memento-mcp-server 1.16.3-a → 1.16.3-c

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. package/dist/domains/search/algorithms/vector-search-engine-migration.d.ts +13 -8
  2. package/dist/domains/search/algorithms/vector-search-engine-migration.d.ts.map +1 -1
  3. package/dist/domains/search/algorithms/vector-search-engine-migration.js +19 -41
  4. package/dist/domains/search/algorithms/vector-search-engine-migration.js.map +1 -1
  5. package/dist/domains/search/algorithms/vector-search-engine.d.ts +17 -36
  6. package/dist/domains/search/algorithms/vector-search-engine.d.ts.map +1 -1
  7. package/dist/domains/search/algorithms/vector-search-engine.js +94 -481
  8. package/dist/domains/search/algorithms/vector-search-engine.js.map +1 -1
  9. package/dist/domains/search/repositories/vector-search.repository.d.ts.map +1 -1
  10. package/dist/domains/search/repositories/vector-search.repository.js +28 -12
  11. package/dist/domains/search/repositories/vector-search.repository.js.map +1 -1
  12. package/dist/domains/search/services/vector-search/vector-performance-tester.js +1 -1
  13. package/dist/domains/search/services/vector-search/vector-performance-tester.js.map +1 -1
  14. package/dist/domains/search/services/vector-search/vector-search-container.d.ts +1 -1
  15. package/dist/domains/search/services/vector-search/vector-search-container.d.ts.map +1 -1
  16. package/dist/domains/search/services/vector-search/vector-search-container.js +1 -1
  17. package/dist/domains/search/services/vector-search/vector-search-container.js.map +1 -1
  18. package/dist/domains/search/services/vector-search/vector-search-facade.js +3 -3
  19. package/dist/domains/search/services/vector-search/vector-search-facade.js.map +1 -1
  20. package/dist/domains/search/services/vector-search/vector-search.service.js +1 -1
  21. package/dist/domains/search/services/vector-search/vector-search.service.js.map +1 -1
  22. package/dist/server/http-server.d.ts.map +1 -1
  23. package/dist/server/http-server.js +2 -7
  24. package/dist/server/http-server.js.map +1 -1
  25. package/dist/server/index.d.ts +3 -0
  26. package/dist/server/index.d.ts.map +1 -1
  27. package/dist/server/index.js +33 -7
  28. package/dist/server/index.js.map +1 -1
  29. package/dist/server/server-factory.d.ts +65 -0
  30. package/dist/server/server-factory.d.ts.map +1 -0
  31. package/dist/server/server-factory.js +40 -0
  32. package/dist/server/server-factory.js.map +1 -0
  33. package/dist/server/servers/sse-server.d.ts +33 -0
  34. package/dist/server/servers/sse-server.d.ts.map +1 -0
  35. package/dist/server/servers/sse-server.js +48 -0
  36. package/dist/server/servers/sse-server.js.map +1 -0
  37. package/dist/server/servers/stdio-server.d.ts +34 -0
  38. package/dist/server/servers/stdio-server.d.ts.map +1 -0
  39. package/dist/server/servers/stdio-server.js +58 -0
  40. package/dist/server/servers/stdio-server.js.map +1 -0
  41. package/dist/server/simple-mcp-server.d.ts +5 -0
  42. package/dist/server/simple-mcp-server.d.ts.map +1 -1
  43. package/dist/server/simple-mcp-server.js +17 -7
  44. package/dist/server/simple-mcp-server.js.map +1 -1
  45. package/dist/server/sse-server-impl.d.ts +22 -0
  46. package/dist/server/sse-server-impl.d.ts.map +1 -0
  47. package/dist/server/sse-server-impl.js +39 -0
  48. package/dist/server/sse-server-impl.js.map +1 -0
  49. package/dist/server/stdio-server-impl.d.ts +12 -0
  50. package/dist/server/stdio-server-impl.d.ts.map +1 -0
  51. package/dist/server/stdio-server-impl.js +19 -0
  52. package/dist/server/stdio-server-impl.js.map +1 -0
  53. package/dist/shared/types/vector-search.types.d.ts +1 -0
  54. package/dist/shared/types/vector-search.types.d.ts.map +1 -1
  55. package/package.json +1 -1
  56. package/scripts/__tests__/check-db-integrity.integration.spec.ts +163 -0
  57. package/scripts/__tests__/fix-migration.integration.spec.ts +203 -0
  58. package/scripts/__tests__/migrate-embedding-data.integration.spec.ts +219 -0
  59. package/scripts/__tests__/regenerate-embeddings.integration.spec.ts +192 -0
  60. package/scripts/backup-embeddings.js +52 -61
  61. package/scripts/check-db-integrity.js +49 -25
  62. package/scripts/check-file-sizes.ts +4 -4
  63. package/scripts/check-pii-masking.ts +0 -3
  64. package/scripts/check-sql-injection.ts +0 -12
  65. package/scripts/debug-embeddings.js +74 -93
  66. package/scripts/fix-migration.js +115 -80
  67. package/scripts/fix-vector-dimensions.js +70 -89
  68. package/scripts/migrate-embedding-data.js +111 -25
  69. package/scripts/regenerate-embeddings.js +31 -15
  70. package/scripts/run-migration.js +144 -107
  71. package/scripts/safe-migration.js +192 -142
  72. package/scripts/save-work-memory.ts +6 -7
  73. package/scripts/simple-migrate.js +66 -34
  74. package/scripts/simple-update.js +147 -109
  75. package/dist/domains/search/algorithms/vector-search-engine-refactored.d.ts +0 -56
  76. package/dist/domains/search/algorithms/vector-search-engine-refactored.d.ts.map +0 -1
  77. package/dist/domains/search/algorithms/vector-search-engine-refactored.js +0 -101
  78. package/dist/domains/search/algorithms/vector-search-engine-refactored.js.map +0 -1
@@ -3,25 +3,28 @@
3
3
  /**
4
4
  * 임베딩 디버깅 스크립트
5
5
  * 현재 데이터베이스의 임베딩 상태를 상세히 분석
6
+ *
7
+ * 리팩토링: 공통 모듈(initializeDatabase)을 사용하여 일관된 DB 초기화 보장
8
+ *
9
+ * 사용법:
10
+ * - 개발 환경: npx tsx scripts/debug-embeddings.js
11
+ * - 프로덕션: npm run build && node dist/scripts/debug-embeddings.js
6
12
  */
7
13
 
8
- import Database from 'better-sqlite3';
9
- import path from 'path';
10
- import { fileURLToPath } from 'url';
11
-
12
- const __filename = fileURLToPath(import.meta.url);
13
- const __dirname = path.dirname(__filename);
14
-
15
- // 데이터베이스 경로 설정
16
- const dbPath = process.env.DB_PATH || path.join(__dirname, '..', 'data', 'memory.db');
14
+ // TypeScript 소스를 직접 import (tsx로 실행 시)
15
+ // 빌드된 파일을 사용하려면 '../dist/infrastructure/database/database/init.js'로 변경
16
+ import { initializeDatabase, closeDatabase } from '../src/infrastructure/database/database/init.js';
17
17
 
18
18
  async function debugEmbeddings() {
19
19
  console.log('🔍 임베딩 상태 디버깅 시작...');
20
20
 
21
- // 데이터베이스 연결
22
- const db = new Database(dbPath);
21
+ let db = null;
23
22
 
24
23
  try {
24
+ // 공통 모듈을 사용하여 데이터베이스 초기화
25
+ // initializeDatabase는 DB 파일이 없으면 자동으로 생성하고 초기화함
26
+ db = await initializeDatabase();
27
+
25
28
  // 1. 전체 임베딩 통계
26
29
  console.log('\n📊 전체 임베딩 통계:');
27
30
  const totalStats = db.prepare(`
@@ -49,21 +52,18 @@ async function debugEmbeddings() {
49
52
  GROUP_CONCAT(memory_id) as memory_ids
50
53
  FROM memory_embedding
51
54
  GROUP BY dim
52
- ORDER BY dim
55
+ ORDER BY count DESC
53
56
  `).all();
54
57
 
55
58
  dimensionStats.forEach(stat => {
56
59
  console.log(`- ${stat.dim}차원: ${stat.count}개`);
57
- if (stat.count <= 5) {
58
- console.log(` 메모리 ID: ${stat.memory_ids}`);
59
- }
60
60
  });
61
61
 
62
62
  // 3. 모델별 분포
63
63
  console.log('\n🤖 모델별 분포:');
64
64
  const modelStats = db.prepare(`
65
65
  SELECT
66
- model,
66
+ COALESCE(model, 'NULL') as model,
67
67
  COUNT(*) as count,
68
68
  AVG(dim) as avg_dim
69
69
  FROM memory_embedding
@@ -72,113 +72,94 @@ async function debugEmbeddings() {
72
72
  `).all();
73
73
 
74
74
  modelStats.forEach(stat => {
75
- console.log(`- ${stat.model || 'NULL'}: ${stat.count}개 (평균 ${stat.avg_dim?.toFixed(1)}차원)`);
75
+ console.log(`- ${stat.model}: ${stat.count}개 (평균 ${stat.avg_dim?.toFixed(1) || 'N/A'}차원)`);
76
76
  });
77
77
 
78
- // 4. 최근 생성된 임베딩들
79
- console.log('\n🕒 최근 생성된 임베딩 (최대 10개):');
80
- const recentEmbeddings = db.prepare(`
78
+ // 4. 임베딩 제공자별 분포 (컬럼이 있는 경우)
79
+ const hasProvider = db.prepare("PRAGMA table_info(memory_embedding)").all()
80
+ .some(col => col.name === 'embedding_provider');
81
+
82
+ if (hasProvider) {
83
+ console.log('\n🔧 임베딩 제공자별 분포:');
84
+ const providerStats = db.prepare(`
85
+ SELECT
86
+ COALESCE(embedding_provider, 'NULL') as provider,
87
+ COUNT(*) as count,
88
+ AVG(dimensions) as avg_dim
89
+ FROM memory_embedding
90
+ GROUP BY embedding_provider
91
+ ORDER BY count DESC
92
+ `).all();
93
+
94
+ providerStats.forEach(stat => {
95
+ console.log(`- ${stat.provider}: ${stat.count}개 (평균 ${stat.avg_dim?.toFixed(1) || 'N/A'}차원)`);
96
+ });
97
+ }
98
+
99
+ // 5. 문제가 있는 임베딩 확인
100
+ console.log('\n⚠️ 문제가 있는 임베딩:');
101
+ const problematic = db.prepare(`
81
102
  SELECT
82
103
  memory_id,
83
104
  dim,
84
105
  model,
85
- created_at,
86
- LENGTH(embedding) as embedding_length
106
+ CASE
107
+ WHEN embedding IS NULL OR embedding = '' THEN '빈 임베딩'
108
+ WHEN dim IS NULL OR dim = 0 THEN '차원 없음'
109
+ ELSE '정상'
110
+ END as issue
87
111
  FROM memory_embedding
88
- ORDER BY created_at DESC
112
+ WHERE embedding IS NULL OR embedding = '' OR dim IS NULL OR dim = 0
89
113
  LIMIT 10
90
114
  `).all();
91
115
 
92
- recentEmbeddings.forEach(emb => {
93
- console.log(`- ${emb.memory_id}: ${emb.dim}차원, ${emb.model}, ${emb.created_at}`);
94
- });
95
-
96
- // 5. 문제가 있는 임베딩 찾기
97
- console.log('\n⚠️ 문제가 있을 수 있는 임베딩들:');
98
-
99
- // 차원이 0인 경우
100
- const zeroDim = db.prepare(`
101
- SELECT memory_id, dim, model FROM memory_embedding WHERE dim = 0
102
- `).all();
103
-
104
- if (zeroDim.length > 0) {
105
- console.log(`- 차원이 0인 임베딩: ${zeroDim.length}개`);
106
- zeroDim.forEach(emb => {
107
- console.log(` ${emb.memory_id} (${emb.model})`);
116
+ if (problematic.length === 0) {
117
+ console.log('- 문제가 있는 임베딩이 없습니다.');
118
+ } else {
119
+ problematic.forEach(item => {
120
+ console.log(`- ${item.memory_id}: ${item.issue} (차원: ${item.dim || 'N/A'}, 모델: ${item.model || 'N/A'})`);
108
121
  });
109
122
  }
110
123
 
111
- // 차원이 매우 경우 (1536보다 큰 경우)
112
- const largeDim = db.prepare(`
113
- SELECT memory_id, dim, model FROM memory_embedding WHERE dim > 1536
114
- `).all();
115
-
116
- if (largeDim.length > 0) {
117
- console.log(`- 차원이 1536보다 큰 임베딩: ${largeDim.length}개`);
118
- largeDim.forEach(emb => {
119
- console.log(` ${emb.memory_id}: ${emb.dim}차원 (${emb.model})`);
120
- });
121
- }
122
-
123
- // 6. 임베딩 데이터 샘플 확인
124
- console.log('\n🔬 임베딩 데이터 샘플 (첫 3개):');
125
- const samples = db.prepare(`
124
+ // 6. 최근 생성된 임베딩
125
+ console.log('\n🕐 최근 생성된 임베딩 (최대 5개):');
126
+ const recent = db.prepare(`
126
127
  SELECT
127
128
  memory_id,
128
129
  dim,
129
130
  model,
130
- SUBSTR(embedding, 1, 100) as embedding_preview
131
+ created_at
131
132
  FROM memory_embedding
132
- LIMIT 3
133
+ ORDER BY created_at DESC
134
+ LIMIT 5
133
135
  `).all();
134
136
 
135
- samples.forEach((sample, index) => {
136
- console.log(`\n샘플 ${index + 1}:`);
137
- console.log(`- 메모리 ID: ${sample.memory_id}`);
138
- console.log(`- 차원: ${sample.dim}`);
139
- console.log(`- 모델: ${sample.model}`);
140
- console.log(`- 임베딩 미리보기: ${sample.embedding_preview}...`);
141
-
142
- // 실제 벡터 길이 확인
143
- try {
144
- const fullEmbedding = db.prepare(`
145
- SELECT embedding FROM memory_embedding WHERE memory_id = ?
146
- `).get(sample.memory_id);
147
-
148
- const vector = JSON.parse(fullEmbedding.embedding);
149
- console.log(`- 실제 벡터 길이: ${vector.length}`);
150
- console.log(`- 첫 5개 값: [${vector.slice(0, 5).join(', ')}...]`);
151
- } catch (error) {
152
- console.log(`- 벡터 파싱 오류: ${error.message}`);
153
- }
137
+ recent.forEach(item => {
138
+ console.log(`- ${item.memory_id}: ${item.dim}차원, ${item.model || 'N/A'} (${item.created_at})`);
154
139
  });
155
140
 
156
- // 7. 메모리 아이템과의 연결 상태 확인
157
- console.log('\n🔗 메모리 아이템 연결 상태:');
158
- const connectionStats = db.prepare(`
159
- SELECT
160
- (SELECT COUNT(*) FROM memory_item) as total_memories,
161
- (SELECT COUNT(*) FROM memory_embedding) as total_embeddings,
162
- (SELECT COUNT(*) FROM memory_item mi
163
- LEFT JOIN memory_embedding me ON mi.id = me.memory_id
164
- WHERE me.memory_id IS NULL) as memories_without_embedding
165
- `).get();
166
-
167
- console.log(`- 총 메모리 개수: ${connectionStats.total_memories}`);
168
- console.log(`- 총 임베딩 개수: ${connectionStats.total_embeddings}`);
169
- console.log(`- 임베딩이 없는 메모리: ${connectionStats.memories_without_embedding}`);
141
+ console.log('\n✅ 디버깅 완료!');
170
142
 
171
143
  } catch (error) {
172
- console.error('❌ 디버깅 실패:', error);
144
+ console.error('❌ 디버깅 중 오류 발생:', error.message);
145
+ if (error.stack) {
146
+ console.error(' 스택 트레이스:', error.stack);
147
+ }
173
148
  process.exit(1);
174
149
  } finally {
175
- db.close();
150
+ // 데이터베이스 연결 종료
151
+ if (db) {
152
+ closeDatabase(db);
153
+ }
176
154
  }
177
155
  }
178
156
 
179
157
  // 스크립트 실행
180
- if (import.meta.url === `file://${process.argv[1]}`) {
181
- debugEmbeddings().catch(console.error);
158
+ if (import.meta.url === `file://${process.argv[1]}` || import.meta.url.endsWith(process.argv[1])) {
159
+ debugEmbeddings().catch((error) => {
160
+ console.error('❌ 스크립트 실행 중 오류 발생:', error);
161
+ process.exit(1);
162
+ });
182
163
  }
183
164
 
184
165
  export { debugEmbeddings };
@@ -1,93 +1,128 @@
1
1
  #!/usr/bin/env node
2
+ /**
3
+ * Memento 마이그레이션 수정 스크립트
4
+ *
5
+ * 리팩토링: 공통 모듈(initializeDatabase)을 사용하여 일관된 DB 초기화 보장
6
+ *
7
+ * 사용법:
8
+ * - 개발 환경: npx tsx scripts/fix-migration.js
9
+ * - 프로덕션: npm run build && node dist/scripts/fix-migration.js
10
+ */
2
11
 
3
- import Database from 'better-sqlite3';
4
- import { join } from 'path';
5
-
6
- const dbPath = join(process.cwd(), 'data', 'memory.db');
12
+ // TypeScript 소스를 직접 import (tsx로 실행 시)
13
+ // 빌드된 파일을 사용하려면 '../dist/infrastructure/database/database/init.js'로 변경
14
+ import { initializeDatabase, closeDatabase } from '../src/infrastructure/database/database/init.js';
7
15
 
8
16
  console.log('🔧 마이그레이션 수정 중...');
9
17
 
10
- try {
11
- const db = new Database(dbPath);
12
-
13
- // 1. 현재 상태 확인
14
- console.log('📊 현재 상태 확인...');
15
- const currentSchema = db.prepare("PRAGMA table_info(memory_embedding)").all();
16
- console.log('현재 테이블 구조:');
17
- console.table(currentSchema);
18
-
19
- // 2. 컬럼이 있는지 확인
20
- const hasProvider = currentSchema.some(col => col.name === 'embedding_provider');
21
- const hasDimensions = currentSchema.some(col => col.name === 'dimensions');
22
- const hasCreatedBy = currentSchema.some(col => col.name === 'created_by');
23
-
24
- console.log(`embedding_provider: ${hasProvider ? '✅' : '❌'}`);
25
- console.log(`dimensions: ${hasDimensions ? '✅' : '❌'}`);
26
- console.log(`created_by: ${hasCreatedBy ? '✅' : '❌'}`);
18
+ /**
19
+ * 마이그레이션 수정 메인 함수
20
+ */
21
+ async function fixMigration() {
22
+ let db = null;
27
23
 
28
- // 3. 데이터 업데이트 (컬럼이 있는 경우에만)
29
- if (hasProvider && hasDimensions && hasCreatedBy) {
30
- console.log('🔄 데이터 업데이트 중...');
31
-
32
- const updateResult = db.prepare(`
33
- UPDATE memory_embedding
34
- SET
35
- embedding_provider = CASE
36
- WHEN model = 'lightweight-hybrid' THEN 'tfidf'
37
- WHEN model IS NULL OR model = '' THEN 'tfidf'
38
- ELSE 'unknown'
39
- END,
40
- dimensions = dim,
41
- created_by = 'legacy'
42
- WHERE embedding_provider IS NULL
43
- `).run();
44
-
45
- console.log(`✅ ${updateResult.changes}개 레코드 업데이트 완료`);
46
-
47
- // 4. 인덱스 추가
48
- console.log('📝 인덱스 추가 중...');
49
- db.exec('CREATE INDEX IF NOT EXISTS idx_memory_embedding_provider ON memory_embedding(embedding_provider)');
50
- db.exec('CREATE INDEX IF NOT EXISTS idx_memory_embedding_dimensions ON memory_embedding(dimensions)');
51
- db.exec('CREATE INDEX IF NOT EXISTS idx_memory_embedding_created_by ON memory_embedding(created_by)');
52
- console.log('✅ 인덱스 추가 완료');
24
+ try {
25
+ // 공통 모듈을 사용하여 데이터베이스 초기화
26
+ // initializeDatabase는 DB 파일이 없으면 자동으로 생성하고 초기화함
27
+ db = await initializeDatabase();
53
28
 
54
- // 5. 최종 검증
55
- console.log('🔍 최종 검증...');
56
- const validation = db.prepare(`
57
- SELECT
58
- COUNT(*) as total,
59
- COUNT(CASE WHEN embedding_provider IS NOT NULL THEN 1 END) as with_provider,
60
- COUNT(CASE WHEN dimensions IS NOT NULL THEN 1 END) as with_dimensions,
61
- COUNT(CASE WHEN created_by IS NOT NULL THEN 1 END) as with_created_by
62
- FROM memory_embedding
63
- `).get();
29
+ // 1. 현재 상태 확인
30
+ console.log('📊 현재 상태 확인...');
31
+ const currentSchema = db.prepare("PRAGMA table_info(memory_embedding)").all();
32
+ console.log('현재 테이블 구조:');
33
+ console.table(currentSchema);
64
34
 
65
- console.log('📊 검증 결과:');
66
- console.table(validation);
35
+ // 2. 컬럼이 있는지 확인
36
+ const hasProvider = currentSchema.some(col => col.name === 'embedding_provider');
37
+ const hasDimensions = currentSchema.some(col => col.name === 'dimensions');
38
+ const hasCreatedBy = currentSchema.some(col => col.name === 'created_by');
67
39
 
68
- // 6. 최종 데이터 분포
69
- const finalAnalysis = db.prepare(`
70
- SELECT
71
- embedding_provider,
72
- dimensions,
73
- COUNT(*) as count
74
- FROM memory_embedding
75
- GROUP BY embedding_provider, dimensions
76
- ORDER BY count DESC
77
- `).all();
40
+ console.log(`embedding_provider: ${hasProvider ? '✅' : '❌'}`);
41
+ console.log(`dimensions: ${hasDimensions ? '✅' : '❌'}`);
42
+ console.log(`created_by: ${hasCreatedBy ? '✅' : '❌'}`);
78
43
 
79
- console.log('\n📊 최종 데이터 분포:');
80
- console.table(finalAnalysis);
44
+ // 3. 데이터 업데이트 (컬럼이 있는 경우에만)
45
+ if (hasProvider && hasDimensions && hasCreatedBy) {
46
+ console.log('🔄 데이터 업데이트 중...');
47
+
48
+ const updateResult = db.prepare(`
49
+ UPDATE memory_embedding
50
+ SET
51
+ embedding_provider = CASE
52
+ WHEN model = 'lightweight-hybrid' THEN 'tfidf'
53
+ WHEN model IS NULL OR model = '' THEN 'tfidf'
54
+ ELSE 'unknown'
55
+ END,
56
+ dimensions = dim,
57
+ created_by = 'legacy'
58
+ WHERE embedding_provider IS NULL
59
+ `).run();
60
+
61
+ console.log(`✅ ${updateResult.changes}개 레코드 업데이트 완료`);
62
+
63
+ // 4. 인덱스 추가
64
+ console.log('📝 인덱스 추가 중...');
65
+ db.exec('CREATE INDEX IF NOT EXISTS idx_memory_embedding_provider ON memory_embedding(embedding_provider)');
66
+ db.exec('CREATE INDEX IF NOT EXISTS idx_memory_embedding_dimensions ON memory_embedding(dimensions)');
67
+ db.exec('CREATE INDEX IF NOT EXISTS idx_memory_embedding_created_by ON memory_embedding(created_by)');
68
+ console.log('✅ 인덱스 추가 완료');
69
+
70
+ // 5. 최종 검증
71
+ console.log('🔍 최종 검증...');
72
+ const validation = db.prepare(`
73
+ SELECT
74
+ COUNT(*) as total,
75
+ COUNT(CASE WHEN embedding_provider IS NOT NULL THEN 1 END) as with_provider,
76
+ COUNT(CASE WHEN dimensions IS NOT NULL THEN 1 END) as with_dimensions,
77
+ COUNT(CASE WHEN created_by IS NOT NULL THEN 1 END) as with_created_by
78
+ FROM memory_embedding
79
+ `).get();
80
+
81
+ console.log('📊 검증 결과:');
82
+ console.table(validation);
83
+
84
+ // 6. 최종 데이터 분포
85
+ const finalAnalysis = db.prepare(`
86
+ SELECT
87
+ embedding_provider,
88
+ dimensions,
89
+ COUNT(*) as count
90
+ FROM memory_embedding
91
+ GROUP BY embedding_provider, dimensions
92
+ ORDER BY count DESC
93
+ `).all();
94
+
95
+ console.log('\n📊 최종 데이터 분포:');
96
+ console.table(finalAnalysis);
97
+
98
+ console.log('\n🎉 마이그레이션 완료!');
99
+
100
+ } else {
101
+ console.log('❌ 필요한 컬럼이 없습니다. 스키마를 먼저 업데이트해주세요.');
102
+ console.log(' initializeDatabase가 자동으로 스키마를 생성하지만, 필요한 컬럼이 없을 수 있습니다.');
103
+ process.exit(1);
104
+ }
81
105
 
82
- console.log('\n🎉 마이그레이션 완료!');
83
-
84
- } else {
85
- console.log(' 필요한 컬럼이 없습니다. 스키마를 먼저 업데이트해주세요.');
106
+ } catch (error) {
107
+ console.error('❌ 오류 발생:', error.message);
108
+ if (error.stack) {
109
+ console.error(' 스택 트레이스:', error.stack);
110
+ }
111
+ process.exit(1);
112
+ } finally {
113
+ // 데이터베이스 연결 종료
114
+ if (db) {
115
+ closeDatabase(db);
116
+ }
86
117
  }
87
-
88
- db.close();
89
-
90
- } catch (error) {
91
- console.error('❌ 오류 발생:', error.message);
92
- process.exit(1);
93
118
  }
119
+
120
+ // 스크립트가 직접 실행될 때만 main 함수 호출
121
+ if (import.meta.url === `file://${process.argv[1]}` || import.meta.url.endsWith(process.argv[1])) {
122
+ fixMigration().catch((error) => {
123
+ console.error('❌ 스크립트 실행 중 오류 발생:', error);
124
+ process.exit(1);
125
+ });
126
+ }
127
+
128
+ export { fixMigration };
@@ -3,27 +3,31 @@
3
3
  /**
4
4
  * 벡터 차원 통일 스크립트
5
5
  * 모든 임베딩을 삭제하고 현재 설정에 맞는 모델로 재생성
6
+ *
7
+ * 리팩토링: 공통 모듈(initializeDatabase)을 사용하여 일관된 DB 초기화 보장
8
+ *
9
+ * 사용법:
10
+ * - 개발 환경: npx tsx scripts/fix-vector-dimensions.js
11
+ * - 프로덕션: npm run build && node dist/scripts/fix-vector-dimensions.js
6
12
  */
7
13
 
8
- import Database from 'better-sqlite3';
9
- import path from 'path';
10
- import { fileURLToPath } from 'url';
14
+ // TypeScript 소스를 직접 import (tsx로 실행 시)
15
+ // 빌드된 파일을 사용하려면 '../dist/infrastructure/database/database/init.js'로 변경
16
+ import { initializeDatabase, closeDatabase } from '../src/infrastructure/database/database/init.js';
11
17
  import { EmbeddingService } from '../dist/services/embedding-service.js';
12
18
 
13
- const __filename = fileURLToPath(import.meta.url);
14
- const __dirname = path.dirname(__filename);
15
-
16
- // 데이터베이스 경로 설정
17
- const dbPath = process.env.DB_PATH || path.join(__dirname, '..', 'data', 'memory.db');
18
-
19
19
  async function fixVectorDimensions() {
20
20
  console.log('🔧 벡터 차원 통일 작업 시작...');
21
21
 
22
- // 데이터베이스 연결
23
- const db = new Database(dbPath);
24
- const embeddingService = new EmbeddingService();
22
+ let db = null;
25
23
 
26
24
  try {
25
+ // 공통 모듈을 사용하여 데이터베이스 초기화
26
+ // initializeDatabase는 DB 파일이 없으면 자동으로 생성하고 초기화함
27
+ db = await initializeDatabase();
28
+
29
+ const embeddingService = new EmbeddingService();
30
+
27
31
  // 1. 현재 상태 확인
28
32
  console.log('\n📊 현재 상태:');
29
33
  const currentStats = db.prepare(`
@@ -50,59 +54,39 @@ async function fixVectorDimensions() {
50
54
  process.exit(1);
51
55
  }
52
56
 
53
- // 3. 기존 임베딩 백업
54
- console.log('\n💾 기존 임베딩 백업 중...');
55
- const backupData = db.prepare(`
56
- SELECT
57
- me.memory_id,
58
- me.embedding,
59
- me.dim,
60
- me.model,
61
- me.created_at,
62
- mi.content,
63
- mi.type
64
- FROM memory_embedding me
65
- JOIN memory_item mi ON me.memory_id = mi.id
66
- `).all();
57
+ // 3. 사용자 확인
58
+ console.log('\n⚠️ 경고: 작업은 모든 임베딩을 삭제하고 재생성합니다.');
59
+ console.log('백업을 먼저 수행하는 것을 권장합니다.');
60
+ console.log('계속하려면 스크립트를 --confirm 플래그와 함께 실행하세요.');
67
61
 
68
- const backupFile = path.join(__dirname, '..', 'backup', `embeddings-backup-${new Date().toISOString().replace(/[:.]/g, '-')}.json`);
69
- const fs = await import('fs');
70
-
71
- if (!fs.existsSync(path.dirname(backupFile))) {
72
- fs.mkdirSync(path.dirname(backupFile), { recursive: true });
62
+ if (!process.argv.includes('--confirm')) {
63
+ console.log('\n❌ 확인 플래그가 없어 작업을 중단합니다.');
64
+ console.log('사용법: npx tsx scripts/fix-vector-dimensions.js --confirm');
65
+ return;
73
66
  }
74
67
 
75
- fs.writeFileSync(backupFile, JSON.stringify({
76
- timestamp: new Date().toISOString(),
77
- totalEmbeddings: backupData.length,
78
- embeddings: backupData.map(emb => ({
79
- memory_id: emb.memory_id,
80
- content: emb.content,
81
- type: emb.type,
82
- embedding: JSON.parse(emb.embedding),
83
- dim: emb.dim,
84
- model: emb.model,
85
- created_at: emb.created_at
86
- }))
87
- }, null, 2));
88
-
89
- console.log(`✅ 백업 완료: ${backupFile}`);
90
-
91
- // 4. 기존 임베딩 삭제
92
- console.log('\n🗑️ 기존 임베딩 삭제 중...');
93
- const deleteResult = db.prepare('DELETE FROM memory_embedding').run();
94
- console.log(`✅ 삭제 완료: ${deleteResult.changes}개 행 삭제`);
95
-
96
- // 5. 모든 메모리에 대해 새로운 임베딩 생성
97
- console.log('\n🔄 새로운 임베딩 생성 중...');
68
+ // 4. 모든 기억 조회
69
+ console.log('\n📋 기억 조회 중...');
98
70
  const memories = db.prepare(`
99
- SELECT id, content, type, importance, created_at
71
+ SELECT id, content, type
100
72
  FROM memory_item
101
73
  ORDER BY created_at
102
74
  `).all();
103
75
 
104
- console.log(`📊 처리할 메모리 개수: ${memories.length}`);
76
+ console.log(`📊 처리할 기억 개수: ${memories.length}`);
77
+
78
+ if (memories.length === 0) {
79
+ console.log('⚠️ 재생성할 기억이 없습니다.');
80
+ return;
81
+ }
105
82
 
83
+ // 5. 기존 임베딩 삭제
84
+ console.log('\n🗑️ 기존 임베딩 삭제 중...');
85
+ const deleteResult = db.prepare('DELETE FROM memory_embedding').run();
86
+ console.log(`✅ ${deleteResult.changes}개 임베딩 삭제 완료`);
87
+
88
+ // 6. 새로운 임베딩 생성
89
+ console.log('\n🔄 새로운 임베딩 생성 중...');
106
90
  let successCount = 0;
107
91
  let errorCount = 0;
108
92
 
@@ -136,7 +120,7 @@ async function fixVectorDimensions() {
136
120
  console.log(`${progress} ✅ 완료: ${memory.id} (${embeddingResult.embedding.length}차원)`);
137
121
  successCount++;
138
122
 
139
- // API 제한을 위한 대기
123
+ // API 제한을 위한 대기 (필요시)
140
124
  if (i % 10 === 0 && i > 0) {
141
125
  console.log('⏳ API 제한 대기 중...');
142
126
  await new Promise(resolve => setTimeout(resolve, 1000));
@@ -144,63 +128,60 @@ async function fixVectorDimensions() {
144
128
 
145
129
  } catch (error) {
146
130
  console.error(`${progress} ❌ 오류: ${memory.id}`, error.message);
131
+ if (error.stack) {
132
+ console.error(' 스택 트레이스:', error.stack);
133
+ }
147
134
  errorCount++;
148
135
  }
149
136
  }
150
137
 
151
- // 6. 최종 검증
152
- console.log('\n🔍 최종 검증:');
138
+ // 7. 결과 통계
139
+ console.log('\n📊 작업 완료!');
140
+ console.log(`✅ 성공: ${successCount}개`);
141
+ console.log(`❌ 실패: ${errorCount}개`);
142
+ console.log(`📈 성공률: ${((successCount / memories.length) * 100).toFixed(1)}%`);
143
+
144
+ // 8. 최종 검증
153
145
  const finalStats = db.prepare(`
154
146
  SELECT
155
147
  COUNT(*) as total,
156
- AVG(dim) as avg_dim,
157
- MIN(dim) as min_dim,
158
- MAX(dim) as max_dim,
159
- COUNT(DISTINCT dim) as unique_dims
148
+ COUNT(DISTINCT dim) as unique_dims,
149
+ AVG(dim) as avg_dim
160
150
  FROM memory_embedding
161
151
  `).get();
162
152
 
153
+ console.log('\n🔍 최종 검증:');
163
154
  console.log(`- 총 임베딩: ${finalStats.total}개`);
164
- console.log(`- 평균 차원: ${finalStats.avg_dim?.toFixed(1) || 'N/A'}`);
165
- console.log(`- 최소 차원: ${finalStats.min_dim || 'N/A'}`);
166
- console.log(`- 최대 차원: ${finalStats.max_dim || 'N/A'}`);
167
155
  console.log(`- 고유 차원 수: ${finalStats.unique_dims}개`);
156
+ console.log(`- 평균 차원: ${finalStats.avg_dim?.toFixed(1) || 'N/A'}`);
168
157
 
169
- // 차원 일치성 확인
170
158
  const expectedDim = modelInfo.dimensions;
171
- const mismatchedDims = db.prepare(`
172
- SELECT COUNT(*) as count FROM memory_embedding WHERE dim != ?
173
- `).get(expectedDim);
174
-
175
- if (mismatchedDims.count > 0) {
176
- console.warn(`⚠️ 차원 불일치 발견: ${mismatchedDims.count}개`);
177
- } else {
159
+ if (finalStats.unique_dims === 1 && finalStats.avg_dim === expectedDim) {
178
160
  console.log('✅ 모든 임베딩의 차원이 일치합니다!');
179
- }
180
-
181
- // 7. 결과 요약
182
- console.log('\n📊 작업 완료 요약:');
183
- console.log(`✅ 성공: ${successCount}개`);
184
- console.log(`❌ 실패: ${errorCount}개`);
185
- console.log(`📈 성공률: ${((successCount / memories.length) * 100).toFixed(1)}%`);
186
-
187
- if (finalStats.unique_dims === 1) {
188
- console.log('🎉 벡터 차원 통일 완료! 이제 검색이 정상 작동할 것입니다.');
189
161
  } else {
190
- console.log('⚠️ 여전히 차원 불일치가 있습니다. 추가 확인이 필요합니다.');
162
+ console.warn(`⚠️ 차원 불일치: 예상 ${expectedDim}차원, 실제 ${finalStats.avg_dim?.toFixed(1) || 'N/A'}차원`);
191
163
  }
192
164
 
193
165
  } catch (error) {
194
- console.error('❌ 벡터 차원 통일 실패:', error);
166
+ console.error('❌ 작업 실패:', error.message);
167
+ if (error.stack) {
168
+ console.error(' 스택 트레이스:', error.stack);
169
+ }
195
170
  process.exit(1);
196
171
  } finally {
197
- db.close();
172
+ // 데이터베이스 연결 종료
173
+ if (db) {
174
+ closeDatabase(db);
175
+ }
198
176
  }
199
177
  }
200
178
 
201
179
  // 스크립트 실행
202
- if (import.meta.url === `file://${process.argv[1]}`) {
203
- fixVectorDimensions().catch(console.error);
180
+ if (import.meta.url === `file://${process.argv[1]}` || import.meta.url.endsWith(process.argv[1])) {
181
+ fixVectorDimensions().catch((error) => {
182
+ console.error('❌ 스크립트 실행 중 오류 발생:', error);
183
+ process.exit(1);
184
+ });
204
185
  }
205
186
 
206
187
  export { fixVectorDimensions };