min-heap-typed 1.47.5 → 1.47.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. package/dist/data-structures/binary-tree/avl-tree.d.ts +36 -18
  2. package/dist/data-structures/binary-tree/avl-tree.js +46 -29
  3. package/dist/data-structures/binary-tree/binary-tree.d.ts +158 -129
  4. package/dist/data-structures/binary-tree/binary-tree.js +182 -184
  5. package/dist/data-structures/binary-tree/bst.d.ts +73 -63
  6. package/dist/data-structures/binary-tree/bst.js +168 -169
  7. package/dist/data-structures/binary-tree/rb-tree.d.ts +54 -17
  8. package/dist/data-structures/binary-tree/rb-tree.js +77 -31
  9. package/dist/data-structures/binary-tree/tree-multimap.d.ts +29 -40
  10. package/dist/data-structures/binary-tree/tree-multimap.js +66 -136
  11. package/dist/data-structures/graph/abstract-graph.js +1 -1
  12. package/dist/data-structures/hash/hash-map.d.ts +2 -6
  13. package/dist/data-structures/hash/hash-map.js +5 -8
  14. package/dist/data-structures/heap/heap.d.ts +19 -21
  15. package/dist/data-structures/heap/heap.js +52 -34
  16. package/dist/data-structures/heap/max-heap.d.ts +2 -5
  17. package/dist/data-structures/heap/max-heap.js +2 -2
  18. package/dist/data-structures/heap/min-heap.d.ts +2 -5
  19. package/dist/data-structures/heap/min-heap.js +2 -2
  20. package/dist/data-structures/linked-list/doubly-linked-list.d.ts +2 -1
  21. package/dist/data-structures/linked-list/doubly-linked-list.js +9 -1
  22. package/dist/data-structures/linked-list/singly-linked-list.d.ts +2 -1
  23. package/dist/data-structures/linked-list/singly-linked-list.js +8 -1
  24. package/dist/data-structures/priority-queue/max-priority-queue.d.ts +2 -5
  25. package/dist/data-structures/priority-queue/max-priority-queue.js +2 -2
  26. package/dist/data-structures/priority-queue/min-priority-queue.d.ts +2 -5
  27. package/dist/data-structures/priority-queue/min-priority-queue.js +2 -2
  28. package/dist/data-structures/priority-queue/priority-queue.d.ts +2 -5
  29. package/dist/data-structures/priority-queue/priority-queue.js +2 -2
  30. package/dist/data-structures/queue/deque.d.ts +1 -0
  31. package/dist/data-structures/queue/deque.js +3 -0
  32. package/dist/data-structures/queue/queue.d.ts +1 -0
  33. package/dist/data-structures/queue/queue.js +3 -0
  34. package/dist/data-structures/stack/stack.d.ts +2 -1
  35. package/dist/data-structures/stack/stack.js +10 -2
  36. package/dist/data-structures/trie/trie.d.ts +3 -0
  37. package/dist/data-structures/trie/trie.js +19 -4
  38. package/dist/interfaces/binary-tree.d.ts +4 -2
  39. package/dist/types/common.d.ts +7 -0
  40. package/dist/types/data-structures/binary-tree/binary-tree.d.ts +1 -1
  41. package/dist/types/data-structures/binary-tree/bst.d.ts +2 -2
  42. package/dist/types/data-structures/hash/hash-map.d.ts +1 -2
  43. package/dist/types/data-structures/heap/heap.d.ts +4 -1
  44. package/dist/types/data-structures/priority-queue/priority-queue.d.ts +2 -1
  45. package/package.json +2 -2
  46. package/src/data-structures/binary-tree/avl-tree.ts +61 -31
  47. package/src/data-structures/binary-tree/binary-tree.ts +283 -254
  48. package/src/data-structures/binary-tree/bst.ts +193 -170
  49. package/src/data-structures/binary-tree/rb-tree.ts +87 -32
  50. package/src/data-structures/binary-tree/tree-multimap.ts +76 -136
  51. package/src/data-structures/graph/abstract-graph.ts +1 -1
  52. package/src/data-structures/hash/hash-map.ts +8 -8
  53. package/src/data-structures/heap/heap.ts +57 -39
  54. package/src/data-structures/heap/max-heap.ts +5 -5
  55. package/src/data-structures/heap/min-heap.ts +5 -5
  56. package/src/data-structures/linked-list/doubly-linked-list.ts +10 -1
  57. package/src/data-structures/linked-list/singly-linked-list.ts +9 -1
  58. package/src/data-structures/priority-queue/max-priority-queue.ts +4 -3
  59. package/src/data-structures/priority-queue/min-priority-queue.ts +12 -12
  60. package/src/data-structures/priority-queue/priority-queue.ts +3 -3
  61. package/src/data-structures/queue/deque.ts +4 -0
  62. package/src/data-structures/queue/queue.ts +4 -0
  63. package/src/data-structures/stack/stack.ts +12 -3
  64. package/src/data-structures/trie/trie.ts +23 -4
  65. package/src/interfaces/binary-tree.ts +14 -2
  66. package/src/types/common.ts +15 -1
  67. package/src/types/data-structures/binary-tree/binary-tree.ts +1 -1
  68. package/src/types/data-structures/binary-tree/bst.ts +2 -3
  69. package/src/types/data-structures/hash/hash-map.ts +1 -2
  70. package/src/types/data-structures/heap/heap.ts +3 -1
  71. package/src/types/data-structures/priority-queue/priority-queue.ts +3 -1
@@ -45,25 +45,37 @@ class BSTNode extends binary_tree_1.BinaryTreeNode {
45
45
  }
46
46
  }
47
47
  exports.BSTNode = BSTNode;
48
+ /**
49
+ * 1. Node Order: Each node's left child has a lesser value, and the right child has a greater value.
50
+ * 2. Unique Keys: No duplicate keys in a standard BST.
51
+ * 3. Efficient Search: Enables quick search, minimum, and maximum operations.
52
+ * 4. Inorder Traversal: Yields nodes in ascending order.
53
+ * 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient.
54
+ * 6. Balance Variability: Can become unbalanced; special types maintain balance.
55
+ * 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
56
+ */
48
57
  class BST extends binary_tree_1.BinaryTree {
49
58
  /**
50
- * The constructor function initializes a binary search tree with an optional comparator function.
51
- * @param {BSTOptions} [options] - An optional object that contains additional configuration options
52
- * for the binary search tree.
59
+ * This is the constructor function for a binary search tree class in TypeScript, which initializes
60
+ * the tree with optional elements and options.
61
+ * @param [elements] - An optional iterable of BTNodeExemplar objects that will be added to the
62
+ * binary search tree.
63
+ * @param [options] - The `options` parameter is an optional object that can contain additional
64
+ * configuration options for the binary search tree. It can have the following properties:
53
65
  */
54
- constructor(options) {
55
- super(options);
66
+ constructor(elements, options) {
67
+ super([], options);
68
+ this.comparator = (a, b) => a - b;
56
69
  if (options) {
57
- this.options = Object.assign({ iterationType: types_1.IterationType.ITERATIVE, comparator: (a, b) => a - b }, options);
58
- }
59
- else {
60
- this.options = { iterationType: types_1.IterationType.ITERATIVE, comparator: (a, b) => a - b };
70
+ const { comparator } = options;
71
+ if (comparator) {
72
+ this.comparator = comparator;
73
+ }
61
74
  }
62
75
  this._root = undefined;
76
+ if (elements)
77
+ this.addMany(elements);
63
78
  }
64
- /**
65
- * Get the root node of the binary tree.
66
- */
67
79
  get root() {
68
80
  return this._root;
69
81
  }
@@ -78,8 +90,15 @@ class BST extends binary_tree_1.BinaryTree {
78
90
  createNode(key, value) {
79
91
  return new BSTNode(key, value);
80
92
  }
93
+ /**
94
+ * The function creates a new binary search tree with the specified options.
95
+ * @param [options] - The `options` parameter is an optional object that allows you to customize the
96
+ * behavior of the `createTree` method. It accepts a partial `BSTOptions` object, which is a type
97
+ * that defines various options for creating a binary search tree.
98
+ * @returns a new instance of the BST class with the specified options.
99
+ */
81
100
  createTree(options) {
82
- return new BST(Object.assign(Object.assign({}, this.options), options));
101
+ return new BST([], Object.assign({ iterationType: this.iterationType, comparator: this.comparator }, options));
83
102
  }
84
103
  /**
85
104
  * Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
@@ -89,158 +108,138 @@ class BST extends binary_tree_1.BinaryTree {
89
108
  * Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
90
109
  * Space Complexity: O(1) - Constant space is used.
91
110
  *
92
- * The `add` function adds a new node to a binary search tree based on the provided key and value.
93
- * @param {BTNKey | N | null | undefined} keyOrNode - The `keyOrNode` parameter can be one of the
94
- * following types:
95
- * @param {V} [value] - The `value` parameter is an optional value that can be associated with the
96
- * key or node being added to the binary search tree.
97
- * @returns The method `add` returns a node (`N`) that was inserted into the binary search tree. If
98
- * no node was inserted, it returns `undefined`.
111
+ * The `add` function adds a new node to a binary search tree, either by key or by providing a node
112
+ * object.
113
+ * @param keyOrNodeOrEntry - The `keyOrNodeOrEntry` parameter can be one of the following:
114
+ * @returns The method returns either the newly added node (`newNode`) or `undefined` if the input
115
+ * (`keyOrNodeOrEntry`) is null, undefined, or does not match any of the expected types.
99
116
  */
100
- add(keyOrNode, value) {
101
- if (keyOrNode === null)
117
+ add(keyOrNodeOrEntry) {
118
+ if (keyOrNodeOrEntry === null || keyOrNodeOrEntry === undefined) {
102
119
  return undefined;
103
- // TODO support node as a parameter
104
- let inserted;
120
+ }
105
121
  let newNode;
106
- if (keyOrNode instanceof BSTNode) {
107
- newNode = keyOrNode;
122
+ if (keyOrNodeOrEntry instanceof BSTNode) {
123
+ newNode = keyOrNodeOrEntry;
108
124
  }
109
- else if (this.isNodeKey(keyOrNode)) {
110
- newNode = this.createNode(keyOrNode, value);
125
+ else if (this.isNodeKey(keyOrNodeOrEntry)) {
126
+ newNode = this.createNode(keyOrNodeOrEntry);
127
+ }
128
+ else if (this.isEntry(keyOrNodeOrEntry)) {
129
+ const [key, value] = keyOrNodeOrEntry;
130
+ if (key === undefined || key === null) {
131
+ return;
132
+ }
133
+ else {
134
+ newNode = this.createNode(key, value);
135
+ }
111
136
  }
112
137
  else {
113
- newNode = undefined;
138
+ return;
114
139
  }
115
140
  if (this.root === undefined) {
116
141
  this._setRoot(newNode);
117
- this._size = this.size + 1;
118
- inserted = this.root;
142
+ this._size++;
143
+ return this.root;
119
144
  }
120
- else {
121
- let cur = this.root;
122
- let traversing = true;
123
- while (traversing) {
124
- if (cur !== undefined && newNode !== undefined) {
125
- if (this._compare(cur.key, newNode.key) === types_1.CP.eq) {
126
- if (newNode) {
127
- cur.value = newNode.value;
128
- }
129
- //Duplicates are not accepted.
130
- traversing = false;
131
- inserted = cur;
132
- }
133
- else if (this._compare(cur.key, newNode.key) === types_1.CP.gt) {
134
- // Traverse left of the node
135
- if (cur.left === undefined) {
136
- if (newNode) {
137
- newNode.parent = cur;
138
- }
139
- //Add to the left of the current node
140
- cur.left = newNode;
141
- this._size = this.size + 1;
142
- traversing = false;
143
- inserted = cur.left;
144
- }
145
- else {
146
- //Traverse the left of the current node
147
- if (cur.left)
148
- cur = cur.left;
149
- }
150
- }
151
- else if (this._compare(cur.key, newNode.key) === types_1.CP.lt) {
152
- // Traverse right of the node
153
- if (cur.right === undefined) {
154
- if (newNode) {
155
- newNode.parent = cur;
156
- }
157
- //Add to the right of the current node
158
- cur.right = newNode;
159
- this._size = this.size + 1;
160
- traversing = false;
161
- inserted = cur.right;
162
- }
163
- else {
164
- //Traverse the left of the current node
165
- if (cur.right)
166
- cur = cur.right;
167
- }
168
- }
145
+ let current = this.root;
146
+ while (current !== undefined) {
147
+ if (this._compare(current.key, newNode.key) === types_1.CP.eq) {
148
+ // if (current !== newNode) {
149
+ // The key value is the same but the reference is different, update the value of the existing node
150
+ this._replaceNode(current, newNode);
151
+ return newNode;
152
+ // } else {
153
+ // The key value is the same and the reference is the same, replace the entire node
154
+ // this._replaceNode(current, newNode);
155
+ // return;
156
+ // }
157
+ }
158
+ else if (this._compare(current.key, newNode.key) === types_1.CP.gt) {
159
+ if (current.left === undefined) {
160
+ current.left = newNode;
161
+ newNode.parent = current;
162
+ this._size++;
163
+ return newNode;
169
164
  }
170
- else {
171
- traversing = false;
165
+ current = current.left;
166
+ }
167
+ else {
168
+ if (current.right === undefined) {
169
+ current.right = newNode;
170
+ newNode.parent = current;
171
+ this._size++;
172
+ return newNode;
172
173
  }
174
+ current = current.right;
173
175
  }
174
176
  }
175
- return inserted;
177
+ return undefined;
176
178
  }
177
179
  /**
178
- * Time Complexity: O(n log n) - Adding each element individually in a balanced tree.
179
- * Space Complexity: O(n) - Additional space is required for the sorted array.
180
+ * Time Complexity: O(k log n) - Adding each element individually in a balanced tree.
181
+ * Space Complexity: O(k) - Additional space is required for the sorted array.
180
182
  */
181
183
  /**
182
- * Time Complexity: O(n log n) - Adding each element individually in a balanced tree.
183
- * Space Complexity: O(n) - Additional space is required for the sorted array.
184
+ * Time Complexity: O(k log n) - Adding each element individually in a balanced tree.
185
+ * Space Complexity: O(k) - Additional space is required for the sorted array.
184
186
  *
185
- * The `addMany` function is used to efficiently add multiple keys or nodes with corresponding data
186
- * to a binary search tree.
187
- * @param {(BTNKey | N | undefined)[]} keysOrNodes - An array of keys or nodes to be added to the
188
- * binary search tree. Each element can be of type `BTNKey` (binary tree node key), `N` (binary tree
189
- * node), or `undefined`.
190
- * @param {(V | undefined)[]} [data] - An optional array of values to associate with the keys or
191
- * nodes being added. If provided, the length of the `data` array must be the same as the length of
192
- * the `keysOrNodes` array.
187
+ * The `addMany` function in TypeScript adds multiple nodes to a binary tree, either in a balanced or
188
+ * unbalanced manner, and returns an array of the inserted nodes.
189
+ * @param keysOrNodesOrEntries - An iterable containing keys, nodes, or entries to be added to the
190
+ * binary tree.
193
191
  * @param [isBalanceAdd=true] - A boolean flag indicating whether the tree should be balanced after
194
- * adding the nodes. The default value is `true`.
192
+ * adding the nodes. The default value is true.
195
193
  * @param iterationType - The `iterationType` parameter is an optional parameter that specifies the
196
- * type of iteration to use when adding multiple keys or nodes to the binary search tree. It has a
197
- * default value of `this.iterationType`, which means it will use the iteration type specified in the
198
- * current instance of the binary search tree
199
- * @returns The function `addMany` returns an array of nodes (`N`) or `undefined` values.
194
+ * type of iteration to use when adding multiple keys or nodes to the binary tree. It has a default
195
+ * value of `this.iterationType`, which means it will use the iteration type specified by the binary
196
+ * tree instance.
197
+ * @returns The `addMany` function returns an array of `N` or `undefined` values.
200
198
  */
201
- addMany(keysOrNodes, data, isBalanceAdd = true, iterationType = this.options.iterationType) {
202
- // TODO this addMany function is inefficient, it should be optimized
203
- function hasNoUndefined(arr) {
204
- return arr.indexOf(undefined) === -1;
205
- }
206
- if (!isBalanceAdd || !hasNoUndefined(keysOrNodes)) {
207
- return super.addMany(keysOrNodes, data).map(n => n !== null && n !== void 0 ? n : undefined);
208
- }
199
+ addMany(keysOrNodesOrEntries, isBalanceAdd = true, iterationType = this.iterationType) {
209
200
  const inserted = [];
210
- const combinedArr = keysOrNodes.map((value, index) => [value, data === null || data === void 0 ? void 0 : data[index]]);
211
- let sorted = [];
212
- function _isNodeOrUndefinedTuple(arr) {
213
- for (const [keyOrNode] of arr)
214
- if (keyOrNode instanceof BSTNode)
215
- return true;
216
- return false;
201
+ if (!isBalanceAdd) {
202
+ for (const kve of keysOrNodesOrEntries) {
203
+ const nn = this.add(kve);
204
+ inserted.push(nn);
205
+ }
206
+ return inserted;
217
207
  }
218
- const _isBinaryTreeKeyOrNullTuple = (arr) => {
219
- for (const [keyOrNode] of arr)
220
- if (this.isNodeKey(keyOrNode))
221
- return true;
222
- return false;
208
+ const realBTNExemplars = [];
209
+ const isRealBTNExemplar = (kve) => {
210
+ if (kve === undefined || kve === null)
211
+ return false;
212
+ return !(this.isEntry(kve) && (kve[0] === undefined || kve[0] === null));
223
213
  };
224
- let sortedKeysOrNodes = [], sortedData = [];
225
- if (_isNodeOrUndefinedTuple(combinedArr)) {
226
- sorted = combinedArr.sort((a, b) => a[0].key - b[0].key);
214
+ for (const kve of keysOrNodesOrEntries) {
215
+ isRealBTNExemplar(kve) && realBTNExemplars.push(kve);
227
216
  }
228
- else if (_isBinaryTreeKeyOrNullTuple(combinedArr)) {
229
- sorted = combinedArr.sort((a, b) => a[0] - b[0]);
230
- }
231
- else {
232
- throw new Error('Invalid input keysOrNodes');
233
- }
234
- sortedKeysOrNodes = sorted.map(([keyOrNode]) => keyOrNode);
235
- sortedData = sorted.map(([, value]) => value);
236
- const _dfs = (arr, data) => {
217
+ // TODO this addMany function is inefficient, it should be optimized
218
+ let sorted = [];
219
+ sorted = realBTNExemplars.sort((a, b) => {
220
+ let aR, bR;
221
+ if (this.isEntry(a))
222
+ aR = a[0];
223
+ else if (this.isRealNode(a))
224
+ aR = a.key;
225
+ else
226
+ aR = a;
227
+ if (this.isEntry(b))
228
+ bR = b[0];
229
+ else if (this.isRealNode(b))
230
+ bR = b.key;
231
+ else
232
+ bR = b;
233
+ return aR - bR;
234
+ });
235
+ const _dfs = (arr) => {
237
236
  if (arr.length === 0)
238
237
  return;
239
238
  const mid = Math.floor((arr.length - 1) / 2);
240
- const newNode = this.add(arr[mid], data === null || data === void 0 ? void 0 : data[mid]);
239
+ const newNode = this.add(arr[mid]);
241
240
  inserted.push(newNode);
242
- _dfs(arr.slice(0, mid), data === null || data === void 0 ? void 0 : data.slice(0, mid));
243
- _dfs(arr.slice(mid + 1), data === null || data === void 0 ? void 0 : data.slice(mid + 1));
241
+ _dfs(arr.slice(0, mid));
242
+ _dfs(arr.slice(mid + 1));
244
243
  };
245
244
  const _iterate = () => {
246
245
  const n = sorted.length;
@@ -251,7 +250,7 @@ class BST extends binary_tree_1.BinaryTree {
251
250
  const [l, r] = popped;
252
251
  if (l <= r) {
253
252
  const m = l + Math.floor((r - l) / 2);
254
- const newNode = this.add(sortedKeysOrNodes[m], sortedData === null || sortedData === void 0 ? void 0 : sortedData[m]);
253
+ const newNode = this.add(sorted[m]);
255
254
  inserted.push(newNode);
256
255
  stack.push([m + 1, r]);
257
256
  stack.push([l, m - 1]);
@@ -260,7 +259,7 @@ class BST extends binary_tree_1.BinaryTree {
260
259
  }
261
260
  };
262
261
  if (iterationType === types_1.IterationType.RECURSIVE) {
263
- _dfs(sortedKeysOrNodes, sortedData);
262
+ _dfs(sorted);
264
263
  }
265
264
  else {
266
265
  _iterate();
@@ -268,8 +267,8 @@ class BST extends binary_tree_1.BinaryTree {
268
267
  return inserted;
269
268
  }
270
269
  /**
271
- * Time Complexity: O(log n) - Average case for a balanced tree.
272
- * Space Complexity: O(1) - Constant space is used.
270
+ * Time Complexity: O(n log n) - Adding each element individually in a balanced tree.
271
+ * Space Complexity: O(n) - Additional space is required for the sorted array.
273
272
  */
274
273
  /**
275
274
  * Time Complexity: O(log n) - Average case for a balanced tree.
@@ -286,7 +285,7 @@ class BST extends binary_tree_1.BinaryTree {
286
285
  * the key of the leftmost node if the comparison result is greater than, and the key of the
287
286
  * rightmost node otherwise. If no node is found, it returns 0.
288
287
  */
289
- lastKey(beginRoot = this.root, iterationType = this.options.iterationType) {
288
+ lastKey(beginRoot = this.root, iterationType = this.iterationType) {
290
289
  var _a, _b, _c, _d, _e, _f;
291
290
  if (this._compare(0, 1) === types_1.CP.lt)
292
291
  return (_b = (_a = this.getRightMost(beginRoot, iterationType)) === null || _a === void 0 ? void 0 : _a.key) !== null && _b !== void 0 ? _b : 0;
@@ -297,7 +296,7 @@ class BST extends binary_tree_1.BinaryTree {
297
296
  }
298
297
  /**
299
298
  * Time Complexity: O(log n) - Average case for a balanced tree.
300
- * Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
299
+ * Space Complexity: O(1) - Constant space is used.
301
300
  */
302
301
  /**
303
302
  * Time Complexity: O(log n) - Average case for a balanced tree.
@@ -345,7 +344,11 @@ class BST extends binary_tree_1.BinaryTree {
345
344
  }
346
345
  }
347
346
  /**
348
- * The function `ensureNotKey` returns the node corresponding to the given key if it is a node key,
347
+ * Time Complexity: O(log n) - Average case for a balanced tree.
348
+ * Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
349
+ */
350
+ /**
351
+ * The function `ensureNode` returns the node corresponding to the given key if it is a node key,
349
352
  * otherwise it returns the key itself.
350
353
  * @param {BTNKey | N | undefined} key - The `key` parameter can be of type `BTNKey`, `N`, or
351
354
  * `undefined`.
@@ -353,13 +356,9 @@ class BST extends binary_tree_1.BinaryTree {
353
356
  * type of iteration to be performed. It has a default value of `IterationType.ITERATIVE`.
354
357
  * @returns either a node object (N) or undefined.
355
358
  */
356
- ensureNotKey(key, iterationType = types_1.IterationType.ITERATIVE) {
359
+ ensureNode(key, iterationType = types_1.IterationType.ITERATIVE) {
357
360
  return this.isNodeKey(key) ? this.getNodeByKey(key, iterationType) : key;
358
361
  }
359
- /**
360
- * Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
361
- * Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
362
- */
363
362
  /**
364
363
  * Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
365
364
  * Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
@@ -383,8 +382,8 @@ class BST extends binary_tree_1.BinaryTree {
383
382
  * performed on the binary tree. It can have two possible values:
384
383
  * @returns The method returns an array of nodes (`N[]`).
385
384
  */
386
- getNodes(identifier, callback = this._defaultOneParamCallback, onlyOne = false, beginRoot = this.root, iterationType = this.options.iterationType) {
387
- beginRoot = this.ensureNotKey(beginRoot);
385
+ getNodes(identifier, callback = this._defaultOneParamCallback, onlyOne = false, beginRoot = this.root, iterationType = this.iterationType) {
386
+ beginRoot = this.ensureNode(beginRoot);
388
387
  if (!beginRoot)
389
388
  return [];
390
389
  const ans = [];
@@ -464,8 +463,8 @@ class BST extends binary_tree_1.BinaryTree {
464
463
  * @returns The function `lesserOrGreaterTraverse` returns an array of values of type
465
464
  * `ReturnType<C>`, which is the return type of the callback function passed as an argument.
466
465
  */
467
- lesserOrGreaterTraverse(callback = this._defaultOneParamCallback, lesserOrGreater = types_1.CP.lt, targetNode = this.root, iterationType = this.options.iterationType) {
468
- targetNode = this.ensureNotKey(targetNode);
466
+ lesserOrGreaterTraverse(callback = this._defaultOneParamCallback, lesserOrGreater = types_1.CP.lt, targetNode = this.root, iterationType = this.iterationType) {
467
+ targetNode = this.ensureNode(targetNode);
469
468
  const ans = [];
470
469
  if (!targetNode)
471
470
  return ans;
@@ -505,17 +504,8 @@ class BST extends binary_tree_1.BinaryTree {
505
504
  }
506
505
  }
507
506
  /**
508
- * Balancing Adjustment:
509
- * Perfectly Balanced Binary Tree: Since the balance of a perfectly balanced binary tree is already fixed, no additional balancing adjustment is needed. Any insertion or deletion operation will disrupt the perfect balance, often requiring a complete reconstruction of the tree.
510
- * AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
511
- *
512
- * Use Cases and Efficiency:
513
- * Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
514
- * AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
515
- */
516
- /**
517
- * Time Complexity: O(n) - Building a balanced tree from a sorted array.
518
- * Space Complexity: O(n) - Additional space is required for the sorted array.
507
+ * Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
508
+ * Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
519
509
  */
520
510
  /**
521
511
  * Time Complexity: O(n) - Building a balanced tree from a sorted array.
@@ -528,7 +518,7 @@ class BST extends binary_tree_1.BinaryTree {
528
518
  * values:
529
519
  * @returns The function `perfectlyBalance` returns a boolean value.
530
520
  */
531
- perfectlyBalance(iterationType = this.options.iterationType) {
521
+ perfectlyBalance(iterationType = this.iterationType) {
532
522
  const sorted = this.dfs(node => node, 'in'), n = sorted.length;
533
523
  this.clear();
534
524
  if (sorted.length < 1)
@@ -539,7 +529,7 @@ class BST extends binary_tree_1.BinaryTree {
539
529
  return;
540
530
  const m = l + Math.floor((r - l) / 2);
541
531
  const midNode = sorted[m];
542
- this.add(midNode.key, midNode.value);
532
+ this.add([midNode.key, midNode.value]);
543
533
  buildBalanceBST(l, m - 1);
544
534
  buildBalanceBST(m + 1, r);
545
535
  };
@@ -556,7 +546,7 @@ class BST extends binary_tree_1.BinaryTree {
556
546
  const m = l + Math.floor((r - l) / 2);
557
547
  const midNode = sorted[m];
558
548
  debugger;
559
- this.add(midNode.key, midNode.value);
549
+ this.add([midNode.key, midNode.value]);
560
550
  stack.push([m + 1, r]);
561
551
  stack.push([l, m - 1]);
562
552
  }
@@ -566,8 +556,17 @@ class BST extends binary_tree_1.BinaryTree {
566
556
  }
567
557
  }
568
558
  /**
569
- * Time Complexity: O(n) - Visiting each node once.
570
- * Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
559
+ * Balancing Adjustment:
560
+ * Perfectly Balanced Binary Tree: Since the balance of a perfectly balanced binary tree is already fixed, no additional balancing adjustment is needed. Any insertion or deletion operation will disrupt the perfect balance, often requiring a complete reconstruction of the tree.
561
+ * AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
562
+ *
563
+ * Use Cases and Efficiency:
564
+ * Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
565
+ * AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
566
+ */
567
+ /**
568
+ * Time Complexity: O(n) - Building a balanced tree from a sorted array.
569
+ * Space Complexity: O(n) - Additional space is required for the sorted array.
571
570
  */
572
571
  /**
573
572
  * Time Complexity: O(n) - Visiting each node once.
@@ -578,7 +577,7 @@ class BST extends binary_tree_1.BinaryTree {
578
577
  * to check if the AVL tree is balanced. It can have two possible values:
579
578
  * @returns a boolean value.
580
579
  */
581
- isAVLBalanced(iterationType = this.options.iterationType) {
580
+ isAVLBalanced(iterationType = this.iterationType) {
582
581
  var _a, _b;
583
582
  if (!this.root)
584
583
  return true;
@@ -639,7 +638,7 @@ class BST extends binary_tree_1.BinaryTree {
639
638
  * than), CP.lt (less than), or CP.eq (equal).
640
639
  */
641
640
  _compare(a, b) {
642
- const compared = this.options.comparator(a, b);
641
+ const compared = this.comparator(a, b);
643
642
  if (compared > 0)
644
643
  return types_1.CP.gt;
645
644
  else if (compared < 0)
@@ -5,7 +5,7 @@
5
5
  * @copyright Copyright (c) 2022 Tyler Zeng <zrwusa@gmail.com>
6
6
  * @license MIT License
7
7
  */
8
- import { BiTreeDeleteResult, BTNCallback, BTNKey, IterationType, RBTNColor, RBTreeOptions, RedBlackTreeNested, RedBlackTreeNodeNested } from '../../types';
8
+ import { BiTreeDeleteResult, BTNCallback, BTNKey, BTNodeExemplar, IterationType, RBTNColor, RBTreeOptions, RedBlackTreeNested, RedBlackTreeNodeNested } from '../../types';
9
9
  import { BST, BSTNode } from './bst';
10
10
  import { IBinaryTree } from '../../interfaces';
11
11
  export declare class RedBlackTreeNode<V = any, N extends RedBlackTreeNode<V, N> = RedBlackTreeNodeNested<V>> extends BSTNode<V, N> {
@@ -21,35 +21,54 @@ export declare class RedBlackTreeNode<V = any, N extends RedBlackTreeNode<V, N>
21
21
  */
22
22
  export declare class RedBlackTree<V = any, N extends RedBlackTreeNode<V, N> = RedBlackTreeNode<V, RedBlackTreeNodeNested<V>>, TREE extends RedBlackTree<V, N, TREE> = RedBlackTree<V, N, RedBlackTreeNested<V, N>>> extends BST<V, N, TREE> implements IBinaryTree<V, N, TREE> {
23
23
  Sentinel: N;
24
- options: RBTreeOptions;
25
24
  /**
26
- * The constructor function initializes a Red-Black Tree with an optional set of options.
27
- * @param {RBTreeOptions} [options] - The `options` parameter is an optional object that can be
28
- * passed to the constructor. It is used to configure the RBTree object with specific options.
29
- */
30
- constructor(options?: RBTreeOptions);
25
+ * This is the constructor function for a Red-Black Tree data structure in TypeScript, which
26
+ * initializes the tree with optional elements and options.
27
+ * @param [elements] - The `elements` parameter is an optional iterable of `BTNodeExemplar<V, N>`
28
+ * objects. It represents the initial elements that will be added to the RBTree during its
29
+ * construction. If this parameter is provided, the `addMany` method is called to add all the
30
+ * elements to the
31
+ * @param [options] - The `options` parameter is an optional object that allows you to customize the
32
+ * behavior of the RBTree. It is of type `Partial<RBTreeOptions>`, which means that you can provide
33
+ * only a subset of the properties defined in the `RBTreeOptions` interface.
34
+ */
35
+ constructor(elements?: Iterable<BTNodeExemplar<V, N>>, options?: Partial<RBTreeOptions>);
31
36
  protected _root: N;
32
37
  get root(): N;
33
38
  protected _size: number;
34
39
  get size(): number;
40
+ /**
41
+ * The function creates a new Red-Black Tree node with the specified key, value, and color.
42
+ * @param {BTNKey} key - The key parameter is the key value associated with the node. It is used to
43
+ * identify and compare nodes in the Red-Black Tree.
44
+ * @param {V} [value] - The `value` parameter is an optional parameter that represents the value
45
+ * associated with the node. It is of type `V`, which is a generic type that can be replaced with any
46
+ * specific type when using the `createNode` method.
47
+ * @param {RBTNColor} color - The "color" parameter is used to specify the color of the node in a
48
+ * Red-Black Tree. It can be either "RED" or "BLACK". By default, the color is set to "BLACK".
49
+ * @returns The method is returning a new instance of a RedBlackTreeNode with the specified key,
50
+ * value, and color.
51
+ */
35
52
  createNode(key: BTNKey, value?: V, color?: RBTNColor): N;
53
+ /**
54
+ * The function creates a Red-Black Tree with the specified options and returns it.
55
+ * @param {RBTreeOptions} [options] - The `options` parameter is an optional object that can be
56
+ * passed to the `createTree` function. It is used to customize the behavior of the `RedBlackTree`
57
+ * class.
58
+ * @returns a new instance of a RedBlackTree object.
59
+ */
36
60
  createTree(options?: RBTreeOptions): TREE;
37
61
  /**
38
62
  * Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
39
63
  * Space Complexity: O(1)
40
64
  */
41
65
  /**
42
- * Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
43
- * Space Complexity: O(1)
44
- *
45
- * The `add` function adds a new node to a Red-Black Tree data structure.
46
- * @param {BTNKey | N | null | undefined} keyOrNode - The `keyOrNode` parameter can be one of the
47
- * following types:
48
- * @param {V} [value] - The `value` parameter is an optional value that can be associated with the
49
- * key in the node being added to the Red-Black Tree.
50
- * @returns The method returns either a node (`N`) or `undefined`.
66
+ * The function adds a node to a Red-Black Tree data structure.
67
+ * @param keyOrNodeOrEntry - The `keyOrNodeOrEntry` parameter can be one of the following:
68
+ * @returns The method `add` returns either an instance of `N` (the node that was added) or
69
+ * `undefined`.
51
70
  */
52
- add(keyOrNode: BTNKey | N | null | undefined, value?: V): N | undefined;
71
+ add(keyOrNodeOrEntry: BTNodeExemplar<V, N>): N | undefined;
53
72
  /**
54
73
  * Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
55
74
  * Space Complexity: O(1)
@@ -70,6 +89,10 @@ export declare class RedBlackTree<V = any, N extends RedBlackTreeNode<V, N> = Re
70
89
  * @returns an array of `BiTreeDeleteResult<N>`.
71
90
  */
72
91
  delete<C extends BTNCallback<N>>(identifier: ReturnType<C> | null | undefined, callback?: C): BiTreeDeleteResult<N>[];
92
+ /**
93
+ * Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
94
+ * Space Complexity: O(1)
95
+ */
73
96
  isRealNode(node: N | undefined): node is N;
74
97
  getNode<C extends BTNCallback<N, BTNKey>>(identifier: BTNKey, callback?: C, beginRoot?: N | undefined, iterationType?: IterationType): N | undefined;
75
98
  getNode<C extends BTNCallback<N, N>>(identifier: N | undefined, callback?: C, beginRoot?: N | undefined, iterationType?: IterationType): N | undefined;
@@ -101,6 +124,10 @@ export declare class RedBlackTree<V = any, N extends RedBlackTreeNode<V, N> = Re
101
124
  * @returns the predecessor of the given RedBlackTreeNode 'x'.
102
125
  */
103
126
  getPredecessor(x: N): N;
127
+ /**
128
+ * Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
129
+ * Space Complexity: O(1)
130
+ */
104
131
  clear(): void;
105
132
  protected _setRoot(v: N): void;
106
133
  /**
@@ -166,4 +193,14 @@ export declare class RedBlackTree<V = any, N extends RedBlackTreeNode<V, N> = Re
166
193
  * red-black tree.
167
194
  */
168
195
  protected _fixInsert(k: N): void;
196
+ /**
197
+ * The function replaces an old node with a new node while preserving the color of the old node.
198
+ * @param {N} oldNode - The `oldNode` parameter represents the node that needs to be replaced in a
199
+ * data structure. It is of type `N`, which is the type of the nodes in the data structure.
200
+ * @param {N} newNode - The `newNode` parameter is the node that will replace the `oldNode` in the
201
+ * data structure.
202
+ * @returns The method is returning the result of calling the `_replaceNode` method from the
203
+ * superclass, passing in the `oldNode` and `newNode` as arguments.
204
+ */
205
+ protected _replaceNode(oldNode: N, newNode: N): N;
169
206
  }