max-heap-typed 2.2.0 → 2.2.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/types/data-structures/binary-tree/avl-tree.d.ts +3 -1
- package/dist/types/data-structures/binary-tree/binary-tree.d.ts +1 -0
- package/dist/types/data-structures/binary-tree/bst.d.ts +1 -0
- package/dist/types/data-structures/binary-tree/red-black-tree.d.ts +1 -0
- package/dist/types/data-structures/binary-tree/tree-multi-map.d.ts +1 -0
- package/dist/types/types/data-structures/base/base.d.ts +1 -1
- package/package.json +2 -2
- package/src/data-structures/base/iterable-entry-base.ts +4 -4
- package/src/data-structures/binary-tree/avl-tree-counter.ts +1 -1
- package/src/data-structures/binary-tree/avl-tree-multi-map.ts +1 -1
- package/src/data-structures/binary-tree/avl-tree.ts +4 -2
- package/src/data-structures/binary-tree/binary-tree.ts +3 -2
- package/src/data-structures/binary-tree/bst.ts +2 -1
- package/src/data-structures/binary-tree/red-black-tree.ts +2 -1
- package/src/data-structures/binary-tree/tree-counter.ts +1 -1
- package/src/data-structures/binary-tree/tree-multi-map.ts +2 -1
- package/src/data-structures/graph/abstract-graph.ts +3 -3
- package/src/data-structures/hash/hash-map.ts +4 -4
- package/src/types/data-structures/base/base.ts +1 -1
|
@@ -125,7 +125,9 @@ export declare class AVLTreeNode<K = any, V = any> {
|
|
|
125
125
|
* 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater.
|
|
126
126
|
* 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature.
|
|
127
127
|
* 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST.
|
|
128
|
-
* 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes
|
|
128
|
+
* 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
|
|
129
|
+
*
|
|
130
|
+
* @example
|
|
129
131
|
* // Find elements in a range
|
|
130
132
|
* // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
|
|
131
133
|
* type Datum = { timestamp: Date; temperature: number };
|
|
@@ -123,6 +123,7 @@ export declare class BinaryTreeNode<K = any, V = any> {
|
|
|
123
123
|
* 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree.
|
|
124
124
|
* 4. Subtrees: Each child of a node forms the root of a subtree.
|
|
125
125
|
* 5. Leaf Nodes: Nodes without children are leaves.
|
|
126
|
+
*
|
|
126
127
|
* @example
|
|
127
128
|
* // determine loan approval using a decision tree
|
|
128
129
|
* // Decision tree structure
|
|
@@ -124,6 +124,7 @@ export declare class BSTNode<K = any, V = any> {
|
|
|
124
124
|
* 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient.
|
|
125
125
|
* 6. Balance Variability: Can become unbalanced; special types maintain balance.
|
|
126
126
|
* 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
|
|
127
|
+
*
|
|
127
128
|
* @example
|
|
128
129
|
* // Merge 3 sorted datasets
|
|
129
130
|
* const dataset1 = new BST<number, string>([
|
|
@@ -110,6 +110,7 @@ export declare class RedBlackTreeNode<K = any, V = any> {
|
|
|
110
110
|
* @template R
|
|
111
111
|
* 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high, but the query efficiency is slightly lower.
|
|
112
112
|
* 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
|
|
113
|
+
*
|
|
113
114
|
* @example
|
|
114
115
|
* // using Red-Black Tree as a price-based index for stock data
|
|
115
116
|
* // Define the structure of individual stock records
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { IterableElementBase, IterableEntryBase } from '../../../data-structures';
|
|
2
2
|
import { LinearBase } from '../../../data-structures/base/linear-base';
|
|
3
|
-
export type EntryCallback<K, V, R> = (
|
|
3
|
+
export type EntryCallback<K, V, R> = (value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
|
|
4
4
|
export type ElementCallback<E, R, RT> = (element: E, index: number, original: IterableElementBase<E, R>) => RT;
|
|
5
5
|
export type ReduceEntryCallback<K, V, R> = (accumulator: R, value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
|
|
6
6
|
export type ReduceElementCallback<E, R, U = E> = (accumulator: U, value: E, index: number, self: IterableElementBase<E, R>) => U;
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "max-heap-typed",
|
|
3
|
-
"version": "2.2.
|
|
3
|
+
"version": "2.2.2",
|
|
4
4
|
"description": "Max Heap",
|
|
5
5
|
"browser": "dist/umd/max-heap-typed.min.js",
|
|
6
6
|
"umd:main": "dist/umd/max-heap-typed.min.js",
|
|
@@ -170,6 +170,6 @@
|
|
|
170
170
|
"typescript": "^4.9.5"
|
|
171
171
|
},
|
|
172
172
|
"dependencies": {
|
|
173
|
-
"data-structure-typed": "^2.2.
|
|
173
|
+
"data-structure-typed": "^2.2.2"
|
|
174
174
|
}
|
|
175
175
|
}
|
|
@@ -66,7 +66,7 @@ export abstract class IterableEntryBase<K = any, V = any> {
|
|
|
66
66
|
every(predicate: EntryCallback<K, V, boolean>, thisArg?: any): boolean {
|
|
67
67
|
let index = 0;
|
|
68
68
|
for (const item of this) {
|
|
69
|
-
if (!predicate.call(thisArg, item[
|
|
69
|
+
if (!predicate.call(thisArg, item[1], item[0], index++, this)) {
|
|
70
70
|
return false;
|
|
71
71
|
}
|
|
72
72
|
}
|
|
@@ -83,7 +83,7 @@ export abstract class IterableEntryBase<K = any, V = any> {
|
|
|
83
83
|
some(predicate: EntryCallback<K, V, boolean>, thisArg?: any): boolean {
|
|
84
84
|
let index = 0;
|
|
85
85
|
for (const item of this) {
|
|
86
|
-
if (predicate.call(thisArg, item[
|
|
86
|
+
if (predicate.call(thisArg, item[1], item[0], index++, this)) {
|
|
87
87
|
return true;
|
|
88
88
|
}
|
|
89
89
|
}
|
|
@@ -100,7 +100,7 @@ export abstract class IterableEntryBase<K = any, V = any> {
|
|
|
100
100
|
let index = 0;
|
|
101
101
|
for (const item of this) {
|
|
102
102
|
const [key, value] = item;
|
|
103
|
-
callbackfn.call(thisArg,
|
|
103
|
+
callbackfn.call(thisArg, value, key, index++, this);
|
|
104
104
|
}
|
|
105
105
|
}
|
|
106
106
|
|
|
@@ -115,7 +115,7 @@ export abstract class IterableEntryBase<K = any, V = any> {
|
|
|
115
115
|
let index = 0;
|
|
116
116
|
for (const item of this) {
|
|
117
117
|
const [key, value] = item;
|
|
118
|
-
if (callbackfn.call(thisArg,
|
|
118
|
+
if (callbackfn.call(thisArg, value, key, index++, this)) return item;
|
|
119
119
|
}
|
|
120
120
|
return;
|
|
121
121
|
}
|
|
@@ -411,7 +411,7 @@ export class AVLTreeCounter<K = any, V = any, R = any> extends AVLTree<K, V, R>
|
|
|
411
411
|
|
|
412
412
|
let index = 0;
|
|
413
413
|
for (const [key, value] of this) {
|
|
414
|
-
out.add(callback.call(thisArg,
|
|
414
|
+
out.add(callback.call(thisArg, value, key, index++, this));
|
|
415
415
|
}
|
|
416
416
|
return out;
|
|
417
417
|
}
|
|
@@ -393,7 +393,7 @@ export class AVLTreeMultiMap<K = any, V = any, R = any> extends AVLTree<K, V[],
|
|
|
393
393
|
): AVLTree<MK, MV, MR> {
|
|
394
394
|
const out = this._createLike<MK, MV, MR>([], options);
|
|
395
395
|
let i = 0;
|
|
396
|
-
for (const [k, v] of this) out.add(callback.call(thisArg,
|
|
396
|
+
for (const [k, v] of this) out.add(callback.call(thisArg, v, k, i++, this));
|
|
397
397
|
return out;
|
|
398
398
|
}
|
|
399
399
|
|
|
@@ -195,7 +195,9 @@ export class AVLTreeNode<K = any, V = any> {
|
|
|
195
195
|
* 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater.
|
|
196
196
|
* 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature.
|
|
197
197
|
* 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST.
|
|
198
|
-
* 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes
|
|
198
|
+
* 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
|
|
199
|
+
*
|
|
200
|
+
* @example
|
|
199
201
|
* // Find elements in a range
|
|
200
202
|
* // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
|
|
201
203
|
* type Datum = { timestamp: Date; temperature: number };
|
|
@@ -403,7 +405,7 @@ export class AVLTree<K = any, V = any, R = any> extends BST<K, V, R> implements
|
|
|
403
405
|
// Iterates in-order
|
|
404
406
|
for (const [key, value] of this) {
|
|
405
407
|
// `add` on the new tree will be O(log N) and will self-balance.
|
|
406
|
-
out.add(callback.call(thisArg,
|
|
408
|
+
out.add(callback.call(thisArg, value, key, index++, this));
|
|
407
409
|
}
|
|
408
410
|
return out;
|
|
409
411
|
}
|
|
@@ -203,6 +203,7 @@ export class BinaryTreeNode<K = any, V = any> {
|
|
|
203
203
|
* 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree.
|
|
204
204
|
* 4. Subtrees: Each child of a node forms the root of a subtree.
|
|
205
205
|
* 5. Leaf Nodes: Nodes without children are leaves.
|
|
206
|
+
*
|
|
206
207
|
* @example
|
|
207
208
|
* // determine loan approval using a decision tree
|
|
208
209
|
* // Decision tree structure
|
|
@@ -1673,7 +1674,7 @@ export class BinaryTree<K = any, V = any, R = any>
|
|
|
1673
1674
|
filter(predicate: EntryCallback<K, V | undefined, boolean>, thisArg?: unknown): this {
|
|
1674
1675
|
const out = this._createInstance<K, V, R>();
|
|
1675
1676
|
let i = 0;
|
|
1676
|
-
for (const [k, v] of this) if (predicate.call(thisArg,
|
|
1677
|
+
for (const [k, v] of this) if (predicate.call(thisArg, v, k, i++, this)) out.add([k, v]);
|
|
1677
1678
|
return out;
|
|
1678
1679
|
}
|
|
1679
1680
|
|
|
@@ -1696,7 +1697,7 @@ export class BinaryTree<K = any, V = any, R = any>
|
|
|
1696
1697
|
): BinaryTree<MK, MV, MR> {
|
|
1697
1698
|
const out = this._createLike<MK, MV, MR>([], options);
|
|
1698
1699
|
let i = 0;
|
|
1699
|
-
for (const [k, v] of this) out.add(cb.call(thisArg,
|
|
1700
|
+
for (const [k, v] of this) out.add(cb.call(thisArg, v, k, i++, this));
|
|
1700
1701
|
return out;
|
|
1701
1702
|
}
|
|
1702
1703
|
|
|
@@ -199,6 +199,7 @@ export class BSTNode<K = any, V = any> {
|
|
|
199
199
|
* 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient.
|
|
200
200
|
* 6. Balance Variability: Can become unbalanced; special types maintain balance.
|
|
201
201
|
* 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
|
|
202
|
+
*
|
|
202
203
|
* @example
|
|
203
204
|
* // Merge 3 sorted datasets
|
|
204
205
|
* const dataset1 = new BST<number, string>([
|
|
@@ -908,7 +909,7 @@ export class BST<K = any, V = any, R = any> extends BinaryTree<K, V, R> implemen
|
|
|
908
909
|
let index = 0;
|
|
909
910
|
// Iterates in-order
|
|
910
911
|
for (const [key, value] of this) {
|
|
911
|
-
out.add(callback.call(thisArg,
|
|
912
|
+
out.add(callback.call(thisArg, value, key, index++, this));
|
|
912
913
|
}
|
|
913
914
|
return out;
|
|
914
915
|
}
|
|
@@ -186,6 +186,7 @@ export class RedBlackTreeNode<K = any, V = any> {
|
|
|
186
186
|
* @template R
|
|
187
187
|
* 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high, but the query efficiency is slightly lower.
|
|
188
188
|
* 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
|
|
189
|
+
*
|
|
189
190
|
* @example
|
|
190
191
|
* // using Red-Black Tree as a price-based index for stock data
|
|
191
192
|
* // Define the structure of individual stock records
|
|
@@ -420,7 +421,7 @@ export class RedBlackTree<K = any, V = any, R = any> extends BST<K, V, R> implem
|
|
|
420
421
|
|
|
421
422
|
let index = 0;
|
|
422
423
|
for (const [key, value] of this) {
|
|
423
|
-
out.add(callback.call(thisArg,
|
|
424
|
+
out.add(callback.call(thisArg, value, key, index++, this));
|
|
424
425
|
}
|
|
425
426
|
return out;
|
|
426
427
|
}
|
|
@@ -439,7 +439,7 @@ export class TreeCounter<K = any, V = any, R = any> extends RedBlackTree<K, V, R
|
|
|
439
439
|
|
|
440
440
|
let index = 0;
|
|
441
441
|
for (const [key, value] of this) {
|
|
442
|
-
out.add(callback.call(thisArg,
|
|
442
|
+
out.add(callback.call(thisArg, value, key, index++, this));
|
|
443
443
|
}
|
|
444
444
|
return out;
|
|
445
445
|
}
|
|
@@ -183,6 +183,7 @@ export class TreeMultiMapNode<K = any, V = any> {
|
|
|
183
183
|
* @template K
|
|
184
184
|
* @template V
|
|
185
185
|
* @template R
|
|
186
|
+
*
|
|
186
187
|
* @example
|
|
187
188
|
* // players ranked by score with their equipment
|
|
188
189
|
* type Equipment = {
|
|
@@ -503,7 +504,7 @@ export class TreeMultiMap<K = any, V = any, R = any> extends RedBlackTree<K, V[]
|
|
|
503
504
|
): RedBlackTree<MK, MV, MR> {
|
|
504
505
|
const out = this._createLike<MK, MV, MR>([], options);
|
|
505
506
|
let i = 0;
|
|
506
|
-
for (const [k, v] of this) out.add(callback.call(thisArg,
|
|
507
|
+
for (const [k, v] of this) out.add(callback.call(thisArg, v, k, i++, this));
|
|
507
508
|
return out;
|
|
508
509
|
}
|
|
509
510
|
|
|
@@ -897,7 +897,7 @@ export abstract class AbstractGraph<
|
|
|
897
897
|
const filtered: [VertexKey, V | undefined][] = [];
|
|
898
898
|
let index = 0;
|
|
899
899
|
for (const [key, value] of this) {
|
|
900
|
-
if (predicate.call(thisArg,
|
|
900
|
+
if (predicate.call(thisArg, value, key, index, this)) {
|
|
901
901
|
filtered.push([key, value]);
|
|
902
902
|
}
|
|
903
903
|
index++;
|
|
@@ -916,7 +916,7 @@ export abstract class AbstractGraph<
|
|
|
916
916
|
const filtered: [VertexKey, V | undefined][] = [];
|
|
917
917
|
let index = 0;
|
|
918
918
|
for (const [key, value] of this) {
|
|
919
|
-
if (predicate.call(thisArg,
|
|
919
|
+
if (predicate.call(thisArg, value, key, index, this)) {
|
|
920
920
|
filtered.push([key, value]);
|
|
921
921
|
}
|
|
922
922
|
index++;
|
|
@@ -928,7 +928,7 @@ export abstract class AbstractGraph<
|
|
|
928
928
|
const mapped: T[] = [];
|
|
929
929
|
let index = 0;
|
|
930
930
|
for (const [key, value] of this) {
|
|
931
|
-
mapped.push(callback.call(thisArg,
|
|
931
|
+
mapped.push(callback.call(thisArg, value, key, index, this));
|
|
932
932
|
index++;
|
|
933
933
|
}
|
|
934
934
|
return mapped;
|
|
@@ -290,7 +290,7 @@ export class HashMap<K = any, V = any, R = [K, V]> extends IterableEntryBase<K,
|
|
|
290
290
|
map<VM>(callbackfn: EntryCallback<K, V, VM>, thisArg?: any): any {
|
|
291
291
|
const out = this._createLike<K, VM, [K, VM]>();
|
|
292
292
|
let index = 0;
|
|
293
|
-
for (const [key, value] of this) out.set(key, callbackfn.call(thisArg,
|
|
293
|
+
for (const [key, value] of this) out.set(key, callbackfn.call(thisArg, value, key, index++, this));
|
|
294
294
|
return out;
|
|
295
295
|
}
|
|
296
296
|
|
|
@@ -305,7 +305,7 @@ export class HashMap<K = any, V = any, R = [K, V]> extends IterableEntryBase<K,
|
|
|
305
305
|
filter(predicate: EntryCallback<K, V, boolean>, thisArg?: any): any {
|
|
306
306
|
const out = this._createLike<K, V, [K, V]>();
|
|
307
307
|
let index = 0;
|
|
308
|
-
for (const [key, value] of this) if (predicate.call(thisArg,
|
|
308
|
+
for (const [key, value] of this) if (predicate.call(thisArg, value, key, index++, this)) out.set(key, value);
|
|
309
309
|
return out;
|
|
310
310
|
}
|
|
311
311
|
|
|
@@ -677,7 +677,7 @@ export class LinkedHashMap<K = any, V = any, R = [K, V]> extends IterableEntryBa
|
|
|
677
677
|
const out = this._createLike<K, V, [K, V]>();
|
|
678
678
|
let index = 0;
|
|
679
679
|
for (const [key, value] of this) {
|
|
680
|
-
if (predicate.call(thisArg,
|
|
680
|
+
if (predicate.call(thisArg, value, key, index, this)) out.set(key, value);
|
|
681
681
|
index++;
|
|
682
682
|
}
|
|
683
683
|
return out;
|
|
@@ -696,7 +696,7 @@ export class LinkedHashMap<K = any, V = any, R = [K, V]> extends IterableEntryBa
|
|
|
696
696
|
const out = this._createLike<MK, MV, [MK, MV]>();
|
|
697
697
|
let index = 0;
|
|
698
698
|
for (const [key, value] of this) {
|
|
699
|
-
const [newKey, newValue] = callback.call(thisArg,
|
|
699
|
+
const [newKey, newValue] = callback.call(thisArg, value, key, index, this);
|
|
700
700
|
out.set(newKey, newValue);
|
|
701
701
|
index++;
|
|
702
702
|
}
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import { IterableElementBase, IterableEntryBase } from '../../../data-structures';
|
|
2
2
|
import { LinearBase } from '../../../data-structures/base/linear-base';
|
|
3
3
|
|
|
4
|
-
export type EntryCallback<K, V, R> = (
|
|
4
|
+
export type EntryCallback<K, V, R> = (value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
|
|
5
5
|
export type ElementCallback<E, R, RT> = (element: E, index: number, original: IterableElementBase<E, R>) => RT;
|
|
6
6
|
export type ReduceEntryCallback<K, V, R> = (
|
|
7
7
|
accumulator: R,
|