modelfusion 0.31.0 → 0.33.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. package/README.md +14 -15
  2. package/index.cjs +1 -0
  3. package/index.d.ts +1 -0
  4. package/index.js +1 -0
  5. package/model-function/Model.d.ts +1 -1
  6. package/model-provider/openai/OpenAITextGenerationModel.cjs +41 -17
  7. package/model-provider/openai/OpenAITextGenerationModel.d.ts +32 -14
  8. package/model-provider/openai/OpenAITextGenerationModel.js +41 -17
  9. package/model-provider/openai/TikTokenTokenizer.cjs +3 -2
  10. package/model-provider/openai/TikTokenTokenizer.js +3 -2
  11. package/model-provider/stability/StabilityImageGenerationModel.cjs +6 -0
  12. package/model-provider/stability/StabilityImageGenerationModel.d.ts +4 -2
  13. package/model-provider/stability/StabilityImageGenerationModel.js +6 -0
  14. package/package.json +2 -2
  15. package/retriever/Retriever.d.ts +7 -0
  16. package/retriever/index.cjs +18 -0
  17. package/retriever/index.d.ts +2 -0
  18. package/retriever/index.js +2 -0
  19. package/retriever/retrieve.cjs +9 -0
  20. package/retriever/retrieve.d.ts +3 -0
  21. package/retriever/retrieve.js +5 -0
  22. package/text-chunk/index.cjs +0 -4
  23. package/text-chunk/index.d.ts +0 -4
  24. package/text-chunk/index.js +0 -4
  25. package/{text-chunk/SimilarTextChunksFromVectorIndexRetriever.cjs → vector-index/VectorIndexRetriever.cjs} +6 -6
  26. package/vector-index/VectorIndexRetriever.d.ts +19 -0
  27. package/{text-chunk/SimilarTextChunksFromVectorIndexRetriever.js → vector-index/VectorIndexRetriever.js} +4 -4
  28. package/vector-index/index.cjs +2 -0
  29. package/vector-index/index.d.ts +2 -0
  30. package/vector-index/index.js +2 -0
  31. package/vector-index/upsertIntoVectorIndex.cjs +15 -0
  32. package/vector-index/upsertIntoVectorIndex.d.ts +11 -0
  33. package/vector-index/upsertIntoVectorIndex.js +11 -0
  34. package/text-chunk/SimilarTextChunksFromVectorIndexRetriever.d.ts +0 -20
  35. package/text-chunk/retrieve-text-chunks/TextChunkRetriever.d.ts +0 -8
  36. package/text-chunk/retrieve-text-chunks/retrieveTextChunks.cjs +0 -10
  37. package/text-chunk/retrieve-text-chunks/retrieveTextChunks.d.ts +0 -6
  38. package/text-chunk/retrieve-text-chunks/retrieveTextChunks.js +0 -6
  39. package/text-chunk/upsertTextChunks.cjs +0 -15
  40. package/text-chunk/upsertTextChunks.d.ts +0 -11
  41. package/text-chunk/upsertTextChunks.js +0 -11
  42. /package/{text-chunk/retrieve-text-chunks/TextChunkRetriever.cjs → retriever/Retriever.cjs} +0 -0
  43. /package/{text-chunk/retrieve-text-chunks/TextChunkRetriever.js → retriever/Retriever.js} +0 -0
package/README.md CHANGED
@@ -45,7 +45,9 @@ You can use [prompt formats](https://modelfusion.dev/guide/function/generate-tex
45
45
 
46
46
  ```ts
47
47
  const text = await generateText(
48
- new OpenAITextGenerationModel({ model: "text-davinci-003" }),
48
+ new OpenAITextGenerationModel({
49
+ model: "gpt-3.5-turbo-instruct",
50
+ }),
49
51
  "Write a short story about a robot learning to love:\n\n"
50
52
  );
51
53
  ```
@@ -56,14 +58,10 @@ Providers: [OpenAI](https://modelfusion.dev/integration/model-provider/openai),
56
58
 
57
59
  ```ts
58
60
  const textStream = await streamText(
59
- new OpenAIChatModel({
60
- model: "gpt-3.5-turbo",
61
- maxCompletionTokens: 1000,
61
+ new OpenAITextGenerationModel({
62
+ model: "gpt-3.5-turbo-instruct",
62
63
  }),
63
- [
64
- OpenAIChatMessage.system("You are a story writer."),
65
- OpenAIChatMessage.user("Write a story about a robot learning to love"),
66
- ]
64
+ "Write a short story about a robot learning to love:\n\n"
67
65
  );
68
66
 
69
67
  for await (const textFragment of textStream) {
@@ -121,7 +119,7 @@ ModelFusion model functions return rich results that include the original respon
121
119
  // the response type is specific to the model that's being used
122
120
  const { output, response, metadata } = await generateText(
123
121
  new OpenAITextGenerationModel({
124
- model: "text-davinci-003",
122
+ model: "gpt-3.5-turbo-instruct",
125
123
  maxCompletionTokens: 1000,
126
124
  n: 2, // generate 2 completions
127
125
  }),
@@ -367,7 +365,7 @@ const reconstructedText = await tokenizer.detokenize(tokens);
367
365
 
368
366
  Providers: [OpenAI](https://modelfusion.dev/integration/model-provider/openai), [Cohere](https://modelfusion.dev/integration/model-provider/cohere), [Llama.cpp](https://modelfusion.dev/integration/model-provider/llamacpp)
369
367
 
370
- ### [Upserting and Retrieving Text Chunks from Vector Indices](https://modelfusion.dev/guide/text-chunks)
368
+ ### [Upserting and Retrieving Objects from Vector Indices](https://modelfusion.dev/guide/vector-index)
371
369
 
372
370
  ```ts
373
371
  const texts = [
@@ -376,21 +374,22 @@ const texts = [
376
374
  // ...
377
375
  ];
378
376
 
379
- const vectorIndex = new MemoryVectorIndex<TextChunk>();
377
+ const vectorIndex = new MemoryVectorIndex<string>();
380
378
  const embeddingModel = new OpenAITextEmbeddingModel({
381
379
  model: "text-embedding-ada-002",
382
380
  });
383
381
 
384
382
  // update an index - usually done as part of an ingestion process:
385
- await upsertTextChunks({
383
+ await upsertIntoVectorIndex({
386
384
  vectorIndex,
387
385
  embeddingModel,
388
- chunks: texts.map((text) => ({ text })),
386
+ objects: texts,
387
+ getValueToEmbed: (text) => text,
389
388
  });
390
389
 
391
390
  // retrieve text chunks from the vector index - usually done at query time:
392
- const { chunks } = await retrieveTextChunks(
393
- new SimilarTextChunksFromVectorIndexRetriever({
391
+ const retrievedTexts = await retrieve(
392
+ new VectorIndexRetriever({
394
393
  vectorIndex,
395
394
  embeddingModel,
396
395
  maxResults: 3,
package/index.cjs CHANGED
@@ -21,6 +21,7 @@ __exportStar(require("./model-function/index.cjs"), exports);
21
21
  __exportStar(require("./model-provider/index.cjs"), exports);
22
22
  __exportStar(require("./observability/index.cjs"), exports);
23
23
  __exportStar(require("./prompt/index.cjs"), exports);
24
+ __exportStar(require("./retriever/index.cjs"), exports);
24
25
  __exportStar(require("./text-chunk/index.cjs"), exports);
25
26
  __exportStar(require("./tool/index.cjs"), exports);
26
27
  __exportStar(require("./util/index.cjs"), exports);
package/index.d.ts CHANGED
@@ -5,6 +5,7 @@ export * from "./model-function/index.js";
5
5
  export * from "./model-provider/index.js";
6
6
  export * from "./observability/index.js";
7
7
  export * from "./prompt/index.js";
8
+ export * from "./retriever/index.js";
8
9
  export * from "./text-chunk/index.js";
9
10
  export * from "./tool/index.js";
10
11
  export * from "./util/index.js";
package/index.js CHANGED
@@ -5,6 +5,7 @@ export * from "./model-function/index.js";
5
5
  export * from "./model-provider/index.js";
6
6
  export * from "./observability/index.js";
7
7
  export * from "./prompt/index.js";
8
+ export * from "./retriever/index.js";
8
9
  export * from "./text-chunk/index.js";
9
10
  export * from "./tool/index.js";
10
11
  export * from "./util/index.js";
@@ -19,7 +19,7 @@ export interface Model<SETTINGS extends ModelSettings> {
19
19
  *
20
20
  * @example
21
21
  * const model = new OpenAITextGenerationModel({
22
- * model: "text-davinci-003",
22
+ * model: "gpt-3.5-turbo-instruct",
23
23
  * maxCompletionTokens: 500,
24
24
  * });
25
25
  *
@@ -21,55 +21,72 @@ const TikTokenTokenizer_js_1 = require("./TikTokenTokenizer.cjs");
21
21
  * @see https://openai.com/pricing
22
22
  */
23
23
  exports.OPENAI_TEXT_GENERATION_MODELS = {
24
+ "gpt-3.5-turbo-instruct": {
25
+ contextWindowSize: 4097,
26
+ promptTokenCostInMillicents: 0.15,
27
+ completionTokenCostInMillicents: 0.2,
28
+ },
24
29
  "davinci-002": {
25
30
  contextWindowSize: 16384,
26
- tokenCostInMillicents: 0.2,
31
+ promptTokenCostInMillicents: 0.2,
32
+ completionTokenCostInMillicents: 0.2,
27
33
  fineTunedTokenCostInMillicents: 1.2,
28
34
  },
29
35
  "babbage-002": {
30
36
  contextWindowSize: 16384,
31
- tokenCostInMillicents: 0.04,
37
+ promptTokenCostInMillicents: 0.04,
38
+ completionTokenCostInMillicents: 0.04,
32
39
  fineTunedTokenCostInMillicents: 0.16,
33
40
  },
34
41
  "text-davinci-003": {
35
42
  contextWindowSize: 4096,
36
- tokenCostInMillicents: 2,
43
+ promptTokenCostInMillicents: 2,
44
+ completionTokenCostInMillicents: 2,
37
45
  },
38
46
  "text-davinci-002": {
39
47
  contextWindowSize: 4096,
40
- tokenCostInMillicents: 2,
48
+ promptTokenCostInMillicents: 2,
49
+ completionTokenCostInMillicents: 2,
41
50
  },
42
51
  "code-davinci-002": {
43
52
  contextWindowSize: 8000,
44
- tokenCostInMillicents: 2,
53
+ promptTokenCostInMillicents: 2,
54
+ completionTokenCostInMillicents: 2,
45
55
  },
46
56
  davinci: {
47
57
  contextWindowSize: 2048,
48
- tokenCostInMillicents: 2,
58
+ promptTokenCostInMillicents: 2,
59
+ completionTokenCostInMillicents: 2,
49
60
  },
50
61
  "text-curie-001": {
51
62
  contextWindowSize: 2048,
52
- tokenCostInMillicents: 0.2,
63
+ promptTokenCostInMillicents: 0.2,
64
+ completionTokenCostInMillicents: 0.2,
53
65
  },
54
66
  curie: {
55
67
  contextWindowSize: 2048,
56
- tokenCostInMillicents: 0.2,
68
+ promptTokenCostInMillicents: 0.2,
69
+ completionTokenCostInMillicents: 0.2,
57
70
  },
58
71
  "text-babbage-001": {
59
72
  contextWindowSize: 2048,
60
- tokenCostInMillicents: 0.05,
73
+ promptTokenCostInMillicents: 0.05,
74
+ completionTokenCostInMillicents: 0.05,
61
75
  },
62
76
  babbage: {
63
77
  contextWindowSize: 2048,
64
- tokenCostInMillicents: 0.05,
78
+ promptTokenCostInMillicents: 0.05,
79
+ completionTokenCostInMillicents: 0.05,
65
80
  },
66
81
  "text-ada-001": {
67
82
  contextWindowSize: 2048,
68
- tokenCostInMillicents: 0.04,
83
+ promptTokenCostInMillicents: 0.04,
84
+ completionTokenCostInMillicents: 0.04,
69
85
  },
70
86
  ada: {
71
87
  contextWindowSize: 2048,
72
- tokenCostInMillicents: 0.04,
88
+ promptTokenCostInMillicents: 0.04,
89
+ completionTokenCostInMillicents: 0.04,
73
90
  },
74
91
  };
75
92
  function getOpenAITextGenerationModelInformation(model) {
@@ -80,7 +97,8 @@ function getOpenAITextGenerationModelInformation(model) {
80
97
  baseModel: model,
81
98
  isFineTuned: false,
82
99
  contextWindowSize: baseModelInformation.contextWindowSize,
83
- tokenCostInMillicents: baseModelInformation.tokenCostInMillicents,
100
+ promptTokenCostInMillicents: baseModelInformation.promptTokenCostInMillicents,
101
+ completionTokenCostInMillicents: baseModelInformation.completionTokenCostInMillicents,
84
102
  };
85
103
  }
86
104
  // Extract the base model from the fine-tuned model:
@@ -92,7 +110,8 @@ function getOpenAITextGenerationModelInformation(model) {
92
110
  baseModel: baseModel,
93
111
  isFineTuned: true,
94
112
  contextWindowSize: baseModelInformation.contextWindowSize,
95
- tokenCostInMillicents: baseModelInformation.fineTunedTokenCostInMillicents,
113
+ promptTokenCostInMillicents: baseModelInformation.fineTunedTokenCostInMillicents,
114
+ completionTokenCostInMillicents: baseModelInformation.fineTunedTokenCostInMillicents,
96
115
  };
97
116
  }
98
117
  throw new Error(`Unknown OpenAI chat base model ${baseModel}.`);
@@ -102,8 +121,13 @@ const isOpenAITextGenerationModel = (model) => model in exports.OPENAI_TEXT_GENE
102
121
  model.startsWith("ft:davinci-002:") ||
103
122
  model.startsWith("ft:babbage-002:");
104
123
  exports.isOpenAITextGenerationModel = isOpenAITextGenerationModel;
105
- const calculateOpenAITextGenerationCostInMillicents = ({ model, response, }) => response.usage.total_tokens *
106
- getOpenAITextGenerationModelInformation(model).tokenCostInMillicents;
124
+ const calculateOpenAITextGenerationCostInMillicents = ({ model, response, }) => {
125
+ const modelInformation = getOpenAITextGenerationModelInformation(model);
126
+ return (response.usage.prompt_tokens *
127
+ modelInformation.promptTokenCostInMillicents +
128
+ response.usage.completion_tokens *
129
+ modelInformation.completionTokenCostInMillicents);
130
+ };
107
131
  exports.calculateOpenAITextGenerationCostInMillicents = calculateOpenAITextGenerationCostInMillicents;
108
132
  /**
109
133
  * Create a text generation model that calls the OpenAI text completion API.
@@ -112,7 +136,7 @@ exports.calculateOpenAITextGenerationCostInMillicents = calculateOpenAITextGener
112
136
  *
113
137
  * @example
114
138
  * const model = new OpenAITextGenerationModel({
115
- * model: "text-davinci-003",
139
+ * model: "gpt-3.5-turbo-instruct",
116
140
  * temperature: 0.7,
117
141
  * maxCompletionTokens: 500,
118
142
  * retry: retryWithExponentialBackoff({ maxTries: 5 }),
@@ -14,62 +14,80 @@ import { TikTokenTokenizer } from "./TikTokenTokenizer.js";
14
14
  * @see https://openai.com/pricing
15
15
  */
16
16
  export declare const OPENAI_TEXT_GENERATION_MODELS: {
17
+ "gpt-3.5-turbo-instruct": {
18
+ contextWindowSize: number;
19
+ promptTokenCostInMillicents: number;
20
+ completionTokenCostInMillicents: number;
21
+ };
17
22
  "davinci-002": {
18
23
  contextWindowSize: number;
19
- tokenCostInMillicents: number;
24
+ promptTokenCostInMillicents: number;
25
+ completionTokenCostInMillicents: number;
20
26
  fineTunedTokenCostInMillicents: number;
21
27
  };
22
28
  "babbage-002": {
23
29
  contextWindowSize: number;
24
- tokenCostInMillicents: number;
30
+ promptTokenCostInMillicents: number;
31
+ completionTokenCostInMillicents: number;
25
32
  fineTunedTokenCostInMillicents: number;
26
33
  };
27
34
  "text-davinci-003": {
28
35
  contextWindowSize: number;
29
- tokenCostInMillicents: number;
36
+ promptTokenCostInMillicents: number;
37
+ completionTokenCostInMillicents: number;
30
38
  };
31
39
  "text-davinci-002": {
32
40
  contextWindowSize: number;
33
- tokenCostInMillicents: number;
41
+ promptTokenCostInMillicents: number;
42
+ completionTokenCostInMillicents: number;
34
43
  };
35
44
  "code-davinci-002": {
36
45
  contextWindowSize: number;
37
- tokenCostInMillicents: number;
46
+ promptTokenCostInMillicents: number;
47
+ completionTokenCostInMillicents: number;
38
48
  };
39
49
  davinci: {
40
50
  contextWindowSize: number;
41
- tokenCostInMillicents: number;
51
+ promptTokenCostInMillicents: number;
52
+ completionTokenCostInMillicents: number;
42
53
  };
43
54
  "text-curie-001": {
44
55
  contextWindowSize: number;
45
- tokenCostInMillicents: number;
56
+ promptTokenCostInMillicents: number;
57
+ completionTokenCostInMillicents: number;
46
58
  };
47
59
  curie: {
48
60
  contextWindowSize: number;
49
- tokenCostInMillicents: number;
61
+ promptTokenCostInMillicents: number;
62
+ completionTokenCostInMillicents: number;
50
63
  };
51
64
  "text-babbage-001": {
52
65
  contextWindowSize: number;
53
- tokenCostInMillicents: number;
66
+ promptTokenCostInMillicents: number;
67
+ completionTokenCostInMillicents: number;
54
68
  };
55
69
  babbage: {
56
70
  contextWindowSize: number;
57
- tokenCostInMillicents: number;
71
+ promptTokenCostInMillicents: number;
72
+ completionTokenCostInMillicents: number;
58
73
  };
59
74
  "text-ada-001": {
60
75
  contextWindowSize: number;
61
- tokenCostInMillicents: number;
76
+ promptTokenCostInMillicents: number;
77
+ completionTokenCostInMillicents: number;
62
78
  };
63
79
  ada: {
64
80
  contextWindowSize: number;
65
- tokenCostInMillicents: number;
81
+ promptTokenCostInMillicents: number;
82
+ completionTokenCostInMillicents: number;
66
83
  };
67
84
  };
68
85
  export declare function getOpenAITextGenerationModelInformation(model: OpenAITextGenerationModelType): {
69
86
  baseModel: OpenAITextGenerationBaseModelType;
70
87
  isFineTuned: boolean;
71
88
  contextWindowSize: number;
72
- tokenCostInMillicents: number;
89
+ promptTokenCostInMillicents: number;
90
+ completionTokenCostInMillicents: number;
73
91
  };
74
92
  type FineTuneableOpenAITextGenerationModelType = "davinci-002" | "babbage-002";
75
93
  type FineTunedOpenAITextGenerationModelType = `ft:${FineTuneableOpenAITextGenerationModelType}:${string}:${string}:${string}`;
@@ -106,7 +124,7 @@ export interface OpenAITextGenerationModelSettings extends TextGenerationModelSe
106
124
  *
107
125
  * @example
108
126
  * const model = new OpenAITextGenerationModel({
109
- * model: "text-davinci-003",
127
+ * model: "gpt-3.5-turbo-instruct",
110
128
  * temperature: 0.7,
111
129
  * maxCompletionTokens: 500,
112
130
  * retry: retryWithExponentialBackoff({ maxTries: 5 }),
@@ -15,55 +15,72 @@ import { TikTokenTokenizer } from "./TikTokenTokenizer.js";
15
15
  * @see https://openai.com/pricing
16
16
  */
17
17
  export const OPENAI_TEXT_GENERATION_MODELS = {
18
+ "gpt-3.5-turbo-instruct": {
19
+ contextWindowSize: 4097,
20
+ promptTokenCostInMillicents: 0.15,
21
+ completionTokenCostInMillicents: 0.2,
22
+ },
18
23
  "davinci-002": {
19
24
  contextWindowSize: 16384,
20
- tokenCostInMillicents: 0.2,
25
+ promptTokenCostInMillicents: 0.2,
26
+ completionTokenCostInMillicents: 0.2,
21
27
  fineTunedTokenCostInMillicents: 1.2,
22
28
  },
23
29
  "babbage-002": {
24
30
  contextWindowSize: 16384,
25
- tokenCostInMillicents: 0.04,
31
+ promptTokenCostInMillicents: 0.04,
32
+ completionTokenCostInMillicents: 0.04,
26
33
  fineTunedTokenCostInMillicents: 0.16,
27
34
  },
28
35
  "text-davinci-003": {
29
36
  contextWindowSize: 4096,
30
- tokenCostInMillicents: 2,
37
+ promptTokenCostInMillicents: 2,
38
+ completionTokenCostInMillicents: 2,
31
39
  },
32
40
  "text-davinci-002": {
33
41
  contextWindowSize: 4096,
34
- tokenCostInMillicents: 2,
42
+ promptTokenCostInMillicents: 2,
43
+ completionTokenCostInMillicents: 2,
35
44
  },
36
45
  "code-davinci-002": {
37
46
  contextWindowSize: 8000,
38
- tokenCostInMillicents: 2,
47
+ promptTokenCostInMillicents: 2,
48
+ completionTokenCostInMillicents: 2,
39
49
  },
40
50
  davinci: {
41
51
  contextWindowSize: 2048,
42
- tokenCostInMillicents: 2,
52
+ promptTokenCostInMillicents: 2,
53
+ completionTokenCostInMillicents: 2,
43
54
  },
44
55
  "text-curie-001": {
45
56
  contextWindowSize: 2048,
46
- tokenCostInMillicents: 0.2,
57
+ promptTokenCostInMillicents: 0.2,
58
+ completionTokenCostInMillicents: 0.2,
47
59
  },
48
60
  curie: {
49
61
  contextWindowSize: 2048,
50
- tokenCostInMillicents: 0.2,
62
+ promptTokenCostInMillicents: 0.2,
63
+ completionTokenCostInMillicents: 0.2,
51
64
  },
52
65
  "text-babbage-001": {
53
66
  contextWindowSize: 2048,
54
- tokenCostInMillicents: 0.05,
67
+ promptTokenCostInMillicents: 0.05,
68
+ completionTokenCostInMillicents: 0.05,
55
69
  },
56
70
  babbage: {
57
71
  contextWindowSize: 2048,
58
- tokenCostInMillicents: 0.05,
72
+ promptTokenCostInMillicents: 0.05,
73
+ completionTokenCostInMillicents: 0.05,
59
74
  },
60
75
  "text-ada-001": {
61
76
  contextWindowSize: 2048,
62
- tokenCostInMillicents: 0.04,
77
+ promptTokenCostInMillicents: 0.04,
78
+ completionTokenCostInMillicents: 0.04,
63
79
  },
64
80
  ada: {
65
81
  contextWindowSize: 2048,
66
- tokenCostInMillicents: 0.04,
82
+ promptTokenCostInMillicents: 0.04,
83
+ completionTokenCostInMillicents: 0.04,
67
84
  },
68
85
  };
69
86
  export function getOpenAITextGenerationModelInformation(model) {
@@ -74,7 +91,8 @@ export function getOpenAITextGenerationModelInformation(model) {
74
91
  baseModel: model,
75
92
  isFineTuned: false,
76
93
  contextWindowSize: baseModelInformation.contextWindowSize,
77
- tokenCostInMillicents: baseModelInformation.tokenCostInMillicents,
94
+ promptTokenCostInMillicents: baseModelInformation.promptTokenCostInMillicents,
95
+ completionTokenCostInMillicents: baseModelInformation.completionTokenCostInMillicents,
78
96
  };
79
97
  }
80
98
  // Extract the base model from the fine-tuned model:
@@ -86,7 +104,8 @@ export function getOpenAITextGenerationModelInformation(model) {
86
104
  baseModel: baseModel,
87
105
  isFineTuned: true,
88
106
  contextWindowSize: baseModelInformation.contextWindowSize,
89
- tokenCostInMillicents: baseModelInformation.fineTunedTokenCostInMillicents,
107
+ promptTokenCostInMillicents: baseModelInformation.fineTunedTokenCostInMillicents,
108
+ completionTokenCostInMillicents: baseModelInformation.fineTunedTokenCostInMillicents,
90
109
  };
91
110
  }
92
111
  throw new Error(`Unknown OpenAI chat base model ${baseModel}.`);
@@ -94,8 +113,13 @@ export function getOpenAITextGenerationModelInformation(model) {
94
113
  export const isOpenAITextGenerationModel = (model) => model in OPENAI_TEXT_GENERATION_MODELS ||
95
114
  model.startsWith("ft:davinci-002:") ||
96
115
  model.startsWith("ft:babbage-002:");
97
- export const calculateOpenAITextGenerationCostInMillicents = ({ model, response, }) => response.usage.total_tokens *
98
- getOpenAITextGenerationModelInformation(model).tokenCostInMillicents;
116
+ export const calculateOpenAITextGenerationCostInMillicents = ({ model, response, }) => {
117
+ const modelInformation = getOpenAITextGenerationModelInformation(model);
118
+ return (response.usage.prompt_tokens *
119
+ modelInformation.promptTokenCostInMillicents +
120
+ response.usage.completion_tokens *
121
+ modelInformation.completionTokenCostInMillicents);
122
+ };
99
123
  /**
100
124
  * Create a text generation model that calls the OpenAI text completion API.
101
125
  *
@@ -103,7 +127,7 @@ export const calculateOpenAITextGenerationCostInMillicents = ({ model, response,
103
127
  *
104
128
  * @example
105
129
  * const model = new OpenAITextGenerationModel({
106
- * model: "text-davinci-003",
130
+ * model: "gpt-3.5-turbo-instruct",
107
131
  * temperature: 0.7,
108
132
  * maxCompletionTokens: 500,
109
133
  * retry: retryWithExponentialBackoff({ maxTries: 5 }),
@@ -57,8 +57,6 @@ function getEncodingNameForModel(model) {
57
57
  case "text-davinci-003": {
58
58
  return "p50k_base";
59
59
  }
60
- case "babbage-002":
61
- case "davinci-002":
62
60
  case "ada":
63
61
  case "babbage":
64
62
  case "curie":
@@ -68,11 +66,14 @@ function getEncodingNameForModel(model) {
68
66
  case "text-curie-001": {
69
67
  return "r50k_base";
70
68
  }
69
+ case "babbage-002":
70
+ case "davinci-002":
71
71
  case "gpt-3.5-turbo":
72
72
  case "gpt-3.5-turbo-0301":
73
73
  case "gpt-3.5-turbo-0613":
74
74
  case "gpt-3.5-turbo-16k":
75
75
  case "gpt-3.5-turbo-16k-0613":
76
+ case "gpt-3.5-turbo-instruct":
76
77
  case "gpt-4":
77
78
  case "gpt-4-0314":
78
79
  case "gpt-4-0613":
@@ -53,8 +53,6 @@ function getEncodingNameForModel(model) {
53
53
  case "text-davinci-003": {
54
54
  return "p50k_base";
55
55
  }
56
- case "babbage-002":
57
- case "davinci-002":
58
56
  case "ada":
59
57
  case "babbage":
60
58
  case "curie":
@@ -64,11 +62,14 @@ function getEncodingNameForModel(model) {
64
62
  case "text-curie-001": {
65
63
  return "r50k_base";
66
64
  }
65
+ case "babbage-002":
66
+ case "davinci-002":
67
67
  case "gpt-3.5-turbo":
68
68
  case "gpt-3.5-turbo-0301":
69
69
  case "gpt-3.5-turbo-0613":
70
70
  case "gpt-3.5-turbo-16k":
71
71
  case "gpt-3.5-turbo-16k-0613":
72
+ case "gpt-3.5-turbo-instruct":
72
73
  case "gpt-4":
73
74
  case "gpt-4-0314":
74
75
  case "gpt-4-0613":
@@ -86,6 +86,12 @@ class StabilityImageGenerationModel extends AbstractModel_js_1.AbstractModel {
86
86
  }
87
87
  }
88
88
  exports.StabilityImageGenerationModel = StabilityImageGenerationModel;
89
+ const stabilityImageGenerationModels = [
90
+ "stable-diffusion-v1-5",
91
+ "stable-diffusion-512-v2-1",
92
+ "stable-diffusion-xl-1024-v0-9",
93
+ "stable-diffusion-xl-1024-v1-0",
94
+ ];
89
95
  const stabilityImageGenerationResponseSchema = zod_1.z.object({
90
96
  artifacts: zod_1.z.array(zod_1.z.object({
91
97
  base64: zod_1.z.string(),
@@ -28,7 +28,7 @@ import { ImageGenerationModel, ImageGenerationModelSettings } from "../../model-
28
28
  export declare class StabilityImageGenerationModel extends AbstractModel<StabilityImageGenerationModelSettings> implements ImageGenerationModel<StabilityImageGenerationPrompt, StabilityImageGenerationResponse, StabilityImageGenerationModelSettings> {
29
29
  constructor(settings: StabilityImageGenerationModelSettings);
30
30
  readonly provider: "stability";
31
- get modelName(): string;
31
+ get modelName(): StabilityImageGenerationModelType;
32
32
  callAPI(input: StabilityImageGenerationPrompt, options?: ModelFunctionOptions<StabilityImageGenerationModelSettings>): Promise<StabilityImageGenerationResponse>;
33
33
  get settingsForEvent(): Partial<StabilityImageGenerationModelSettings>;
34
34
  generateImageResponse(prompt: StabilityImageGenerationPrompt, options?: ModelFunctionOptions<StabilityImageGenerationModelSettings>): Promise<{
@@ -41,9 +41,11 @@ export declare class StabilityImageGenerationModel extends AbstractModel<Stabili
41
41
  extractBase64Image(response: StabilityImageGenerationResponse): string;
42
42
  withSettings(additionalSettings: StabilityImageGenerationModelSettings): this;
43
43
  }
44
+ declare const stabilityImageGenerationModels: readonly ["stable-diffusion-v1-5", "stable-diffusion-512-v2-1", "stable-diffusion-xl-1024-v0-9", "stable-diffusion-xl-1024-v1-0"];
45
+ export type StabilityImageGenerationModelType = (typeof stabilityImageGenerationModels)[number] | (string & {});
44
46
  export interface StabilityImageGenerationModelSettings extends ImageGenerationModelSettings {
45
47
  api?: ApiConfiguration;
46
- model: string;
48
+ model: StabilityImageGenerationModelType;
47
49
  height?: number;
48
50
  width?: number;
49
51
  cfgScale?: number;
@@ -82,6 +82,12 @@ export class StabilityImageGenerationModel extends AbstractModel {
82
82
  return new StabilityImageGenerationModel(Object.assign({}, this.settings, additionalSettings));
83
83
  }
84
84
  }
85
+ const stabilityImageGenerationModels = [
86
+ "stable-diffusion-v1-5",
87
+ "stable-diffusion-512-v2-1",
88
+ "stable-diffusion-xl-1024-v0-9",
89
+ "stable-diffusion-xl-1024-v1-0",
90
+ ];
85
91
  const stabilityImageGenerationResponseSchema = z.object({
86
92
  artifacts: z.array(z.object({
87
93
  base64: z.string(),
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "modelfusion",
3
3
  "description": "Build multimodal applications, chatbots, and agents with JavaScript and TypeScript.",
4
- "version": "0.31.0",
4
+ "version": "0.33.0",
5
5
  "author": "Lars Grammel",
6
6
  "license": "MIT",
7
7
  "keywords": [
@@ -55,7 +55,7 @@
55
55
  "js-tiktoken": "1.0.7",
56
56
  "nanoid": "3.3.6",
57
57
  "secure-json-parse": "2.7.0",
58
- "zod": "3.22.2",
58
+ "zod": "3.21.4",
59
59
  "zod-to-json-schema": "3.21.4"
60
60
  },
61
61
  "devDependencies": {
@@ -0,0 +1,7 @@
1
+ import { ModelFunctionOptions } from "../model-function/ModelFunctionOptions.js";
2
+ export interface RetrieverSettings {
3
+ }
4
+ export interface Retriever<OBJECT, QUERY, SETTINGS extends RetrieverSettings> {
5
+ retrieve(query: QUERY, options?: ModelFunctionOptions<RetrieverSettings>): Promise<OBJECT[]>;
6
+ withSettings(additionalSettings: Partial<SETTINGS>): this;
7
+ }
@@ -0,0 +1,18 @@
1
+ "use strict";
2
+ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
3
+ if (k2 === undefined) k2 = k;
4
+ var desc = Object.getOwnPropertyDescriptor(m, k);
5
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
6
+ desc = { enumerable: true, get: function() { return m[k]; } };
7
+ }
8
+ Object.defineProperty(o, k2, desc);
9
+ }) : (function(o, m, k, k2) {
10
+ if (k2 === undefined) k2 = k;
11
+ o[k2] = m[k];
12
+ }));
13
+ var __exportStar = (this && this.__exportStar) || function(m, exports) {
14
+ for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p);
15
+ };
16
+ Object.defineProperty(exports, "__esModule", { value: true });
17
+ __exportStar(require("./Retriever.cjs"), exports);
18
+ __exportStar(require("./retrieve.cjs"), exports);
@@ -0,0 +1,2 @@
1
+ export * from "./Retriever.js";
2
+ export * from "./retrieve.js";
@@ -0,0 +1,2 @@
1
+ export * from "./Retriever.js";
2
+ export * from "./retrieve.js";
@@ -0,0 +1,9 @@
1
+ "use strict";
2
+ Object.defineProperty(exports, "__esModule", { value: true });
3
+ exports.retrieve = void 0;
4
+ async function retrieve(retriever, query, options) {
5
+ // TODO add error handling, events, duration tracking, etc.
6
+ // TODO metadata handling
7
+ return retriever.retrieve(query, options);
8
+ }
9
+ exports.retrieve = retrieve;
@@ -0,0 +1,3 @@
1
+ import { ModelFunctionOptions } from "../model-function/ModelFunctionOptions.js";
2
+ import { Retriever, RetrieverSettings } from "./Retriever.js";
3
+ export declare function retrieve<OBJECT, QUERY, SETTINGS extends RetrieverSettings>(retriever: Retriever<OBJECT, QUERY, SETTINGS>, query: QUERY, options?: ModelFunctionOptions<SETTINGS>): Promise<OBJECT[]>;
@@ -0,0 +1,5 @@
1
+ export async function retrieve(retriever, query, options) {
2
+ // TODO add error handling, events, duration tracking, etc.
3
+ // TODO metadata handling
4
+ return retriever.retrieve(query, options);
5
+ }
@@ -14,12 +14,8 @@ var __exportStar = (this && this.__exportStar) || function(m, exports) {
14
14
  for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p);
15
15
  };
16
16
  Object.defineProperty(exports, "__esModule", { value: true });
17
- __exportStar(require("./SimilarTextChunksFromVectorIndexRetriever.cjs"), exports);
18
17
  __exportStar(require("./TextChunk.cjs"), exports);
19
- __exportStar(require("./retrieve-text-chunks/TextChunkRetriever.cjs"), exports);
20
- __exportStar(require("./retrieve-text-chunks/retrieveTextChunks.cjs"), exports);
21
18
  __exportStar(require("./split/SplitFunction.cjs"), exports);
22
19
  __exportStar(require("./split/splitOnSeparator.cjs"), exports);
23
20
  __exportStar(require("./split/splitRecursively.cjs"), exports);
24
21
  __exportStar(require("./split/splitTextChunks.cjs"), exports);
25
- __exportStar(require("./upsertTextChunks.cjs"), exports);
@@ -1,9 +1,5 @@
1
- export * from "./SimilarTextChunksFromVectorIndexRetriever.js";
2
1
  export * from "./TextChunk.js";
3
- export * from "./retrieve-text-chunks/TextChunkRetriever.js";
4
- export * from "./retrieve-text-chunks/retrieveTextChunks.js";
5
2
  export * from "./split/SplitFunction.js";
6
3
  export * from "./split/splitOnSeparator.js";
7
4
  export * from "./split/splitRecursively.js";
8
5
  export * from "./split/splitTextChunks.js";
9
- export * from "./upsertTextChunks.js";
@@ -1,9 +1,5 @@
1
- export * from "./SimilarTextChunksFromVectorIndexRetriever.js";
2
1
  export * from "./TextChunk.js";
3
- export * from "./retrieve-text-chunks/TextChunkRetriever.js";
4
- export * from "./retrieve-text-chunks/retrieveTextChunks.js";
5
2
  export * from "./split/SplitFunction.js";
6
3
  export * from "./split/splitOnSeparator.js";
7
4
  export * from "./split/splitRecursively.js";
8
5
  export * from "./split/splitTextChunks.js";
9
- export * from "./upsertTextChunks.js";
@@ -1,8 +1,8 @@
1
1
  "use strict";
2
2
  Object.defineProperty(exports, "__esModule", { value: true });
3
- exports.SimilarTextChunksFromVectorIndexRetriever = void 0;
3
+ exports.VectorIndexRetriever = void 0;
4
4
  const embedText_js_1 = require("../model-function/embed-text/embedText.cjs");
5
- class SimilarTextChunksFromVectorIndexRetriever {
5
+ class VectorIndexRetriever {
6
6
  constructor({ vectorIndex, embeddingModel, maxResults, similarityThreshold, }) {
7
7
  Object.defineProperty(this, "vectorIndex", {
8
8
  enumerable: true,
@@ -29,9 +29,9 @@ class SimilarTextChunksFromVectorIndexRetriever {
29
29
  similarityThreshold,
30
30
  };
31
31
  }
32
- async retrieveTextChunks(query, options) {
32
+ async retrieve(query, options) {
33
33
  if (options?.settings != null) {
34
- return this.withSettings(options.settings).retrieveTextChunks(query, {
34
+ return this.withSettings(options.settings).retrieve(query, {
35
35
  functionId: options.functionId,
36
36
  observers: options.observers,
37
37
  run: options.run,
@@ -49,10 +49,10 @@ class SimilarTextChunksFromVectorIndexRetriever {
49
49
  return queryResult.map((item) => item.data);
50
50
  }
51
51
  withSettings(additionalSettings) {
52
- return new SimilarTextChunksFromVectorIndexRetriever(Object.assign({}, this.settings, additionalSettings, {
52
+ return new VectorIndexRetriever(Object.assign({}, this.settings, additionalSettings, {
53
53
  vectorIndex: this.vectorIndex,
54
54
  embeddingModel: this.embeddingModel,
55
55
  }));
56
56
  }
57
57
  }
58
- exports.SimilarTextChunksFromVectorIndexRetriever = SimilarTextChunksFromVectorIndexRetriever;
58
+ exports.VectorIndexRetriever = VectorIndexRetriever;
@@ -0,0 +1,19 @@
1
+ import { ModelFunctionOptions } from "../model-function/ModelFunctionOptions.js";
2
+ import { TextEmbeddingModel, TextEmbeddingModelSettings } from "../model-function/embed-text/TextEmbeddingModel.js";
3
+ import { Retriever, RetrieverSettings } from "../retriever/Retriever.js";
4
+ import { VectorIndex } from "./VectorIndex.js";
5
+ export interface VectorIndexRetrieverSettings {
6
+ maxResults?: number;
7
+ similarityThreshold?: number;
8
+ }
9
+ export declare class VectorIndexRetriever<OBJECT, INDEX> implements Retriever<OBJECT, string, VectorIndexRetrieverSettings> {
10
+ private readonly vectorIndex;
11
+ private readonly embeddingModel;
12
+ private readonly settings;
13
+ constructor({ vectorIndex, embeddingModel, maxResults, similarityThreshold, }: {
14
+ vectorIndex: VectorIndex<OBJECT, INDEX>;
15
+ embeddingModel: TextEmbeddingModel<unknown, TextEmbeddingModelSettings>;
16
+ } & VectorIndexRetrieverSettings);
17
+ retrieve(query: string, options?: ModelFunctionOptions<RetrieverSettings>): Promise<OBJECT[]>;
18
+ withSettings(additionalSettings: Partial<VectorIndexRetrieverSettings>): this;
19
+ }
@@ -1,5 +1,5 @@
1
1
  import { embedText } from "../model-function/embed-text/embedText.js";
2
- export class SimilarTextChunksFromVectorIndexRetriever {
2
+ export class VectorIndexRetriever {
3
3
  constructor({ vectorIndex, embeddingModel, maxResults, similarityThreshold, }) {
4
4
  Object.defineProperty(this, "vectorIndex", {
5
5
  enumerable: true,
@@ -26,9 +26,9 @@ export class SimilarTextChunksFromVectorIndexRetriever {
26
26
  similarityThreshold,
27
27
  };
28
28
  }
29
- async retrieveTextChunks(query, options) {
29
+ async retrieve(query, options) {
30
30
  if (options?.settings != null) {
31
- return this.withSettings(options.settings).retrieveTextChunks(query, {
31
+ return this.withSettings(options.settings).retrieve(query, {
32
32
  functionId: options.functionId,
33
33
  observers: options.observers,
34
34
  run: options.run,
@@ -46,7 +46,7 @@ export class SimilarTextChunksFromVectorIndexRetriever {
46
46
  return queryResult.map((item) => item.data);
47
47
  }
48
48
  withSettings(additionalSettings) {
49
- return new SimilarTextChunksFromVectorIndexRetriever(Object.assign({}, this.settings, additionalSettings, {
49
+ return new VectorIndexRetriever(Object.assign({}, this.settings, additionalSettings, {
50
50
  vectorIndex: this.vectorIndex,
51
51
  embeddingModel: this.embeddingModel,
52
52
  }));
@@ -15,5 +15,7 @@ var __exportStar = (this && this.__exportStar) || function(m, exports) {
15
15
  };
16
16
  Object.defineProperty(exports, "__esModule", { value: true });
17
17
  __exportStar(require("./VectorIndex.cjs"), exports);
18
+ __exportStar(require("./VectorIndexRetriever.cjs"), exports);
18
19
  __exportStar(require("./memory/MemoryVectorIndex.cjs"), exports);
19
20
  __exportStar(require("./pinecone/PineconeVectorIndex.cjs"), exports);
21
+ __exportStar(require("./upsertIntoVectorIndex.cjs"), exports);
@@ -1,3 +1,5 @@
1
1
  export * from "./VectorIndex.js";
2
+ export * from "./VectorIndexRetriever.js";
2
3
  export * from "./memory/MemoryVectorIndex.js";
3
4
  export * from "./pinecone/PineconeVectorIndex.js";
5
+ export * from "./upsertIntoVectorIndex.js";
@@ -1,3 +1,5 @@
1
1
  export * from "./VectorIndex.js";
2
+ export * from "./VectorIndexRetriever.js";
2
3
  export * from "./memory/MemoryVectorIndex.js";
3
4
  export * from "./pinecone/PineconeVectorIndex.js";
5
+ export * from "./upsertIntoVectorIndex.js";
@@ -0,0 +1,15 @@
1
+ "use strict";
2
+ Object.defineProperty(exports, "__esModule", { value: true });
3
+ exports.upsertIntoVectorIndex = void 0;
4
+ const nanoid_1 = require("nanoid");
5
+ const embedText_js_1 = require("../model-function/embed-text/embedText.cjs");
6
+ async function upsertIntoVectorIndex({ vectorIndex, embeddingModel, generateId = nanoid_1.nanoid, objects, getValueToEmbed, getId, }, options) {
7
+ // many embedding models support bulk embedding, so we first embed all texts:
8
+ const embeddings = await (0, embedText_js_1.embedTexts)(embeddingModel, objects.map(getValueToEmbed), options);
9
+ await vectorIndex.upsertMany(objects.map((object, i) => ({
10
+ id: getId?.(object, i) ?? generateId(),
11
+ vector: embeddings[i],
12
+ data: object,
13
+ })));
14
+ }
15
+ exports.upsertIntoVectorIndex = upsertIntoVectorIndex;
@@ -0,0 +1,11 @@
1
+ import { ModelFunctionOptions } from "../model-function/ModelFunctionOptions.js";
2
+ import { TextEmbeddingModel, TextEmbeddingModelSettings } from "../model-function/embed-text/TextEmbeddingModel.js";
3
+ import { VectorIndex } from "./VectorIndex.js";
4
+ export declare function upsertIntoVectorIndex<OBJECT, SETTINGS extends TextEmbeddingModelSettings>({ vectorIndex, embeddingModel, generateId, objects, getValueToEmbed, getId, }: {
5
+ vectorIndex: VectorIndex<OBJECT, unknown>;
6
+ embeddingModel: TextEmbeddingModel<unknown, SETTINGS>;
7
+ generateId?: () => string;
8
+ objects: OBJECT[];
9
+ getValueToEmbed: (object: OBJECT, index: number) => string;
10
+ getId?: (object: OBJECT, index: number) => string | undefined;
11
+ }, options?: ModelFunctionOptions<SETTINGS>): Promise<void>;
@@ -0,0 +1,11 @@
1
+ import { nanoid as createId } from "nanoid";
2
+ import { embedTexts } from "../model-function/embed-text/embedText.js";
3
+ export async function upsertIntoVectorIndex({ vectorIndex, embeddingModel, generateId = createId, objects, getValueToEmbed, getId, }, options) {
4
+ // many embedding models support bulk embedding, so we first embed all texts:
5
+ const embeddings = await embedTexts(embeddingModel, objects.map(getValueToEmbed), options);
6
+ await vectorIndex.upsertMany(objects.map((object, i) => ({
7
+ id: getId?.(object, i) ?? generateId(),
8
+ vector: embeddings[i],
9
+ data: object,
10
+ })));
11
+ }
@@ -1,20 +0,0 @@
1
- import { ModelFunctionOptions } from "../model-function/ModelFunctionOptions.js";
2
- import { TextEmbeddingModel, TextEmbeddingModelSettings } from "../model-function/embed-text/TextEmbeddingModel.js";
3
- import { TextChunk } from "./TextChunk.js";
4
- import { TextChunkRetriever, TextChunkRetrieverSettings } from "./retrieve-text-chunks/TextChunkRetriever.js";
5
- import { VectorIndex } from "../vector-index/VectorIndex.js";
6
- export interface SimilarTextChunksFromVectorIndexRetrieverSettings {
7
- maxResults?: number;
8
- similarityThreshold?: number;
9
- }
10
- export declare class SimilarTextChunksFromVectorIndexRetriever<CHUNK extends TextChunk, INDEX, SETTINGS extends TextEmbeddingModelSettings> implements TextChunkRetriever<CHUNK, string, SimilarTextChunksFromVectorIndexRetrieverSettings> {
11
- private readonly vectorIndex;
12
- private readonly embeddingModel;
13
- private readonly settings;
14
- constructor({ vectorIndex, embeddingModel, maxResults, similarityThreshold, }: {
15
- vectorIndex: VectorIndex<CHUNK, INDEX>;
16
- embeddingModel: TextEmbeddingModel<unknown, SETTINGS>;
17
- } & SimilarTextChunksFromVectorIndexRetrieverSettings);
18
- retrieveTextChunks(query: string, options?: ModelFunctionOptions<TextChunkRetrieverSettings>): Promise<CHUNK[]>;
19
- withSettings(additionalSettings: Partial<SimilarTextChunksFromVectorIndexRetrieverSettings>): this;
20
- }
@@ -1,8 +0,0 @@
1
- import { ModelFunctionOptions } from "../../model-function/ModelFunctionOptions.js";
2
- import { TextChunk } from "../TextChunk.js";
3
- export interface TextChunkRetrieverSettings {
4
- }
5
- export interface TextChunkRetriever<CHUNK extends TextChunk, QUERY, SETTINGS extends TextChunkRetrieverSettings> {
6
- retrieveTextChunks(query: QUERY, options?: ModelFunctionOptions<TextChunkRetrieverSettings>): Promise<CHUNK[]>;
7
- withSettings(additionalSettings: Partial<SETTINGS>): this;
8
- }
@@ -1,10 +0,0 @@
1
- "use strict";
2
- Object.defineProperty(exports, "__esModule", { value: true });
3
- exports.retrieveTextChunks = void 0;
4
- async function retrieveTextChunks(retriever, query, options) {
5
- // TODO add error handling, events, duration tracking, etc.
6
- return {
7
- chunks: await retriever.retrieveTextChunks(query, options),
8
- };
9
- }
10
- exports.retrieveTextChunks = retrieveTextChunks;
@@ -1,6 +0,0 @@
1
- import { ModelFunctionOptions } from "../../model-function/ModelFunctionOptions.js";
2
- import { TextChunk } from "../TextChunk.js";
3
- import { TextChunkRetriever, TextChunkRetrieverSettings } from "./TextChunkRetriever.js";
4
- export declare function retrieveTextChunks<CHUNK extends TextChunk, QUERY, SETTINGS extends TextChunkRetrieverSettings>(retriever: TextChunkRetriever<CHUNK, QUERY, SETTINGS>, query: QUERY, options?: ModelFunctionOptions<SETTINGS>): Promise<{
5
- chunks: CHUNK[];
6
- }>;
@@ -1,6 +0,0 @@
1
- export async function retrieveTextChunks(retriever, query, options) {
2
- // TODO add error handling, events, duration tracking, etc.
3
- return {
4
- chunks: await retriever.retrieveTextChunks(query, options),
5
- };
6
- }
@@ -1,15 +0,0 @@
1
- "use strict";
2
- Object.defineProperty(exports, "__esModule", { value: true });
3
- exports.upsertTextChunks = void 0;
4
- const nanoid_1 = require("nanoid");
5
- const embedText_js_1 = require("../model-function/embed-text/embedText.cjs");
6
- async function upsertTextChunks({ vectorIndex, embeddingModel, generateId = nanoid_1.nanoid, chunks, ids, }, options) {
7
- // many embedding models support bulk embedding, so we first embed all texts:
8
- const embeddings = await (0, embedText_js_1.embedTexts)(embeddingModel, chunks.map((chunk) => chunk.text), options);
9
- await vectorIndex.upsertMany(chunks.map((chunk, i) => ({
10
- id: ids?.[i] ?? generateId(),
11
- vector: embeddings[i],
12
- data: chunk,
13
- })));
14
- }
15
- exports.upsertTextChunks = upsertTextChunks;
@@ -1,11 +0,0 @@
1
- import { ModelFunctionOptions } from "../model-function/ModelFunctionOptions.js";
2
- import { TextEmbeddingModel, TextEmbeddingModelSettings } from "../model-function/embed-text/TextEmbeddingModel.js";
3
- import { TextChunk } from "./TextChunk.js";
4
- import { VectorIndex } from "../vector-index/VectorIndex.js";
5
- export declare function upsertTextChunks<CHUNK extends TextChunk, SETTINGS extends TextEmbeddingModelSettings>({ vectorIndex, embeddingModel, generateId, chunks, ids, }: {
6
- vectorIndex: VectorIndex<CHUNK, unknown>;
7
- embeddingModel: TextEmbeddingModel<unknown, SETTINGS>;
8
- generateId?: () => string;
9
- chunks: CHUNK[];
10
- ids?: Array<string | undefined>;
11
- }, options?: ModelFunctionOptions<SETTINGS>): Promise<void>;
@@ -1,11 +0,0 @@
1
- import { nanoid as createId } from "nanoid";
2
- import { embedTexts } from "../model-function/embed-text/embedText.js";
3
- export async function upsertTextChunks({ vectorIndex, embeddingModel, generateId = createId, chunks, ids, }, options) {
4
- // many embedding models support bulk embedding, so we first embed all texts:
5
- const embeddings = await embedTexts(embeddingModel, chunks.map((chunk) => chunk.text), options);
6
- await vectorIndex.upsertMany(chunks.map((chunk, i) => ({
7
- id: ids?.[i] ?? generateId(),
8
- vector: embeddings[i],
9
- data: chunk,
10
- })));
11
- }