musubix 1.1.15 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -21,7 +21,7 @@ AIコーディング支援ツールは急速に進化しています。本記事
21
21
 
22
22
  # TL;DR
23
23
 
24
- > **最新バージョン**: v1.1.10 | **62ドメイン対応** | **224コンポーネント** | **459テスト** | **17ベストプラクティス**
24
+ > **最新バージョン**: v1.3.0 | **62ドメイン対応** | **243コンポーネント** | **752テスト** | **17ベストプラクティス**
25
25
 
26
26
  | 項目 | MUSUBI | MUSUBIX |
27
27
  |------|--------|---------|
@@ -54,7 +54,7 @@ AIコーディング支援ツールは急速に進化しています。本記事
54
54
 
55
55
  ### 対応AIエージェント
56
56
 
57
- MUSUBIは以下の7つの主要AIコーディングエージェントで動作します:
57
+ MUSUBIは以下の7つの主要AIコーディングエージェントで動作します。
58
58
 
59
59
  | エージェント | 特徴 |
60
60
  |-------------|------|
@@ -68,9 +68,9 @@ MUSUBIは以下の7つの主要AIコーディングエージェントで動作
68
68
 
69
69
  ### Claude Code Agent Skills
70
70
 
71
- MUSUBIXは**Claude Code Agent Skills**に対応しています。`.github/skills/`フォルダにSKILL.mdファイルを配置することで、Claude Codeが専門的なワークフローを自動的に認識・実行できます。
71
+ MUSUBIXは**GitHub Copilot**と**Claude Code**の両方のAgent Skillsに対応しています。v1.1.13から、`.github/skills/`と`.claude/skills/`の両方にスキルをコピーします。
72
72
 
73
- 現在、**9つのスキル**が利用可能です:
73
+ 現在、**9つのスキル**が利用可能です。
74
74
 
75
75
  | スキル名 | 説明 |
76
76
  |---------|------|
@@ -86,6 +86,7 @@ MUSUBIXは**Claude Code Agent Skills**に対応しています。`.github/skills
86
86
 
87
87
  スキルファイルの配置:
88
88
  ```
89
+ # GitHub Copilot用
89
90
  .github/skills/
90
91
  ├── musubix-sdd-workflow/SKILL.md # コアワークフロー
91
92
  ├── musubix-ears-validation/SKILL.md # 要件検証
@@ -96,6 +97,14 @@ MUSUBIXは**Claude Code Agent Skills**に対応しています。`.github/skills
96
97
  ├── musubix-adr-generation/SKILL.md # ADR生成
97
98
  ├── musubix-best-practices/SKILL.md # ベストプラクティス
98
99
  └── musubix-domain-inference/SKILL.md # ドメイン推論
100
+
101
+ # Claude Code用 (同一内容のコピー)
102
+ .claude/skills/
103
+ └── (同様の構造)
104
+
105
+ # AIエージェントガイド
106
+ AGENTS.md # GitHub Copilot用
107
+ CLAUDE.md # Claude Code用 (v1.1.14+)
99
108
  ```
100
109
 
101
110
  ## 1.2 主な特徴
@@ -333,11 +342,15 @@ flowchart TB
333
342
 
334
343
  ```mermaid
335
344
  flowchart TB
336
- subgraph MUSUBIX["MUSUBIX System v1.0.20"]
337
- subgraph Packages["パッケージ構成"]
338
- Core["@nahisaho/musubix-core<br/>77モジュール | 62ドメイン | 224コンポーネント"]
339
- MCP["@nahisaho/musubix-mcp-server<br/>9ツール, 6プロンプト"]
345
+ subgraph MUSUBIX["MUSUBIX System v1.3.0"]
346
+ subgraph Packages["パッケージ構成(7パッケージ)"]
347
+ Core["@nahisaho/musubix-core<br/>224コンポーネント | 62ドメイン"]
348
+ MCP["@nahisaho/musubix-mcp-server<br/>16ツール, 3プロンプト"]
340
349
  YATA_Client["@nahisaho/musubix-yata-client"]
350
+ PatternMCP["@nahisaho/musubix-pattern-mcp<br/>パターン学習"]
351
+ OntologyMCP["@nahisaho/musubix-ontology-mcp<br/>N3Store推論"]
352
+ WakeSleep["@nahisaho/musubix-wake-sleep<br/>学習サイクル"]
353
+ SDDOntology["@nahisaho/musubix-sdd-ontology"]
341
354
  end
342
355
 
343
356
  subgraph Integration["統合レイヤー"]
@@ -345,11 +358,15 @@ flowchart TB
345
358
  CE["ConfidenceEvaluator"]
346
359
  CD["ContradictionDetector"]
347
360
  LS["LearningSystem"]
361
+ WS["WakeSleepCycle"]
348
362
  end
349
363
 
350
364
  Core --> Integration
351
365
  MCP --> Integration
352
366
  YATA_Client --> Integration
367
+ PatternMCP --> Integration
368
+ OntologyMCP --> Integration
369
+ WakeSleep --> Integration
353
370
  end
354
371
 
355
372
  subgraph External["外部システム"]
@@ -718,26 +735,39 @@ approvalWorkflow.transition('pending', 'approve'); // 'approved'
718
735
  reservationWorkflow.transition('tentative', 'confirm'); // 'confirmed'
719
736
  ```
720
737
 
721
- ## 4.4 MCPサーバー(9ツール、6プロンプト)
738
+ ## 4.4 MCPサーバー(16ツール、3プロンプト)
739
+
740
+ v1.3.0では、従来の9ツールに加えて**7つの新しいパターン統合ツール**を追加しました。
722
741
 
723
742
  ```mermaid
724
743
  flowchart TB
725
744
  subgraph MCPServer["MCP Server"]
726
- subgraph Tools["9 Tools"]
727
- T1[要件系ツール]
728
- T2[設計系ツール]
729
- T3[コード系ツール]
730
- T4[テスト系ツール]
731
- T5[説明系ツール]
745
+ subgraph SDDTools["SDD基本ツール(9ツール)"]
746
+ T1[sdd_create_requirements]
747
+ T2[sdd_validate_requirements]
748
+ T3[sdd_create_design]
749
+ T4[sdd_validate_design]
750
+ T5[sdd_create_tasks]
751
+ T6[sdd_query_knowledge]
752
+ T7[sdd_update_knowledge]
753
+ T8[sdd_validate_constitution]
754
+ T9[sdd_validate_traceability]
732
755
  end
733
756
 
734
- subgraph Prompts["6 Prompts"]
757
+ subgraph PatternTools["パターン統合ツール(7ツール)- v1.3.0 NEW!"]
758
+ PT1[pattern_extract]
759
+ PT2[pattern_compress]
760
+ PT3[pattern_store]
761
+ PT4[pattern_query]
762
+ PT5[pattern_consolidate]
763
+ PT6[ontology_query]
764
+ PT7[ontology_infer]
765
+ end
766
+
767
+ subgraph Prompts["3 Prompts"]
735
768
  P1[sdd_requirements_analysis]
736
769
  P2[sdd_requirements_review]
737
770
  P3[sdd_design_generation]
738
- P4[sdd_design_review]
739
- P5[sdd_task_decomposition]
740
- P6[sdd_project_steering]
741
771
  end
742
772
  end
743
773
 
@@ -786,6 +816,287 @@ flowchart LR
786
816
  - 機密情報の自動フィルタリング
787
817
  - 外部サーバーへのデータ送信なし
788
818
 
819
+ ## 4.6 シンボリック推論モジュール(v1.2.0)
820
+
821
+ v1.2.0では、**シンボリック推論モジュール**(`packages/core/src/symbolic/`)を新規追加しました。これはNeuro-Symbolic AIの核心部分であり、**LLMの創造的な出力**と**形式的検証の厳密性**を融合させる画期的な機能です。
822
+
823
+ ### なぜシンボリック推論が必要か?
824
+
825
+ LLM(Large Language Model)は強力なコード生成能力を持つ一方、以下の問題を抱えています。
826
+
827
+ 1. **幻覚(Hallucination)**: 存在しない関数やライブラリを生成することがある
828
+ 2. **一貫性の欠如**: 同じ質問に対して異なる回答を返すことがある
829
+ 3. **検証不能**: 生成されたコードが仕様を満たすか数学的に証明できない
830
+ 4. **セキュリティリスク**: 脆弱性を含むコードを生成する可能性がある
831
+
832
+ シンボリック推論モジュールは、これらの問題に対して**形式的手法**で対処します。
833
+
834
+ | 問題 | シンボリック解決策 |
835
+ |-----|------------------|
836
+ | 幻覚 | `HallucinationDetector` が未定義シンボルを検出 |
837
+ | 一貫性 | `ConstitutionRuleRegistry` が9憲法条項への準拠を強制 |
838
+ | 検証不能 | `Z3Adapter` がSMTソルバーで数学的に検証 |
839
+ | セキュリティ | `SecurityScanner` がOWASP Top 10パターンを検出 |
840
+
841
+ ### アーキテクチャ(3フェーズ構成)
842
+
843
+ ```mermaid
844
+ flowchart TB
845
+ subgraph Phase1["Phase 1: 基盤"]
846
+ P1A[SemanticCodeFilterPipeline<br/>LLM出力の意味検証]
847
+ P1B[HallucinationDetector<br/>幻覚検出]
848
+ P1C[ConstitutionRuleRegistry<br/>9憲法条項の強制]
849
+ P1D[ConfidenceEstimator<br/>信頼度スコアリング]
850
+ P1E[ConfidenceBasedRouter<br/>ルーティング決定]
851
+ P1F[ErrorHandler<br/>グレースフルデグラデーション]
852
+ end
853
+
854
+ subgraph Phase2["Phase 2: 形式検証"]
855
+ P2A[EarsToFormalSpecConverter<br/>EARS → SMT-LIB変換]
856
+ P2B[VerificationConditionGenerator<br/>検証条件生成]
857
+ P2C[Z3Adapter<br/>Z3 SMTソルバー統合]
858
+ P2D[SecurityScanner<br/>OWASPパターン検出]
859
+ end
860
+
861
+ subgraph Phase3["Phase 3: 高度機能"]
862
+ P3A[CandidateRanker<br/>複数候補のスコアリング]
863
+ P3B[ResultBlender<br/>Neural/Symbolic結果統合]
864
+ P3C[ExtensibleRuleConfig<br/>YAML/JSONルール設定]
865
+ P3D[AuditLogger<br/>SHA-256改ざん検出]
866
+ P3E[PerformanceBudget<br/>SLOメトリクス]
867
+ P3F[QualityGateValidator<br/>品質ゲート検証]
868
+ end
869
+
870
+ Phase1 --> Phase2 --> Phase3
871
+ ```
872
+
873
+ ### Phase 1: 基盤コンポーネント
874
+
875
+ LLM出力の基本的な品質保証を担当します。
876
+
877
+ | コンポーネント | 機能 | 詳細 |
878
+ |--------------|------|------|
879
+ | **SemanticCodeFilterPipeline** | 意味的検証パイプライン | AST解析、型推論、依存関係検証を連鎖実行 |
880
+ | **HallucinationDetector** | 幻覚検出 | 未定義シンボル、存在しないパッケージ、無効なAPIを検出 |
881
+ | **ConstitutionRuleRegistry** | 憲法準拠チェック | 9憲法条項への違反を自動検出(Library-First、Test-First等) |
882
+ | **ConfidenceEstimator** | 信頼度スコアリング | 複数の指標から0.0〜1.0の信頼度を算出 |
883
+ | **ConfidenceBasedRouter** | ルーティング決定 | 信頼度に基づいてNeural/Symbolic処理を振り分け |
884
+ | **ErrorHandler** | グレースフルデグラデーション | 検証失敗時の段階的フォールバック |
885
+
886
+ ### Phase 2: 形式検証コンポーネント
887
+
888
+ 数学的・形式的な検証を担当します。
889
+
890
+ | コンポーネント | 機能 | 詳細 |
891
+ |--------------|------|------|
892
+ | **EarsToFormalSpecConverter** | EARS → SMT-LIB変換 | 自然言語要件を形式仕様に変換 |
893
+ | **VerificationConditionGenerator** | 検証条件生成 | 事前条件、事後条件、ループ不変条件を生成 |
894
+ | **Z3Adapter** | SMTソルバー統合 | Microsoft Z3による数学的証明(充足可能性判定) |
895
+ | **SecurityScanner** | 脆弱性検出 | OWASP Top 10パターン(SQLi, XSS, CSRF等)を検出 |
896
+
897
+ ### Phase 3: 高度機能コンポーネント
898
+
899
+ 複数候補の評価と結果統合を担当します。
900
+
901
+ | コンポーネント | 機能 | 詳細 |
902
+ |--------------|------|------|
903
+ | **CandidateRanker** | 候補スコアリング | 複数の生成候補を品質・適合性でランキング |
904
+ | **ResultBlender** | 結果統合 | Neural結果とSymbolic結果を戦略的に統合 |
905
+ | **ExtensibleRuleConfig** | ルール設定 | YAML/JSONでカスタムルールを定義可能 |
906
+ | **AuditLogger** | 監査ログ | SHA-256ハッシュで改ざんを検出可能な監査証跡 |
907
+ | **PerformanceBudget** | SLOメトリクス | レイテンシ、メモリ使用量のSLO監視 |
908
+ | **QualityGateValidator** | 品質ゲート | 要件→設計→実装の各段階で品質基準を強制 |
909
+
910
+ ### ResultBlender: Neural-Symbolic統合の核心
911
+
912
+ ResultBlenderは、LLM(Neural)の出力とシンボリック推論の結果を統合する中核コンポーネントです。3つの戦略を提供します。
913
+
914
+ ```typescript
915
+ // 1. neural_priority: ニューラル結果を優先
916
+ // シンボリック検証をパスした場合のみニューラル結果を採用
917
+ // ユースケース: 創造的なコード生成、新しいアルゴリズム設計
918
+ blender.blend(neuralResult, symbolicResult, 'neural_priority');
919
+
920
+ // 2. symbolic_priority: シンボリック結果を優先
921
+ // 形式的に正しい結果を優先し、ニューラルは補助的に使用
922
+ // ユースケース: セキュリティクリティカルなコード、金融計算
923
+ blender.blend(neuralResult, symbolicResult, 'symbolic_priority');
924
+
925
+ // 3. weighted: 信頼度に基づく重み付け統合
926
+ // 両方の結果を信頼度スコアで重み付けして統合
927
+ // ユースケース: 一般的なコード生成、バランスの取れた出力
928
+ blender.blend(neuralResult, symbolicResult, 'weighted');
929
+ ```
930
+
931
+ ### 信頼度ベースの決定ルール(REQ-INT-002準拠)
932
+
933
+ ```typescript
934
+ // シンボリック検証とニューラル信頼度の組み合わせ
935
+ if (symbolicResult === 'invalid') {
936
+ // シンボリック検証失敗 → ニューラル結果を棄却
937
+ return reject(neuralResult);
938
+ } else if (symbolicResult === 'valid' && neuralConfidence >= 0.8) {
939
+ // 高信頼度 → ニューラル結果を採用
940
+ return accept(neuralResult);
941
+ } else {
942
+ // 低信頼度 → シンボリック結果を優先
943
+ return prefer(symbolicResult);
944
+ }
945
+ ```
946
+
947
+ この決定ルールにより、**LLMの創造性を活かしつつ、形式的な正しさを保証**します。
948
+
949
+ ## 4.7 Wake-Sleep学習サイクル(v1.3.0)
950
+
951
+ v1.3.0では、**Wake-Sleepアルゴリズム**に基づく継続的学習システムを導入しました。これは神経科学の「睡眠中に記憶を整理・統合する」メカニズムに着想を得た学習パラダイムです。
952
+
953
+ ### なぜWake-Sleep学習が必要か?
954
+
955
+ 従来のAIコーディングアシスタントには以下の課題がありました。
956
+
957
+ 1. **学習の断絶**: セッション終了後に学習内容が失われる
958
+ 2. **パターンの冗長性**: 似たようなパターンが重複して蓄積される
959
+ 3. **知識の断片化**: 学習したパターンが体系化されない
960
+ 4. **メモリの肥大化**: 無制限にデータが増加し性能が低下する
961
+
962
+ Wake-Sleep学習サイクルは、これらの問題を解決します。
963
+
964
+ | 課題 | Wake-Sleep解決策 |
965
+ |-----|------------------|
966
+ | 学習の断絶 | `PatternLibrary` による永続化(JSON形式) |
967
+ | パターンの冗長性 | Sleep Phaseでの `pattern_consolidate`(類似統合) |
968
+ | 知識の断片化 | `N3Store` によるRDF/OWL体系化 |
969
+ | メモリの肥大化 | Sleep Phaseでの `pattern_compress`(抽象化圧縮) |
970
+
971
+ ### Wake-Sleepサイクルの詳細
972
+
973
+ ```mermaid
974
+ flowchart LR
975
+ subgraph WakePhase["Wake Phase(覚醒)"]
976
+ W1[コード観察] --> W2[パターン抽出]
977
+ W2 --> W3[知識グラフ更新]
978
+ end
979
+
980
+ subgraph SleepPhase["Sleep Phase(睡眠)"]
981
+ S1[パターン統合] --> S2[類似パターン圧縮]
982
+ S2 --> S3[メモリ最適化]
983
+ end
984
+
985
+ WakePhase --> SleepPhase
986
+ SleepPhase --> WakePhase
987
+ ```
988
+
989
+ #### Wake Phase(覚醒フェーズ)
990
+
991
+ 開発者がアクティブにコーディングしている間に実行されます。
992
+
993
+ ```typescript
994
+ // Wake Phaseの処理フロー
995
+ async function wakePhase(codeObservation: CodeObservation): Promise<void> {
996
+ // 1. コード観察: 開発者の操作を監視
997
+ const observation = await observe(codeObservation);
998
+
999
+ // 2. パターン抽出: コードから設計パターン・コーディングパターンを検出
1000
+ const patterns = await extractPatterns(observation);
1001
+
1002
+ // 3. 知識グラフ更新: 抽出したパターンをオントロジーに追加
1003
+ await updateKnowledgeGraph(patterns);
1004
+ }
1005
+ ```
1006
+
1007
+ | ステップ | 処理内容 | 出力 |
1008
+ |---------|----------|------|
1009
+ | コード観察 | ファイル変更、関数追加、リファクタリングを検出 | `CodeObservation` |
1010
+ | パターン抽出 | Factory, Repository, Service等のパターンを識別 | `Pattern[]` |
1011
+ | 知識グラフ更新 | RDFトリプルとして知識グラフに永続化 | `N3Store` 更新 |
1012
+
1013
+ #### Sleep Phase(睡眠フェーズ)
1014
+
1015
+ 開発者がアイドル状態(休憩中、ミーティング中等)に実行されます。
1016
+
1017
+ ```typescript
1018
+ // Sleep Phaseの処理フロー
1019
+ async function sleepPhase(): Promise<void> {
1020
+ // 1. パターン統合: 類似パターンをグループ化
1021
+ const consolidated = await consolidatePatterns();
1022
+
1023
+ // 2. 圧縮: 冗長な詳細を抽象化
1024
+ const compressed = await compressPatterns(consolidated);
1025
+
1026
+ // 3. メモリ最適化: 使用頻度の低いパターンを整理
1027
+ await optimizeMemory(compressed);
1028
+ }
1029
+ ```
1030
+
1031
+ | ステップ | 処理内容 | 効果 |
1032
+ |---------|----------|------|
1033
+ | パターン統合 | 類似度90%以上のパターンをマージ | パターン数削減 |
1034
+ | 圧縮 | 具体的な変数名を抽象化(`userId` → `<identifier>`) | 汎用性向上 |
1035
+ | メモリ最適化 | 30日未使用パターンをアーカイブ | 検索性能維持 |
1036
+
1037
+ ### 新パッケージ(v1.3.0で追加)
1038
+
1039
+ | パッケージ | npm | 役割 |
1040
+ |-----------|-----|------|
1041
+ | `packages/pattern-mcp/` | `@nahisaho/musubix-pattern-mcp` | パターン抽出・圧縮・ライブラリ管理 |
1042
+ | `packages/ontology-mcp/` | `@nahisaho/musubix-ontology-mcp` | N3Store・RDF推論エンジン |
1043
+ | `packages/wake-sleep/` | `@nahisaho/musubix-wake-sleep` | Wake-Sleep学習サイクル制御 |
1044
+ | `packages/sdd-ontology/` | `@nahisaho/musubix-sdd-ontology` | SDD方法論のオントロジー定義 |
1045
+
1046
+ ### 主要コンポーネント詳細
1047
+
1048
+ | コンポーネント | 機能 | 詳細 |
1049
+ |--------------|------|------|
1050
+ | **WakeSleepCycle** | サイクルオーケストレーション | Wake/Sleepフェーズの切り替え、スケジューリング、状態管理 |
1051
+ | **PatternLibrary** | パターン永続化 | JSON形式で学習済みパターンを保存、バージョン管理、検索API |
1052
+ | **PatternOntologyBridge** | 相互変換 | `Pattern` オブジェクト ↔ RDFトリプルの双方向変換 |
1053
+ | **N3Store** | 知識グラフDB | Turtle形式のRDF/OWLストレージ、SPARQLライクなクエリ |
1054
+ | **PatternExtractor** | パターン検出 | AST解析によるGoFパターン、アーキテクチャパターンの検出 |
1055
+ | **PatternCompressor** | パターン圧縮 | 類似パターンの抽象化、変数名の一般化 |
1056
+
1057
+ ### 新MCPツール(7ツール)
1058
+
1059
+ Wake-Sleep学習機能をMCPプロトコル経由で利用可能にします。
1060
+
1061
+ | ツール名 | 説明 | ユースケース |
1062
+ |---------|------|-------------|
1063
+ | `pattern_extract` | コードからパターンを抽出 | 既存コードベースの分析 |
1064
+ | `pattern_compress` | パターンの抽象化・圧縮 | 冗長パターンの整理 |
1065
+ | `pattern_store` | パターンライブラリへの保存 | 学習結果の永続化 |
1066
+ | `pattern_query` | パターンの検索・取得 | 類似実装の発見 |
1067
+ | `pattern_consolidate` | 類似パターンの統合 | Sleep Phase実行 |
1068
+ | `ontology_query` | オントロジーグラフへのクエリ | 知識検索 |
1069
+ | `ontology_infer` | オントロジーによる推論実行 | 関連パターン推論 |
1070
+
1071
+ ### 学習データの保存場所
1072
+
1073
+ ```
1074
+ storage/
1075
+ ├── patterns/
1076
+ │ └── library.json # パターンライブラリ(JSON)
1077
+ │ # 形式: { patterns: Pattern[], metadata: {...} }
1078
+ └── ontology/
1079
+ └── n3-store.ttl # 知識グラフ(Turtle RDF)
1080
+ # 形式: @prefix sdd: <http://musubix.dev/ontology/sdd#>
1081
+ ```
1082
+
1083
+ ### 学習効果の例
1084
+
1085
+ Wake-Sleep学習サイクルにより、以下のような効果が得られます。
1086
+
1087
+ ```typescript
1088
+ // 学習前: 開発者が毎回同じパターンを手書き
1089
+ class UserRepository {
1090
+ async findById(id: string): Promise<User | null> { ... }
1091
+ async save(user: User): Promise<void> { ... }
1092
+ }
1093
+
1094
+ // 学習後: システムが自動でパターンを提案
1095
+ // 「Repository パターンを検出しました。
1096
+ // 類似実装: ProductRepository, OrderRepository
1097
+ // 推奨メソッド: findAll(), delete(), exists()」
1098
+ ```
1099
+
789
1100
  # 5. 9つの憲法条項
790
1101
 
791
1102
  MUSUBIXは、MUSUBIから継承した **9つの憲法条項(Constitutional Articles)** を遵守します。これらは開発プロセス全体を統治する不変の原則であり、AIコーディングエージェントが従うべきガバナンスフレームワークです。
@@ -1129,17 +1440,17 @@ claude mcp list
1129
1440
 
1130
1441
  ```mermaid
1131
1442
  flowchart TD
1132
- Start[MUSUBIXを使いたい] --> Q1{MCPを使う<br/>環境がある?}
1443
+ Start[MUSUBIXを使いたい] --> Q1{MCPを使う環境がある?}
1133
1444
 
1134
- Q1 -->|はい| Q2{高度な機能が<br/>必要?}
1445
+ Q1 -->|はい| Q2{高度な機能が<br>必要?}
1135
1446
  Q1 -->|いいえ| Direct[方法1: 直接利用]
1136
1447
 
1137
1448
  Q2 -->|はい| MCP[方法2: MCP経由]
1138
1449
  Q2 -->|いいえ| Both[両方併用]
1139
1450
 
1140
- Direct --> Use1[AGENTS.md + プロンプト<br/>で日常開発]
1141
- MCP --> Use2[MCPツールで<br/>高度な検証・分析]
1142
- Both --> Use3[普段は直接利用<br/>必要時にMCP]
1451
+ Direct --> Use1[AGENTS.md + プロンプトで日常開発]
1452
+ MCP --> Use2[MCPツールで<br>高度な検証・分析]
1453
+ Both --> Use3[普段は直接利用<br>必要時にMCP]
1143
1454
  ```
1144
1455
 
1145
1456
  | シナリオ | 推奨方法 |
@@ -1164,4 +1475,4 @@ flowchart TD
1164
1475
  **著者**: nahisaho
1165
1476
  **公開日**: 2026-01-02
1166
1477
  **更新日**: 2026-01-05
1167
- **バージョン**: v1.1.10
1478
+ **バージョン**: v1.3.0