modelfusion 0.98.0 → 0.100.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. package/README.md +13 -19
  2. package/composed-function/summarize/summarizeRecursivelyWithTextGenerationAndTokenSplitting.cjs +1 -1
  3. package/composed-function/summarize/summarizeRecursivelyWithTextGenerationAndTokenSplitting.js +1 -1
  4. package/guard/fixStructure.cjs +3 -3
  5. package/guard/fixStructure.d.ts +3 -3
  6. package/guard/fixStructure.js +3 -3
  7. package/model-function/Model.d.ts +2 -2
  8. package/model-function/generate-structure/generateStructure.d.ts +2 -2
  9. package/model-function/generate-structure/streamStructure.d.ts +1 -1
  10. package/model-function/generate-text/PromptTemplateTextGenerationModel.cjs +2 -2
  11. package/model-function/generate-text/PromptTemplateTextGenerationModel.d.ts +2 -2
  12. package/model-function/generate-text/PromptTemplateTextGenerationModel.js +2 -2
  13. package/model-function/generate-text/TextGenerationModel.d.ts +31 -5
  14. package/model-function/generate-text/generateText.cjs +10 -4
  15. package/model-function/generate-text/generateText.d.ts +1 -0
  16. package/model-function/generate-text/generateText.js +10 -4
  17. package/model-function/generate-text/prompt-template/trimChatPrompt.cjs +1 -1
  18. package/model-function/generate-text/prompt-template/trimChatPrompt.js +1 -1
  19. package/model-provider/anthropic/AnthropicTextGenerationModel.cjs +27 -31
  20. package/model-provider/anthropic/AnthropicTextGenerationModel.d.ts +2 -2
  21. package/model-provider/anthropic/AnthropicTextGenerationModel.js +27 -31
  22. package/model-provider/cohere/CohereFacade.cjs +1 -1
  23. package/model-provider/cohere/CohereFacade.d.ts +1 -1
  24. package/model-provider/cohere/CohereFacade.js +1 -1
  25. package/model-provider/cohere/CohereTextEmbeddingModel.d.ts +3 -3
  26. package/model-provider/cohere/CohereTextGenerationModel.cjs +34 -43
  27. package/model-provider/cohere/CohereTextGenerationModel.d.ts +3 -4
  28. package/model-provider/cohere/CohereTextGenerationModel.js +34 -43
  29. package/model-provider/huggingface/HuggingFaceFacade.cjs +1 -1
  30. package/model-provider/huggingface/HuggingFaceFacade.d.ts +1 -1
  31. package/model-provider/huggingface/HuggingFaceFacade.js +1 -1
  32. package/model-provider/huggingface/HuggingFaceTextGenerationModel.cjs +31 -41
  33. package/model-provider/huggingface/HuggingFaceTextGenerationModel.d.ts +3 -4
  34. package/model-provider/huggingface/HuggingFaceTextGenerationModel.js +31 -41
  35. package/model-provider/llamacpp/LlamaCppTextGenerationModel.cjs +4 -4
  36. package/model-provider/llamacpp/LlamaCppTextGenerationModel.d.ts +2 -2
  37. package/model-provider/llamacpp/LlamaCppTextGenerationModel.js +4 -4
  38. package/model-provider/mistral/{MistralTextGenerationModel.cjs → MistralChatModel.cjs} +18 -18
  39. package/model-provider/mistral/{MistralTextGenerationModel.d.ts → MistralChatModel.d.ts} +22 -21
  40. package/model-provider/mistral/{MistralTextGenerationModel.js → MistralChatModel.js} +16 -16
  41. package/model-provider/mistral/MistralFacade.cjs +5 -5
  42. package/model-provider/mistral/MistralFacade.d.ts +3 -2
  43. package/model-provider/mistral/MistralFacade.js +3 -3
  44. package/model-provider/mistral/MistralPromptTemplate.d.ts +4 -4
  45. package/model-provider/mistral/index.cjs +1 -1
  46. package/model-provider/mistral/index.d.ts +1 -1
  47. package/model-provider/mistral/index.js +1 -1
  48. package/model-provider/ollama/OllamaApiConfiguration.d.ts +6 -5
  49. package/model-provider/ollama/OllamaChatModel.cjs +303 -0
  50. package/model-provider/ollama/OllamaChatModel.d.ts +171 -0
  51. package/model-provider/ollama/OllamaChatModel.js +299 -0
  52. package/model-provider/ollama/OllamaChatPromptTemplate.cjs +76 -0
  53. package/model-provider/ollama/OllamaChatPromptTemplate.d.ts +20 -0
  54. package/model-provider/ollama/OllamaChatPromptTemplate.js +69 -0
  55. package/model-provider/ollama/{OllamaTextGenerationModel.cjs → OllamaCompletionModel.cjs} +17 -15
  56. package/model-provider/ollama/OllamaCompletionModel.d.ts +159 -0
  57. package/model-provider/ollama/{OllamaTextGenerationModel.js → OllamaCompletionModel.js} +15 -13
  58. package/model-provider/ollama/{OllamaTextGenerationModel.test.cjs → OllamaCompletionModel.test.cjs} +3 -3
  59. package/model-provider/ollama/{OllamaTextGenerationModel.test.js → OllamaCompletionModel.test.js} +3 -3
  60. package/model-provider/ollama/OllamaFacade.cjs +15 -5
  61. package/model-provider/ollama/OllamaFacade.d.ts +7 -2
  62. package/model-provider/ollama/OllamaFacade.js +11 -3
  63. package/model-provider/ollama/OllamaTextGenerationSettings.cjs +2 -0
  64. package/model-provider/ollama/OllamaTextGenerationSettings.d.ts +87 -0
  65. package/model-provider/ollama/OllamaTextGenerationSettings.js +1 -0
  66. package/model-provider/ollama/index.cjs +4 -1
  67. package/model-provider/ollama/index.d.ts +4 -1
  68. package/model-provider/ollama/index.js +4 -1
  69. package/model-provider/openai/OpenAICompletionModel.cjs +48 -53
  70. package/model-provider/openai/OpenAICompletionModel.d.ts +3 -6
  71. package/model-provider/openai/OpenAICompletionModel.js +48 -53
  72. package/model-provider/openai/OpenAIFacade.cjs +6 -4
  73. package/model-provider/openai/OpenAIFacade.d.ts +5 -3
  74. package/model-provider/openai/OpenAIFacade.js +4 -3
  75. package/model-provider/openai/chat/AbstractOpenAIChatModel.cjs +50 -54
  76. package/model-provider/openai/chat/AbstractOpenAIChatModel.d.ts +7 -28
  77. package/model-provider/openai/chat/AbstractOpenAIChatModel.js +50 -54
  78. package/model-provider/openai/chat/OpenAIChatFunctionCallStructureGenerationModel.d.ts +3 -3
  79. package/model-provider/openai/chat/OpenAIChatModel.cjs +4 -4
  80. package/model-provider/openai/chat/OpenAIChatModel.d.ts +3 -3
  81. package/model-provider/openai/chat/OpenAIChatModel.js +4 -4
  82. package/model-provider/openai/chat/OpenAIChatModel.test.cjs +1 -1
  83. package/model-provider/openai/chat/OpenAIChatModel.test.js +1 -1
  84. package/model-provider/openai/chat/OpenAIChatPromptTemplate.d.ts +5 -5
  85. package/model-provider/openai/chat/OpenAIChatPromptTemplate.js +1 -1
  86. package/model-provider/openai-compatible/OpenAICompatibleChatModel.cjs +2 -2
  87. package/model-provider/openai-compatible/OpenAICompatibleChatModel.js +2 -2
  88. package/model-provider/openai-compatible/OpenAICompatibleFacade.cjs +2 -2
  89. package/model-provider/openai-compatible/OpenAICompatibleFacade.d.ts +2 -2
  90. package/model-provider/openai-compatible/OpenAICompatibleFacade.js +2 -2
  91. package/package.json +1 -1
  92. package/model-provider/ollama/OllamaTextGenerationModel.d.ts +0 -230
  93. /package/model-provider/ollama/{OllamaTextGenerationModel.test.d.ts → OllamaCompletionModel.test.d.ts} +0 -0
package/README.md CHANGED
@@ -85,7 +85,7 @@ Providers: [OpenAI](https://modelfusion.dev/integration/model-provider/openai),
85
85
  Multi-modal vision models such as GPT 4 Vision can process images as part of the prompt.
86
86
 
87
87
  ```ts
88
- import { streamText, openai, OpenAIChatMessage } from "modelfusion";
88
+ import { streamText, openai } from "modelfusion";
89
89
  import { readFileSync } from "fs";
90
90
 
91
91
  const image = readFileSync("./image.png").toString("base64");
@@ -93,7 +93,7 @@ const image = readFileSync("./image.png").toString("base64");
93
93
  const textStream = await streamText(
94
94
  openai.ChatTextGenerator({ model: "gpt-4-vision-preview" }),
95
95
  [
96
- OpenAIChatMessage.user([
96
+ openai.ChatMessage.user([
97
97
  { type: "text", text: "Describe the image in detail:" },
98
98
  { type: "image", base64Image: image, mimeType: "image/png" },
99
99
  ]),
@@ -211,7 +211,7 @@ const sentiment = await generateStructure(
211
211
  .ChatTextGenerator({
212
212
  model: "gpt-3.5-turbo",
213
213
  temperature: 0,
214
- maxCompletionTokens: 50,
214
+ maxGenerationTokens: 50,
215
215
  })
216
216
  .asFunctionCallStructureGenerationModel({ fnName: "sentiment" })
217
217
  .withInstructionPrompt(),
@@ -355,14 +355,14 @@ const result = await guard(
355
355
  fixStructure({
356
356
  modifyInputForRetry: async ({ input, error }) => [
357
357
  ...input,
358
- OpenAIChatMessage.assistant(null, {
358
+ openai.ChatMessage.assistant(null, {
359
359
  functionCall: {
360
360
  name: "sentiment",
361
361
  arguments: JSON.stringify(error.valueText),
362
362
  },
363
363
  }),
364
- OpenAIChatMessage.user(error.message),
365
- OpenAIChatMessage.user("Please fix the error and try again."),
364
+ openai.ChatMessage.user(error.message),
365
+ openai.ChatMessage.user("Please fix the error and try again."),
366
366
  ],
367
367
  })
368
368
  );
@@ -418,7 +418,7 @@ With `generateToolCall`, you can generate a tool call for a specific tool with a
418
418
  const { id, name, args } = await generateToolCall(
419
419
  openai.ChatTextGenerator({ model: "gpt-3.5-turbo" }),
420
420
  calculator,
421
- [OpenAIChatMessage.user("What's fourteen times twelve?")]
421
+ [openai.ChatMessage.user("What's fourteen times twelve?")]
422
422
  );
423
423
  ```
424
424
 
@@ -430,7 +430,7 @@ With `generateToolCallsOrText`, you can ask a language model to generate several
430
430
  const { text, toolCalls } = await generateToolCallsOrText(
431
431
  openai.ChatTextGenerator({ model: "gpt-3.5-turbo" }),
432
432
  [toolA, toolB, toolC],
433
- [OpenAIChatMessage.user(query)]
433
+ [openai.ChatMessage.user(query)]
434
434
  );
435
435
  ```
436
436
 
@@ -454,7 +454,7 @@ With `useTool`, you can use a tool with a language model that supports tools cal
454
454
  const { tool, toolCall, args, ok, result } = await useTool(
455
455
  openai.ChatTextGenerator({ model: "gpt-3.5-turbo" }),
456
456
  calculator,
457
- [OpenAIChatMessage.user("What's fourteen times twelve?")]
457
+ [openai.ChatMessage.user("What's fourteen times twelve?")]
458
458
  );
459
459
 
460
460
  console.log(`Tool call:`, toolCall);
@@ -472,7 +472,7 @@ With `useToolsOrGenerateText`, you can ask a language model to generate several
472
472
  const { text, toolResults } = await useToolsOrGenerateText(
473
473
  openai.ChatTextGenerator({ model: "gpt-3.5-turbo" }),
474
474
  [calculator /* ... */],
475
- [OpenAIChatMessage.user("What's fourteen times twelve?")]
475
+ [openai.ChatMessage.user("What's fourteen times twelve?")]
476
476
  );
477
477
  ```
478
478
 
@@ -541,7 +541,7 @@ const text = await generateText(
541
541
  llamacpp
542
542
  .TextGenerator({
543
543
  contextWindowSize: 4096, // Llama 2 context window size
544
- maxCompletionTokens: 1000,
544
+ maxGenerationTokens: 1000,
545
545
  })
546
546
  .withTextPromptTemplate(Llama2Prompt.instruction()),
547
547
  {
@@ -619,10 +619,10 @@ ModelFusion model functions return rich responses that include the original resp
619
619
 
620
620
  ```ts
621
621
  // access the full response (needs to be typed) and the metadata:
622
- const { value, response, metadata } = await generateText(
622
+ const { text, response, metadata } = await generateText(
623
623
  openai.CompletionTextGenerator({
624
624
  model: "gpt-3.5-turbo-instruct",
625
- maxCompletionTokens: 1000,
625
+ maxGenerationTokens: 1000,
626
626
  n: 2, // generate 2 completions
627
627
  }),
628
628
  "Write a short story about a robot learning to love:\n\n",
@@ -767,12 +767,6 @@ Examples for almost all of the individual functions and objects. Highly recommen
767
767
 
768
768
  StoryTeller is an exploratory web application that creates short audio stories for pre-school kids.
769
769
 
770
- ### [Chatbot (Terminal)](https://github.com/lgrammel/modelfusion/tree/main/examples/chatbot-terminal)
771
-
772
- > _Terminal app_, _chat_, _llama.cpp_
773
-
774
- A chat with an AI assistant, implemented as a terminal app.
775
-
776
770
  ### [Chatbot (Next.JS)](https://github.com/lgrammel/modelfusion/tree/main/examples/chatbot-next-js)
777
771
 
778
772
  > _Next.js app_, _OpenAI GPT-3.5-turbo_, _streaming_, _abort handling_
@@ -10,7 +10,7 @@ const summarizeRecursively_js_1 = require("./summarizeRecursively.cjs");
10
10
  * while leaving enough space for the model to generate text.
11
11
  */
12
12
  async function summarizeRecursivelyWithTextGenerationAndTokenSplitting({ text, model, prompt, tokenLimit = model.contextWindowSize -
13
- (model.settings.maxCompletionTokens ?? model.contextWindowSize / 4), join, }, options) {
13
+ (model.settings.maxGenerationTokens ?? model.contextWindowSize / 4), join, }, options) {
14
14
  const emptyPromptTokens = await model.countPromptTokens(await prompt({ text: "" }));
15
15
  return (0, summarizeRecursively_js_1.summarizeRecursively)({
16
16
  split: (0, splitRecursively_js_1.splitAtToken)({
@@ -7,7 +7,7 @@ import { summarizeRecursively } from "./summarizeRecursively.js";
7
7
  * while leaving enough space for the model to generate text.
8
8
  */
9
9
  export async function summarizeRecursivelyWithTextGenerationAndTokenSplitting({ text, model, prompt, tokenLimit = model.contextWindowSize -
10
- (model.settings.maxCompletionTokens ?? model.contextWindowSize / 4), join, }, options) {
10
+ (model.settings.maxGenerationTokens ?? model.contextWindowSize / 4), join, }, options) {
11
11
  const emptyPromptTokens = await model.countPromptTokens(await prompt({ text: "" }));
12
12
  return summarizeRecursively({
13
13
  split: splitAtToken({
@@ -45,14 +45,14 @@ const StructureValidationError_js_1 = require("../model-function/generate-struct
45
45
  * fixStructure({
46
46
  * modifyInputForRetry: async ({ input, error }) => [
47
47
  * ...input,
48
- * OpenAIChatMessage.assistant(null, {
48
+ * openai.ChatMessage.assistant(null, {
49
49
  * functionCall: {
50
50
  * name: "sentiment",
51
51
  * arguments: JSON.stringify(error.valueText),
52
52
  * },
53
53
  * }),
54
- * OpenAIChatMessage.user(error.message),
55
- * OpenAIChatMessage.user("Please fix the error and try again."),
54
+ * openai.ChatMessage.user(error.message),
55
+ * openai.ChatMessage.user("Please fix the error and try again."),
56
56
  * ],
57
57
  * })
58
58
  * );
@@ -43,14 +43,14 @@ import { Guard } from "./guard.js";
43
43
  * fixStructure({
44
44
  * modifyInputForRetry: async ({ input, error }) => [
45
45
  * ...input,
46
- * OpenAIChatMessage.assistant(null, {
46
+ * openai.ChatMessage.assistant(null, {
47
47
  * functionCall: {
48
48
  * name: "sentiment",
49
49
  * arguments: JSON.stringify(error.valueText),
50
50
  * },
51
51
  * }),
52
- * OpenAIChatMessage.user(error.message),
53
- * OpenAIChatMessage.user("Please fix the error and try again."),
52
+ * openai.ChatMessage.user(error.message),
53
+ * openai.ChatMessage.user("Please fix the error and try again."),
54
54
  * ],
55
55
  * })
56
56
  * );
@@ -42,14 +42,14 @@ import { StructureValidationError } from "../model-function/generate-structure/S
42
42
  * fixStructure({
43
43
  * modifyInputForRetry: async ({ input, error }) => [
44
44
  * ...input,
45
- * OpenAIChatMessage.assistant(null, {
45
+ * openai.ChatMessage.assistant(null, {
46
46
  * functionCall: {
47
47
  * name: "sentiment",
48
48
  * arguments: JSON.stringify(error.valueText),
49
49
  * },
50
50
  * }),
51
- * OpenAIChatMessage.user(error.message),
52
- * OpenAIChatMessage.user("Please fix the error and try again."),
51
+ * openai.ChatMessage.user(error.message),
52
+ * openai.ChatMessage.user("Please fix the error and try again."),
53
53
  * ],
54
54
  * })
55
55
  * );
@@ -20,11 +20,11 @@ export interface Model<SETTINGS extends ModelSettings> {
20
20
  * @example
21
21
  * const model = new OpenAICompletionModel({
22
22
  * model: "gpt-3.5-turbo-instruct",
23
- * maxCompletionTokens: 500,
23
+ * maxGenerationTokens: 500,
24
24
  * });
25
25
  *
26
26
  * const modelWithMoreTokens = model.withSettings({
27
- * maxCompletionTokens: 1000,
27
+ * maxGenerationTokens: 1000,
28
28
  * });
29
29
  */
30
30
  withSettings(additionalSettings: Partial<SETTINGS>): this;
@@ -17,11 +17,11 @@ import { StructureGenerationModel, StructureGenerationModelSettings } from "./St
17
17
  * .describe("Sentiment."),
18
18
  * })),
19
19
  * [
20
- * OpenAIChatMessage.system(
20
+ * openai.ChatMessage.system(
21
21
  * "You are a sentiment evaluator. " +
22
22
  * "Analyze the sentiment of the following product review:"
23
23
  * ),
24
- * OpenAIChatMessage.user(
24
+ * openai.ChatMessage.user(
25
25
  * "After I opened the package, I was met by a very unpleasant smell " +
26
26
  * "that did not disappear even after washing. Never again!"
27
27
  * ),
@@ -38,7 +38,7 @@ export type StructureStreamPart<STRUCTURE> = {
38
38
  * })
39
39
  * ),
40
40
  * [
41
- * OpenAIChatMessage.user(
41
+ * openai.ChatMessage.user(
42
42
  * "Generate 3 character descriptions for a fantasy role playing game."
43
43
  * ),
44
44
  * ]
@@ -40,9 +40,9 @@ class PromptTemplateTextGenerationModel {
40
40
  }
41
41
  return ((prompt) => originalCountPromptTokens(this.promptTemplate.format(prompt)));
42
42
  }
43
- doGenerateText(prompt, options) {
43
+ doGenerateTexts(prompt, options) {
44
44
  const mappedPrompt = this.promptTemplate.format(prompt);
45
- return this.model.doGenerateText(mappedPrompt, options);
45
+ return this.model.doGenerateTexts(mappedPrompt, options);
46
46
  }
47
47
  get settingsForEvent() {
48
48
  return this.model.settingsForEvent;
@@ -17,9 +17,9 @@ export declare class PromptTemplateTextGenerationModel<PROMPT, MODEL_PROMPT, SET
17
17
  get tokenizer(): MODEL["tokenizer"];
18
18
  get contextWindowSize(): MODEL["contextWindowSize"];
19
19
  get countPromptTokens(): MODEL["countPromptTokens"] extends undefined ? undefined : (prompt: PROMPT) => PromiseLike<number>;
20
- doGenerateText(prompt: PROMPT, options?: FunctionOptions): PromiseLike<{
20
+ doGenerateTexts(prompt: PROMPT, options?: FunctionOptions): PromiseLike<{
21
21
  response: unknown;
22
- text: string;
22
+ texts: string[];
23
23
  usage?: {
24
24
  promptTokens: number;
25
25
  completionTokens: number;
@@ -37,9 +37,9 @@ export class PromptTemplateTextGenerationModel {
37
37
  }
38
38
  return ((prompt) => originalCountPromptTokens(this.promptTemplate.format(prompt)));
39
39
  }
40
- doGenerateText(prompt, options) {
40
+ doGenerateTexts(prompt, options) {
41
41
  const mappedPrompt = this.promptTemplate.format(prompt);
42
- return this.model.doGenerateText(mappedPrompt, options);
42
+ return this.model.doGenerateTexts(mappedPrompt, options);
43
43
  }
44
44
  get settingsForEvent() {
45
45
  return this.model.settingsForEvent;
@@ -5,18 +5,44 @@ import { BasicTokenizer, FullTokenizer } from "../tokenize-text/Tokenizer.js";
5
5
  import { TextGenerationPromptTemplate } from "./TextGenerationPromptTemplate.js";
6
6
  export interface TextGenerationModelSettings extends ModelSettings {
7
7
  /**
8
- * Maximum number of tokens to generate.
8
+ * Specifies the maximum number of tokens (words, punctuation, parts of words) that the model can generate in a single response.
9
+ * It helps to control the length of the output.
10
+ *
9
11
  * Does nothing if the model does not support this setting.
12
+ *
13
+ * Example: `maxGenerationTokens: 1000`
10
14
  */
11
- maxCompletionTokens?: number | undefined;
15
+ maxGenerationTokens?: number | undefined;
12
16
  /**
13
- * Stop sequences to use. Stop sequences are not included in the generated text.
17
+ * Stop sequences to use.
18
+ * Stop sequences are an array of strings or a single string that the model will recognize as end-of-text indicators.
19
+ * The model stops generating more content when it encounters any of these strings.
20
+ * This is particularly useful in scripted or formatted text generation, where a specific end point is required.
21
+ * Stop sequences not included in the generated text.
22
+ *
14
23
  * Does nothing if the model does not support this setting.
24
+ *
25
+ * Example: `stopSequences: ['\n', 'END']`
15
26
  */
16
27
  stopSequences?: string[] | undefined;
28
+ /**
29
+ * Number of texts to generate.
30
+ *
31
+ * Specifies the number of responses or completions the model should generate for a given prompt.
32
+ * This is useful when you need multiple different outputs or ideas for a single prompt.
33
+ * The model will generate 'n' distinct responses, each based on the same initial prompt.
34
+ * In a streaming model this will result in both responses streamed back in real time.
35
+ *
36
+ * Does nothing if the model does not support this setting.
37
+ *
38
+ * Example: `numberOfGenerations: 3` // The model will produce 3 different responses.
39
+ */
40
+ numberOfGenerations?: number;
17
41
  /**
18
42
  * When true, the leading and trailing white space and line terminator characters
19
43
  * are removed from the generated text.
44
+ *
45
+ * Default: true.
20
46
  */
21
47
  trimWhitespace?: boolean;
22
48
  }
@@ -34,9 +60,9 @@ export interface TextGenerationModel<PROMPT, SETTINGS extends TextGenerationMode
34
60
  * Optional. Implement if you have a tokenizer and want to count the number of tokens in a prompt.
35
61
  */
36
62
  readonly countPromptTokens: ((prompt: PROMPT) => PromiseLike<number>) | undefined;
37
- doGenerateText(prompt: PROMPT, options?: FunctionOptions): PromiseLike<{
63
+ doGenerateTexts(prompt: PROMPT, options?: FunctionOptions): PromiseLike<{
38
64
  response: unknown;
39
- text: string;
65
+ texts: string[];
40
66
  usage?: {
41
67
  promptTokens: number;
42
68
  completionTokens: number;
@@ -9,21 +9,27 @@ async function generateText(model, prompt, options) {
9
9
  model,
10
10
  options,
11
11
  generateResponse: async (options) => {
12
- const result = await model.doGenerateText(prompt, options);
12
+ const result = await model.doGenerateTexts(prompt, options);
13
13
  const shouldTrimWhitespace = model.settings.trimWhitespace ?? true;
14
+ const texts = shouldTrimWhitespace
15
+ ? result.texts.map((text) => text.trim())
16
+ : result.texts;
14
17
  return {
15
18
  response: result.response,
16
- extractedValue: shouldTrimWhitespace ? result.text.trim() : result.text,
19
+ extractedValue: texts,
17
20
  usage: result.usage,
18
21
  };
19
22
  },
20
23
  });
24
+ const texts = fullResponse.value;
25
+ const text = texts[0];
21
26
  return options?.fullResponse
22
27
  ? {
23
- text: fullResponse.value,
28
+ text,
29
+ texts,
24
30
  response: fullResponse.response,
25
31
  metadata: fullResponse.metadata,
26
32
  }
27
- : fullResponse.value;
33
+ : text;
28
34
  }
29
35
  exports.generateText = generateText;
@@ -29,6 +29,7 @@ export declare function generateText<PROMPT>(model: TextGenerationModel<PROMPT,
29
29
  fullResponse: true;
30
30
  }): Promise<{
31
31
  text: string;
32
+ texts: string[];
32
33
  response: unknown;
33
34
  metadata: ModelCallMetadata;
34
35
  }>;
@@ -6,20 +6,26 @@ export async function generateText(model, prompt, options) {
6
6
  model,
7
7
  options,
8
8
  generateResponse: async (options) => {
9
- const result = await model.doGenerateText(prompt, options);
9
+ const result = await model.doGenerateTexts(prompt, options);
10
10
  const shouldTrimWhitespace = model.settings.trimWhitespace ?? true;
11
+ const texts = shouldTrimWhitespace
12
+ ? result.texts.map((text) => text.trim())
13
+ : result.texts;
11
14
  return {
12
15
  response: result.response,
13
- extractedValue: shouldTrimWhitespace ? result.text.trim() : result.text,
16
+ extractedValue: texts,
14
17
  usage: result.usage,
15
18
  };
16
19
  },
17
20
  });
21
+ const texts = fullResponse.value;
22
+ const text = texts[0];
18
23
  return options?.fullResponse
19
24
  ? {
20
- text: fullResponse.value,
25
+ text,
26
+ texts,
21
27
  response: fullResponse.response,
22
28
  metadata: fullResponse.metadata,
23
29
  }
24
- : fullResponse.value;
30
+ : text;
25
31
  }
@@ -13,7 +13,7 @@ const ChatPrompt_js_1 = require("./ChatPrompt.cjs");
13
13
  * @see https://modelfusion.dev/guide/function/generate-text#limiting-the-chat-length
14
14
  */
15
15
  async function trimChatPrompt({ prompt, model, tokenLimit = model.contextWindowSize -
16
- (model.settings.maxCompletionTokens ?? model.contextWindowSize / 4), }) {
16
+ (model.settings.maxGenerationTokens ?? model.contextWindowSize / 4), }) {
17
17
  (0, ChatPrompt_js_1.validateChatPrompt)(prompt);
18
18
  let minimalPrompt = {
19
19
  system: prompt.system,
@@ -10,7 +10,7 @@ import { validateChatPrompt } from "./ChatPrompt.js";
10
10
  * @see https://modelfusion.dev/guide/function/generate-text#limiting-the-chat-length
11
11
  */
12
12
  export async function trimChatPrompt({ prompt, model, tokenLimit = model.contextWindowSize -
13
- (model.settings.maxCompletionTokens ?? model.contextWindowSize / 4), }) {
13
+ (model.settings.maxGenerationTokens ?? model.contextWindowSize / 4), }) {
14
14
  validateChatPrompt(prompt);
15
15
  let minimalPrompt = {
16
16
  system: prompt.system,
@@ -69,22 +69,38 @@ class AnthropicTextGenerationModel extends AbstractModel_js_1.AbstractModel {
69
69
  return this.settings.model;
70
70
  }
71
71
  async callAPI(prompt, options) {
72
+ const api = this.settings.api ?? new AnthropicApiConfiguration_js_1.AnthropicApiConfiguration();
73
+ const responseFormat = options.responseFormat;
74
+ const abortSignal = options.run?.abortSignal;
75
+ const userId = this.settings.userId;
72
76
  return (0, callWithRetryAndThrottle_js_1.callWithRetryAndThrottle)({
73
77
  retry: this.settings.api?.retry,
74
78
  throttle: this.settings.api?.throttle,
75
- call: async () => callAnthropicTextGenerationAPI({
76
- ...this.settings,
77
- stopSequences: this.settings.stopSequences,
78
- maxTokens: this.settings.maxCompletionTokens,
79
- abortSignal: options.run?.abortSignal,
80
- responseFormat: options.responseFormat,
81
- prompt,
82
- }),
79
+ call: async () => {
80
+ return (0, postToApi_js_1.postJsonToApi)({
81
+ url: api.assembleUrl(`/complete`),
82
+ headers: api.headers,
83
+ body: {
84
+ model: this.settings.model,
85
+ prompt,
86
+ stream: responseFormat.stream,
87
+ max_tokens_to_sample: this.settings.maxGenerationTokens,
88
+ temperature: this.settings.temperature,
89
+ top_k: this.settings.topK,
90
+ top_p: this.settings.topP,
91
+ stop_sequences: this.settings.stopSequences,
92
+ metadata: userId != null ? { user_id: userId } : undefined,
93
+ },
94
+ failedResponseHandler: AnthropicError_js_1.failedAnthropicCallResponseHandler,
95
+ successfulResponseHandler: responseFormat.handler,
96
+ abortSignal,
97
+ });
98
+ },
83
99
  });
84
100
  }
85
101
  get settingsForEvent() {
86
102
  const eventSettingProperties = [
87
- "maxCompletionTokens",
103
+ "maxGenerationTokens",
88
104
  "stopSequences",
89
105
  "temperature",
90
106
  "topK",
@@ -93,14 +109,14 @@ class AnthropicTextGenerationModel extends AbstractModel_js_1.AbstractModel {
93
109
  ];
94
110
  return Object.fromEntries(Object.entries(this.settings).filter(([key]) => eventSettingProperties.includes(key)));
95
111
  }
96
- async doGenerateText(prompt, options) {
112
+ async doGenerateTexts(prompt, options) {
97
113
  const response = await this.callAPI(prompt, {
98
114
  ...options,
99
115
  responseFormat: exports.AnthropicTextGenerationResponseFormat.json,
100
116
  });
101
117
  return {
102
118
  response,
103
- text: response.completion,
119
+ texts: [response.completion],
104
120
  };
105
121
  }
106
122
  doStreamText(prompt, options) {
@@ -148,26 +164,6 @@ const anthropicTextGenerationResponseSchema = zod_1.z.object({
148
164
  stop_reason: zod_1.z.string(),
149
165
  model: zod_1.z.string(),
150
166
  });
151
- async function callAnthropicTextGenerationAPI({ api = new AnthropicApiConfiguration_js_1.AnthropicApiConfiguration(), abortSignal, responseFormat, model, prompt, maxTokens, stopSequences, temperature, topK, topP, userId, }) {
152
- return (0, postToApi_js_1.postJsonToApi)({
153
- url: api.assembleUrl(`/complete`),
154
- headers: api.headers,
155
- body: {
156
- model,
157
- prompt,
158
- stream: responseFormat.stream,
159
- max_tokens_to_sample: maxTokens,
160
- temperature,
161
- top_k: topK,
162
- top_p: topP,
163
- stop_sequences: stopSequences,
164
- metadata: userId != null ? { user_id: userId } : undefined,
165
- },
166
- failedResponseHandler: AnthropicError_js_1.failedAnthropicCallResponseHandler,
167
- successfulResponseHandler: responseFormat.handler,
168
- abortSignal,
169
- });
170
- }
171
167
  const anthropicTextStreamingResponseSchema = new ZodSchema_js_1.ZodSchema(zod_1.z.object({
172
168
  completion: zod_1.z.string(),
173
169
  stop_reason: zod_1.z.string().nullable(),
@@ -49,13 +49,13 @@ export declare class AnthropicTextGenerationModel extends AbstractModel<Anthropi
49
49
  responseFormat: AnthropicTextGenerationResponseFormatType<RESPONSE>;
50
50
  } & FunctionOptions): Promise<RESPONSE>;
51
51
  get settingsForEvent(): Partial<AnthropicTextGenerationModelSettings>;
52
- doGenerateText(prompt: string, options?: FunctionOptions): Promise<{
52
+ doGenerateTexts(prompt: string, options?: FunctionOptions): Promise<{
53
53
  response: {
54
54
  model: string;
55
55
  completion: string;
56
56
  stop_reason: string;
57
57
  };
58
- text: string;
58
+ texts: string[];
59
59
  }>;
60
60
  doStreamText(prompt: string, options?: FunctionOptions): Promise<AsyncIterable<Delta<string>>>;
61
61
  /**
@@ -66,22 +66,38 @@ export class AnthropicTextGenerationModel extends AbstractModel {
66
66
  return this.settings.model;
67
67
  }
68
68
  async callAPI(prompt, options) {
69
+ const api = this.settings.api ?? new AnthropicApiConfiguration();
70
+ const responseFormat = options.responseFormat;
71
+ const abortSignal = options.run?.abortSignal;
72
+ const userId = this.settings.userId;
69
73
  return callWithRetryAndThrottle({
70
74
  retry: this.settings.api?.retry,
71
75
  throttle: this.settings.api?.throttle,
72
- call: async () => callAnthropicTextGenerationAPI({
73
- ...this.settings,
74
- stopSequences: this.settings.stopSequences,
75
- maxTokens: this.settings.maxCompletionTokens,
76
- abortSignal: options.run?.abortSignal,
77
- responseFormat: options.responseFormat,
78
- prompt,
79
- }),
76
+ call: async () => {
77
+ return postJsonToApi({
78
+ url: api.assembleUrl(`/complete`),
79
+ headers: api.headers,
80
+ body: {
81
+ model: this.settings.model,
82
+ prompt,
83
+ stream: responseFormat.stream,
84
+ max_tokens_to_sample: this.settings.maxGenerationTokens,
85
+ temperature: this.settings.temperature,
86
+ top_k: this.settings.topK,
87
+ top_p: this.settings.topP,
88
+ stop_sequences: this.settings.stopSequences,
89
+ metadata: userId != null ? { user_id: userId } : undefined,
90
+ },
91
+ failedResponseHandler: failedAnthropicCallResponseHandler,
92
+ successfulResponseHandler: responseFormat.handler,
93
+ abortSignal,
94
+ });
95
+ },
80
96
  });
81
97
  }
82
98
  get settingsForEvent() {
83
99
  const eventSettingProperties = [
84
- "maxCompletionTokens",
100
+ "maxGenerationTokens",
85
101
  "stopSequences",
86
102
  "temperature",
87
103
  "topK",
@@ -90,14 +106,14 @@ export class AnthropicTextGenerationModel extends AbstractModel {
90
106
  ];
91
107
  return Object.fromEntries(Object.entries(this.settings).filter(([key]) => eventSettingProperties.includes(key)));
92
108
  }
93
- async doGenerateText(prompt, options) {
109
+ async doGenerateTexts(prompt, options) {
94
110
  const response = await this.callAPI(prompt, {
95
111
  ...options,
96
112
  responseFormat: AnthropicTextGenerationResponseFormat.json,
97
113
  });
98
114
  return {
99
115
  response,
100
- text: response.completion,
116
+ texts: [response.completion],
101
117
  };
102
118
  }
103
119
  doStreamText(prompt, options) {
@@ -144,26 +160,6 @@ const anthropicTextGenerationResponseSchema = z.object({
144
160
  stop_reason: z.string(),
145
161
  model: z.string(),
146
162
  });
147
- async function callAnthropicTextGenerationAPI({ api = new AnthropicApiConfiguration(), abortSignal, responseFormat, model, prompt, maxTokens, stopSequences, temperature, topK, topP, userId, }) {
148
- return postJsonToApi({
149
- url: api.assembleUrl(`/complete`),
150
- headers: api.headers,
151
- body: {
152
- model,
153
- prompt,
154
- stream: responseFormat.stream,
155
- max_tokens_to_sample: maxTokens,
156
- temperature,
157
- top_k: topK,
158
- top_p: topP,
159
- stop_sequences: stopSequences,
160
- metadata: userId != null ? { user_id: userId } : undefined,
161
- },
162
- failedResponseHandler: failedAnthropicCallResponseHandler,
163
- successfulResponseHandler: responseFormat.handler,
164
- abortSignal,
165
- });
166
- }
167
163
  const anthropicTextStreamingResponseSchema = new ZodSchema(z.object({
168
164
  completion: z.string(),
169
165
  stop_reason: z.string().nullable(),
@@ -13,7 +13,7 @@ const CohereTokenizer_js_1 = require("./CohereTokenizer.cjs");
13
13
  * const model = cohere.TextGenerator({
14
14
  * model: "command-nightly",
15
15
  * temperature: 0.7,
16
- * maxCompletionTokens: 500,
16
+ * maxGenerationTokens: 500,
17
17
  * });
18
18
  *
19
19
  * const text = await generateText(
@@ -10,7 +10,7 @@ import { CohereTokenizer, CohereTokenizerSettings } from "./CohereTokenizer.js";
10
10
  * const model = cohere.TextGenerator({
11
11
  * model: "command-nightly",
12
12
  * temperature: 0.7,
13
- * maxCompletionTokens: 500,
13
+ * maxGenerationTokens: 500,
14
14
  * });
15
15
  *
16
16
  * const text = await generateText(
@@ -10,7 +10,7 @@ import { CohereTokenizer } from "./CohereTokenizer.js";
10
10
  * const model = cohere.TextGenerator({
11
11
  * model: "command-nightly",
12
12
  * temperature: 0.7,
13
- * maxCompletionTokens: 500,
13
+ * maxGenerationTokens: 500,
14
14
  * });
15
15
  *
16
16
  * const text = await generateText(