modelfusion 0.122.0 → 0.123.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +37 -0
- package/README.md +41 -1
- package/index.cjs +0 -1
- package/index.d.ts +0 -1
- package/index.js +0 -1
- package/model-function/ModelCallEvent.d.ts +3 -2
- package/model-function/classify/Classifier.cjs +2 -0
- package/model-function/classify/Classifier.d.ts +10 -0
- package/model-function/classify/Classifier.js +1 -0
- package/model-function/classify/ClassifyEvent.cjs +2 -0
- package/model-function/classify/ClassifyEvent.d.ts +20 -0
- package/model-function/classify/ClassifyEvent.js +1 -0
- package/model-function/classify/EmbeddingSimilarityClassifier.cjs +97 -0
- package/model-function/classify/EmbeddingSimilarityClassifier.d.ts +40 -0
- package/model-function/classify/EmbeddingSimilarityClassifier.js +93 -0
- package/model-function/classify/classify.cjs +27 -0
- package/model-function/classify/classify.d.ts +17 -0
- package/model-function/classify/classify.js +23 -0
- package/{classifier → model-function/classify}/index.cjs +4 -1
- package/model-function/classify/index.d.ts +4 -0
- package/model-function/classify/index.js +4 -0
- package/model-function/index.cjs +1 -0
- package/model-function/index.d.ts +1 -0
- package/model-function/index.js +1 -0
- package/model-provider/mistral/MistralTextEmbeddingModel.d.ts +13 -13
- package/model-provider/ollama/OllamaChatModel.d.ts +9 -9
- package/model-provider/openai/OpenAITextEmbeddingModel.d.ts +12 -12
- package/package.json +1 -1
- package/classifier/SemanticClassifier.cjs +0 -81
- package/classifier/SemanticClassifier.d.ts +0 -25
- package/classifier/SemanticClassifier.js +0 -77
- package/classifier/index.d.ts +0 -1
- package/classifier/index.js +0 -1
package/CHANGELOG.md
CHANGED
@@ -1,5 +1,42 @@
|
|
1
1
|
# Changelog
|
2
2
|
|
3
|
+
## v0.123.0 - 2024-01-13
|
4
|
+
|
5
|
+
### Added
|
6
|
+
|
7
|
+
- `classify` model function ([docs](https://modelfusion.dev/guide/function/classify)) for classifying values. The `SemanticClassifier` has been renamed to `EmbeddingSimilarityClassifier` and can be used in conjunction with `classify`:
|
8
|
+
|
9
|
+
```ts
|
10
|
+
import { classify, EmbeddingSimilarityClassifier, openai } from "modelfusion";
|
11
|
+
|
12
|
+
const classifier = new EmbeddingSimilarityClassifier({
|
13
|
+
embeddingModel: openai.TextEmbedder({ model: "text-embedding-ada-002" }),
|
14
|
+
similarityThreshold: 0.82,
|
15
|
+
clusters: [
|
16
|
+
{
|
17
|
+
name: "politics" as const,
|
18
|
+
values: [
|
19
|
+
"they will save the country!",
|
20
|
+
// ...
|
21
|
+
],
|
22
|
+
},
|
23
|
+
{
|
24
|
+
name: "chitchat" as const,
|
25
|
+
values: [
|
26
|
+
"how's the weather today?",
|
27
|
+
// ...
|
28
|
+
],
|
29
|
+
},
|
30
|
+
],
|
31
|
+
});
|
32
|
+
|
33
|
+
// strongly typed result:
|
34
|
+
const result = await classify({
|
35
|
+
model: classifier,
|
36
|
+
value: "don't you love politics?",
|
37
|
+
});
|
38
|
+
```
|
39
|
+
|
3
40
|
## v0.122.0 - 2024-01-13
|
4
41
|
|
5
42
|
### Changed
|
package/README.md
CHANGED
@@ -22,7 +22,7 @@
|
|
22
22
|
- **Built for production**: ModelFusion is fully tree-shakeable, can be used in serverless environments, and only uses a minimal set of dependencies.
|
23
23
|
|
24
24
|
> [!NOTE]
|
25
|
-
> ModelFusion is getting closer to a stable v1, which is expected in
|
25
|
+
> ModelFusion is getting closer to a stable v1, which is expected in Q2/2024. The main API is now mostly stable, but until version 1.0 there may be breaking changes. Feedback and suggestions are welcome.
|
26
26
|
|
27
27
|
## Quick Install
|
28
28
|
|
@@ -291,6 +291,8 @@ Providers: [OpenAI (Whisper)](https://modelfusion.dev/integration/model-provider
|
|
291
291
|
Create embeddings for text and other values. Embeddings are vectors that represent the essence of the values in the context of the model.
|
292
292
|
|
293
293
|
```ts
|
294
|
+
import { embed, embedMany, openai } from "modelfusion";
|
295
|
+
|
294
296
|
// embed single value:
|
295
297
|
const embedding = await embed({
|
296
298
|
model: openai.TextEmbedder({ model: "text-embedding-ada-002" }),
|
@@ -309,6 +311,43 @@ const embeddings = await embedMany({
|
|
309
311
|
|
310
312
|
Providers: [OpenAI](https://modelfusion.dev/integration/model-provider/openai), [Llama.cpp](https://modelfusion.dev/integration/model-provider/llamacpp), [Ollama](https://modelfusion.dev/integration/model-provider/ollama), [Mistral](https://modelfusion.dev/integration/model-provider/mistral), [Hugging Face](https://modelfusion.dev/integration/model-provider/huggingface), [Cohere](https://modelfusion.dev/integration/model-provider/cohere)
|
311
313
|
|
314
|
+
### [Classify Value](https://modelfusion.dev/guide/function/classify)
|
315
|
+
|
316
|
+
Classifies a value into a category.
|
317
|
+
|
318
|
+
```ts
|
319
|
+
import { classify, EmbeddingSimilarityClassifier, openai } from "modelfusion";
|
320
|
+
|
321
|
+
const classifier = new EmbeddingSimilarityClassifier({
|
322
|
+
embeddingModel: openai.TextEmbedder({ model: "text-embedding-ada-002" }),
|
323
|
+
similarityThreshold: 0.82,
|
324
|
+
clusters: [
|
325
|
+
{
|
326
|
+
name: "politics" as const,
|
327
|
+
values: [
|
328
|
+
"they will save the country!",
|
329
|
+
// ...
|
330
|
+
],
|
331
|
+
},
|
332
|
+
{
|
333
|
+
name: "chitchat" as const,
|
334
|
+
values: [
|
335
|
+
"how's the weather today?",
|
336
|
+
// ...
|
337
|
+
],
|
338
|
+
},
|
339
|
+
],
|
340
|
+
});
|
341
|
+
|
342
|
+
// strongly typed result:
|
343
|
+
const result = await classify({
|
344
|
+
model: classifier,
|
345
|
+
value: "don't you love politics?",
|
346
|
+
});
|
347
|
+
```
|
348
|
+
|
349
|
+
Classifiers: [EmbeddingSimilarityClassifier](https://modelfusion.dev/guide/function/classify#embeddingsimilarityclassifier)
|
350
|
+
|
312
351
|
### [Tokenize Text](https://modelfusion.dev/guide/function/tokenize-text)
|
313
352
|
|
314
353
|
Split text into tokens and reconstruct the text from tokens.
|
@@ -552,6 +591,7 @@ modelfusion.setLogFormat("detailed-object"); // log full events
|
|
552
591
|
- [Generate transcription](https://modelfusion.dev/guide/function/generation-transcription)
|
553
592
|
- [Tokenize Text](https://modelfusion.dev/guide/function/tokenize-text)
|
554
593
|
- [Embed Value](https://modelfusion.dev/guide/function/embed)
|
594
|
+
- [Classify Value](https://modelfusion.dev/guide/function/classify)
|
555
595
|
- [Tools](https://modelfusion.dev/guide/tools)
|
556
596
|
- [Use Tool](https://modelfusion.dev/guide/tools/use-tool)
|
557
597
|
- [Use Tools](https://modelfusion.dev/guide/tools/use-tools)
|
package/index.cjs
CHANGED
@@ -14,7 +14,6 @@ var __exportStar = (this && this.__exportStar) || function(m, exports) {
|
|
14
14
|
for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p);
|
15
15
|
};
|
16
16
|
Object.defineProperty(exports, "__esModule", { value: true });
|
17
|
-
__exportStar(require("./classifier/index.cjs"), exports);
|
18
17
|
__exportStar(require("./core/index.cjs"), exports);
|
19
18
|
__exportStar(require("./model-function/index.cjs"), exports);
|
20
19
|
__exportStar(require("./model-provider/index.cjs"), exports);
|
package/index.d.ts
CHANGED
package/index.js
CHANGED
@@ -2,6 +2,7 @@ import { BaseFunctionFinishedEvent, BaseFunctionStartedEvent } from "../core/Fun
|
|
2
2
|
import { ToolCallGenerationFinishedEvent, ToolCallGenerationStartedEvent } from "../tool/generate-tool-call/ToolCallGenerationEvent.js";
|
3
3
|
import { ToolCallsGenerationFinishedEvent, ToolCallsGenerationStartedEvent } from "../tool/generate-tool-calls/ToolCallsGenerationEvent.js";
|
4
4
|
import { ModelInformation } from "./ModelInformation.js";
|
5
|
+
import { ClassifyFinishedEvent, ClassifyStartedEvent } from "./classify/ClassifyEvent.js";
|
5
6
|
import { EmbeddingFinishedEvent, EmbeddingStartedEvent } from "./embed/EmbeddingEvent.js";
|
6
7
|
import { ImageGenerationFinishedEvent, ImageGenerationStartedEvent } from "./generate-image/ImageGenerationEvent.js";
|
7
8
|
import { SpeechGenerationFinishedEvent, SpeechGenerationStartedEvent, SpeechStreamingFinishedEvent, SpeechStreamingStartedEvent } from "./generate-speech/SpeechGenerationEvent.js";
|
@@ -52,5 +53,5 @@ export interface BaseModelCallFinishedEvent extends BaseFunctionFinishedEvent {
|
|
52
53
|
*/
|
53
54
|
result: BaseModelCallFinishedEventResult;
|
54
55
|
}
|
55
|
-
export type ModelCallStartedEvent = EmbeddingStartedEvent | ImageGenerationStartedEvent | SpeechGenerationStartedEvent | SpeechStreamingStartedEvent | StructureGenerationStartedEvent | StructureStreamingStartedEvent | TextGenerationStartedEvent | TextStreamingStartedEvent | ToolCallGenerationStartedEvent | ToolCallsGenerationStartedEvent | TranscriptionStartedEvent;
|
56
|
-
export type ModelCallFinishedEvent = EmbeddingFinishedEvent | ImageGenerationFinishedEvent | SpeechGenerationFinishedEvent | SpeechStreamingFinishedEvent | StructureGenerationFinishedEvent | StructureStreamingFinishedEvent | TextGenerationFinishedEvent | TextStreamingFinishedEvent | ToolCallGenerationFinishedEvent | ToolCallsGenerationFinishedEvent | TranscriptionFinishedEvent;
|
56
|
+
export type ModelCallStartedEvent = ClassifyStartedEvent | EmbeddingStartedEvent | ImageGenerationStartedEvent | SpeechGenerationStartedEvent | SpeechStreamingStartedEvent | StructureGenerationStartedEvent | StructureStreamingStartedEvent | TextGenerationStartedEvent | TextStreamingStartedEvent | ToolCallGenerationStartedEvent | ToolCallsGenerationStartedEvent | TranscriptionStartedEvent;
|
57
|
+
export type ModelCallFinishedEvent = ClassifyFinishedEvent | EmbeddingFinishedEvent | ImageGenerationFinishedEvent | SpeechGenerationFinishedEvent | SpeechStreamingFinishedEvent | StructureGenerationFinishedEvent | StructureStreamingFinishedEvent | TextGenerationFinishedEvent | TextStreamingFinishedEvent | ToolCallGenerationFinishedEvent | ToolCallsGenerationFinishedEvent | TranscriptionFinishedEvent;
|
@@ -0,0 +1,10 @@
|
|
1
|
+
import { FunctionCallOptions } from "../../core/FunctionOptions.js";
|
2
|
+
import { Model, ModelSettings } from "../Model.js";
|
3
|
+
export interface ClassifierSettings extends ModelSettings {
|
4
|
+
}
|
5
|
+
export interface Classifier<VALUE, CLASS extends string | null, SETTINGS extends ClassifierSettings = ClassifierSettings> extends Model<SETTINGS> {
|
6
|
+
doClassify(value: VALUE, options: FunctionCallOptions): PromiseLike<{
|
7
|
+
rawResponse: unknown | undefined;
|
8
|
+
class: CLASS;
|
9
|
+
}>;
|
10
|
+
}
|
@@ -0,0 +1 @@
|
|
1
|
+
export {};
|
@@ -0,0 +1,20 @@
|
|
1
|
+
import { BaseModelCallFinishedEvent, BaseModelCallStartedEvent } from "../ModelCallEvent.js";
|
2
|
+
export interface ClassifyStartedEvent extends BaseModelCallStartedEvent {
|
3
|
+
functionType: "classify";
|
4
|
+
input: unknown | Array<unknown>;
|
5
|
+
}
|
6
|
+
export type ClassifyFinishedEventResult = {
|
7
|
+
status: "success";
|
8
|
+
rawResponse: unknown;
|
9
|
+
value: unknown;
|
10
|
+
} | {
|
11
|
+
status: "error";
|
12
|
+
error: unknown;
|
13
|
+
} | {
|
14
|
+
status: "abort";
|
15
|
+
};
|
16
|
+
export interface ClassifyFinishedEvent extends BaseModelCallFinishedEvent {
|
17
|
+
functionType: "classify";
|
18
|
+
input: unknown;
|
19
|
+
result: ClassifyFinishedEventResult;
|
20
|
+
}
|
@@ -0,0 +1 @@
|
|
1
|
+
export {};
|
@@ -0,0 +1,97 @@
|
|
1
|
+
"use strict";
|
2
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
3
|
+
exports.EmbeddingSimilarityClassifier = void 0;
|
4
|
+
const cosineSimilarity_js_1 = require("../../util/cosineSimilarity.cjs");
|
5
|
+
const embed_js_1 = require("../embed/embed.cjs");
|
6
|
+
/**
|
7
|
+
* Classifies values based on their distance to the values from a set of clusters.
|
8
|
+
* When the distance is below a certain threshold, the value is classified as belonging to the cluster,
|
9
|
+
* and the cluster name is returned. Otherwise, the value is classified as null.
|
10
|
+
*/
|
11
|
+
class EmbeddingSimilarityClassifier {
|
12
|
+
constructor(settings) {
|
13
|
+
Object.defineProperty(this, "settings", {
|
14
|
+
enumerable: true,
|
15
|
+
configurable: true,
|
16
|
+
writable: true,
|
17
|
+
value: void 0
|
18
|
+
});
|
19
|
+
Object.defineProperty(this, "modelInformation", {
|
20
|
+
enumerable: true,
|
21
|
+
configurable: true,
|
22
|
+
writable: true,
|
23
|
+
value: {
|
24
|
+
provider: "modelfusion",
|
25
|
+
modelName: "EmbeddingSimilarityClassifier",
|
26
|
+
}
|
27
|
+
});
|
28
|
+
Object.defineProperty(this, "embeddings", {
|
29
|
+
enumerable: true,
|
30
|
+
configurable: true,
|
31
|
+
writable: true,
|
32
|
+
value: void 0
|
33
|
+
});
|
34
|
+
this.settings = settings;
|
35
|
+
}
|
36
|
+
async getEmbeddings(options) {
|
37
|
+
if (this.embeddings != null) {
|
38
|
+
return this.embeddings;
|
39
|
+
}
|
40
|
+
const embeddings = [];
|
41
|
+
for (const cluster of this.settings.clusters) {
|
42
|
+
const clusterEmbeddings = await (0, embed_js_1.embedMany)({
|
43
|
+
model: this.settings.embeddingModel,
|
44
|
+
values: cluster.values,
|
45
|
+
...options,
|
46
|
+
});
|
47
|
+
for (let i = 0; i < clusterEmbeddings.length; i++) {
|
48
|
+
embeddings.push({
|
49
|
+
embedding: clusterEmbeddings[i],
|
50
|
+
clusterValue: cluster.values[i],
|
51
|
+
clusterName: cluster.name,
|
52
|
+
});
|
53
|
+
}
|
54
|
+
}
|
55
|
+
this.embeddings = embeddings; // lazy caching
|
56
|
+
return embeddings;
|
57
|
+
}
|
58
|
+
async doClassify(value, options) {
|
59
|
+
const valueEmbedding = await (0, embed_js_1.embed)({
|
60
|
+
model: this.settings.embeddingModel,
|
61
|
+
value,
|
62
|
+
...options,
|
63
|
+
});
|
64
|
+
const clusterEmbeddings = await this.getEmbeddings(options);
|
65
|
+
const allMatches = [];
|
66
|
+
for (const embedding of clusterEmbeddings) {
|
67
|
+
const similarity = (0, cosineSimilarity_js_1.cosineSimilarity)(valueEmbedding, embedding.embedding);
|
68
|
+
if (similarity >= this.settings.similarityThreshold) {
|
69
|
+
allMatches.push({
|
70
|
+
similarity,
|
71
|
+
clusterValue: embedding.clusterValue,
|
72
|
+
clusterName: embedding.clusterName,
|
73
|
+
});
|
74
|
+
}
|
75
|
+
}
|
76
|
+
// sort (highest similarity first)
|
77
|
+
allMatches.sort((a, b) => b.similarity - a.similarity);
|
78
|
+
return {
|
79
|
+
class: allMatches.length > 0
|
80
|
+
? allMatches[0].clusterName
|
81
|
+
: null,
|
82
|
+
rawResponse: undefined,
|
83
|
+
};
|
84
|
+
}
|
85
|
+
get settingsForEvent() {
|
86
|
+
const eventSettingProperties = [
|
87
|
+
"clusters",
|
88
|
+
"embeddingModel",
|
89
|
+
"similarityThreshold",
|
90
|
+
];
|
91
|
+
return Object.fromEntries(Object.entries(this.settings).filter(([key]) => eventSettingProperties.includes(key)));
|
92
|
+
}
|
93
|
+
withSettings(additionalSettings) {
|
94
|
+
return new EmbeddingSimilarityClassifier(Object.assign({}, this.settings, additionalSettings));
|
95
|
+
}
|
96
|
+
}
|
97
|
+
exports.EmbeddingSimilarityClassifier = EmbeddingSimilarityClassifier;
|
@@ -0,0 +1,40 @@
|
|
1
|
+
import { FunctionCallOptions } from "../../core/FunctionOptions.js";
|
2
|
+
import { Vector } from "../../core/Vector.js";
|
3
|
+
import { EmbeddingModel } from "../embed/EmbeddingModel.js";
|
4
|
+
import { Classifier, ClassifierSettings } from "./Classifier.js";
|
5
|
+
export interface ValueCluster<VALUE, NAME extends string> {
|
6
|
+
name: NAME;
|
7
|
+
values: VALUE[];
|
8
|
+
}
|
9
|
+
export interface EmbeddingSimilarityClassifierSettings<VALUE, CLUSTERS extends Array<ValueCluster<VALUE, string>>> extends ClassifierSettings {
|
10
|
+
clusters: CLUSTERS;
|
11
|
+
embeddingModel: EmbeddingModel<VALUE>;
|
12
|
+
similarityThreshold: number;
|
13
|
+
}
|
14
|
+
/**
|
15
|
+
* Classifies values based on their distance to the values from a set of clusters.
|
16
|
+
* When the distance is below a certain threshold, the value is classified as belonging to the cluster,
|
17
|
+
* and the cluster name is returned. Otherwise, the value is classified as null.
|
18
|
+
*/
|
19
|
+
export declare class EmbeddingSimilarityClassifier<VALUE, CLUSTERS extends Array<ValueCluster<VALUE, string>>> implements Classifier<VALUE, ClusterNames<CLUSTERS> | null, EmbeddingSimilarityClassifierSettings<VALUE, CLUSTERS>> {
|
20
|
+
readonly settings: EmbeddingSimilarityClassifierSettings<VALUE, CLUSTERS>;
|
21
|
+
readonly modelInformation: {
|
22
|
+
provider: string;
|
23
|
+
modelName: string;
|
24
|
+
};
|
25
|
+
private embeddings;
|
26
|
+
constructor(settings: EmbeddingSimilarityClassifierSettings<VALUE, CLUSTERS>);
|
27
|
+
getEmbeddings(options: FunctionCallOptions): Promise<{
|
28
|
+
embedding: Vector;
|
29
|
+
clusterValue: VALUE;
|
30
|
+
clusterName: string;
|
31
|
+
}[]>;
|
32
|
+
doClassify(value: VALUE, options: FunctionCallOptions): Promise<{
|
33
|
+
class: ClusterNames<CLUSTERS> | null;
|
34
|
+
rawResponse: undefined;
|
35
|
+
}>;
|
36
|
+
get settingsForEvent(): Partial<EmbeddingSimilarityClassifierSettings<VALUE, CLUSTERS>>;
|
37
|
+
withSettings(additionalSettings: Partial<EmbeddingSimilarityClassifierSettings<VALUE, CLUSTERS>>): this;
|
38
|
+
}
|
39
|
+
type ClusterNames<CLUSTERS> = CLUSTERS extends Array<ValueCluster<unknown, infer NAME>> ? NAME : never;
|
40
|
+
export {};
|
@@ -0,0 +1,93 @@
|
|
1
|
+
import { cosineSimilarity } from "../../util/cosineSimilarity.js";
|
2
|
+
import { embed, embedMany } from "../embed/embed.js";
|
3
|
+
/**
|
4
|
+
* Classifies values based on their distance to the values from a set of clusters.
|
5
|
+
* When the distance is below a certain threshold, the value is classified as belonging to the cluster,
|
6
|
+
* and the cluster name is returned. Otherwise, the value is classified as null.
|
7
|
+
*/
|
8
|
+
export class EmbeddingSimilarityClassifier {
|
9
|
+
constructor(settings) {
|
10
|
+
Object.defineProperty(this, "settings", {
|
11
|
+
enumerable: true,
|
12
|
+
configurable: true,
|
13
|
+
writable: true,
|
14
|
+
value: void 0
|
15
|
+
});
|
16
|
+
Object.defineProperty(this, "modelInformation", {
|
17
|
+
enumerable: true,
|
18
|
+
configurable: true,
|
19
|
+
writable: true,
|
20
|
+
value: {
|
21
|
+
provider: "modelfusion",
|
22
|
+
modelName: "EmbeddingSimilarityClassifier",
|
23
|
+
}
|
24
|
+
});
|
25
|
+
Object.defineProperty(this, "embeddings", {
|
26
|
+
enumerable: true,
|
27
|
+
configurable: true,
|
28
|
+
writable: true,
|
29
|
+
value: void 0
|
30
|
+
});
|
31
|
+
this.settings = settings;
|
32
|
+
}
|
33
|
+
async getEmbeddings(options) {
|
34
|
+
if (this.embeddings != null) {
|
35
|
+
return this.embeddings;
|
36
|
+
}
|
37
|
+
const embeddings = [];
|
38
|
+
for (const cluster of this.settings.clusters) {
|
39
|
+
const clusterEmbeddings = await embedMany({
|
40
|
+
model: this.settings.embeddingModel,
|
41
|
+
values: cluster.values,
|
42
|
+
...options,
|
43
|
+
});
|
44
|
+
for (let i = 0; i < clusterEmbeddings.length; i++) {
|
45
|
+
embeddings.push({
|
46
|
+
embedding: clusterEmbeddings[i],
|
47
|
+
clusterValue: cluster.values[i],
|
48
|
+
clusterName: cluster.name,
|
49
|
+
});
|
50
|
+
}
|
51
|
+
}
|
52
|
+
this.embeddings = embeddings; // lazy caching
|
53
|
+
return embeddings;
|
54
|
+
}
|
55
|
+
async doClassify(value, options) {
|
56
|
+
const valueEmbedding = await embed({
|
57
|
+
model: this.settings.embeddingModel,
|
58
|
+
value,
|
59
|
+
...options,
|
60
|
+
});
|
61
|
+
const clusterEmbeddings = await this.getEmbeddings(options);
|
62
|
+
const allMatches = [];
|
63
|
+
for (const embedding of clusterEmbeddings) {
|
64
|
+
const similarity = cosineSimilarity(valueEmbedding, embedding.embedding);
|
65
|
+
if (similarity >= this.settings.similarityThreshold) {
|
66
|
+
allMatches.push({
|
67
|
+
similarity,
|
68
|
+
clusterValue: embedding.clusterValue,
|
69
|
+
clusterName: embedding.clusterName,
|
70
|
+
});
|
71
|
+
}
|
72
|
+
}
|
73
|
+
// sort (highest similarity first)
|
74
|
+
allMatches.sort((a, b) => b.similarity - a.similarity);
|
75
|
+
return {
|
76
|
+
class: allMatches.length > 0
|
77
|
+
? allMatches[0].clusterName
|
78
|
+
: null,
|
79
|
+
rawResponse: undefined,
|
80
|
+
};
|
81
|
+
}
|
82
|
+
get settingsForEvent() {
|
83
|
+
const eventSettingProperties = [
|
84
|
+
"clusters",
|
85
|
+
"embeddingModel",
|
86
|
+
"similarityThreshold",
|
87
|
+
];
|
88
|
+
return Object.fromEntries(Object.entries(this.settings).filter(([key]) => eventSettingProperties.includes(key)));
|
89
|
+
}
|
90
|
+
withSettings(additionalSettings) {
|
91
|
+
return new EmbeddingSimilarityClassifier(Object.assign({}, this.settings, additionalSettings));
|
92
|
+
}
|
93
|
+
}
|
@@ -0,0 +1,27 @@
|
|
1
|
+
"use strict";
|
2
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
3
|
+
exports.classify = void 0;
|
4
|
+
const executeStandardCall_js_1 = require("../executeStandardCall.cjs");
|
5
|
+
async function classify({ model, value, fullResponse, ...options }) {
|
6
|
+
const callResponse = await (0, executeStandardCall_js_1.executeStandardCall)({
|
7
|
+
functionType: "classify",
|
8
|
+
input: value,
|
9
|
+
model,
|
10
|
+
options,
|
11
|
+
generateResponse: async (options) => {
|
12
|
+
const result = await model.doClassify(value, options);
|
13
|
+
return {
|
14
|
+
rawResponse: result.rawResponse,
|
15
|
+
extractedValue: result.class,
|
16
|
+
};
|
17
|
+
},
|
18
|
+
});
|
19
|
+
return fullResponse
|
20
|
+
? {
|
21
|
+
class: callResponse.value,
|
22
|
+
rawResponse: callResponse.rawResponse,
|
23
|
+
metadata: callResponse.metadata,
|
24
|
+
}
|
25
|
+
: callResponse.value;
|
26
|
+
}
|
27
|
+
exports.classify = classify;
|
@@ -0,0 +1,17 @@
|
|
1
|
+
import { FunctionOptions } from "../../core/FunctionOptions.js";
|
2
|
+
import { ModelCallMetadata } from "../ModelCallMetadata.js";
|
3
|
+
import { Classifier, ClassifierSettings } from "./Classifier.js";
|
4
|
+
export declare function classify<VALUE, CLASS extends string | null>(args: {
|
5
|
+
model: Classifier<VALUE, CLASS, ClassifierSettings>;
|
6
|
+
value: VALUE;
|
7
|
+
fullResponse?: false;
|
8
|
+
} & FunctionOptions): Promise<CLASS>;
|
9
|
+
export declare function classify<VALUE, CLASS extends string | null>(args: {
|
10
|
+
model: Classifier<VALUE, CLASS, ClassifierSettings>;
|
11
|
+
value: VALUE;
|
12
|
+
fullResponse: true;
|
13
|
+
} & FunctionOptions): Promise<{
|
14
|
+
class: CLASS;
|
15
|
+
rawResponse: unknown;
|
16
|
+
metadata: ModelCallMetadata;
|
17
|
+
}>;
|
@@ -0,0 +1,23 @@
|
|
1
|
+
import { executeStandardCall } from "../executeStandardCall.js";
|
2
|
+
export async function classify({ model, value, fullResponse, ...options }) {
|
3
|
+
const callResponse = await executeStandardCall({
|
4
|
+
functionType: "classify",
|
5
|
+
input: value,
|
6
|
+
model,
|
7
|
+
options,
|
8
|
+
generateResponse: async (options) => {
|
9
|
+
const result = await model.doClassify(value, options);
|
10
|
+
return {
|
11
|
+
rawResponse: result.rawResponse,
|
12
|
+
extractedValue: result.class,
|
13
|
+
};
|
14
|
+
},
|
15
|
+
});
|
16
|
+
return fullResponse
|
17
|
+
? {
|
18
|
+
class: callResponse.value,
|
19
|
+
rawResponse: callResponse.rawResponse,
|
20
|
+
metadata: callResponse.metadata,
|
21
|
+
}
|
22
|
+
: callResponse.value;
|
23
|
+
}
|
@@ -14,4 +14,7 @@ var __exportStar = (this && this.__exportStar) || function(m, exports) {
|
|
14
14
|
for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p);
|
15
15
|
};
|
16
16
|
Object.defineProperty(exports, "__esModule", { value: true });
|
17
|
-
__exportStar(require("./
|
17
|
+
__exportStar(require("./Classifier.cjs"), exports);
|
18
|
+
__exportStar(require("./ClassifyEvent.cjs"), exports);
|
19
|
+
__exportStar(require("./EmbeddingSimilarityClassifier.cjs"), exports);
|
20
|
+
__exportStar(require("./classify.cjs"), exports);
|
package/model-function/index.cjs
CHANGED
@@ -20,6 +20,7 @@ __exportStar(require("./ModelCallEvent.cjs"), exports);
|
|
20
20
|
__exportStar(require("./ModelCallMetadata.cjs"), exports);
|
21
21
|
__exportStar(require("./ModelInformation.cjs"), exports);
|
22
22
|
__exportStar(require("./PromptTemplate.cjs"), exports);
|
23
|
+
__exportStar(require("./classify/index.cjs"), exports);
|
23
24
|
__exportStar(require("./embed/EmbeddingEvent.cjs"), exports);
|
24
25
|
__exportStar(require("./embed/EmbeddingModel.cjs"), exports);
|
25
26
|
__exportStar(require("./embed/embed.cjs"), exports);
|
@@ -4,6 +4,7 @@ export * from "./ModelCallEvent.js";
|
|
4
4
|
export * from "./ModelCallMetadata.js";
|
5
5
|
export * from "./ModelInformation.js";
|
6
6
|
export * from "./PromptTemplate.js";
|
7
|
+
export * from "./classify/index.js";
|
7
8
|
export * from "./embed/EmbeddingEvent.js";
|
8
9
|
export * from "./embed/EmbeddingModel.js";
|
9
10
|
export * from "./embed/embed.js";
|
package/model-function/index.js
CHANGED
@@ -4,6 +4,7 @@ export * from "./ModelCallEvent.js";
|
|
4
4
|
export * from "./ModelCallMetadata.js";
|
5
5
|
export * from "./ModelInformation.js";
|
6
6
|
export * from "./PromptTemplate.js";
|
7
|
+
export * from "./classify/index.js";
|
7
8
|
export * from "./embed/EmbeddingEvent.js";
|
8
9
|
export * from "./embed/EmbeddingModel.js";
|
9
10
|
export * from "./embed/embed.js";
|
@@ -32,16 +32,16 @@ export declare class MistralTextEmbeddingModel extends AbstractModel<MistralText
|
|
32
32
|
doEmbedValues(texts: string[], options: FunctionCallOptions): Promise<{
|
33
33
|
rawResponse: {
|
34
34
|
object: string;
|
35
|
-
model: string;
|
36
|
-
usage: {
|
37
|
-
prompt_tokens: number;
|
38
|
-
total_tokens: number;
|
39
|
-
};
|
40
35
|
data: {
|
41
36
|
object: string;
|
42
37
|
embedding: number[];
|
43
38
|
index: number;
|
44
39
|
}[];
|
40
|
+
model: string;
|
41
|
+
usage: {
|
42
|
+
prompt_tokens: number;
|
43
|
+
total_tokens: number;
|
44
|
+
};
|
45
45
|
id: string;
|
46
46
|
};
|
47
47
|
embeddings: number[][];
|
@@ -77,29 +77,29 @@ declare const MistralTextEmbeddingResponseSchema: z.ZodObject<{
|
|
77
77
|
}>;
|
78
78
|
}, "strip", z.ZodTypeAny, {
|
79
79
|
object: string;
|
80
|
-
model: string;
|
81
|
-
usage: {
|
82
|
-
prompt_tokens: number;
|
83
|
-
total_tokens: number;
|
84
|
-
};
|
85
80
|
data: {
|
86
81
|
object: string;
|
87
82
|
embedding: number[];
|
88
83
|
index: number;
|
89
84
|
}[];
|
90
|
-
id: string;
|
91
|
-
}, {
|
92
|
-
object: string;
|
93
85
|
model: string;
|
94
86
|
usage: {
|
95
87
|
prompt_tokens: number;
|
96
88
|
total_tokens: number;
|
97
89
|
};
|
90
|
+
id: string;
|
91
|
+
}, {
|
92
|
+
object: string;
|
98
93
|
data: {
|
99
94
|
object: string;
|
100
95
|
embedding: number[];
|
101
96
|
index: number;
|
102
97
|
}[];
|
98
|
+
model: string;
|
99
|
+
usage: {
|
100
|
+
prompt_tokens: number;
|
101
|
+
total_tokens: number;
|
102
|
+
};
|
103
103
|
id: string;
|
104
104
|
}>;
|
105
105
|
export type MistralTextEmbeddingResponse = z.infer<typeof MistralTextEmbeddingResponseSchema>;
|
@@ -40,11 +40,11 @@ export declare class OllamaChatModel extends AbstractModel<OllamaChatModelSettin
|
|
40
40
|
get settingsForEvent(): Partial<OllamaChatModelSettings>;
|
41
41
|
doGenerateTexts(prompt: OllamaChatPrompt, options: FunctionCallOptions): Promise<{
|
42
42
|
rawResponse: {
|
43
|
-
model: string;
|
44
43
|
message: {
|
45
44
|
role: string;
|
46
45
|
content: string;
|
47
46
|
};
|
47
|
+
model: string;
|
48
48
|
done: true;
|
49
49
|
created_at: string;
|
50
50
|
total_duration: number;
|
@@ -61,11 +61,11 @@ export declare class OllamaChatModel extends AbstractModel<OllamaChatModelSettin
|
|
61
61
|
}>;
|
62
62
|
restoreGeneratedTexts(rawResponse: unknown): {
|
63
63
|
rawResponse: {
|
64
|
-
model: string;
|
65
64
|
message: {
|
66
65
|
role: string;
|
67
66
|
content: string;
|
68
67
|
};
|
68
|
+
model: string;
|
69
69
|
done: true;
|
70
70
|
created_at: string;
|
71
71
|
total_duration: number;
|
@@ -82,11 +82,11 @@ export declare class OllamaChatModel extends AbstractModel<OllamaChatModelSettin
|
|
82
82
|
};
|
83
83
|
private processTextGenerationResponse;
|
84
84
|
doStreamText(prompt: OllamaChatPrompt, options: FunctionCallOptions): Promise<AsyncIterable<import("../../index.js").Delta<{
|
85
|
-
model: string;
|
86
85
|
message: {
|
87
86
|
role: string;
|
88
87
|
content: string;
|
89
88
|
};
|
89
|
+
model: string;
|
90
90
|
done: false;
|
91
91
|
created_at: string;
|
92
92
|
} | {
|
@@ -141,11 +141,11 @@ declare const ollamaChatResponseSchema: z.ZodObject<{
|
|
141
141
|
eval_count: z.ZodNumber;
|
142
142
|
eval_duration: z.ZodNumber;
|
143
143
|
}, "strip", z.ZodTypeAny, {
|
144
|
-
model: string;
|
145
144
|
message: {
|
146
145
|
role: string;
|
147
146
|
content: string;
|
148
147
|
};
|
148
|
+
model: string;
|
149
149
|
done: true;
|
150
150
|
created_at: string;
|
151
151
|
total_duration: number;
|
@@ -155,11 +155,11 @@ declare const ollamaChatResponseSchema: z.ZodObject<{
|
|
155
155
|
prompt_eval_count?: number | undefined;
|
156
156
|
prompt_eval_duration?: number | undefined;
|
157
157
|
}, {
|
158
|
-
model: string;
|
159
158
|
message: {
|
160
159
|
role: string;
|
161
160
|
content: string;
|
162
161
|
};
|
162
|
+
model: string;
|
163
163
|
done: true;
|
164
164
|
created_at: string;
|
165
165
|
total_duration: number;
|
@@ -185,19 +185,19 @@ declare const ollamaChatStreamChunkSchema: z.ZodDiscriminatedUnion<"done", [z.Zo
|
|
185
185
|
content: string;
|
186
186
|
}>;
|
187
187
|
}, "strip", z.ZodTypeAny, {
|
188
|
-
model: string;
|
189
188
|
message: {
|
190
189
|
role: string;
|
191
190
|
content: string;
|
192
191
|
};
|
192
|
+
model: string;
|
193
193
|
done: false;
|
194
194
|
created_at: string;
|
195
195
|
}, {
|
196
|
-
model: string;
|
197
196
|
message: {
|
198
197
|
role: string;
|
199
198
|
content: string;
|
200
199
|
};
|
200
|
+
model: string;
|
201
201
|
done: false;
|
202
202
|
created_at: string;
|
203
203
|
}>, z.ZodObject<{
|
@@ -247,11 +247,11 @@ export declare const OllamaChatResponseFormat: {
|
|
247
247
|
requestBodyValues: unknown;
|
248
248
|
response: Response;
|
249
249
|
}) => Promise<{
|
250
|
-
model: string;
|
251
250
|
message: {
|
252
251
|
role: string;
|
253
252
|
content: string;
|
254
253
|
};
|
254
|
+
model: string;
|
255
255
|
done: true;
|
256
256
|
created_at: string;
|
257
257
|
total_duration: number;
|
@@ -271,11 +271,11 @@ export declare const OllamaChatResponseFormat: {
|
|
271
271
|
handler: ({ response }: {
|
272
272
|
response: Response;
|
273
273
|
}) => Promise<AsyncIterable<import("../../index.js").Delta<{
|
274
|
-
model: string;
|
275
274
|
message: {
|
276
275
|
role: string;
|
277
276
|
content: string;
|
278
277
|
};
|
278
|
+
model: string;
|
279
279
|
done: false;
|
280
280
|
created_at: string;
|
281
281
|
} | {
|
@@ -52,16 +52,16 @@ export declare class OpenAITextEmbeddingModel extends AbstractModel<OpenAITextEm
|
|
52
52
|
doEmbedValues(texts: string[], callOptions: FunctionCallOptions): Promise<{
|
53
53
|
rawResponse: {
|
54
54
|
object: "list";
|
55
|
-
model: string;
|
56
|
-
usage: {
|
57
|
-
prompt_tokens: number;
|
58
|
-
total_tokens: number;
|
59
|
-
};
|
60
55
|
data: {
|
61
56
|
object: "embedding";
|
62
57
|
embedding: number[];
|
63
58
|
index: number;
|
64
59
|
}[];
|
60
|
+
model: string;
|
61
|
+
usage: {
|
62
|
+
prompt_tokens: number;
|
63
|
+
total_tokens: number;
|
64
|
+
};
|
65
65
|
};
|
66
66
|
embeddings: number[][];
|
67
67
|
}>;
|
@@ -95,28 +95,28 @@ declare const openAITextEmbeddingResponseSchema: z.ZodObject<{
|
|
95
95
|
}>;
|
96
96
|
}, "strip", z.ZodTypeAny, {
|
97
97
|
object: "list";
|
98
|
-
model: string;
|
99
|
-
usage: {
|
100
|
-
prompt_tokens: number;
|
101
|
-
total_tokens: number;
|
102
|
-
};
|
103
98
|
data: {
|
104
99
|
object: "embedding";
|
105
100
|
embedding: number[];
|
106
101
|
index: number;
|
107
102
|
}[];
|
108
|
-
}, {
|
109
|
-
object: "list";
|
110
103
|
model: string;
|
111
104
|
usage: {
|
112
105
|
prompt_tokens: number;
|
113
106
|
total_tokens: number;
|
114
107
|
};
|
108
|
+
}, {
|
109
|
+
object: "list";
|
115
110
|
data: {
|
116
111
|
object: "embedding";
|
117
112
|
embedding: number[];
|
118
113
|
index: number;
|
119
114
|
}[];
|
115
|
+
model: string;
|
116
|
+
usage: {
|
117
|
+
prompt_tokens: number;
|
118
|
+
total_tokens: number;
|
119
|
+
};
|
120
120
|
}>;
|
121
121
|
export type OpenAITextEmbeddingResponse = z.infer<typeof openAITextEmbeddingResponseSchema>;
|
122
122
|
export {};
|
package/package.json
CHANGED
@@ -1,81 +0,0 @@
|
|
1
|
-
"use strict";
|
2
|
-
Object.defineProperty(exports, "__esModule", { value: true });
|
3
|
-
exports.SemanticClassifier = void 0;
|
4
|
-
const embed_js_1 = require("../model-function/embed/embed.cjs");
|
5
|
-
const cosineSimilarity_js_1 = require("../util/cosineSimilarity.cjs");
|
6
|
-
class SemanticClassifier {
|
7
|
-
constructor({ clusters, embeddingModel, similarityThreshold, }) {
|
8
|
-
Object.defineProperty(this, "clusters", {
|
9
|
-
enumerable: true,
|
10
|
-
configurable: true,
|
11
|
-
writable: true,
|
12
|
-
value: void 0
|
13
|
-
});
|
14
|
-
Object.defineProperty(this, "embeddingModel", {
|
15
|
-
enumerable: true,
|
16
|
-
configurable: true,
|
17
|
-
writable: true,
|
18
|
-
value: void 0
|
19
|
-
});
|
20
|
-
Object.defineProperty(this, "similarityThreshold", {
|
21
|
-
enumerable: true,
|
22
|
-
configurable: true,
|
23
|
-
writable: true,
|
24
|
-
value: void 0
|
25
|
-
});
|
26
|
-
Object.defineProperty(this, "embeddings", {
|
27
|
-
enumerable: true,
|
28
|
-
configurable: true,
|
29
|
-
writable: true,
|
30
|
-
value: void 0
|
31
|
-
});
|
32
|
-
this.clusters = clusters;
|
33
|
-
this.embeddingModel = embeddingModel;
|
34
|
-
this.similarityThreshold = similarityThreshold;
|
35
|
-
}
|
36
|
-
async getEmbeddings() {
|
37
|
-
if (this.embeddings != null) {
|
38
|
-
return this.embeddings;
|
39
|
-
}
|
40
|
-
const embeddings = [];
|
41
|
-
for (const cluster of this.clusters) {
|
42
|
-
const clusterEmbeddings = await (0, embed_js_1.embedMany)({
|
43
|
-
model: this.embeddingModel,
|
44
|
-
values: cluster.values,
|
45
|
-
});
|
46
|
-
for (let i = 0; i < clusterEmbeddings.length; i++) {
|
47
|
-
embeddings.push({
|
48
|
-
embedding: clusterEmbeddings[i],
|
49
|
-
clusterValue: cluster.values[i],
|
50
|
-
clusterName: cluster.name,
|
51
|
-
});
|
52
|
-
}
|
53
|
-
}
|
54
|
-
this.embeddings = embeddings; // lazy caching
|
55
|
-
return embeddings;
|
56
|
-
}
|
57
|
-
async classify(value) {
|
58
|
-
const valueEmbedding = await (0, embed_js_1.embed)({
|
59
|
-
model: this.embeddingModel,
|
60
|
-
value,
|
61
|
-
});
|
62
|
-
const clusterEmbeddings = await this.getEmbeddings();
|
63
|
-
const allMatches = [];
|
64
|
-
for (const embedding of clusterEmbeddings) {
|
65
|
-
const similarity = (0, cosineSimilarity_js_1.cosineSimilarity)(valueEmbedding, embedding.embedding);
|
66
|
-
if (similarity >= this.similarityThreshold) {
|
67
|
-
allMatches.push({
|
68
|
-
similarity,
|
69
|
-
clusterValue: embedding.clusterValue,
|
70
|
-
clusterName: embedding.clusterName,
|
71
|
-
});
|
72
|
-
}
|
73
|
-
}
|
74
|
-
// sort (highest similarity first)
|
75
|
-
allMatches.sort((a, b) => b.similarity - a.similarity);
|
76
|
-
return allMatches.length > 0
|
77
|
-
? allMatches[0].clusterName
|
78
|
-
: null;
|
79
|
-
}
|
80
|
-
}
|
81
|
-
exports.SemanticClassifier = SemanticClassifier;
|
@@ -1,25 +0,0 @@
|
|
1
|
-
import { Vector } from "../core/Vector.js";
|
2
|
-
import { EmbeddingModel } from "../model-function/embed/EmbeddingModel.js";
|
3
|
-
export interface SemanticCluster<VALUE, NAME extends string> {
|
4
|
-
name: NAME;
|
5
|
-
values: VALUE[];
|
6
|
-
}
|
7
|
-
export declare class SemanticClassifier<VALUE, CLUSTERS extends Array<SemanticCluster<VALUE, string>>> {
|
8
|
-
readonly clusters: CLUSTERS;
|
9
|
-
readonly embeddingModel: EmbeddingModel<VALUE>;
|
10
|
-
readonly similarityThreshold: number;
|
11
|
-
private embeddings;
|
12
|
-
constructor({ clusters, embeddingModel, similarityThreshold, }: {
|
13
|
-
clusters: CLUSTERS;
|
14
|
-
embeddingModel: EmbeddingModel<VALUE>;
|
15
|
-
similarityThreshold: number;
|
16
|
-
});
|
17
|
-
getEmbeddings(): Promise<{
|
18
|
-
embedding: Vector;
|
19
|
-
clusterValue: VALUE;
|
20
|
-
clusterName: string;
|
21
|
-
}[]>;
|
22
|
-
classify(value: VALUE): Promise<ClusterNames<CLUSTERS> | null>;
|
23
|
-
}
|
24
|
-
type ClusterNames<CLUSTERS> = CLUSTERS extends Array<SemanticCluster<unknown, infer NAME>> ? NAME : never;
|
25
|
-
export {};
|
@@ -1,77 +0,0 @@
|
|
1
|
-
import { embed, embedMany } from "../model-function/embed/embed.js";
|
2
|
-
import { cosineSimilarity } from "../util/cosineSimilarity.js";
|
3
|
-
export class SemanticClassifier {
|
4
|
-
constructor({ clusters, embeddingModel, similarityThreshold, }) {
|
5
|
-
Object.defineProperty(this, "clusters", {
|
6
|
-
enumerable: true,
|
7
|
-
configurable: true,
|
8
|
-
writable: true,
|
9
|
-
value: void 0
|
10
|
-
});
|
11
|
-
Object.defineProperty(this, "embeddingModel", {
|
12
|
-
enumerable: true,
|
13
|
-
configurable: true,
|
14
|
-
writable: true,
|
15
|
-
value: void 0
|
16
|
-
});
|
17
|
-
Object.defineProperty(this, "similarityThreshold", {
|
18
|
-
enumerable: true,
|
19
|
-
configurable: true,
|
20
|
-
writable: true,
|
21
|
-
value: void 0
|
22
|
-
});
|
23
|
-
Object.defineProperty(this, "embeddings", {
|
24
|
-
enumerable: true,
|
25
|
-
configurable: true,
|
26
|
-
writable: true,
|
27
|
-
value: void 0
|
28
|
-
});
|
29
|
-
this.clusters = clusters;
|
30
|
-
this.embeddingModel = embeddingModel;
|
31
|
-
this.similarityThreshold = similarityThreshold;
|
32
|
-
}
|
33
|
-
async getEmbeddings() {
|
34
|
-
if (this.embeddings != null) {
|
35
|
-
return this.embeddings;
|
36
|
-
}
|
37
|
-
const embeddings = [];
|
38
|
-
for (const cluster of this.clusters) {
|
39
|
-
const clusterEmbeddings = await embedMany({
|
40
|
-
model: this.embeddingModel,
|
41
|
-
values: cluster.values,
|
42
|
-
});
|
43
|
-
for (let i = 0; i < clusterEmbeddings.length; i++) {
|
44
|
-
embeddings.push({
|
45
|
-
embedding: clusterEmbeddings[i],
|
46
|
-
clusterValue: cluster.values[i],
|
47
|
-
clusterName: cluster.name,
|
48
|
-
});
|
49
|
-
}
|
50
|
-
}
|
51
|
-
this.embeddings = embeddings; // lazy caching
|
52
|
-
return embeddings;
|
53
|
-
}
|
54
|
-
async classify(value) {
|
55
|
-
const valueEmbedding = await embed({
|
56
|
-
model: this.embeddingModel,
|
57
|
-
value,
|
58
|
-
});
|
59
|
-
const clusterEmbeddings = await this.getEmbeddings();
|
60
|
-
const allMatches = [];
|
61
|
-
for (const embedding of clusterEmbeddings) {
|
62
|
-
const similarity = cosineSimilarity(valueEmbedding, embedding.embedding);
|
63
|
-
if (similarity >= this.similarityThreshold) {
|
64
|
-
allMatches.push({
|
65
|
-
similarity,
|
66
|
-
clusterValue: embedding.clusterValue,
|
67
|
-
clusterName: embedding.clusterName,
|
68
|
-
});
|
69
|
-
}
|
70
|
-
}
|
71
|
-
// sort (highest similarity first)
|
72
|
-
allMatches.sort((a, b) => b.similarity - a.similarity);
|
73
|
-
return allMatches.length > 0
|
74
|
-
? allMatches[0].clusterName
|
75
|
-
: null;
|
76
|
-
}
|
77
|
-
}
|
package/classifier/index.d.ts
DELETED
@@ -1 +0,0 @@
|
|
1
|
-
export * from "./SemanticClassifier.js";
|
package/classifier/index.js
DELETED
@@ -1 +0,0 @@
|
|
1
|
-
export * from "./SemanticClassifier.js";
|