min-heap-typed 2.0.5 → 2.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. package/dist/data-structures/base/iterable-element-base.d.ts +186 -83
  2. package/dist/data-structures/base/iterable-element-base.js +149 -107
  3. package/dist/data-structures/base/iterable-entry-base.d.ts +95 -119
  4. package/dist/data-structures/base/iterable-entry-base.js +59 -116
  5. package/dist/data-structures/base/linear-base.d.ts +250 -192
  6. package/dist/data-structures/base/linear-base.js +137 -274
  7. package/dist/data-structures/binary-tree/avl-tree-counter.d.ts +126 -158
  8. package/dist/data-structures/binary-tree/avl-tree-counter.js +171 -205
  9. package/dist/data-structures/binary-tree/avl-tree-multi-map.d.ts +100 -69
  10. package/dist/data-structures/binary-tree/avl-tree-multi-map.js +135 -87
  11. package/dist/data-structures/binary-tree/avl-tree.d.ts +138 -149
  12. package/dist/data-structures/binary-tree/avl-tree.js +208 -195
  13. package/dist/data-structures/binary-tree/binary-tree.d.ts +476 -632
  14. package/dist/data-structures/binary-tree/binary-tree.js +598 -869
  15. package/dist/data-structures/binary-tree/bst.d.ts +258 -306
  16. package/dist/data-structures/binary-tree/bst.js +505 -481
  17. package/dist/data-structures/binary-tree/red-black-tree.d.ts +107 -179
  18. package/dist/data-structures/binary-tree/red-black-tree.js +114 -209
  19. package/dist/data-structures/binary-tree/tree-counter.d.ts +132 -154
  20. package/dist/data-structures/binary-tree/tree-counter.js +172 -203
  21. package/dist/data-structures/binary-tree/tree-multi-map.d.ts +72 -69
  22. package/dist/data-structures/binary-tree/tree-multi-map.js +105 -85
  23. package/dist/data-structures/graph/abstract-graph.d.ts +238 -233
  24. package/dist/data-structures/graph/abstract-graph.js +267 -237
  25. package/dist/data-structures/graph/directed-graph.d.ts +108 -224
  26. package/dist/data-structures/graph/directed-graph.js +146 -233
  27. package/dist/data-structures/graph/map-graph.d.ts +49 -55
  28. package/dist/data-structures/graph/map-graph.js +56 -59
  29. package/dist/data-structures/graph/undirected-graph.d.ts +103 -146
  30. package/dist/data-structures/graph/undirected-graph.js +129 -149
  31. package/dist/data-structures/hash/hash-map.d.ts +164 -338
  32. package/dist/data-structures/hash/hash-map.js +270 -457
  33. package/dist/data-structures/heap/heap.d.ts +214 -289
  34. package/dist/data-structures/heap/heap.js +340 -349
  35. package/dist/data-structures/heap/max-heap.d.ts +11 -47
  36. package/dist/data-structures/heap/max-heap.js +11 -66
  37. package/dist/data-structures/heap/min-heap.d.ts +12 -47
  38. package/dist/data-structures/heap/min-heap.js +11 -66
  39. package/dist/data-structures/linked-list/doubly-linked-list.d.ts +231 -347
  40. package/dist/data-structures/linked-list/doubly-linked-list.js +368 -494
  41. package/dist/data-structures/linked-list/singly-linked-list.d.ts +261 -310
  42. package/dist/data-structures/linked-list/singly-linked-list.js +447 -466
  43. package/dist/data-structures/linked-list/skip-linked-list.d.ts +0 -107
  44. package/dist/data-structures/linked-list/skip-linked-list.js +0 -100
  45. package/dist/data-structures/priority-queue/max-priority-queue.d.ts +12 -56
  46. package/dist/data-structures/priority-queue/max-priority-queue.js +11 -78
  47. package/dist/data-structures/priority-queue/min-priority-queue.d.ts +11 -57
  48. package/dist/data-structures/priority-queue/min-priority-queue.js +10 -79
  49. package/dist/data-structures/priority-queue/priority-queue.d.ts +2 -61
  50. package/dist/data-structures/priority-queue/priority-queue.js +8 -83
  51. package/dist/data-structures/queue/deque.d.ts +227 -254
  52. package/dist/data-structures/queue/deque.js +309 -348
  53. package/dist/data-structures/queue/queue.d.ts +180 -201
  54. package/dist/data-structures/queue/queue.js +265 -248
  55. package/dist/data-structures/stack/stack.d.ts +124 -102
  56. package/dist/data-structures/stack/stack.js +181 -125
  57. package/dist/data-structures/trie/trie.d.ts +164 -165
  58. package/dist/data-structures/trie/trie.js +189 -172
  59. package/dist/interfaces/binary-tree.d.ts +56 -6
  60. package/dist/interfaces/graph.d.ts +16 -0
  61. package/dist/types/data-structures/base/base.d.ts +1 -1
  62. package/dist/types/data-structures/graph/abstract-graph.d.ts +4 -0
  63. package/dist/types/utils/utils.d.ts +1 -0
  64. package/dist/utils/utils.d.ts +1 -1
  65. package/dist/utils/utils.js +2 -1
  66. package/package.json +2 -2
  67. package/src/data-structures/base/iterable-element-base.ts +238 -115
  68. package/src/data-structures/base/iterable-entry-base.ts +96 -120
  69. package/src/data-structures/base/linear-base.ts +271 -277
  70. package/src/data-structures/binary-tree/avl-tree-counter.ts +198 -216
  71. package/src/data-structures/binary-tree/avl-tree-multi-map.ts +192 -101
  72. package/src/data-structures/binary-tree/avl-tree.ts +239 -206
  73. package/src/data-structures/binary-tree/binary-tree.ts +664 -893
  74. package/src/data-structures/binary-tree/bst.ts +568 -570
  75. package/src/data-structures/binary-tree/red-black-tree.ts +161 -222
  76. package/src/data-structures/binary-tree/tree-counter.ts +199 -218
  77. package/src/data-structures/binary-tree/tree-multi-map.ts +131 -97
  78. package/src/data-structures/graph/abstract-graph.ts +339 -264
  79. package/src/data-structures/graph/directed-graph.ts +146 -236
  80. package/src/data-structures/graph/map-graph.ts +63 -60
  81. package/src/data-structures/graph/undirected-graph.ts +129 -152
  82. package/src/data-structures/hash/hash-map.ts +274 -496
  83. package/src/data-structures/heap/heap.ts +389 -402
  84. package/src/data-structures/heap/max-heap.ts +12 -76
  85. package/src/data-structures/heap/min-heap.ts +13 -76
  86. package/src/data-structures/linked-list/doubly-linked-list.ts +426 -530
  87. package/src/data-structures/linked-list/singly-linked-list.ts +495 -517
  88. package/src/data-structures/linked-list/skip-linked-list.ts +1 -108
  89. package/src/data-structures/priority-queue/max-priority-queue.ts +12 -87
  90. package/src/data-structures/priority-queue/min-priority-queue.ts +11 -88
  91. package/src/data-structures/priority-queue/priority-queue.ts +3 -92
  92. package/src/data-structures/queue/deque.ts +381 -357
  93. package/src/data-structures/queue/queue.ts +310 -264
  94. package/src/data-structures/stack/stack.ts +217 -131
  95. package/src/data-structures/trie/trie.ts +240 -175
  96. package/src/interfaces/binary-tree.ts +240 -6
  97. package/src/interfaces/graph.ts +37 -0
  98. package/src/types/data-structures/base/base.ts +5 -5
  99. package/src/types/data-structures/graph/abstract-graph.ts +5 -0
  100. package/src/types/utils/utils.ts +2 -0
  101. package/src/utils/utils.ts +9 -14
@@ -5,7 +5,8 @@
5
5
  * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com>
6
6
  * @license MIT License
7
7
  */
8
- import type { DijkstraResult, EntryCallback, VertexKey } from '../../types';
8
+
9
+ import type { DijkstraResult, EntryCallback, GraphOptions, VertexKey } from '../../types';
9
10
  import { uuidV4 } from '../../utils';
10
11
  import { IterableEntryBase } from '../base';
11
12
  import { IGraph } from '../../interfaces';
@@ -16,13 +17,6 @@ export abstract class AbstractVertex<V = any> {
16
17
  key: VertexKey;
17
18
  value: V | undefined;
18
19
 
19
- /**
20
- * The function is a protected constructor that takes an key and an optional value as parameters.
21
- * @param {VertexKey} key - The `key` parameter is of type `VertexKey` and represents the identifier of the vertex. It is
22
- * used to uniquely identify the vertex object.
23
- * @param {V} [value] - The parameter "value" is an optional parameter of type V. It is used to assign a value to the
24
- * vertex. If no value is provided, it will be set to undefined.
25
- */
26
20
  protected constructor(key: VertexKey, value?: V) {
27
21
  this.key = key;
28
22
  this.value = value;
@@ -33,15 +27,6 @@ export abstract class AbstractEdge<E = any> {
33
27
  value: E | undefined;
34
28
  weight: number;
35
29
 
36
- /**
37
- * The above function is a protected constructor that initializes the weight, value, and hash code properties of an
38
- * object.
39
- * @param {number} [weight] - The `weight` parameter is an optional number that represents the weight of the object. If
40
- * a value is provided, it will be assigned to the `_weight` property. If no value is provided, the default value of 1
41
- * will be assigned.
42
- * @param {VO} [value] - The `value` parameter is of type `VO`, which means it can be any type. It is an optional parameter,
43
- * meaning it can be omitted when creating an instance of the class.
44
- */
45
30
  protected constructor(weight?: number, value?: E) {
46
31
  this.weight = weight !== undefined ? weight : 1;
47
32
  this.value = value;
@@ -53,13 +38,17 @@ export abstract class AbstractEdge<E = any> {
53
38
  get hashCode(): string {
54
39
  return this._hashCode;
55
40
  }
56
-
57
- /**
58
- * In TypeScript, a subclass inherits the interface implementation of its parent class, without needing to implement the same interface again in the subclass. This behavior differs from Java's approach. In Java, if a parent class implements an interface, the subclass needs to explicitly implement the same interface, even if the parent class has already implemented it.
59
- * This means that using abstract methods in the parent class cannot constrain the grandchild classes. Defining methods within an interface also cannot constrain the descendant classes. When inheriting from this class, developers need to be aware that this method needs to be overridden.
60
- */
61
41
  }
62
42
 
43
+ /**
44
+ * Abstract graph over vertices and edges.
45
+ * @template V - Vertex value type.
46
+ * @template E - Edge value type.
47
+ * @template VO - Concrete vertex subclass (extends AbstractVertex<V>).
48
+ * @template EO - Concrete edge subclass (extends AbstractEdge<E>).
49
+ * @remarks Time O(1), Space O(1)
50
+ * @example examples will be generated by unit test
51
+ */
63
52
  export abstract class AbstractGraph<
64
53
  V = any,
65
54
  E = any,
@@ -69,8 +58,21 @@ export abstract class AbstractGraph<
69
58
  extends IterableEntryBase<VertexKey, V | undefined>
70
59
  implements IGraph<V, E, VO, EO>
71
60
  {
72
- constructor() {
61
+ /**
62
+ * Construct a graph with runtime defaults.
63
+ * @param options - `GraphOptions<V>` in `options.graph` (e.g. `vertexValueInitializer`, `defaultEdgeWeight`).
64
+ * @remarks Time O(1), Space O(1)
65
+ */
66
+ constructor(options?: Partial<Record<string, unknown>>) {
73
67
  super();
68
+ const graph = (options as any)?.graph as GraphOptions<V> | undefined;
69
+ this._options = { defaultEdgeWeight: 1, ...(graph ?? {}) };
70
+ }
71
+
72
+ protected _options: GraphOptions<V> = { defaultEdgeWeight: 1 };
73
+
74
+ get options(): Readonly<GraphOptions<V>> {
75
+ return this._options;
74
76
  }
75
77
 
76
78
  protected _vertexMap: Map<VertexKey, VO> = new Map<VertexKey, VO>();
@@ -88,59 +90,96 @@ export abstract class AbstractGraph<
88
90
  }
89
91
 
90
92
  /**
91
- * In TypeScript, a subclass inherits the interface implementation of its parent class, without needing to implement the same interface again in the subclass. This behavior differs from Java's approach. In Java, if a parent class implements an interface, the subclass needs to explicitly implement the same interface, even if the parent class has already implemented it.
92
- * This means that using abstract methods in the parent class cannot constrain the grandchild classes. Defining methods within an interface also cannot constrain the descendant classes. When inheriting from this class, developers need to be aware that this method needs to be overridden.
93
- * @param key
94
- * @param value
93
+ * Create a new vertex instance (implementation specific).
94
+ * @param key - Vertex identifier.
95
+ * @param value - Optional payload.
96
+ * @returns Concrete vertex instance.
97
+ * @remarks Time O(1), Space O(1)
95
98
  */
96
99
  abstract createVertex(key: VertexKey, value?: V): VO;
97
100
 
98
101
  /**
99
- * In TypeScript, a subclass inherits the interface implementation of its parent class, without needing to implement the same interface again in the subclass. This behavior differs from Java's approach. In Java, if a parent class implements an interface, the subclass needs to explicitly implement the same interface, even if the parent class has already implemented it.
100
- * This means that using abstract methods in the parent class cannot constrain the grandchild classes. Defining methods within an interface also cannot constrain the descendant classes. When inheriting from this class, developers need to be aware that this method needs to be overridden.
101
- * @param srcOrV1
102
- * @param destOrV2
103
- * @param weight
104
- * @param value
102
+ * Create a new edge instance (implementation specific).
103
+ * @param srcOrV1 - Source/endpoint A key.
104
+ * @param destOrV2 - Destination/endpoint B key.
105
+ * @param weight - Edge weight (defaults may apply).
106
+ * @param value - Edge payload.
107
+ * @returns Concrete edge instance.
108
+ * @remarks Time O(1), Space O(1)
105
109
  */
106
110
  abstract createEdge(srcOrV1: VertexKey, destOrV2: VertexKey, weight?: number, value?: E): EO;
107
111
 
112
+ /**
113
+ * Delete an edge by instance.
114
+ * @param edge - Edge instance.
115
+ * @returns Removed edge or `undefined`.
116
+ * @remarks Time O(1) avg, Space O(1)
117
+ */
108
118
  abstract deleteEdge(edge: EO): EO | undefined;
109
119
 
120
+ /**
121
+ * Get an edge between two vertices if present.
122
+ * @param srcOrKey - Source/endpoint A vertex or key.
123
+ * @param destOrKey - Destination/endpoint B vertex or key.
124
+ * @returns Edge instance or `undefined`.
125
+ * @remarks Time O(1) avg, Space O(1)
126
+ */
110
127
  abstract getEdge(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | undefined;
111
128
 
129
+ /**
130
+ * Degree of a vertex in this graph model.
131
+ * @param vertexOrKey - Vertex or key.
132
+ * @returns Non-negative integer degree.
133
+ * @remarks Time O(1) avg, Space O(1)
134
+ */
112
135
  abstract degreeOf(vertexOrKey: VO | VertexKey): number;
113
136
 
137
+ /**
138
+ * All edges in the graph (unique, order not guaranteed).
139
+ * @returns Array of edges.
140
+ * @remarks Time O(E), Space O(E)
141
+ */
114
142
  abstract edgeSet(): EO[];
115
143
 
144
+ /**
145
+ * Incident edges of a vertex.
146
+ * @param vertexOrKey - Vertex or key.
147
+ * @returns Array of incident edges.
148
+ * @remarks Time O(deg), Space O(deg)
149
+ */
116
150
  abstract edgesOf(vertexOrKey: VO | VertexKey): EO[];
117
151
 
152
+ /**
153
+ * One-step neighbors of a vertex.
154
+ * @param vertexOrKey - Vertex or key.
155
+ * @returns Array of neighbor vertices.
156
+ * @remarks Time O(deg), Space O(deg)
157
+ */
118
158
  abstract getNeighbors(vertexOrKey: VO | VertexKey): VO[];
119
159
 
160
+ /**
161
+ * Resolve endpoints of an edge to vertex instances.
162
+ * @param edge - Edge instance.
163
+ * @returns `[v1, v2]` or `undefined` if missing.
164
+ * @remarks Time O(1), Space O(1)
165
+ */
120
166
  abstract getEndsOfEdge(edge: EO): [VO, VO] | undefined;
121
167
 
122
168
  /**
123
- * Time Complexity: O(1) - Constant time for Map lookup.
124
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
125
- *
126
- * The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
127
- * @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
128
- * the `_vertexMap` map.
129
- * @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertexMap`
130
- * map. If the vertex does not exist, it returns `undefined`.
169
+ * Get vertex instance by key.
170
+ * @param vertexKey - Vertex key.
171
+ * @returns Vertex instance or `undefined`.
172
+ * @remarks Time O(1), Space O(1)
131
173
  */
132
174
  getVertex(vertexKey: VertexKey): VO | undefined {
133
175
  return this._vertexMap.get(vertexKey) || undefined;
134
176
  }
135
177
 
136
178
  /**
137
- * Time Complexity: O(1) - Constant time for Map lookup.
138
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
139
- *
140
- * The function checks if a vertex exists in a graph.
141
- * @param {VO | VertexKey} vertexOrKey - The parameter `vertexOrKey` can be either a vertex object (`VO`) or a vertex ID
142
- * (`VertexKey`).
143
- * @returns a boolean value.
179
+ * Whether a vertex exists.
180
+ * @param vertexOrKey - Vertex or key.
181
+ * @returns `true` if present, otherwise `false`.
182
+ * @remarks Time O(1) avg, Space O(1)
144
183
  */
145
184
  hasVertex(vertexOrKey: VO | VertexKey): boolean {
146
185
  return this._vertexMap.has(this._getVertexKey(vertexOrKey));
@@ -151,10 +190,12 @@ export abstract class AbstractGraph<
151
190
  addVertex(key: VertexKey, value?: V): boolean;
152
191
 
153
192
  /**
154
- * Time Complexity: O(1) - Constant time for Map operations.
155
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
193
+ * Add a vertex by key/value or by pre-built vertex.
194
+ * @param keyOrVertex - Vertex key or existing vertex instance.
195
+ * @param value - Optional payload.
196
+ * @returns `true` if inserted; `false` when key already exists.
197
+ * @remarks Time O(1) avg, Space O(1)
156
198
  */
157
-
158
199
  addVertex(keyOrVertex: VertexKey | VO, value?: V): boolean {
159
200
  if (keyOrVertex instanceof AbstractVertex) {
160
201
  return this._addVertex(keyOrVertex);
@@ -164,27 +205,30 @@ export abstract class AbstractGraph<
164
205
  }
165
206
  }
166
207
 
208
+ /**
209
+ * Type guard: check if a value is a valid vertex key.
210
+ * @param potentialKey - Value to test.
211
+ * @returns `true` if string/number; else `false`.
212
+ * @remarks Time O(1), Space O(1)
213
+ */
167
214
  isVertexKey(potentialKey: any): potentialKey is VertexKey {
168
215
  const potentialKeyType = typeof potentialKey;
169
216
  return potentialKeyType === 'string' || potentialKeyType === 'number';
170
217
  }
171
218
 
172
219
  /**
173
- * Time Complexity: O(1) - Constant time for Map operations.
174
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
220
+ * Delete a vertex and its incident edges.
221
+ * @param vertexOrKey - Vertex or key.
222
+ * @returns `true` if removed; otherwise `false`.
223
+ * @remarks Time O(deg), Space O(1)
175
224
  */
176
-
177
225
  abstract deleteVertex(vertexOrKey: VO | VertexKey): boolean;
178
226
 
179
227
  /**
180
- * Time Complexity: O(K), where K is the number of vertexMap to be removed.
181
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
182
- *
183
- * The function removes all vertexMap from a graph and returns a boolean indicating if any vertexMap were removed.
184
- * @param {VO[] | VertexKey[]} vertexMap - The `vertexMap` parameter can be either an array of vertexMap (`VO[]`) or an array
185
- * of vertex IDs (`VertexKey[]`).
186
- * @returns a boolean value. It returns true if at least one vertex was successfully removed, and false if no vertexMap
187
- * were removed.
228
+ * Delete multiple vertices.
229
+ * @param vertexMap - Array of vertices or keys.
230
+ * @returns `true` if any vertex was removed.
231
+ * @remarks Time O(sum(deg)), Space O(1)
188
232
  */
189
233
  removeManyVertices(vertexMap: VO[] | VertexKey[]): boolean {
190
234
  const removed: boolean[] = [];
@@ -195,15 +239,11 @@ export abstract class AbstractGraph<
195
239
  }
196
240
 
197
241
  /**
198
- * Time Complexity: O(1) - Depends on the implementation in the concrete class.
199
- * Space Complexity: O(1) - Depends on the implementation in the concrete class.
200
- *
201
- * The function checks if there is an edge between two vertexMap and returns a boolean value indicating the result.
202
- * @param {VertexKey | VO} v1 - The parameter v1 can be either a VertexKey or a VO. A VertexKey represents the unique
203
- * identifier of a vertex in a graph, while VO represents the type of the vertex object itself.
204
- * @param {VertexKey | VO} v2 - The parameter `v2` represents the second vertex in the edge. It can be either a
205
- * `VertexKey` or a `VO` type, which represents the type of the vertex.
206
- * @returns A boolean value is being returned.
242
+ * Whether an edge exists between two vertices.
243
+ * @param v1 - Endpoint A vertex or key.
244
+ * @param v2 - Endpoint B vertex or key.
245
+ * @returns `true` if present; otherwise `false`.
246
+ * @remarks Time O(1) avg, Space O(1)
207
247
  */
208
248
  hasEdge(v1: VertexKey | VO, v2: VertexKey | VO): boolean {
209
249
  const edge = this.getEdge(v1, v2);
@@ -215,10 +255,14 @@ export abstract class AbstractGraph<
215
255
  addEdge(src: VO | VertexKey, dest: VO | VertexKey, weight?: number, value?: E): boolean;
216
256
 
217
257
  /**
218
- * Time Complexity: O(1) - Depends on the implementation in the concrete class.
219
- * Space Complexity: O(1) - Depends on the implementation in the concrete class.
258
+ * Add an edge by instance or by `(src, dest, weight?, value?)`.
259
+ * @param srcOrEdge - Edge instance or source vertex/key.
260
+ * @param dest - Destination vertex/key (when adding by pair).
261
+ * @param weight - Edge weight.
262
+ * @param value - Edge payload.
263
+ * @returns `true` if inserted; otherwise `false`.
264
+ * @remarks Time O(1) avg, Space O(1)
220
265
  */
221
-
222
266
  addEdge(srcOrEdge: VO | VertexKey | EO, dest?: VO | VertexKey, weight?: number, value?: E): boolean {
223
267
  if (srcOrEdge instanceof AbstractEdge) {
224
268
  return this._addEdge(srcOrEdge);
@@ -236,18 +280,12 @@ export abstract class AbstractGraph<
236
280
  }
237
281
 
238
282
  /**
239
- * Time Complexity: O(1) - Constant time for Map and Edge operations.
240
- * Space Complexity: O(1) - Constant space, as it creates only a few variables.
241
- *
242
- * The function sets the weight of an edge between two vertexMap in a graph.
243
- * @param {VertexKey | VO} srcOrKey - The `srcOrKey` parameter can be either a `VertexKey` or a `VO` object. It represents
244
- * the source vertex of the edge.
245
- * @param {VertexKey | VO} destOrKey - The `destOrKey` parameter represents the destination vertex of the edge. It can be
246
- * either a `VertexKey` or a vertex object `VO`.
247
- * @param {number} weight - The weight parameter represents the weight of the edge between the source vertex (srcOrKey)
248
- * and the destination vertex (destOrKey).
249
- * @returns a boolean value. If the edge exists between the source and destination vertexMap, the function will update
250
- * the weight of the edge and return true. If the edge does not exist, the function will return false.
283
+ * Set the weight of an existing edge.
284
+ * @param srcOrKey - Source vertex or key.
285
+ * @param destOrKey - Destination vertex or key.
286
+ * @param weight - New weight.
287
+ * @returns `true` if updated; otherwise `false`.
288
+ * @remarks Time O(1) avg, Space O(1)
251
289
  */
252
290
  setEdgeWeight(srcOrKey: VertexKey | VO, destOrKey: VertexKey | VO, weight: number): boolean {
253
291
  const edge = this.getEdge(srcOrKey, destOrKey);
@@ -260,15 +298,12 @@ export abstract class AbstractGraph<
260
298
  }
261
299
 
262
300
  /**
263
- * Time Complexity: O(P), where P is the number of paths found (in the worst case, exploring all paths).
264
- * Space Complexity: O(P) - Linear space, where P is the number of paths found.
265
- *
266
- * The function `getAllPathsBetween` finds all paths between two vertexMap in a graph using depth-first search.
267
- * @param {VO | VertexKey} v1 - The parameter `v1` represents either a vertex object (`VO`) or a vertex ID (`VertexKey`).
268
- * It is the starting vertex for finding paths.
269
- * @param {VO | VertexKey} v2 - The parameter `v2` represents either a vertex object (`VO`) or a vertex ID (`VertexKey`).
270
- * @param limit - The count of limitation of result array.
271
- * @returns The function `getAllPathsBetween` returns an array of arrays of vertexMap (`VO[][]`).
301
+ * Enumerate simple paths up to a limit.
302
+ * @param v1 - Source vertex or key.
303
+ * @param v2 - Destination vertex or key.
304
+ * @param limit - Maximum number of paths to collect.
305
+ * @returns Array of paths (each path is an array of vertices).
306
+ * @remarks Time O(paths) worst-case exponential, Space O(V + paths)
272
307
  */
273
308
  getAllPathsBetween(v1: VO | VertexKey, v2: VO | VertexKey, limit = 1000): VO[][] {
274
309
  const paths: VO[][] = [];
@@ -302,12 +337,10 @@ export abstract class AbstractGraph<
302
337
  }
303
338
 
304
339
  /**
305
- * Time Complexity: O(L), where L is the length of the path.
306
- * Space Complexity: O(1) - Constant space.
307
- *
308
- * The function calculates the sum of weights along a given path.
309
- * @param {VO[]} path - An array of vertexMap (VO) representing a path in a graph.
310
- * @returns The function `getPathSumWeight` returns the sum of the weights of the edgeMap in the given path.
340
+ * Sum the weights along a vertex path.
341
+ * @param path - Sequence of vertices.
342
+ * @returns Path weight sum (0 if empty or edge missing).
343
+ * @remarks Time O(L), Space O(1) where L is path length
311
344
  */
312
345
  getPathSumWeight(path: VO[]): number {
313
346
  let sum = 0;
@@ -318,21 +351,12 @@ export abstract class AbstractGraph<
318
351
  }
319
352
 
320
353
  /**
321
- * Time Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm).
322
- * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm).
323
- *
324
- * The function `getMinCostBetween` calculates the minimum cost between two vertexMap in a graph, either based on edge
325
- * weights or using a breadth-first search algorithm.
326
- * @param {VO | VertexKey} v1 - The parameter `v1` represents the starting vertex or its ID.
327
- * @param {VO | VertexKey} v2 - The parameter `v2` represents the destination vertex or its ID. It is the vertex to which
328
- * you want to find the minimum cost or weight from the source vertex `v1`.
329
- * @param {boolean} [isWeight] - isWeight is an optional parameter that indicates whether the graph edgeMap have weights.
330
- * If isWeight is set to true, the function will calculate the minimum cost between v1 and v2 based on the weights of
331
- * the edgeMap. If isWeight is set to false or not provided, the function will calculate the
332
- * @returns The function `getMinCostBetween` returns a number representing the minimum cost between two vertexMap (`v1`
333
- * and `v2`). If the `isWeight` parameter is `true`, it calculates the minimum weight among all paths between the
334
- * vertexMap. If `isWeight` is `false` or not provided, it uses a breadth-first search (BFS) algorithm to calculate the
335
- * minimum number of
354
+ * Minimum hops/weight between two vertices.
355
+ * @param v1 - Source vertex or key.
356
+ * @param v2 - Destination vertex or key.
357
+ * @param isWeight - If `true`, compare by path weight; otherwise by hop count.
358
+ * @returns Minimum cost or `undefined` if missing/unreachable.
359
+ * @remarks Time O((V + E) log V) weighted / O(V + E) unweighted, Space O(V + E)
336
360
  */
337
361
  getMinCostBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean): number | undefined {
338
362
  if (isWeight === undefined) isWeight = false;
@@ -345,7 +369,6 @@ export abstract class AbstractGraph<
345
369
  }
346
370
  return min;
347
371
  } else {
348
- // BFS
349
372
  const vertex2 = this._getVertex(v2);
350
373
  const vertex1 = this._getVertex(v1);
351
374
  if (!(vertex1 && vertex2)) {
@@ -357,12 +380,12 @@ export abstract class AbstractGraph<
357
380
  visited.set(vertex1, true);
358
381
  let cost = 0;
359
382
  while (queue.length > 0) {
360
- for (let i = 0; i < queue.length; i++) {
383
+ for (let i = 0, layerSize = queue.length; i < layerSize; i++) {
361
384
  const cur = queue.shift();
362
385
  if (cur === vertex2) {
363
386
  return cost;
364
387
  }
365
- // TODO consider optimizing to AbstractGraph
388
+
366
389
  if (cur !== undefined) {
367
390
  const neighbors = this.getNeighbors(cur);
368
391
  for (const neighbor of neighbors) {
@@ -380,23 +403,13 @@ export abstract class AbstractGraph<
380
403
  }
381
404
 
382
405
  /**
383
- * Time Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
384
- * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
385
- *
386
- * The function `getMinPathBetween` returns the minimum path between two vertexMap in a graph, either based on weight or
387
- * using a breadth-first search algorithm.
388
- * @param {VO | VertexKey} v1 - The parameter `v1` represents the starting vertex of the path. It can be either a vertex
389
- * object (`VO`) or a vertex ID (`VertexKey`).
390
- * @param {VO | VertexKey} v2 - VO | VertexKey - The second vertex or vertex ID between which we want to find the minimum
391
- * path.
392
- * @param {boolean} [isWeight] - A boolean flag indicating whether to consider the weight of edgeMap in finding the
393
- * minimum path. If set to true, the function will use Dijkstra's algorithm to find the minimum weighted path. If set
394
- * to false, the function will use breadth-first search (BFS) to find the minimum path.
395
- * @param isDFS - If set to true, it enforces the use of getAllPathsBetween to first obtain all possible paths,
396
- * followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
397
- * so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
398
- * @returns The function `getMinPathBetween` returns an array of vertexMap (`VO[]`) representing the minimum path between
399
- * two vertexMap (`v1` and `v2`). If there is no path between the vertexMap, it returns `undefined`.
406
+ * Minimum path (as vertex sequence) between two vertices.
407
+ * @param v1 - Source vertex or key.
408
+ * @param v2 - Destination vertex or key.
409
+ * @param isWeight - If `true`, compare by path weight; otherwise by hop count.
410
+ * @param isDFS - For weighted mode only: if `true`, brute-force all paths; if `false`, use Dijkstra.
411
+ * @returns Vertex sequence, or `undefined`/empty when unreachable depending on branch.
412
+ * @remarks Time O((V + E) log V) weighted / O(V + E) unweighted, Space O(V + E)
400
413
  */
401
414
  getMinPathBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean, isDFS = false): VO[] | undefined {
402
415
  if (isWeight === undefined) isWeight = false;
@@ -417,10 +430,18 @@ export abstract class AbstractGraph<
417
430
  }
418
431
  return allPaths[minIndex] || undefined;
419
432
  } else {
433
+ /**
434
+ * Dijkstra (binary-heap) shortest paths for non-negative weights.
435
+ * @param src - Source vertex or key.
436
+ * @param dest - Optional destination for early stop.
437
+ * @param getMinDist - If `true`, compute global minimum distance.
438
+ * @param genPaths - If `true`, also generate path arrays.
439
+ * @returns Result bag or `undefined` if source missing.
440
+ * @remarks Time O((V + E) log V), Space O(V + E)
441
+ */
420
442
  return this.dijkstra(v1, v2, true, true)?.minPath ?? [];
421
443
  }
422
444
  } else {
423
- // DFS
424
445
  let minPath: VO[] = [];
425
446
  const vertex1 = this._getVertex(v1);
426
447
  const vertex2 = this._getVertex(v2);
@@ -451,30 +472,20 @@ export abstract class AbstractGraph<
451
472
  }
452
473
 
453
474
  /**
454
- * Time Complexity: O(V^2 + E) - Quadratic time in the worst case (no heap optimization).
455
- * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm).
456
- *
457
- * The function `dijkstraWithoutHeap` implements Dijkstra's algorithm to find the shortest path between two vertexMap in
458
- * a graph without using a heap data structure.
459
- * @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
460
- * vertex object or a vertex ID.
461
- * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
462
- * parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
463
- * identifier. If no destination is provided, the value is set to `undefined`.
464
- * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
465
- * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
466
- * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
467
- * @param {boolean} [genPaths] - The `genPaths` parameter is a boolean flag that determines whether or not to generate
468
- * paths in the Dijkstra algorithm. If `genPaths` is set to `true`, the algorithm will calculate and return the
469
- * shortest paths from the source vertex to all other vertexMap in the graph. If `genPaths
470
- * @returns The function `dijkstraWithoutHeap` returns an object of type `DijkstraResult<VO>`.
475
+ * Dijkstra without heap (array-based selection).
476
+ * @param src - Source vertex or key.
477
+ * @param dest - Optional destination for early stop.
478
+ * @param getMinDist - If `true`, compute global minimum distance.
479
+ * @param genPaths - If `true`, also generate path arrays.
480
+ * @returns Result bag or `undefined` if source missing.
481
+ * @remarks Time O(V^2 + E), Space O(V + E)
471
482
  */
472
483
  dijkstraWithoutHeap(
473
484
  src: VO | VertexKey,
474
485
  dest: VO | VertexKey | undefined = undefined,
475
486
  getMinDist: boolean = false,
476
487
  genPaths: boolean = false
477
- ): DijkstraResult<VO> {
488
+ ): DijkstraResult<VO> | undefined {
478
489
  let minDist = Number.MAX_SAFE_INTEGER;
479
490
  let minDest: VO | undefined = undefined;
480
491
  let minPath: VO[] = [];
@@ -483,7 +494,7 @@ export abstract class AbstractGraph<
483
494
  const vertexMap = this._vertexMap;
484
495
  const distMap: Map<VO, number> = new Map();
485
496
  const seen: Set<VO> = new Set();
486
- const preMap: Map<VO, VO | undefined> = new Map(); // predecessor
497
+ const preMap: Map<VO, VO | undefined> = new Map();
487
498
  const srcVertex = this._getVertex(src);
488
499
 
489
500
  const destVertex = dest ? this._getVertex(dest) : undefined;
@@ -551,7 +562,7 @@ export abstract class AbstractGraph<
551
562
  if (edge) {
552
563
  const curFromMap = distMap.get(cur);
553
564
  const neighborFromMap = distMap.get(neighbor);
554
- // TODO after no-non-undefined-assertion not ensure the logic
565
+
555
566
  if (curFromMap !== undefined && neighborFromMap !== undefined) {
556
567
  if (edge.weight + curFromMap < neighborFromMap) {
557
568
  distMap.set(neighbor, edge.weight + curFromMap);
@@ -579,32 +590,12 @@ export abstract class AbstractGraph<
579
590
  return { distMap, preMap, seen, paths, minDist, minPath };
580
591
  }
581
592
 
582
- /**
583
- * Time Complexity: O((V + E) * log(V)) - Depends on the implementation (using a binary heap).
584
- * Space Complexity: O(V + E) - Depends on the implementation (using a binary heap).
585
- *
586
- * Dijkstra's algorithm is used to find the shortest paths from a source node to all other nodes in a graph. Its basic idea is to repeatedly choose the node closest to the source node and update the distances of other nodes using this node as an intermediary. Dijkstra's algorithm requires that the edge weights in the graph are non-negative.
587
- * The `dijkstra` function implements Dijkstra's algorithm to find the shortest path between a source vertex and an
588
- * optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
589
- * @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
590
- * start. It can be either a vertex object or a vertex ID.
591
- * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
592
- * vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
593
- * will calculate the shortest paths to all other vertexMap from the source vertex.
594
- * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
595
- * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
596
- * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
597
- * @param {boolean} [genPaths] - The `genPaths` parameter is a boolean flag that determines whether or not to generate
598
- * paths in the Dijkstra algorithm. If `genPaths` is set to `true`, the algorithm will calculate and return the
599
- * shortest paths from the source vertex to all other vertexMap in the graph. If `genPaths
600
- * @returns The function `dijkstra` returns an object of type `DijkstraResult<VO>`.
601
- */
602
593
  dijkstra(
603
594
  src: VO | VertexKey,
604
595
  dest: VO | VertexKey | undefined = undefined,
605
596
  getMinDist: boolean = false,
606
597
  genPaths: boolean = false
607
- ): DijkstraResult<VO> {
598
+ ): DijkstraResult<VO> | undefined {
608
599
  let minDist = Number.MAX_SAFE_INTEGER;
609
600
  let minDest: VO | undefined = undefined;
610
601
  let minPath: VO[] = [];
@@ -612,7 +603,7 @@ export abstract class AbstractGraph<
612
603
  const vertexMap = this._vertexMap;
613
604
  const distMap: Map<VO, number> = new Map();
614
605
  const seen: Set<VO> = new Set();
615
- const preMap: Map<VO, VO | undefined> = new Map(); // predecessor
606
+ const preMap: Map<VO, VO | undefined> = new Map();
616
607
 
617
608
  const srcVertex = this._getVertex(src);
618
609
  const destVertex = dest ? this._getVertex(dest) : undefined;
@@ -630,11 +621,6 @@ export abstract class AbstractGraph<
630
621
  distMap.set(srcVertex, 0);
631
622
  preMap.set(srcVertex, undefined);
632
623
 
633
- /**
634
- * The function `getPaths` retrieves all paths from vertexMap to a specified minimum vertex.
635
- * @param {VO | undefined} minV - The parameter `minV` is of type `VO | undefined`. It represents the minimum vertex value or
636
- * undefined.
637
- */
638
624
  const getPaths = (minV: VO | undefined) => {
639
625
  for (const vertex of vertexMap) {
640
626
  const vertexOrKey = vertex[1];
@@ -674,7 +660,7 @@ export abstract class AbstractGraph<
674
660
  const weight = this.getEdge(cur, neighbor)?.weight;
675
661
  if (typeof weight === 'number') {
676
662
  const distSrcToNeighbor = distMap.get(neighbor);
677
- if (distSrcToNeighbor) {
663
+ if (distSrcToNeighbor !== undefined) {
678
664
  if (dist + weight < distSrcToNeighbor) {
679
665
  heap.add({ key: dist + weight, value: neighbor });
680
666
  preMap.set(neighbor, cur);
@@ -707,22 +693,13 @@ export abstract class AbstractGraph<
707
693
  }
708
694
 
709
695
  /**
710
- * Time Complexity: O(V * E) - Quadratic time in the worst case (Bellman-Ford algorithm).
711
- * Space Complexity: O(V + E) - Depends on the implementation (Bellman-Ford algorithm).
712
- *
713
- * one to rest pairs
714
- * The Bellman-Ford algorithm is also used to find the shortest paths from a source node to all other nodes in a graph. Unlike Dijkstra's algorithm, it can handle edge weights that are negative. Its basic idea involves iterative relaxation of all edgeMap for several rounds to gradually approximate the shortest paths. Due to its ability to handle negative-weight edgeMap, the Bellman-Ford algorithm is more flexible in some scenarios.
715
- * The `bellmanFord` function implements the Bellman-Ford algorithm to find the shortest path from a source vertex to
716
- * all other vertexMap in a graph, and optionally detects negative cycles and generates the minimum path.
717
- * @param {VO | VertexKey} src - The `src` parameter is the source vertex from which the Bellman-Ford algorithm will
718
- * start calculating the shortest paths. It can be either a vertex object or a vertex ID.
719
- * @param {boolean} [scanNegativeCycle] - A boolean flag indicating whether to scan for negative cycles in the graph.
720
- * @param {boolean} [getMin] - The `getMin` parameter is a boolean flag that determines whether the algorithm should
721
- * calculate the minimum distance from the source vertex to all other vertexMap in the graph. If `getMin` is set to
722
- * `true`, the algorithm will find the minimum distance and update the `min` variable with the minimum
723
- * @param {boolean} [genPath] - A boolean flag indicating whether to generate paths for all vertexMap from the source
724
- * vertex.
725
- * @returns The function `bellmanFord` returns an object with the following properties:
696
+ * Bellman-Ford single-source shortest paths with option to scan negative cycles.
697
+ * @param src - Source vertex or key.
698
+ * @param scanNegativeCycle - If `true`, also detect negative cycles.
699
+ * @param getMin - If `true`, compute global minimum distance.
700
+ * @param genPath - If `true`, generate path arrays via predecessor map.
701
+ * @returns Result bag including distances, predecessors, and optional cycle flag.
702
+ * @remarks Time O(V * E), Space O(V + E)
726
703
  */
727
704
  bellmanFord(src: VO | VertexKey, scanNegativeCycle?: boolean, getMin?: boolean, genPath?: boolean) {
728
705
  if (getMin === undefined) getMin = false;
@@ -731,10 +708,10 @@ export abstract class AbstractGraph<
731
708
  const srcVertex = this._getVertex(src);
732
709
  const paths: VO[][] = [];
733
710
  const distMap: Map<VO, number> = new Map();
734
- const preMap: Map<VO, VO> = new Map(); // predecessor
711
+ const preMap: Map<VO, VO> = new Map();
735
712
  let min = Number.MAX_SAFE_INTEGER;
736
713
  let minPath: VO[] = [];
737
- // TODO
714
+
738
715
  let hasNegativeCycle: boolean | undefined;
739
716
  if (scanNegativeCycle) hasNegativeCycle = false;
740
717
  if (!srcVertex) return { hasNegativeCycle, distMap, preMap, paths, min, minPath };
@@ -813,34 +790,9 @@ export abstract class AbstractGraph<
813
790
  }
814
791
 
815
792
  /**
816
- * Dijkstra algorithm time: O(logVE) space: O(VO + EO)
817
- */
818
-
819
- /**
820
- * Dijkstra algorithm time: O(logVE) space: O(VO + EO)
821
- * Dijkstra's algorithm is used to find the shortest paths from a source node to all other nodes in a graph. Its basic idea is to repeatedly choose the node closest to the source node and update the distances of other nodes using this node as an intermediary. Dijkstra's algorithm requires that the edge weights in the graph are non-negative.
822
- */
823
-
824
- /**
825
- * BellmanFord time:O(VE) space:O(VO)
826
- * one to rest pairs
827
- * The Bellman-Ford algorithm is also used to find the shortest paths from a source node to all other nodes in a graph. Unlike Dijkstra's algorithm, it can handle edge weights that are negative. Its basic idea involves iterative relaxation of all edgeMap for several rounds to gradually approximate the shortest paths. Due to its ability to handle negative-weight edgeMap, the Bellman-Ford algorithm is more flexible in some scenarios.
828
- * The `bellmanFord` function implements the Bellman-Ford algorithm to find the shortest path from a source vertex to
829
- */
830
-
831
- /**
832
- * Time Complexity: O(V^3) - Cubic time (Floyd-Warshall algorithm).
833
- * Space Complexity: O(V^2) - Quadratic space (Floyd-Warshall algorithm).
834
- *
835
- * Not support graph with negative weight cycle
836
- * all pairs
837
- * The Floyd-Warshall algorithm is used to find the shortest paths between all pairs of nodes in a graph. It employs dynamic programming to compute the shortest paths from any node to any other node. The Floyd-Warshall algorithm's advantage lies in its ability to handle graphs with negative-weight edgeMap, and it can simultaneously compute shortest paths between any two nodes.
838
- * The function implements the Floyd-Warshall algorithm to find the shortest path between all pairs of vertexMap in a
839
- * graph.
840
- * @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
841
- * property is a 2D array of numbers representing the shortest path costs between vertexMap in a graph. The
842
- * `predecessor` property is a 2D array of vertexMap (or `undefined`) representing the predecessor vertexMap in the shortest
843
- * path between vertexMap in the
793
+ * Floyd–Warshall all-pairs shortest paths.
794
+ * @returns `{ costs, predecessor }` matrices.
795
+ * @remarks Time O(V^3), Space O(V^2)
844
796
  */
845
797
  floydWarshall(): { costs: number[][]; predecessor: (VO | undefined)[][] } {
846
798
  const idAndVertices = [...this._vertexMap];
@@ -848,7 +800,6 @@ export abstract class AbstractGraph<
848
800
 
849
801
  const costs: number[][] = [];
850
802
  const predecessor: (VO | undefined)[][] = [];
851
- // successors
852
803
 
853
804
  for (let i = 0; i < n; i++) {
854
805
  costs[i] = [];
@@ -878,8 +829,10 @@ export abstract class AbstractGraph<
878
829
  }
879
830
 
880
831
  /**
881
- * O(V+E+C)
882
- * O(V+C)
832
+ * Enumerate simple cycles (may be expensive).
833
+ * @param isInclude2Cycle - If `true`, include 2-cycles when graph semantics allow.
834
+ * @returns Array of cycles (each as array of vertex keys).
835
+ * @remarks Time exponential in worst-case, Space O(V + E)
883
836
  */
884
837
  getCycles(isInclude2Cycle: boolean = false): VertexKey[][] {
885
838
  const cycles: VertexKey[][] = [];
@@ -911,7 +864,6 @@ export abstract class AbstractGraph<
911
864
  dfs(vertex, [], visited);
912
865
  }
913
866
 
914
- // Use a set to eliminate duplicate cycles
915
867
  const uniqueCycles = new Map<string, VertexKey[]>();
916
868
 
917
869
  for (const cycle of cycles) {
@@ -923,27 +875,25 @@ export abstract class AbstractGraph<
923
875
  }
924
876
  }
925
877
 
926
- // Convert the unique cycles back to an array
878
+ /**
879
+ * Map entries to an array via callback.
880
+ * @param callback - `(key, value, index, self) => T`.
881
+ * @param thisArg - Optional `this` for callback.
882
+ * @returns Mapped results.
883
+ * @remarks Time O(V), Space O(V)
884
+ */
927
885
  return [...uniqueCycles].map(cycleString => cycleString[1]);
928
886
  }
929
887
 
930
888
  /**
931
- * Time Complexity: O(n)
932
- * Space Complexity: O(n)
933
- *
934
- * The `filter` function iterates over key-value pairs in a data structure and returns an array of
935
- * pairs that satisfy a given predicate.
936
- * @param predicate - The `predicate` parameter is a callback function that takes four arguments:
937
- * `value`, `key`, `index`, and `this`. It is used to determine whether an element should be included
938
- * in the filtered array. The callback function should return `true` if the element should be
939
- * included, and `
940
- * @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
941
- * specify the value of `this` within the `predicate` function. It is used when you want to bind a
942
- * specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
943
- * @returns The `filter` method returns an array of key-value pairs `[VertexKey, V | undefined][]`
944
- * that satisfy the given predicate function.
889
+ * Induced-subgraph filter: keep vertices where `predicate(key, value)` is true,
890
+ * and only keep edges whose endpoints both survive.
891
+ * @param predicate - `(key, value, index, self) => boolean`.
892
+ * @param thisArg - Optional `this` for callback.
893
+ * @returns A new graph of the same concrete class (`this` type).
894
+ * @remarks Time O(V + E), Space O(V + E)
945
895
  */
946
- filter(predicate: EntryCallback<VertexKey, V | undefined, boolean>, thisArg?: any): [VertexKey, V | undefined][] {
896
+ filter(predicate: EntryCallback<VertexKey, V | undefined, boolean>, thisArg?: any): this {
947
897
  const filtered: [VertexKey, V | undefined][] = [];
948
898
  let index = 0;
949
899
  for (const [key, value] of this) {
@@ -952,22 +902,28 @@ export abstract class AbstractGraph<
952
902
  }
953
903
  index++;
954
904
  }
955
- return filtered;
905
+ return this._createLike(filtered, this._snapshotOptions());
956
906
  }
957
907
 
958
908
  /**
959
- * Time Complexity: O(n)
960
- * Space Complexity: O(n)
961
- *
962
- * The `map` function iterates over the elements of a collection and applies a callback function to
963
- * each element, returning an array of the results.
964
- * @param callback - The callback parameter is a function that will be called for each element in the
965
- * map. It takes four arguments:
966
- * @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
967
- * specify the value of `this` within the callback function. If `thisArg` is provided, it will be
968
- * used as the `this` value when calling the callback function. If `thisArg` is not provided, `
969
- * @returns The `map` function is returning an array of type `T[]`.
909
+ * Preserve the old behavior: return filtered entries as an array.
910
+ * @remarks Time O(V), Space O(V)
970
911
  */
912
+ filterEntries(
913
+ predicate: EntryCallback<VertexKey, V | undefined, boolean>,
914
+ thisArg?: any
915
+ ): [VertexKey, V | undefined][] {
916
+ const filtered: [VertexKey, V | undefined][] = [];
917
+ let index = 0;
918
+ for (const [key, value] of this) {
919
+ if (predicate.call(thisArg, key, value, index, this)) {
920
+ filtered.push([key, value]);
921
+ }
922
+ index++;
923
+ }
924
+ return filtered;
925
+ }
926
+
971
927
  map<T>(callback: EntryCallback<VertexKey, V | undefined, T>, thisArg?: any): T[] {
972
928
  const mapped: T[] = [];
973
929
  let index = 0;
@@ -978,28 +934,147 @@ export abstract class AbstractGraph<
978
934
  return mapped;
979
935
  }
980
936
 
937
+ /**
938
+ * Create a deep clone of the graph with the same species.
939
+ * @remarks Time O(V + E), Space O(V + E)
940
+ */
941
+ /**
942
+ * Create a deep clone of the graph with the same species.
943
+ * @returns A new graph of the same concrete class (`this` type).
944
+ * @remarks Time O(V + E), Space O(V + E)
945
+ */
946
+ clone(): this {
947
+ return this._createLike(undefined, this._snapshotOptions());
948
+ }
949
+
950
+ // ===== Same-species factory & cloning helpers =====
951
+
952
+ /**
953
+ * Internal iterator over `[key, value]` entries in insertion order.
954
+ * @returns Iterator of `[VertexKey, V | undefined]`.
955
+ * @remarks Time O(V), Space O(1)
956
+ */
981
957
  protected *_getIterator(): IterableIterator<[VertexKey, V | undefined]> {
982
958
  for (const vertex of this._vertexMap.values()) {
983
959
  yield [vertex.key, vertex.value];
984
960
  }
985
961
  }
986
962
 
963
+ /**
964
+ * Capture configuration needed to reproduce the current graph.
965
+ * Currently the graph has no runtime options, so we return an empty object.
966
+ */
967
+ /**
968
+ * Capture configuration needed to reproduce the current graph.
969
+ * @returns Options bag (opaque to callers).
970
+ * @remarks Time O(1), Space O(1)
971
+ */
972
+ protected _snapshotOptions(): Record<string, unknown> {
973
+ return { graph: { ...this._options } };
974
+ }
975
+
976
+ /**
977
+ * Create an empty graph instance of the same concrete species (Directed/Undirected/etc).
978
+ * @remarks Time O(1), Space O(1)
979
+ */
980
+ /**
981
+ * Create an empty graph instance of the same concrete species.
982
+ * @param _options - Snapshot options from `_snapshotOptions()`.
983
+ * @returns A new empty graph instance of `this` type.
984
+ * @remarks Time O(1), Space O(1)
985
+ */
986
+ protected _createInstance(_options?: Partial<Record<string, unknown>>): this {
987
+ const Ctor: any = (this as any).constructor;
988
+ const instance: this = new Ctor();
989
+ const graph = (_options as any)?.graph as GraphOptions<V> | undefined;
990
+ if (graph) (instance as any)._options = { ...(instance as any)._options, ...graph };
991
+ else (instance as any)._options = { ...(instance as any)._options, ...(this as any)._options };
992
+ return instance;
993
+ }
994
+
995
+ /**
996
+ * Create a same-species graph populated with the given entries.
997
+ * Also preserves edges between kept vertices from the source graph.
998
+ * @remarks Time O(V + E), Space O(V + E)
999
+ */
1000
+ /**
1001
+ * Create a same-species graph populated with entries; preserves edges among kept vertices.
1002
+ * @param iter - Optional entries to seed the new graph.
1003
+ * @param options - Snapshot options.
1004
+ * @returns A new graph of `this` type.
1005
+ * @remarks Time O(V + E), Space O(V + E)
1006
+ */
1007
+ protected _createLike(iter?: Iterable<[VertexKey, V | undefined]>, options?: Partial<Record<string, unknown>>): this {
1008
+ const g = this._createInstance(options);
1009
+ // 1) Add vertices
1010
+ if (iter) {
1011
+ for (const [k, v] of iter) {
1012
+ (g as any).addVertex(k as VertexKey, v as V | undefined);
1013
+ }
1014
+ } else {
1015
+ for (const [k, v] of this) {
1016
+ (g as any).addVertex(k as VertexKey, v as V | undefined);
1017
+ }
1018
+ }
1019
+ // 2) Add edges whose endpoints exist in the new graph
1020
+ const edges = this.edgeSet();
1021
+ for (const e of edges as any[]) {
1022
+ const ends = this.getEndsOfEdge(e as any) as unknown as [any, any] | undefined;
1023
+ if (!ends) continue;
1024
+ const [va, vb] = ends;
1025
+ const ka = (va as any).key as VertexKey;
1026
+ const kb = (vb as any).key as VertexKey;
1027
+ const hasA = (g as any).hasVertex ? (g as any).hasVertex(ka) : false;
1028
+ const hasB = (g as any).hasVertex ? (g as any).hasVertex(kb) : false;
1029
+ if (hasA && hasB) {
1030
+ const w = (e as any).weight;
1031
+ const val = (e as any).value;
1032
+ const newEdge = (g as any).createEdge(ka, kb, w, val);
1033
+ (g as any)._addEdge(newEdge);
1034
+ }
1035
+ }
1036
+ return g;
1037
+ }
1038
+
1039
+ /**
1040
+ * Internal hook to attach an edge into adjacency structures.
1041
+ * @param edge - Edge instance.
1042
+ * @returns `true` if inserted; otherwise `false`.
1043
+ * @remarks Time O(1) avg, Space O(1)
1044
+ */
987
1045
  protected abstract _addEdge(edge: EO): boolean;
988
1046
 
1047
+ /**
1048
+ * Insert a pre-built vertex into the graph.
1049
+ * @param newVertex - Concrete vertex instance.
1050
+ * @returns `true` if inserted; `false` if key already exists.
1051
+ * @remarks Time O(1) avg, Space O(1)
1052
+ */
989
1053
  protected _addVertex(newVertex: VO): boolean {
990
1054
  if (this.hasVertex(newVertex)) {
991
1055
  return false;
992
- // throw (new Error('Duplicated vertex key is not allowed'));
993
1056
  }
994
1057
  this._vertexMap.set(newVertex.key, newVertex);
995
1058
  return true;
996
1059
  }
997
1060
 
1061
+ /**
1062
+ * Resolve a vertex key or instance to the concrete vertex instance.
1063
+ * @param vertexOrKey - Vertex key or existing vertex.
1064
+ * @returns Vertex instance or `undefined`.
1065
+ * @remarks Time O(1), Space O(1)
1066
+ */
998
1067
  protected _getVertex(vertexOrKey: VertexKey | VO): VO | undefined {
999
1068
  const vertexKey = this._getVertexKey(vertexOrKey);
1000
1069
  return this._vertexMap.get(vertexKey) || undefined;
1001
1070
  }
1002
1071
 
1072
+ /**
1073
+ * Resolve a vertex key from a key or vertex instance.
1074
+ * @param vertexOrKey - Vertex key or existing vertex.
1075
+ * @returns The vertex key.
1076
+ * @remarks Time O(1), Space O(1)
1077
+ */
1003
1078
  protected _getVertexKey(vertexOrKey: VO | VertexKey): VertexKey {
1004
1079
  return vertexOrKey instanceof AbstractVertex ? vertexOrKey.key : vertexOrKey;
1005
1080
  }