new LeanIntegration();
126
+
127
+ // EARS要件をLean定理に変換
128
+ const theorem = await lean.earsToTheorem(requirement);
129
+
130
+ // 証明探索
131
+ const proof = await lean.proveWithReProver(theorem, {
132
+ maxDepth: 10,
133
+ timeout: 30000,
134
+ });
135
+ ```
136
+
137
+ ### 3.3 知識グラフスケールアップ
138
+
139
+ **参考**: GraphGen4Code (20億トリプル)
140
+
141
+ | 機能 | 説明 | 優先度 |
142
+ |------|------|--------|
143
+ | **分散ストレージ** | PostgreSQL/ScyllaDBバックエンド | P1 |
144
+ | **シャーディング** | 大規模データのパーティショニング | P1 |
145
+ | **キャッシュ層** | Redis/Memcachedによる高速化 | P1 |
146
+ | **ストリーミングインジェスト** | 大量データの効率的取り込み | P2 |
147
+ | **グラフ圧縮** | 重複排除と圧縮アルゴリズム | P2 |
148
+
149
+ **目標メトリクス**:
150
+ - トリプル数: 1000万+ (現状: 数万)
151
+ - クエリ応答時間: <100ms (p99)
152
+ - 同時接続: 1000+
153
+
154
+ ---
155
+
156
+ ## 4. Phase 2: Advanced Learning (v2.5)
157
+
158
+ **目標**: 学習システムの高度化とプログラム合成
159
+
160
+ ### 4.1 DreamCoder式ライブラリ学習
161
+
162
+ **参考**: DreamCoder (10^72探索削減)
163
+
164
+ | 機能 | 説明 | 優先度 |
165
+ |------|------|--------|
166
+ | **階層的抽象化** | パターンから高次抽象概念を学習 | P0 |
167
+ | **ライブラリ成長** | 学習済みパターンのライブラリ自動拡張 | P0 |
168
+ | **型指向探索** | 型システムによる探索空間削減 | P1 |
169
+ | **E-graph最適化** | 等価性グラフによる表現最適化 | P2 |
170
+
171
+ ```typescript
172
+ // 目標API
173
+ import { LibraryLearner } from '@nahisaho/musubix-wake-sleep';
174
+
175
+ const learner = new LibraryLearner({
176
+ abstractionLevels: 3,
177
+ minOccurrences: 5,
178
+ });
179
+
180
+ // Wake-Sleep + ライブラリ学習
181
+ await learner.learnFromCorpus(codeCorpus);
182
+
183
+ // 学習済みライブラリで探索
184
+ const solution = await learner.synthesize(specification, {
185
+ useLearnedPrimitives: true,
186
+ });
187
+ ```
188
+
189
+ ### 4.2 Neural Search Guidance
190
+
191
+ **参考**: DeepCoder、NGDS
192
+
193
+ | 機能 | 説明 | 優先度 |
194
+ |------|------|--------|
195
+ | **分岐スコアリング** | ニューラルモデルで探索分岐を評価 | P0 |
196
+ | **探索優先順位付け** | 有望な探索パスを優先 | P0 |
197
+ | **学習ベースプルーニング** | 不毛な探索を早期打ち切り | P1 |
198
+ | **探索履歴学習** | 過去の探索から学習 | P2 |
199
+
200
+ ```typescript
201
+ // 目標API
202
+ import { GuidedSearch } from '@nahisaho/musubix-core';
203
+
204
+ const search = new GuidedSearch({
205
+ neuralScorer: embeddingModel,
206
+ symbolicVerifier: z3Adapter,
207
+ });
208
+
209
+ // ニューラル誘導探索
210
+ const result = await search.synthesize(spec, {
211
+ beamWidth: 10,
212
+ maxDepth: 20,
213
+ });
214
+ ```
215
+
216
+ ### 4.3 プログラム合成DSL
217
+
218
+ **参考**: Microsoft PROSE/FlashMeta
219
+
220
+ | 機能 | 説明 | 優先度 |
221
+ |------|------|--------|
222
+ | **DSL定義フレームワーク** | ドメイン固有言語の定義 | P0 |
223
+ | **Witness関数** | 演繹的合成のためのWitness関数 | P1 |
224
+ | **例示合成** | 入出力例からの合成 (PBE) | P1 |
225
+ | **合成ルール学習** | 合成ルールの自動学習 | P2 |
226
+
227
+ ```typescript
228
+ // 目標API
229
+ import { DSLFramework, ProgramSynthesizer } from '@nahisaho/musubix-synthesis';
230
+
231
+ // DSL定義
232
+ const transformDSL = new DSLFramework()
233
+ .addOperator('map', ['list', 'func'], 'list')
234
+ .addOperator('filter', ['list', 'pred'], 'list')
235
+ .addOperator('reduce', ['list', 'func', 'init'], 'any');
236
+
237
+ // 例示合成
238
+ const synthesizer = new ProgramSynthesizer(transformDSL);
239
+ const program = await synthesizer.synthesizeFromExamples([
240
+ { input: [1, 2, 3], output: [2, 4, 6] },
241
+ { input: [5, 10], output: [10, 20] },
242
+ ]);
243
+ // => map(x => x * 2)
244
+ ```
245
+
246
+ ---
247
+
248
+ ## 5. Phase 3: Enterprise Ready (v3.0)
249
+
250
+ **目標**: 商用レベルの統合と大規模対応
251
+
252
+ ### 5.1 IDE深い統合
253
+
254
+ **参考**: JetBrains PSI (20年蓄積)
255
+
256
+ | 機能 | 説明 | 優先度 |
257
+ |------|------|--------|
258
+ | **VS Code Extension** | Language Server Protocol完全実装 | P0 |
259
+ | **JetBrains Plugin** | IntelliJ IDEA/WebStorm対応 | P1 |
260
+ | **リアルタイム検証** | 編集中の継続的検証 | P0 |
261
+ | **インライン提案** | コンテキスト認識型の提案 | P1 |
262
+ | **リファクタリング支援** | 記号分析に基づくリファクタ | P2 |
263
+
264
+ ### 5.2 セキュリティ特化機能
265
+
266
+ **参考**: Snyk DeepCode AI、Amazon CodeGuru
267
+
268
+ | 機能 | 説明 | 優先度 |
269
+ |------|------|--------|
270
+ | **テイント分析** | 汚染データの追跡 | P0 |
271
+ | **脆弱性検出** | CVEデータベース連携 | P0 |
272
+ | **自動修正提案** | LLM生成→記号検証→適用 | P1 |
273
+ | **コンプライアンス検証** | OWASP、CWE準拠チェック | P1 |
274
+ | **セキュアコード生成** | セキュリティ考慮したコード生成 | P2 |
275
+
276
+ ```typescript
277
+ // 目標API
278
+ import { SecurityAnalyzer } from '@nahisaho/musubix-security';
279
+
280
+ const analyzer = new SecurityAnalyzer({
281
+ rules: ['owasp-top-10', 'cwe-top-25'],
282
+ cveDatabase: 'nvd',
283
+ });
284
+
285
+ const vulnerabilities = await analyzer.scan('src/');
286
+
287
+ // 自動修正(LLM生成→記号検証)
288
+ for (const vuln of vulnerabilities) {
289
+ const fix = await analyzer.generateFix(vuln);
290
+ if (await analyzer.verifyFix(fix)) {
291
+ await analyzer.applyFix(fix);
292
+ }
293
+ }
294
+ ```
295
+
296
+ ### 5.3 大規模知識グラフ
297
+
298
+ **目標**: 1億トリプル以上のスケール
299
+
300
+ | 機能 | 説明 | 優先度 |
301
+ |------|------|--------|
302
+ | **分散推論** | 複数ノードでの推論分散 | P1 |
303
+ | **増分更新** | 差分のみの効率的更新 | P0 |
304
+ | **クエリ最適化** | コストベースオプティマイザ | P1 |
305
+ | **マルチテナント** | 組織別の分離 | P1 |
306
+
307
+ ---
308
+
309
+ ## 6. 新パッケージ計画
310
+
311
+ ### 6.1 Phase 1 新パッケージ
312
+
313
+ | パッケージ | 役割 |
314
+ |-----------|------|
315
+ | `@nahisaho/musubix-dfg` | データフロー・制御フローグラフ |
316
+ | `@nahisaho/musubix-lean` | Lean 4 / ReProver統合 |
317
+ | `@nahisaho/yata-scale` | 大規模知識グラフバックエンド |
318
+
319
+ ### 6.2 Phase 2 新パッケージ
320
+
321
+ | パッケージ | 役割 |
322
+ |-----------|------|
323
+ | `@nahisaho/musubix-synthesis` | プログラム合成・DSLフレームワーク |
324
+ | `@nahisaho/musubix-neural-guide` | Neural Search Guidance |
325
+ | `@nahisaho/musubix-library-learner` | 階層的ライブラリ学習 |
326
+
327
+ ### 6.3 Phase 3 新パッケージ
328
+
329
+ | パッケージ | 役割 |
330
+ |-----------|------|
331
+ | `@nahisaho/musubix-vscode` | VS Code Extension |
332
+ | `@nahisaho/musubix-jetbrains` | JetBrains Plugin |
333
+ | `@nahisaho/musubix-security` | セキュリティ分析・修正 |
334
+
335
+ ---
336
+
337
+ ## 7. 成功指標(KPI)
338
+
339
+ ### 7.1 技術指標
340
+
341
+ | フェーズ | 指標 | 目標値 |
342
+ |---------|------|--------|
343
+ | **v2.0** | DFG抽出精度 | >95% |
344
+ | **v2.0** | Lean証明成功率 | >60% |
345
+ | **v2.0** | KGトリプル数 | 1000万+ |
346
+ | **v2.5** | ライブラリ学習削減率 | 10^6以上 |
347
+ | **v2.5** | PBE合成成功率 | >80% |
348
+ | **v3.0** | セキュリティ検出率 | >90% |
349
+ | **v3.0** | 偽陽性率 | <5% |
350
+
351
+ ### 7.2 ユーザー指標
352
+
353
+ | フェーズ | 指標 | 目標値 |
354
+ |---------|------|--------|
355
+ | **v2.0** | npm週間DL数 | 5,000+ |
356
+ | **v2.5** | npm週間DL数 | 20,000+ |
357
+ | **v3.0** | npm週間DL数 | 100,000+ |
358
+ | **v3.0** | GitHub Stars | 5,000+ |
359
+
360
+ ---
361
+
362
+ ## 8. リスクと対策
363
+
364
+ | リスク | 影響 | 対策 |
365
+ |--------|------|------|
366
+ | Lean 4統合の複雑性 | 遅延 | 段階的統合、コミュニティ協力 |
367
+ | 大規模KGパフォーマンス | 性能低下 | ベンチマーク先行、適切な技術選定 |
368
+ | ライブラリ学習の収束 | 品質問題 | DreamCoder論文の忠実な実装 |
369
+ | セキュリティ偽陽性 | ユーザー離反 | 記号検証による二重チェック |
370
+ | IDE統合の維持コスト | リソース不足 | LSP標準化、プラグイン共通化 |
371
+
372
+ ---
373
+
374
+ ## 9. タイムライン
375
+
376
+ ```
377
+ 2026 Q1 │ v2.0-alpha │ DFG抽出、Lean 4基本統合
378
+ 2026 Q2 │ v2.0 │ Deep Symbolic Integration リリース
379
+ 2026 Q3 │ v2.5-alpha │ ライブラリ学習、Neural Search
380
+ 2026 Q4 │ v2.5 │ Advanced Learning リリース
381
+ 2027 Q1 │ v3.0-alpha │ IDE統合、セキュリティ機能
382
+ 2027 Q2 │ v3.0 │ Enterprise Ready リリース
383
+ ```
384
+
385
+ ---
386
+
387
+ ## 10. 関連ドキュメント
388
+
389
+ | ドキュメント | 説明 |
390
+ |-------------|------|
391
+ | [Neuro-SymbolicAI.md](Neuro-SymbolicAI.md) | 先行事例調査 |
392
+ | [MUSUBIX-Overview.md](MUSUBIX-Overview.md) | 現行システム概要 |
393
+ | [MUSUBIX-FormalVerify.md](MUSUBIX-FormalVerify.md) | 形式検証(拡張対象) |
394
+ | [MUSUBIX-Learning.md](MUSUBIX-Learning.md) | 学習システム(拡張対象) |
395
+ | [MUSUBIX-YATA.md](MUSUBIX-YATA.md) | 知識グラフ(拡張対象) |
396
+
397
+ ---
398
+
399
+ **© 2026 MUSUBIX Project**