mathue 0.1.0 → 0.1.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/LICENSE CHANGED
@@ -1,9 +1,9 @@
1
- The MIT License
2
-
3
- Copyright 2025 SueueGunn
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
6
-
7
- The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
8
-
9
- THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
1
+ The MIT License
2
+
3
+ Copyright 2025 SueueGunn
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
6
+
7
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
8
+
9
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
package/README.md CHANGED
@@ -1,88 +1,114 @@
1
- <p align="center">
2
- <img src="typedoc/favicon.ico" width="200">
3
- </p>
4
- <h1 align="center">mathue</h1>
5
-
6
- [![Test](https://github.com/sueuegunn/mathue/actions/workflows/test.yaml/badge.svg?event=push)](https://github.com/sueuegunn/mathue/actions/workflows/test.yaml)
7
- ![Coverage](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/sueuegunn/80c9611c9abb9cef2cd1a4064003cb5f/raw/mathue-line-coverage-badge.json)
8
- [![License: MIT](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)
9
- ![Release](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/sueuegunn/80c9611c9abb9cef2cd1a4064003cb5f/raw/mathue-release-version.json)
10
-
11
- **A high-performance TypeScript math library specially optimized for WebGL applications.**
12
-
13
- Pronounced as **"Matthew"** ( mˈæθjuː ).
14
-
15
- [Docs](https://sueuegunn.github.io/mathue/index.html)
16
-
17
- ## 🚀 Why mathue?
18
-
19
- Standard math libraries often create new objects for every calculation, causing Garbage Collection (GC) spikes that ruin the performance of real-time rendering loops (60fps+).
20
-
21
- **mathue is designed to be "Zero-Allocation" by default.**
22
-
23
- ### Key Features
24
-
25
- * **⚡ Zero-Allocation Design**: Minimizes GC overhead by using **mutable operations** (in-place modification) and reusing **static internal temporaries** for complex calculations.
26
- * **🛠️ Flexible**: While optimized for mutation, every class implements `.clone()` and factory methods (e.g., `.identity()`, `.zero()`) for when you need immutable behavior.
27
- * **⛓️ Method Chaining**: All mutable methods return `this`, allowing for concise and readable code similar to modern engines.
28
- * **ts TypeScript First**: Built completely in TypeScript with full type definitions (`.d.ts`) included.
29
- * **🟢 Standalone**: No external dependencies.
30
-
31
- ## 📦 Installation
32
-
33
- ```bash
34
- npm install mathue
35
- ```
36
-
37
- ## 📖 Usage
38
-
39
- ```ts
40
- // Applies matrix to vector
41
- import {Vector3, Matrix4, Quaternion} from 'mathue';
42
-
43
- const v = new Vector3(1, 2, 3);
44
-
45
- const axis = new Vector3(0, 0, 1);
46
- const angle = Math.PI / 3;
47
- const q = Quaternion.fromAxisAndAngle(axis, angle);
48
-
49
- const m = Matrix4.identity();
50
- m.setQuaternion(q);
51
-
52
- v.applyMatrix4(m);
53
- ```
54
-
55
- ```ts
56
- // Calculates model matrix
57
- const position = new Vector3(1, 2, 3);
58
- const rotation = Quaternion.identity();
59
- const scale = new Vector3(2, 2, 2);
60
-
61
- const tmp = Matrix4.identity();
62
- const model = Matrix4.identity();
63
-
64
- model.setIdentity()
65
- .multiply(tmp.setIdentity().translate(position))
66
- .multiply(tmp.setIdentity().setQuaternion(rotation))
67
- .multiply(tmp.setIdentity().scale(scale));
68
- ```
69
-
70
- ## 📚 API Overview
71
-
72
- Vector: Vector1, Vector2, Vector3, Vector4
73
- • Matrix: Matrix4 (Column-major order, WebGL compatible)
74
- Quaternion: For rotation without gimbal lock
75
- See the Full Documentation for details.
76
-
77
- ## 📄 License
78
-
79
- MIT License
80
-
81
- ## 🧮 Logo
82
-
83
- <p align="center">
84
- <img src="typedoc/favicon.ico" width="128">
85
- </p>
86
-
87
- The logo features **two upward vectors** arranged to form the letter "M".
88
- Conceptually, the right vector represents the left vector transformed by a Matrix or Quaternion.
1
+ <p align="center">
2
+ <img src="typedoc/favicon.ico" width="200">
3
+ </p>
4
+ <h1 align="center">mathue</h1>
5
+
6
+ [![Test](https://github.com/sueuegunn/mathue/actions/workflows/test.yaml/badge.svg?event=push)](https://github.com/sueuegunn/mathue/actions/workflows/test.yaml)
7
+ ![Coverage](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/sueuegunn/80c9611c9abb9cef2cd1a4064003cb5f/raw/badge.json)
8
+ [![License: MIT](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)
9
+ [![npm version](https://img.shields.io/npm/v/mathue?colorB=brightgreen)](https://www.npmjs.com/package/mathue)
10
+
11
+ **A high-performance TypeScript math library specially optimized for WebGL applications.**
12
+
13
+ Pronounced as **"Matthew"** ( mˈæθjuː ).
14
+
15
+ <br>
16
+
17
+ ## 🔗 Links
18
+
19
+ * [Docs](https://sueuegunn.github.io/mathue/index.html)
20
+ * [npm](https://www.npmjs.com/package/mathue)
21
+
22
+ <br>
23
+
24
+ ## 🚀 Why mathue?
25
+
26
+ Standard math libraries often create new objects for every calculation, causing Garbage Collection (GC) spikes that ruin the performance of real-time rendering loops (60fps+).
27
+
28
+ **mathue is designed to be "Zero-Allocation" by default.**
29
+
30
+ <br>
31
+
32
+ ### Key Features
33
+
34
+ * **⚡ Zero-Allocation Design**: Minimizes GC overhead by using **mutable operations** (in-place modification) and reusing **static internal temporaries** for complex calculations.
35
+ * **🛠️ Flexible**: While optimized for mutation, every class implements `.clone()` and factory methods (e.g., `.identity()`, `.zero()`) for when you need immutable behavior.
36
+ * **⛓️ Method Chaining**: All mutable methods return `this`, allowing for concise and readable code similar to modern engines.
37
+ * **ts TypeScript First**: Built completely in TypeScript with full type definitions (`.d.ts`) included.
38
+ * **🟢 Standalone**: No external dependencies.
39
+
40
+ <br>
41
+
42
+ ## 📦 Installation
43
+
44
+ ```bash
45
+ npm install mathue
46
+ ```
47
+
48
+ <br>
49
+
50
+ ## 📖 Usage
51
+
52
+ ```ts
53
+ // Applies matrix to vector
54
+ import {Vector3, Matrix4, Quaternion} from 'mathue';
55
+
56
+ const v = new Vector3(1, 2, 3);
57
+
58
+ const axis = new Vector3(0, 0, 1);
59
+ const angle = Math.PI / 3;
60
+ const q = Quaternion.fromAxisAndAngle(axis, angle);
61
+
62
+ const m = Matrix4.identity();
63
+ m.setQuaternion(q);
64
+
65
+ v.applyMatrix4(m);
66
+ ```
67
+
68
+ ```ts
69
+ // Calculates model matrix
70
+ const position = new Vector3(1, 2, 3);
71
+ const rotation = Quaternion.identity();
72
+ const scale = new Vector3(2, 2, 2);
73
+
74
+ const model = Matrix4.identity();
75
+
76
+ model.setIdentity()
77
+ .multiplyTranslation(position)
78
+ .multiplyRotation(rotation)
79
+ .multiplyScale(scale);
80
+ ```
81
+
82
+ <br>
83
+
84
+ ## 📚 API Overview
85
+
86
+ * Vector
87
+ * Vector1
88
+ * Vector2
89
+ * Vector3
90
+ * Vector4
91
+ * Matrix (Column-major order, WebGL compatible)
92
+ * Matrix3
93
+ * Matrix4
94
+ * PolarCoordinate3
95
+ * Quaternion (For rotation without gimbal lock)
96
+
97
+ See the [Full Documentation](https://sueuegunn.github.io/mathue/index.html) for details.
98
+
99
+ <br>
100
+
101
+ ## 📄 License
102
+
103
+ MIT License
104
+
105
+ <br>
106
+
107
+ ## 📐 Logo
108
+
109
+ <p align="center">
110
+ <img src="typedoc/favicon.ico" width="128">
111
+ </p>
112
+
113
+ The logo features **two upward vectors** arranged to form the letter "M".
114
+ Conceptually, the right vector represents the left vector transformed by a Matrix or Quaternion.
package/dist/index.d.ts CHANGED
@@ -3,6 +3,21 @@ export declare interface AdditiveGroup<T> {
3
3
  subtract(other: T): T;
4
4
  }
5
5
 
6
+ /**
7
+ * Options for transforming a 3D vector by a 4x4 matrix.
8
+ */
9
+ export declare type ApplyMatrix4Options = {
10
+ /**
11
+ * Determines whether the vector is treated as a direction or a point.
12
+ *
13
+ * - `true`: Treated as a **direction** (w = 0).
14
+ * - `false` (default): Treated as a **point** (w = 1).
15
+ *
16
+ * @default false
17
+ */
18
+ asDirection?: boolean;
19
+ };
20
+
6
21
  export declare interface Clonable<T> {
7
22
  clone(): T;
8
23
  }
@@ -458,16 +473,52 @@ export declare class Matrix4 implements Matrix<4>, AdditiveGroup<Matrix4>, Parti
458
473
  * ```
459
474
  */
460
475
  setIdentity(): Matrix4;
476
+ /**
477
+ * Sets scale transformation matrix (mutates this)
478
+ * @param scale 3D scale vector
479
+ * @returns this instance, for method chaining
480
+ *
481
+ * @example
482
+ * ```ts
483
+ * const m = Matrix4.identity();
484
+ * const s = new Vector3(2, 3, 4);
485
+ * m.setScale(s);
486
+ * console.log(m.elements);
487
+ * // [ 2, 0, 0, 0,
488
+ * // 0, 3, 0, 0,
489
+ * // 0, 0, 4, 0,
490
+ * // 0, 0, 0, 1 ]
491
+ * ```
492
+ */
493
+ setScale(scale: Vector3): Matrix4;
494
+ /**
495
+ * Sets translation transformation matrix (mutates this)
496
+ * @param translation translation vector
497
+ * @returns this instance, for method chaining
498
+ *
499
+ * @example
500
+ * ```ts
501
+ * const m = Matrix4.identity();
502
+ * const t = new Vector3(2, 3, 4);
503
+ * m.setTranslation(t);
504
+ * console.log(m.elements);
505
+ * // [ 1, 0, 0, 0,
506
+ * // 0, 1, 0, 0,
507
+ * // 0, 0, 1, 0,
508
+ * // 2, 3, 4, 1 ]
509
+ * ```
510
+ */
511
+ setTranslation(translation: Vector3): Matrix4;
461
512
  /**
462
513
  * Sets rotation matrix from quaternion (mutates this)
463
- * @param quaternion
514
+ * @param rotation
464
515
  * @returns this instance, for method chaining
465
516
  *
466
517
  * @example
467
518
  * ```ts
468
519
  * const m = Matrix4.zero();
469
520
  * const q = Quaternion.identity();
470
- * m.setQuaternion(q);
521
+ * m.setRotation(q);
471
522
  * console.log(m.elements);
472
523
  * // [ 0, 0, 0, 0,
473
524
  * // 0, 0, 0, 0,
@@ -475,7 +526,7 @@ export declare class Matrix4 implements Matrix<4>, AdditiveGroup<Matrix4>, Parti
475
526
  * // 0, 0, 0, 0 ]
476
527
  * ```
477
528
  */
478
- setQuaternion(quaternion: Quaternion): Matrix4;
529
+ setRotation(rotation: Quaternion): Matrix4;
479
530
  /**
480
531
  * Adds by other matrix (mutates this)
481
532
  * @param other other matrix
@@ -564,6 +615,24 @@ export declare class Matrix4 implements Matrix<4>, AdditiveGroup<Matrix4>, Parti
564
615
  * ```
565
616
  */
566
617
  multiply(other: Matrix4): Matrix4;
618
+ /**
619
+ * Multiplies scale matrix to this instance (mutates this)
620
+ * @param scale 3D scale vector
621
+ * @returns this instance, for method chaining
622
+ */
623
+ multiplyScale(scale: Vector3): Matrix4;
624
+ /**
625
+ * Multiplies translation matrix to this instance (mutates this)
626
+ * @param position translation vector
627
+ * @returns this instance, for method chaining
628
+ */
629
+ multiplyTranslation(position: Vector3): Matrix4;
630
+ /**
631
+ * Multiplies rotation matrix to this instance (mutates this)
632
+ * @param rotation rotation quaternion
633
+ * @returns this instance, for method chaining
634
+ */
635
+ multiplyRotation(rotation: Quaternion): Matrix4;
567
636
  /**
568
637
  * Calculates determinant of this matrix (pure)
569
638
  * @returns determinant of this matrix
@@ -585,42 +654,6 @@ export declare class Matrix4 implements Matrix<4>, AdditiveGroup<Matrix4>, Parti
585
654
  * @returns `this` instance for method chaining if other is invertible, `null` otherwise
586
655
  */
587
656
  divide(other: Matrix4): Matrix4 | null;
588
- /**
589
- * Sets scale transformation matrix (mutates this)
590
- * @param scale 3D scale vector
591
- * @returns this instance, for method chaining
592
- *
593
- * @example
594
- * ```ts
595
- * const m = Matrix4.identity();
596
- * const s = new Vector3(2, 3, 4);
597
- * m.scale(s);
598
- * console.log(m.elements);
599
- * // [ 2, 0, 0, 0,
600
- * // 0, 3, 0, 0,
601
- * // 0, 0, 4, 0,
602
- * // 0, 0, 0, 1 ]
603
- * ```
604
- */
605
- scale(scale: Vector3): Matrix4;
606
- /**
607
- * Sets translation transformation matrix (mutates this)
608
- * @param translation translation vector
609
- * @returns this instance, for method chaining
610
- *
611
- * @example
612
- * ```ts
613
- * const m = Matrix4.identity();
614
- * const t = new Vector3(2, 3, 4);
615
- * m.translate(t);
616
- * console.log(m.elements);
617
- * // [ 1, 0, 0, 0,
618
- * // 0, 1, 0, 0,
619
- * // 0, 0, 1, 0,
620
- * // 2, 3, 4, 1 ]
621
- * ```
622
- */
623
- translate(translation: Vector3): Matrix4;
624
657
  /**
625
658
  * Sets view transformation matrix (mutates this)
626
659
  * @param position camera position
@@ -638,12 +671,25 @@ export declare class Matrix4 implements Matrix<4>, AdditiveGroup<Matrix4>, Parti
638
671
  * ```
639
672
  */
640
673
  lookAt(position: Vector3, target: Vector3, up: Vector3): Matrix4;
674
+ /**
675
+ * Sets projection matrix of orthographic camera (mutates this)
676
+ * @param left left boundary of the view frustum (negative X coordinate)
677
+ * @param right right boundary of the view frustum (positive X coordinate)
678
+ * @param bottom bottom boundary of the view frustum (negative Y coordinate)
679
+ * @param top top boundary of the view frustum (positive Y coordinate)
680
+ * @param near near clipping plane distance (positive value)
681
+ * @param far far clipping plane distance (positive value)
682
+ * @param options options for orthographic projection matrix
683
+ * @returns this instance, for method chaining
684
+ */
685
+ orthographic(left: number, right: number, bottom: number, top: number, near: number, far: number, options?: ProjectionOptions): Matrix4;
641
686
  /**
642
687
  * Sets projection matrix of perspective camera (mutates this)
643
688
  * @param verticalFov vertical field of view in radians
644
689
  * @param near near clipping plane distance
645
690
  * @param far far clipping plane distance
646
691
  * @param aspect aspect ratio (width / height)
692
+ * @param options options for perspective projection matrix
647
693
  * @returns this instance, for method chaining
648
694
  *
649
695
  * @example
@@ -653,10 +699,15 @@ export declare class Matrix4 implements Matrix<4>, AdditiveGroup<Matrix4>, Parti
653
699
  * const near = 0.01;
654
700
  * const far = 4.0;
655
701
  * const aspect = 300 / 150;
702
+ *
703
+ * // for OpenGL, WebGL
656
704
  * m.perspective(fov, near, far, aspect);
705
+ *
706
+ * // for WebGPU, Vulkan, DirectX, Metal
707
+ * m.perspective(fov, near, far, aspect, {depthZeroToOne: true});
657
708
  * ```
658
709
  */
659
- perspective(verticalFov: number, near: number, far: number, aspect: number): Matrix4;
710
+ perspective(verticalFov: number, near: number, far: number, aspect: number, options?: ProjectionOptions): Matrix4;
660
711
  /** @ignore */
661
712
  _applyVector(x: number, y: number, z: number, w: number): Vector4;
662
713
  }
@@ -699,27 +750,27 @@ export declare class PolarCoordinate3 {
699
750
  private _theta;
700
751
  private _radius;
701
752
  /**
702
- * @param phi polar angle phi in range [0, π] in radians
703
- * @param theta azimuthal angle theta in range [0, 2π] in radians
753
+ * @param phi azimuthal angle theta in range [0, 2π] in radians
754
+ * @param theta polar angle phi in range [0, π] in radians
704
755
  * @param radius radial distance from the origin, must be non-negative
705
756
  */
706
757
  constructor(phi: number, theta: number, radius: number);
707
758
  /**
708
- * Gets polar angle phi in range [0, π] in radians, measured from positive z-axis.
759
+ * Gets azimuthal angle theta in range [0, 2π] in radians, measured from the positive x-axis.
709
760
  */
710
761
  get phi(): number;
711
762
  /**
712
- * Sets polar angle phi in range [0, π] in radians, measured from positive z-axis.
713
- * @param value polar angle in range [0, π]
763
+ * Sets azimuthal angle theta in range [0, 2π] in radians, measured from the positive x-axis.
764
+ * @param value azimuthal angle in range [0, 2π]
714
765
  */
715
766
  set phi(value: number);
716
767
  /**
717
- * Gets azimuthal angle theta in range [0, 2π] in radians, measured from the positive x-axis.
768
+ * Gets polar angle phi in range [0, π] in radians, measured from positive z-axis.
718
769
  */
719
770
  get theta(): number;
720
771
  /**
721
- * Sets azimuthal angle theta in range [0, 2π] in radians, measured from the positive x-axis.
722
- * @param value azimuthal angle in range [0, 2π]
772
+ * Sets polar angle phi in range [0, π] in radians, measured from positive z-axis.
773
+ * @param value polar angle in range [0, π]
723
774
  */
724
775
  set theta(value: number);
725
776
  /**
@@ -731,19 +782,36 @@ export declare class PolarCoordinate3 {
731
782
  */
732
783
  set radius(value: number);
733
784
  /**
734
- * Converts polar coordinate to Vector3 and stores result in `out` vector.
785
+ * Converts polar coordinate to Vector3 and stores result in `out` vector. (mutates out)
735
786
  * @param out vector instance to receive result
736
787
  * @returns {void}
737
788
  */
738
789
  toVector3(out: Vector3): void;
739
790
  /**
740
- * Converts to tangent vector pointing positive z-axis direction, and sotres result in `out` vector.
791
+ * Converts to tangent vector pointing positive z-axis direction, and sotres result in `out` vector. (mutates out)
741
792
  * @param out vector instance to receive result
742
793
  * @returns {void}
743
794
  */
744
795
  toTangentZ(out: Vector3): void;
745
796
  }
746
797
 
798
+ /**
799
+ * Options for generating a projection matrix.
800
+ */
801
+ export declare type ProjectionOptions = {
802
+ /**
803
+ * Determines the normalized device coordinate (NDC) Z range for the clip planes. [1, 2]
804
+ *
805
+ * - `false` (default): Corresponds to a Z range of **[-1, 1]**, which matches the clip volume
806
+ * requirements for **WebGL and OpenGL**. [1]
807
+ * - `true`: Corresponds to a Z range of ****, which matches the clip volume
808
+ * requirements for modern APIs such as **WebGPU, Vulkan, DirectX, and Metal**. [2]
809
+ *
810
+ * @default false
811
+ */
812
+ depthZeroToOne?: boolean;
813
+ };
814
+
747
815
  /**
748
816
  * Represents a quaternion using Hamilton's notation: q = a + bi + cj + dk
749
817
  */
@@ -1907,9 +1975,10 @@ export declare class Vector3 implements Vector<3>, AdditiveGroup<Vector3>, Scala
1907
1975
  /**
1908
1976
  * Applies matrix to this vector (mutates this)
1909
1977
  * @param matrix
1978
+ * @param options
1910
1979
  * @returns this instance, for method chaining
1911
1980
  */
1912
- applyMatrix4(matrix: Matrix4): Vector3;
1981
+ applyMatrix4(matrix: Matrix4, options?: ApplyMatrix4Options): Vector3;
1913
1982
  /**
1914
1983
  * Applies quaternion to this vector (mutates this)
1915
1984
  * @param quaternion
package/dist/mathue.cjs CHANGED
@@ -1 +1 @@
1
- function*e(e,t){let n=t?.start??0,r=t?.step??1;if(r!==0&&!(r>0&&n>e)&&!(r<0&&n<e))for(let t=n;r>0?t<e:t>e;t+=r)yield t}function t(e){let t=0;for(let n of e)t+=n;return t}function n(e,t){let n=0;for(let r of e)n+=t(r)??0;return n}var r=0,i=1,a=2,o=3,s=class e{dimension=4;elements;static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=l.identity(),this._tmpMatrix4}constructor(e,t,n,r){this.elements=[e,t,n,r]}get x(){return this.elements[r]}set x(e){this.elements[r]=e}get y(){return this.elements[i]}set y(e){this.elements[i]=e}get z(){return this.elements[a]}set z(e){this.elements[a]=e}get w(){return this.elements[o]}set w(e){this.elements[o]=e}static zero(){return new e(0,0,0,0)}static one(){return new e(1,1,1,1)}clone(){let{x:t,y:n,z:r,w:i}=this;return new e(t,n,r,i)}isZero(){let{x:e,y:t,z:n,w:r}=this;return e===0&&t===0&&n===0&&r===0}set(e,t,n,r){this.x=e,this.y=t,this.z=n,this.w=r}copy(e){let{x:t,y:n,z:r,w:i}=e;this.set(t,n,r,i)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this.w+=e.w,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this.w-=e.w,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this.w*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this.w/=e,this}length(){let{x:e,y:t,z:n,w:r}=this;return Math.sqrt(e**2+t**2+n**2+r**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}},c=1e-8,l=class t{order=4;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=t.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=s.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h)}static identity(){return t.zero().setIdentity()}static zero(){return new t(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)}clone(){let[e,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements;return new t(e,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}set(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this.elements[9]=l,this.elements[10]=u,this.elements[11]=d,this.elements[12]=f,this.elements[13]=p,this.elements[14]=m,this.elements[15]=h,this}copy(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=e.elements;this.set(t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}setIdentity(){return this.set(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),this}setQuaternion(e){let{a:t,b:n,c:r,d:i}=e,a=2/e.squaredNorm(),o=n**2,s=r**2,c=i**2,l=t*n,u=t*r,d=t*i,f=n*r,p=n*i,m=r*i;return this.set(1-a*(s+c),a*(f-d),a*(p+u),0,a*(f+d),1-a*(o+c),a*(m-l),0,a*(p-u),a*(m+l),1-a*(o+s),0,0,0,0,1),this}add(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]+=t.elements[r];return this}subtract(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]-=t.elements[r];return this}multiplyScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]*=t;return this}divideScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]/=t;return this}multiply(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements,[_,v,y,b,x,S,C,w,T,E,D,O,k,A,j,M]=e.elements;return this.elements[0]=_*t+v*a+y*l+b*p,this.elements[1]=_*n+v*o+y*u+b*m,this.elements[2]=_*r+v*s+y*d+b*h,this.elements[3]=_*i+v*c+y*f+b*g,this.elements[4]=x*t+S*a+C*l+w*p,this.elements[5]=x*n+S*o+C*u+w*m,this.elements[6]=x*r+S*s+C*d+w*h,this.elements[7]=x*i+S*c+C*f+w*g,this.elements[8]=T*t+E*a+D*l+O*p,this.elements[9]=T*n+E*o+D*u+O*m,this.elements[10]=T*r+E*s+D*d+O*h,this.elements[11]=T*i+E*c+D*f+O*g,this.elements[12]=k*t+A*a+j*l+M*p,this.elements[13]=k*n+A*o+j*u+M*m,this.elements[14]=k*r+A*s+j*d+M*h,this.elements[15]=k*i+A*c+j*f+M*g,this}determinant(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return e*(a*(u*h-d*m)-o*(l*h-d*p)+s*(l*m-u*p))-t*(i*(u*h-d*m)-o*(c*h-d*f)+s*(c*m-u*f))+n*(i*(l*h-d*p)-a*(c*h-d*f)+s*(c*p-l*f))-r*(i*(l*m-u*p)-a*(c*m-u*f)+o*(c*p-l*f))}invert(){let e=this.determinant();if(Math.abs(e)<c)return null;let[t,n,r,i,a,o,s,l,u,d,f,p,m,h,g,_]=this.elements,v=f*_-p*g,y=d*_-p*h,b=d*g-f*h,x=s*_-l*g,S=o*_-l*h,C=o*g-s*h,w=s*p-l*f,T=o*p-l*d,E=o*f-s*d,D=u*_-p*m,O=u*g-f*m,k=a*_-l*m,A=a*g-s*m,j=a*p-l*u,M=a*f-s*u,N=u*h-d*m,P=a*h-o*m,F=a*d-o*u;return this.elements[0]=(o*v-s*y+l*b)/e,this.elements[1]=-(n*v-r*y+i*b)/e,this.elements[2]=(n*x-r*S+i*C)/e,this.elements[3]=-(n*w-r*T+i*E)/e,this.elements[4]=-(a*v-s*D+l*O)/e,this.elements[5]=(t*v-r*D+i*O)/e,this.elements[6]=-(t*x-r*k+i*A)/e,this.elements[7]=(t*w-r*j+i*M)/e,this.elements[8]=(a*y-o*D+l*N)/e,this.elements[9]=-(t*y-n*D+i*N)/e,this.elements[10]=(t*S-n*k+i*P)/e,this.elements[11]=-(t*T-n*j+i*F)/e,this.elements[12]=-(a*b-o*O+s*N)/e,this.elements[13]=(t*b-n*O+r*N)/e,this.elements[14]=-(t*C-n*A+r*P)/e,this.elements[15]=(t*E-n*M+r*F)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return this.elements[1]=i,this.elements[2]=c,this.elements[3]=f,this.elements[4]=t,this.elements[6]=l,this.elements[7]=p,this.elements[8]=n,this.elements[9]=o,this.elements[11]=m,this.elements[12]=r,this.elements[13]=s,this.elements[14]=d,this}divide(e){let{tmpMatrix:n}=t;return n.copy(e),n.invert()?this.multiply(n):null}scale(t){let{order:n}=this;for(let r of e(n)){let i=r===n-1?1:t.elements[r];for(let t of e(n)){let e=r*n+t;this.elements[e]*=i}}return this}translate(e){let{x:t,y:n,z:r}=e,[i,a,o,s,c,l,u,d,f,p,m,h,g,_,v,y]=this.elements;return this.elements[12]=i*t+c*n+f*r+g,this.elements[13]=a*t+l*n+p*r+_,this.elements[14]=o*t+u*n+m*r+v,this.elements[15]=s*t+d*n+h*r+y,this}lookAt(e,t,n){let{x:r,y:i,z:a}=e,{x:o,y:s,z:l}=n,u=e.x-t.x,d=e.y-t.y,f=e.z-t.z,p=Math.sqrt(u**2+d**2+f**2);if(p<c)return this;u/=p,d/=p,f/=p;let m=s*f-l*d,h=l*u-o*f,g=o*d-s*u,_=Math.sqrt(m**2+h**2+g**2);_>0&&(m/=_,h/=_,g/=_);let v=d*g-f*h,y=f*m-u*g,b=u*h-d*m,x=Math.sqrt(v**2+y**2+b**2);x>0&&(v/=x,y/=x,b/=x);let S=-(m*r+h*i+g*a),C=-(v*r+y*i+b*a),w=-(u*r+d*i+f*a);return this.set(m,v,u,0,h,y,d,0,g,b,f,0,S,C,w,1),this}perspective(e,t,n,r){let i=1/Math.tan(e/2);return this.set(i/r,0,0,0,0,i,0,0,0,0,1,-1,0,0,1,0),n===1/0?(this.elements[10]=-1,this.elements[14]=-2*t):(this.elements[10]=-(n+t)/(n-t),this.elements[14]=-2*n*t/(n-t)),this}_applyVector(e,n,r,i){let{tmpVector:a}=t;a.set(e,n,r,i);let[o,s,c,l,u,d,f,p,m,h,g,_,v,y,b,x]=this.elements,S=o*e+u*n+m*r+v*i,C=s*e+d*n+h*r+y*i,w=c*e+f*n+g*r+b*i,T=l*e+p*n+_*r+x*i;return a.set(S,C,w,T),a}},u=0,d=1,f=2,p=class e{dimension=3;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=h.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=l.identity(),this._tmpMatrix4}constructor(e,t,n){this.elements=[e,t,n]}get x(){return this.elements[u]}set x(e){this.elements[u]=e}get y(){return this.elements[d]}set y(e){this.elements[d]=e}get z(){return this.elements[f]}set z(e){this.elements[f]=e}static zero(){return new e(0,0,0)}static one(){return new e(1,1,1)}clone(){let{x:t,y:n,z:r}=this;return new e(t,n,r)}isZero(){let{x:e,y:t,z:n}=this;return e===0&&t===0&&n===0}set(e,t,n){return this.x=e,this.y=t,this.z=n,this}copy(e){let{x:t,y:n,z:r}=e;return this.set(t,n,r)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this}length(){let{x:e,y:t,z:n}=this;return Math.sqrt(e**2+t**2+n**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}cross(e){let{x:t,y:n,z:r}=this,{x:i,y:a,z:o}=e,s=n*o-r*a,c=r*i-t*o,l=t*a-n*i;return this.set(s,c,l)}crossTo(e,t){return t.copy(this),t.cross(e)}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z);return this.set(r,i,a),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z,0);return this.set(r,i,a),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z,0);return this.set(r,i,a),this}},m=1e-8,h=class t{order=3;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=t.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=p.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c)}static identity(){return t.zero().setIdentity()}static zero(){return new t(0,0,0,0,0,0,0,0,0)}clone(){let[e,n,r,i,a,o,s,c,l]=this.elements;return new t(e,n,r,i,a,o,s,c,l)}set(e,t,n,r,i,a,o,s,c){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this}copy(e){let[t,n,r,i,a,o,s,c,l]=e.elements;this.set(t,n,r,i,a,o,s,c,l)}setIdentity(){return this.set(1,0,0,0,1,0,0,0,1),this}add(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]+=t.elements[r];return this}subtract(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]-=t.elements[r];return this}multiplyScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]*=t;return this}divideScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]/=t;return this}multiply(e){let[t,n,r,i,a,o,s,c,l]=this.elements,[u,d,f,p,m,h,g,_,v]=e.elements;return this.elements[0]=u*t+d*i+f*s,this.elements[1]=u*n+d*a+f*c,this.elements[2]=u*r+d*o+f*l,this.elements[3]=p*t+m*i+h*s,this.elements[4]=p*n+m*a+h*c,this.elements[5]=p*r+m*o+h*l,this.elements[6]=g*t+_*i+v*s,this.elements[7]=g*n+_*a+v*c,this.elements[8]=g*r+_*o+v*l,this}determinant(){let[e,t,n,r,i,a,o,s,c]=this.elements;return e*(c*i-a*s)+t*(-c*r+a*o)+n*(s*r-i*o)}invert(){let e=this.determinant();if(Math.abs(e)<m)return null;let[t,n,r,i,a,o,s,c,l]=this.elements,u=l*a-o*c,d=-l*i+o*s,f=c*i-a*s;return this.elements[0]=u/e,this.elements[1]=(-l*n+r*c)/e,this.elements[2]=(o*n-r*a)/e,this.elements[3]=d/e,this.elements[4]=(l*t-r*s)/e,this.elements[5]=(-o*t+r*i)/e,this.elements[6]=f/e,this.elements[7]=(-c*t+n*s)/e,this.elements[8]=(a*t-n*i)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c]=this.elements;return this.elements[1]=r,this.elements[2]=o,this.elements[3]=t,this.elements[5]=s,this.elements[6]=n,this.elements[7]=a,this}divide(e){let{tmpMatrix:n}=t;return n.copy(e),n.invert()?this.multiply(n):null}_applyVector(e,n,r){let{tmpVector:i}=t;i.set(e,n,r);let[a,o,s,c,l,u,d,f,p]=this.elements,m=a*e+c*n+d*r,h=o*e+l*n+f*r,g=s*e+u*n+p*r;return i.set(m,h,g),i}},g=class{_phi;_theta;_radius;constructor(e,t,n){this._phi=e,this._theta=t,this._radius=n}get phi(){return this._phi}set phi(e){this._phi=e}get theta(){return this._theta}set theta(e){this._theta=e}get radius(){return this._radius}set radius(e){this._radius=e}toVector3(e){let{phi:t,theta:n,radius:r}=this,{cos:i,sin:a}=Math,o=a(n),s=r*o*i(t),c=r*o*a(t),l=r*i(n);e.set(s,c,l)}toTangentZ(e){let{phi:t,theta:n}=this,{cos:r,sin:i}=Math,a=r(n),o=-a*r(t),s=-a*i(t),c=i(n);e.set(o,s,c)}},_=class e{_a;_b;_c;_d;static temporary=e.identity();constructor(e,t,n,r){this._a=e,this._b=t,this._c=n,this._d=r}get a(){return this._a}get b(){return this._b}get c(){return this._c}get d(){return this._d}static identity(){return new e(1,0,0,0)}static fromAxisAndAngle(t,n){let r=e.identity();return r.setAxisAndAngle(t,n),r}clone(){let{a:t,b:n,c:r,d:i}=this;return new e(t,n,r,i)}set(e,t,n,r){return this._a=e,this._b=t,this._c=n,this._d=r,this}copy(e){let{a:t,b:n,c:r,d:i}=e;return this.set(t,n,r,i)}setIdentity(){this.set(1,0,0,0)}setAxisAndAngle(e,t){if(e.isZero())return this.setIdentity();e.normalize();let{x:n,y:r,z:i}=e,a=Math.sin(t/2);this.set(Math.cos(t/2),n*a,r*a,i*a)}squaredNorm(){let{a:e,b:t,c:n,d:r}=this;return e**2+t**2+n**2+r**2}norm(){return Math.sqrt(this.squaredNorm())}conjugate(){return this._b*=-1,this._c*=-1,this._d*=-1,this}add(e){let{a:t,b:n,c:r,d:i}=e;return this._a+=t,this._b+=n,this._c+=r,this._d+=i,this}subtract(e){let{a:t,b:n,c:r,d:i}=e;return this._a-=t,this._b-=n,this._c-=r,this._d-=i,this}multiply(e){let{a:t,b:n,c:r,d:i}=this,{a,b:o,c:s,d:c}=e;return this._a=t*a-n*o-r*s-i*c,this._b=t*o+n*a+r*c-i*s,this._c=t*s-n*c+r*a+i*o,this._d=t*c+n*s-r*o+i*a,this}invert(){let e=this.squaredNorm();return e<=0?null:this.conjugate().divideScalar(e)}divide(t){let{temporary:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}multiplyScalar(e){return this._a*=e,this._b*=e,this._c*=e,this._d*=e,this}divideScalar(e){return this._a/=e,this._b/=e,this._c/=e,this._d/=e,this}rotateX(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new p(1,0,0),t),this.multiply(n)}rotateY(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new p(0,1,0),t),this.multiply(n)}rotateZ(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new p(0,0,1),t),this.multiply(n)}},v=0,y=class e{dimension=1;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=h.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=l.identity(),this._tmpMatrix4}constructor(e){this.elements=[e]}get x(){return this.elements[v]}set x(e){this.elements[v]=e}static zero(){return new e(0)}static one(){return new e(1)}clone(){let{x:t}=this;return new e(t)}isZero(){return this.x===0}set(e){return this.x=e,this}copy(e){return this.x=e.x,this}add(e){return this.x+=e.x,this}subtract(e){return this.x-=e.x,this}multiplyScalar(e){return this.x*=e,this}divideScalar(e){return this.x/=e,this}length(){return Math.abs(this.x)}normalize(){return this.x/=this.length(),this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0);return this.set(r),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}},b=0,x=1,S=class e{dimension=2;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=h.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=l.identity(),this._tmpMatrix4}constructor(e,t){this.elements=[e,t]}get x(){return this.elements[b]}set x(e){this.elements[b]=e}get y(){return this.elements[x]}set y(e){this.elements[x]=e}static zero(){return new e(0,0)}static one(){return new e(1,1)}clone(){let{x:t,y:n}=this;return new e(t,n)}isZero(){let{x:e,y:t}=this;return e===0&&t===0}set(e,t){return this.x=e,this.y=t,this}copy(e){let{x:t,y:n}=e;return this.set(t,n)}add(e){return this.x+=e.x,this.y+=e.y,this}subtract(e){return this.x-=e.x,this.y-=e.y,this}multiplyScalar(e){return this.x*=e,this.y*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this}length(){let{x:e,y:t}=this;return Math.sqrt(e**2+t**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}rotate(e){let{cos:t,sin:n}=Math,r=this.x*t(e)-this.y*n(e),i=this.x*n(e)+this.y*t(e);return this.x=r,this.y=i,this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0);return this.set(r,i),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}};exports.Matrix3=h,exports.Matrix4=l,exports.PolarCoordinate3=g,exports.Quaternion=_,exports.Vector1=y,exports.Vector2=S,exports.Vector3=p,exports.Vector4=s,exports.range=e,exports.sum=t,exports.sumMap=n;
1
+ function*e(e,t){let n=t?.start??0,r=t?.step??1;if(r!==0&&!(r>0&&n>e)&&!(r<0&&n<e))for(let t=n;r>0?t<e:t>e;t+=r)yield t}function t(e){let t=0;for(let n of e)t+=n;return t}function n(e,t){let n=0;for(let r of e)n+=t(r)??0;return n}var r=0,i=1,a=2,o=3,s=class e{dimension=4;elements;static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e,t,n,r){this.elements=[e,t,n,r]}get x(){return this.elements[r]}set x(e){this.elements[r]=e}get y(){return this.elements[i]}set y(e){this.elements[i]=e}get z(){return this.elements[a]}set z(e){this.elements[a]=e}get w(){return this.elements[o]}set w(e){this.elements[o]=e}static zero(){return new e(0,0,0,0)}static one(){return new e(1,1,1,1)}clone(){let{x:t,y:n,z:r,w:i}=this;return new e(t,n,r,i)}isZero(){let{x:e,y:t,z:n,w:r}=this;return e===0&&t===0&&n===0&&r===0}set(e,t,n,r){this.x=e,this.y=t,this.z=n,this.w=r}copy(e){let{x:t,y:n,z:r,w:i}=e;this.set(t,n,r,i)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this.w+=e.w,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this.w-=e.w,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this.w*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this.w/=e,this}length(){let{x:e,y:t,z:n,w:r}=this;return Math.sqrt(e**2+t**2+n**2+r**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}},c=1e-8,l=!1,u=class t{order=4;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=t.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=s.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h)}static identity(){return t.zero().setIdentity()}static zero(){return new t(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)}clone(){let[e,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements;return new t(e,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}set(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this.elements[9]=l,this.elements[10]=u,this.elements[11]=d,this.elements[12]=f,this.elements[13]=p,this.elements[14]=m,this.elements[15]=h,this}copy(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=e.elements;this.set(t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}setIdentity(){return this.set(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),this}setScale(t){this.setIdentity();let{order:n}=this;for(let r of e(n)){let i=r===n-1?1:t.elements[r];for(let t of e(n)){let e=r*n+t;this.elements[e]*=i}}return this}setTranslation(e){let{x:t,y:n,z:r}=e;return this.setIdentity(),this.elements[12]=t,this.elements[13]=n,this.elements[14]=r,this}setRotation(e){let{a:t,b:n,c:r,d:i}=e,a=2/e.squaredNorm(),o=n**2,s=r**2,c=i**2,l=t*n,u=t*r,d=t*i,f=n*r,p=n*i,m=r*i;return this.set(1-a*(s+c),-a*(f-d),-a*(p+u),0,-a*(f+d),1-a*(o+c),-a*(m-l),0,-a*(p-u),-a*(m+l),1-a*(o+s),0,0,0,0,1),this}add(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]+=t.elements[r];return this}subtract(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]-=t.elements[r];return this}multiplyScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]*=t;return this}divideScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]/=t;return this}multiply(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements,[_,v,y,b,x,S,C,w,T,E,D,O,k,A,j,M]=e.elements;return this.elements[0]=_*t+v*a+y*l+b*p,this.elements[1]=_*n+v*o+y*u+b*m,this.elements[2]=_*r+v*s+y*d+b*h,this.elements[3]=_*i+v*c+y*f+b*g,this.elements[4]=x*t+S*a+C*l+w*p,this.elements[5]=x*n+S*o+C*u+w*m,this.elements[6]=x*r+S*s+C*d+w*h,this.elements[7]=x*i+S*c+C*f+w*g,this.elements[8]=T*t+E*a+D*l+O*p,this.elements[9]=T*n+E*o+D*u+O*m,this.elements[10]=T*r+E*s+D*d+O*h,this.elements[11]=T*i+E*c+D*f+O*g,this.elements[12]=k*t+A*a+j*l+M*p,this.elements[13]=k*n+A*o+j*u+M*m,this.elements[14]=k*r+A*s+j*d+M*h,this.elements[15]=k*i+A*c+j*f+M*g,this}multiplyScale(e){return this.multiply(t.tmpMatrix.setScale(e))}multiplyTranslation(e){return this.multiply(t.tmpMatrix.setTranslation(e))}multiplyRotation(e){return this.multiply(t.tmpMatrix.setRotation(e))}determinant(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return e*(a*(u*h-d*m)-o*(l*h-d*p)+s*(l*m-u*p))-t*(i*(u*h-d*m)-o*(c*h-d*f)+s*(c*m-u*f))+n*(i*(l*h-d*p)-a*(c*h-d*f)+s*(c*p-l*f))-r*(i*(l*m-u*p)-a*(c*m-u*f)+o*(c*p-l*f))}invert(){let e=this.determinant();if(Math.abs(e)<c)return null;let[t,n,r,i,a,o,s,l,u,d,f,p,m,h,g,_]=this.elements,v=f*_-p*g,y=d*_-p*h,b=d*g-f*h,x=s*_-l*g,S=o*_-l*h,C=o*g-s*h,w=s*p-l*f,T=o*p-l*d,E=o*f-s*d,D=u*_-p*m,O=u*g-f*m,k=a*_-l*m,A=a*g-s*m,j=a*p-l*u,M=a*f-s*u,N=u*h-d*m,P=a*h-o*m,F=a*d-o*u;return this.elements[0]=(o*v-s*y+l*b)/e,this.elements[1]=-(n*v-r*y+i*b)/e,this.elements[2]=(n*x-r*S+i*C)/e,this.elements[3]=-(n*w-r*T+i*E)/e,this.elements[4]=-(a*v-s*D+l*O)/e,this.elements[5]=(t*v-r*D+i*O)/e,this.elements[6]=-(t*x-r*k+i*A)/e,this.elements[7]=(t*w-r*j+i*M)/e,this.elements[8]=(a*y-o*D+l*N)/e,this.elements[9]=-(t*y-n*D+i*N)/e,this.elements[10]=(t*S-n*k+i*P)/e,this.elements[11]=-(t*T-n*j+i*F)/e,this.elements[12]=-(a*b-o*O+s*N)/e,this.elements[13]=(t*b-n*O+r*N)/e,this.elements[14]=-(t*C-n*A+r*P)/e,this.elements[15]=(t*E-n*M+r*F)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return this.elements[1]=i,this.elements[2]=c,this.elements[3]=f,this.elements[4]=t,this.elements[6]=l,this.elements[7]=p,this.elements[8]=n,this.elements[9]=o,this.elements[11]=m,this.elements[12]=r,this.elements[13]=s,this.elements[14]=d,this}divide(e){let{tmpMatrix:n}=t;return n.copy(e),n.invert()?this.multiply(n):null}lookAt(e,t,n){let{x:r,y:i,z:a}=e,{x:o,y:s,z:l}=n,u=e.x-t.x,d=e.y-t.y,f=e.z-t.z,p=Math.sqrt(u**2+d**2+f**2);if(p<c)return this;u/=p,d/=p,f/=p;let m=s*f-l*d,h=l*u-o*f,g=o*d-s*u,_=Math.sqrt(m**2+h**2+g**2);_>0&&(m/=_,h/=_,g/=_);let v=d*g-f*h,y=f*m-u*g,b=u*h-d*m,x=Math.sqrt(v**2+y**2+b**2);x>0&&(v/=x,y/=x,b/=x);let S=-(m*r+h*i+g*a),C=-(v*r+y*i+b*a),w=-(u*r+d*i+f*a);return this.set(m,v,u,0,h,y,d,0,g,b,f,0,S,C,w,1),this}orthographic(e,t,n,r,i,a,o){let s=o?.depthZeroToOne??l,c=t-e,u=r-n,d=a-i,f=(s?-1:-2)/d,p=-(t+e)/c,m=-(r+n)/u,h=(s?-i:-(a+i))/d;return this.set(2/c,0,0,0,0,2/u,0,0,0,0,f,0,p,m,h,1),this}perspective(e,t,n,r,i){let a=1/Math.tan(e/2);this.set(a/r,0,0,0,0,a,0,0,0,0,1,-1,0,0,1,0);let o=i?.depthZeroToOne??l,s=o?1:2;if(n!==1/0){let e=o?n:n+t;this.elements[10]=-e/(n-t),this.elements[14]=-s*n*t/(n-t)}else this.elements[10]=-1,this.elements[14]=-s*t;return this}_applyVector(e,n,r,i){let{tmpVector:a}=t;a.set(e,n,r,i);let[o,s,c,l,u,d,f,p,m,h,g,_,v,y,b,x]=this.elements,S=o*e+u*n+m*r+v*i,C=s*e+d*n+h*r+y*i,w=c*e+f*n+g*r+b*i,T=l*e+p*n+_*r+x*i;return a.set(S,C,w,T),a}},d=0,f=1,p=2,m=!1,h=class e{dimension=3;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=_.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e,t,n){this.elements=[e,t,n]}get x(){return this.elements[d]}set x(e){this.elements[d]=e}get y(){return this.elements[f]}set y(e){this.elements[f]=e}get z(){return this.elements[p]}set z(e){this.elements[p]=e}static zero(){return new e(0,0,0)}static one(){return new e(1,1,1)}clone(){let{x:t,y:n,z:r}=this;return new e(t,n,r)}isZero(){let{x:e,y:t,z:n}=this;return e===0&&t===0&&n===0}set(e,t,n){return this.x=e,this.y=t,this.z=n,this}copy(e){let{x:t,y:n,z:r}=e;return this.set(t,n,r)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this}length(){let{x:e,y:t,z:n}=this;return Math.sqrt(e**2+t**2+n**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}cross(e){let{x:t,y:n,z:r}=this,{x:i,y:a,z:o}=e,s=n*o-r*a,c=r*i-t*o,l=t*a-n*i;return this.set(s,c,l)}crossTo(e,t){return t.copy(this),t.cross(e)}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z);return this.set(r,i,a),this}applyMatrix4(t,n){let{tmpMatrix4:r}=e;r.copy(t);let i=n?.asDirection??m,a=i?0:1,{x:o,y:s,z:c,w:l}=r._applyVector(this.x,this.y,this.z,a),u=i||l===0?o:o/l,d=i||l===0?s:s/l,f=i||l===0?c:c/l;return this.set(u,d,f),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z,0);return this.set(r,i,a),this}},g=1e-8,_=class t{order=3;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=t.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=h.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c)}static identity(){return t.zero().setIdentity()}static zero(){return new t(0,0,0,0,0,0,0,0,0)}clone(){let[e,n,r,i,a,o,s,c,l]=this.elements;return new t(e,n,r,i,a,o,s,c,l)}set(e,t,n,r,i,a,o,s,c){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this}copy(e){let[t,n,r,i,a,o,s,c,l]=e.elements;this.set(t,n,r,i,a,o,s,c,l)}setIdentity(){return this.set(1,0,0,0,1,0,0,0,1),this}add(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]+=t.elements[r];return this}subtract(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]-=t.elements[r];return this}multiplyScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]*=t;return this}divideScalar(t){let{order:n}=this;for(let r of e(n**2))this.elements[r]/=t;return this}multiply(e){let[t,n,r,i,a,o,s,c,l]=this.elements,[u,d,f,p,m,h,g,_,v]=e.elements;return this.elements[0]=u*t+d*i+f*s,this.elements[1]=u*n+d*a+f*c,this.elements[2]=u*r+d*o+f*l,this.elements[3]=p*t+m*i+h*s,this.elements[4]=p*n+m*a+h*c,this.elements[5]=p*r+m*o+h*l,this.elements[6]=g*t+_*i+v*s,this.elements[7]=g*n+_*a+v*c,this.elements[8]=g*r+_*o+v*l,this}determinant(){let[e,t,n,r,i,a,o,s,c]=this.elements;return e*(c*i-a*s)+t*(-c*r+a*o)+n*(s*r-i*o)}invert(){let e=this.determinant();if(Math.abs(e)<g)return null;let[t,n,r,i,a,o,s,c,l]=this.elements,u=l*a-o*c,d=-l*i+o*s,f=c*i-a*s;return this.elements[0]=u/e,this.elements[1]=(-l*n+r*c)/e,this.elements[2]=(o*n-r*a)/e,this.elements[3]=d/e,this.elements[4]=(l*t-r*s)/e,this.elements[5]=(-o*t+r*i)/e,this.elements[6]=f/e,this.elements[7]=(-c*t+n*s)/e,this.elements[8]=(a*t-n*i)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c]=this.elements;return this.elements[1]=r,this.elements[2]=o,this.elements[3]=t,this.elements[5]=s,this.elements[6]=n,this.elements[7]=a,this}divide(e){let{tmpMatrix:n}=t;return n.copy(e),n.invert()?this.multiply(n):null}_applyVector(e,n,r){let{tmpVector:i}=t;i.set(e,n,r);let[a,o,s,c,l,u,d,f,p]=this.elements,m=a*e+c*n+d*r,h=o*e+l*n+f*r,g=s*e+u*n+p*r;return i.set(m,h,g),i}},v=class{_phi;_theta;_radius;constructor(e,t,n){this._phi=e,this._theta=t,this._radius=n}get phi(){return this._phi}set phi(e){this._phi=e}get theta(){return this._theta}set theta(e){this._theta=e}get radius(){return this._radius}set radius(e){this._radius=e}toVector3(e){let{phi:t,theta:n,radius:r}=this,{cos:i,sin:a}=Math,o=a(n),s=r*o*i(t),c=r*o*a(t),l=r*i(n);e.set(s,c,l)}toTangentZ(e){let{phi:t,theta:n}=this,{cos:r,sin:i}=Math,a=r(n),o=-a*r(t),s=-a*i(t),c=i(n);e.set(o,s,c)}},y=class e{_a;_b;_c;_d;static temporary=e.identity();constructor(e,t,n,r){this._a=e,this._b=t,this._c=n,this._d=r}get a(){return this._a}get b(){return this._b}get c(){return this._c}get d(){return this._d}static identity(){return new e(1,0,0,0)}static fromAxisAndAngle(t,n){let r=e.identity();return r.setAxisAndAngle(t,n),r}clone(){let{a:t,b:n,c:r,d:i}=this;return new e(t,n,r,i)}set(e,t,n,r){return this._a=e,this._b=t,this._c=n,this._d=r,this}copy(e){let{a:t,b:n,c:r,d:i}=e;return this.set(t,n,r,i)}setIdentity(){this.set(1,0,0,0)}setAxisAndAngle(e,t){if(e.isZero())return this.setIdentity();e.normalize();let{x:n,y:r,z:i}=e,a=Math.sin(t/2);this.set(Math.cos(t/2),n*a,r*a,i*a)}squaredNorm(){let{a:e,b:t,c:n,d:r}=this;return e**2+t**2+n**2+r**2}norm(){return Math.sqrt(this.squaredNorm())}conjugate(){return this._b*=-1,this._c*=-1,this._d*=-1,this}add(e){let{a:t,b:n,c:r,d:i}=e;return this._a+=t,this._b+=n,this._c+=r,this._d+=i,this}subtract(e){let{a:t,b:n,c:r,d:i}=e;return this._a-=t,this._b-=n,this._c-=r,this._d-=i,this}multiply(e){let{a:t,b:n,c:r,d:i}=this,{a,b:o,c:s,d:c}=e;return this._a=t*a-n*o-r*s-i*c,this._b=t*o+n*a+r*c-i*s,this._c=t*s-n*c+r*a+i*o,this._d=t*c+n*s-r*o+i*a,this}invert(){let e=this.squaredNorm();return e<=0?null:this.conjugate().divideScalar(e)}divide(t){let{temporary:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}multiplyScalar(e){return this._a*=e,this._b*=e,this._c*=e,this._d*=e,this}divideScalar(e){return this._a/=e,this._b/=e,this._c/=e,this._d/=e,this}rotateX(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new h(1,0,0),t),this.multiply(n)}rotateY(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new h(0,1,0),t),this.multiply(n)}rotateZ(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new h(0,0,1),t),this.multiply(n)}},b=0,x=class e{dimension=1;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=_.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e){this.elements=[e]}get x(){return this.elements[b]}set x(e){this.elements[b]=e}static zero(){return new e(0)}static one(){return new e(1)}clone(){let{x:t}=this;return new e(t)}isZero(){return this.x===0}set(e){return this.x=e,this}copy(e){return this.x=e.x,this}add(e){return this.x+=e.x,this}subtract(e){return this.x-=e.x,this}multiplyScalar(e){return this.x*=e,this}divideScalar(e){return this.x/=e,this}length(){return Math.abs(this.x)}normalize(){return this.x/=this.length(),this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0);return this.set(r),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}},S=0,C=1,w=class e{dimension=2;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=_.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e,t){this.elements=[e,t]}get x(){return this.elements[S]}set x(e){this.elements[S]=e}get y(){return this.elements[C]}set y(e){this.elements[C]=e}static zero(){return new e(0,0)}static one(){return new e(1,1)}clone(){let{x:t,y:n}=this;return new e(t,n)}isZero(){let{x:e,y:t}=this;return e===0&&t===0}set(e,t){return this.x=e,this.y=t,this}copy(e){let{x:t,y:n}=e;return this.set(t,n)}add(e){return this.x+=e.x,this.y+=e.y,this}subtract(e){return this.x-=e.x,this.y-=e.y,this}multiplyScalar(e){return this.x*=e,this.y*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this}length(){let{x:e,y:t}=this;return Math.sqrt(e**2+t**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}rotate(e){let{cos:t,sin:n}=Math,r=this.x*t(e)-this.y*n(e),i=this.x*n(e)+this.y*t(e);return this.x=r,this.y=i,this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0);return this.set(r,i),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}};exports.Matrix3=_,exports.Matrix4=u,exports.PolarCoordinate3=v,exports.Quaternion=y,exports.Vector1=x,exports.Vector2=w,exports.Vector3=h,exports.Vector4=s,exports.range=e,exports.sum=t,exports.sumMap=n;
package/dist/mathue.js CHANGED
@@ -100,11 +100,11 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
100
100
  }
101
101
  applyQuaternion(t) {
102
102
  let { tmpMatrix4: n } = e;
103
- n.setQuaternion(t);
103
+ n.setRotation(t);
104
104
  let { x: r, y: i, z: a, w: o } = this, s = n._applyVector(r, i, a, o);
105
105
  return this.copy(s), this;
106
106
  }
107
- }, EPSILON$1 = 1e-8, Matrix4 = class t {
107
+ }, EPSILON$1 = 1e-8, DEFAULT_DEPTH_ZERO_TO_ONE = !1, Matrix4 = class t {
108
108
  order = 4;
109
109
  elements;
110
110
  static _tmpMatrix;
@@ -138,9 +138,25 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
138
138
  setIdentity() {
139
139
  return this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), this;
140
140
  }
141
- setQuaternion(e) {
141
+ setScale(t) {
142
+ this.setIdentity();
143
+ let { order: n } = this;
144
+ for (let r of range(n)) {
145
+ let i = r === n - 1 ? 1 : t.elements[r];
146
+ for (let t of range(n)) {
147
+ let e = r * n + t;
148
+ this.elements[e] *= i;
149
+ }
150
+ }
151
+ return this;
152
+ }
153
+ setTranslation(e) {
154
+ let { x: t, y: n, z: r } = e;
155
+ return this.setIdentity(), this.elements[12] = t, this.elements[13] = n, this.elements[14] = r, this;
156
+ }
157
+ setRotation(e) {
142
158
  let { a: t, b: n, c: r, d: i } = e, a = 2 / e.squaredNorm(), o = n ** 2, s = r ** 2, c = i ** 2, l = t * n, u = t * r, d = t * i, f = n * r, p = n * i, m = r * i;
143
- return this.set(1 - a * (s + c), a * (f - d), a * (p + u), 0, a * (f + d), 1 - a * (o + c), a * (m - l), 0, a * (p - u), a * (m + l), 1 - a * (o + s), 0, 0, 0, 0, 1), this;
159
+ return this.set(1 - a * (s + c), -a * (f - d), -a * (p + u), 0, -a * (f + d), 1 - a * (o + c), -a * (m - l), 0, -a * (p - u), -a * (m + l), 1 - a * (o + s), 0, 0, 0, 0, 1), this;
144
160
  }
145
161
  add(t) {
146
162
  let { order: n } = this;
@@ -166,6 +182,15 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
166
182
  let [t, n, r, i, a, o, s, c, l, u, d, f, p, m, h, g] = this.elements, [_, v, y, b, x, S, C, w, T, E, D, O, k, A, j, M] = e.elements;
167
183
  return this.elements[0] = _ * t + v * a + y * l + b * p, this.elements[1] = _ * n + v * o + y * u + b * m, this.elements[2] = _ * r + v * s + y * d + b * h, this.elements[3] = _ * i + v * c + y * f + b * g, this.elements[4] = x * t + S * a + C * l + w * p, this.elements[5] = x * n + S * o + C * u + w * m, this.elements[6] = x * r + S * s + C * d + w * h, this.elements[7] = x * i + S * c + C * f + w * g, this.elements[8] = T * t + E * a + D * l + O * p, this.elements[9] = T * n + E * o + D * u + O * m, this.elements[10] = T * r + E * s + D * d + O * h, this.elements[11] = T * i + E * c + D * f + O * g, this.elements[12] = k * t + A * a + j * l + M * p, this.elements[13] = k * n + A * o + j * u + M * m, this.elements[14] = k * r + A * s + j * d + M * h, this.elements[15] = k * i + A * c + j * f + M * g, this;
168
184
  }
185
+ multiplyScale(e) {
186
+ return this.multiply(t.tmpMatrix.setScale(e));
187
+ }
188
+ multiplyTranslation(e) {
189
+ return this.multiply(t.tmpMatrix.setTranslation(e));
190
+ }
191
+ multiplyRotation(e) {
192
+ return this.multiply(t.tmpMatrix.setRotation(e));
193
+ }
169
194
  determinant() {
170
195
  let [e, t, n, r, i, a, o, s, c, l, u, d, f, p, m, h] = this.elements;
171
196
  return e * (a * (u * h - d * m) - o * (l * h - d * p) + s * (l * m - u * p)) - t * (i * (u * h - d * m) - o * (c * h - d * f) + s * (c * m - u * f)) + n * (i * (l * h - d * p) - a * (c * h - d * f) + s * (c * p - l * f)) - r * (i * (l * m - u * p) - a * (c * m - u * f) + o * (c * p - l * f));
@@ -184,21 +209,6 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
184
209
  let { tmpMatrix: n } = t;
185
210
  return n.copy(e), n.invert() ? this.multiply(n) : null;
186
211
  }
187
- scale(t) {
188
- let { order: n } = this;
189
- for (let r of range(n)) {
190
- let i = r === n - 1 ? 1 : t.elements[r];
191
- for (let t of range(n)) {
192
- let e = r * n + t;
193
- this.elements[e] *= i;
194
- }
195
- }
196
- return this;
197
- }
198
- translate(e) {
199
- let { x: t, y: n, z: r } = e, [i, a, o, s, c, l, u, d, f, p, m, h, g, _, v, y] = this.elements;
200
- return this.elements[12] = i * t + c * n + f * r + g, this.elements[13] = a * t + l * n + p * r + _, this.elements[14] = o * t + u * n + m * r + v, this.elements[15] = s * t + d * n + h * r + y, this;
201
- }
202
212
  lookAt(e, t, n) {
203
213
  let { x: r, y: i, z: a } = e, { x: o, y: s, z: l } = n, u = e.x - t.x, d = e.y - t.y, f = e.z - t.z, p = Math.sqrt(u ** 2 + d ** 2 + f ** 2);
204
214
  if (p < EPSILON$1) return this;
@@ -210,9 +220,19 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
210
220
  let S = -(m * r + h * i + g * a), C = -(v * r + y * i + b * a), w = -(u * r + d * i + f * a);
211
221
  return this.set(m, v, u, 0, h, y, d, 0, g, b, f, 0, S, C, w, 1), this;
212
222
  }
213
- perspective(e, t, n, r) {
214
- let i = 1 / Math.tan(e / 2);
215
- return this.set(i / r, 0, 0, 0, 0, i, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0), n === Infinity ? (this.elements[10] = -1, this.elements[14] = -2 * t) : (this.elements[10] = -(n + t) / (n - t), this.elements[14] = -2 * n * t / (n - t)), this;
223
+ orthographic(e, t, n, r, i, a, o) {
224
+ let s = o?.depthZeroToOne ?? DEFAULT_DEPTH_ZERO_TO_ONE, c = t - e, u = r - n, d = a - i, f = (s ? -1 : -2) / d, p = -(t + e) / c, m = -(r + n) / u, h = (s ? -i : -(a + i)) / d;
225
+ return this.set(2 / c, 0, 0, 0, 0, 2 / u, 0, 0, 0, 0, f, 0, p, m, h, 1), this;
226
+ }
227
+ perspective(e, t, n, r, i) {
228
+ let a = 1 / Math.tan(e / 2);
229
+ this.set(a / r, 0, 0, 0, 0, a, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0);
230
+ let o = i?.depthZeroToOne ?? DEFAULT_DEPTH_ZERO_TO_ONE, s = o ? 1 : 2;
231
+ if (n !== Infinity) {
232
+ let e = o ? n : n + t;
233
+ this.elements[10] = -e / (n - t), this.elements[14] = -s * n * t / (n - t);
234
+ } else this.elements[10] = -1, this.elements[14] = -s * t;
235
+ return this;
216
236
  }
217
237
  _applyVector(e, n, r, i) {
218
238
  let { tmpVector: a } = t;
@@ -220,7 +240,7 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
220
240
  let [o, s, c, l, u, d, f, p, m, h, g, _, v, y, b, x] = this.elements, S = o * e + u * n + m * r + v * i, C = s * e + d * n + h * r + y * i, w = c * e + f * n + g * r + b * i, T = l * e + p * n + _ * r + x * i;
221
241
  return a.set(S, C, w, T), a;
222
242
  }
223
- }, INDEX_X$2 = 0, INDEX_Y$1 = 1, INDEX_Z = 2, Vector3 = class e {
243
+ }, INDEX_X$2 = 0, INDEX_Y$1 = 1, INDEX_Z = 2, DEFAULT_AS_DIRECTION = !1, Vector3 = class e {
224
244
  dimension = 3;
225
245
  elements;
226
246
  static _tmpMatrix3;
@@ -310,15 +330,15 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
310
330
  let { x: r, y: i, z: a } = n._applyVector(this.x, this.y, this.z);
311
331
  return this.set(r, i, a), this;
312
332
  }
313
- applyMatrix4(t) {
314
- let { tmpMatrix4: n } = e;
315
- n.copy(t);
316
- let { x: r, y: i, z: a } = n._applyVector(this.x, this.y, this.z, 0);
317
- return this.set(r, i, a), this;
333
+ applyMatrix4(t, n) {
334
+ let { tmpMatrix4: r } = e;
335
+ r.copy(t);
336
+ let i = n?.asDirection ?? DEFAULT_AS_DIRECTION, a = i ? 0 : 1, { x: o, y: s, z: c, w: l } = r._applyVector(this.x, this.y, this.z, a), u = i || l === 0 ? o : o / l, d = i || l === 0 ? s : s / l, f = i || l === 0 ? c : c / l;
337
+ return this.set(u, d, f), this;
318
338
  }
319
339
  applyQuaternion(t) {
320
340
  let { tmpMatrix4: n } = e;
321
- n.setQuaternion(t);
341
+ n.setRotation(t);
322
342
  let { x: r, y: i, z: a } = n._applyVector(this.x, this.y, this.z, 0);
323
343
  return this.set(r, i, a), this;
324
344
  }
@@ -604,7 +624,7 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
604
624
  }
605
625
  applyQuaternion(t) {
606
626
  let { tmpMatrix4: n } = e;
607
- n.setQuaternion(t);
627
+ n.setRotation(t);
608
628
  let { x: r } = n._applyVector(this.x, 0, 0, 0);
609
629
  return this.set(r), this;
610
630
  }
@@ -693,7 +713,7 @@ var INDEX_X$3 = 0, INDEX_Y$2 = 1, INDEX_Z$1 = 2, INDEX_W = 3, Vector4 = class e
693
713
  }
694
714
  applyQuaternion(t) {
695
715
  let { tmpMatrix4: n } = e;
696
- n.setQuaternion(t);
716
+ n.setRotation(t);
697
717
  let { x: r, y: i } = n._applyVector(this.x, this.y, 0, 0);
698
718
  return this.set(r, i), this;
699
719
  }
@@ -1 +1 @@
1
- (function(e,t){typeof exports==`object`&&typeof module<`u`?t(exports):typeof define==`function`&&define.amd?define([`exports`],t):(e=typeof globalThis<`u`?globalThis:e||self,t(e.mathue={}))})(this,function(e){function*t(e,t){let n=t?.start??0,r=t?.step??1;if(r!==0&&!(r>0&&n>e)&&!(r<0&&n<e))for(let t=n;r>0?t<e:t>e;t+=r)yield t}function n(e){let t=0;for(let n of e)t+=n;return t}function r(e,t){let n=0;for(let r of e)n+=t(r)??0;return n}var i=0,a=1,o=2,s=3,c=class e{dimension=4;elements;static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e,t,n,r){this.elements=[e,t,n,r]}get x(){return this.elements[i]}set x(e){this.elements[i]=e}get y(){return this.elements[a]}set y(e){this.elements[a]=e}get z(){return this.elements[o]}set z(e){this.elements[o]=e}get w(){return this.elements[s]}set w(e){this.elements[s]=e}static zero(){return new e(0,0,0,0)}static one(){return new e(1,1,1,1)}clone(){let{x:t,y:n,z:r,w:i}=this;return new e(t,n,r,i)}isZero(){let{x:e,y:t,z:n,w:r}=this;return e===0&&t===0&&n===0&&r===0}set(e,t,n,r){this.x=e,this.y=t,this.z=n,this.w=r}copy(e){let{x:t,y:n,z:r,w:i}=e;this.set(t,n,r,i)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this.w+=e.w,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this.w-=e.w,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this.w*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this.w/=e,this}length(){let{x:e,y:t,z:n,w:r}=this;return Math.sqrt(e**2+t**2+n**2+r**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}},l=1e-8,u=class e{order=4;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=e.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=c.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h)}static identity(){return e.zero().setIdentity()}static zero(){return new e(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)}clone(){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements;return new e(t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}set(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this.elements[9]=l,this.elements[10]=u,this.elements[11]=d,this.elements[12]=f,this.elements[13]=p,this.elements[14]=m,this.elements[15]=h,this}copy(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=e.elements;this.set(t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}setIdentity(){return this.set(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),this}setQuaternion(e){let{a:t,b:n,c:r,d:i}=e,a=2/e.squaredNorm(),o=n**2,s=r**2,c=i**2,l=t*n,u=t*r,d=t*i,f=n*r,p=n*i,m=r*i;return this.set(1-a*(s+c),a*(f-d),a*(p+u),0,a*(f+d),1-a*(o+c),a*(m-l),0,a*(p-u),a*(m+l),1-a*(o+s),0,0,0,0,1),this}add(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]+=e.elements[r];return this}subtract(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]-=e.elements[r];return this}multiplyScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]*=e;return this}divideScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]/=e;return this}multiply(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements,[_,v,y,b,x,S,C,w,T,E,D,O,k,A,j,M]=e.elements;return this.elements[0]=_*t+v*a+y*l+b*p,this.elements[1]=_*n+v*o+y*u+b*m,this.elements[2]=_*r+v*s+y*d+b*h,this.elements[3]=_*i+v*c+y*f+b*g,this.elements[4]=x*t+S*a+C*l+w*p,this.elements[5]=x*n+S*o+C*u+w*m,this.elements[6]=x*r+S*s+C*d+w*h,this.elements[7]=x*i+S*c+C*f+w*g,this.elements[8]=T*t+E*a+D*l+O*p,this.elements[9]=T*n+E*o+D*u+O*m,this.elements[10]=T*r+E*s+D*d+O*h,this.elements[11]=T*i+E*c+D*f+O*g,this.elements[12]=k*t+A*a+j*l+M*p,this.elements[13]=k*n+A*o+j*u+M*m,this.elements[14]=k*r+A*s+j*d+M*h,this.elements[15]=k*i+A*c+j*f+M*g,this}determinant(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return e*(a*(u*h-d*m)-o*(l*h-d*p)+s*(l*m-u*p))-t*(i*(u*h-d*m)-o*(c*h-d*f)+s*(c*m-u*f))+n*(i*(l*h-d*p)-a*(c*h-d*f)+s*(c*p-l*f))-r*(i*(l*m-u*p)-a*(c*m-u*f)+o*(c*p-l*f))}invert(){let e=this.determinant();if(Math.abs(e)<l)return null;let[t,n,r,i,a,o,s,c,u,d,f,p,m,h,g,_]=this.elements,v=f*_-p*g,y=d*_-p*h,b=d*g-f*h,x=s*_-c*g,S=o*_-c*h,C=o*g-s*h,w=s*p-c*f,T=o*p-c*d,E=o*f-s*d,D=u*_-p*m,O=u*g-f*m,k=a*_-c*m,A=a*g-s*m,j=a*p-c*u,M=a*f-s*u,N=u*h-d*m,P=a*h-o*m,F=a*d-o*u;return this.elements[0]=(o*v-s*y+c*b)/e,this.elements[1]=-(n*v-r*y+i*b)/e,this.elements[2]=(n*x-r*S+i*C)/e,this.elements[3]=-(n*w-r*T+i*E)/e,this.elements[4]=-(a*v-s*D+c*O)/e,this.elements[5]=(t*v-r*D+i*O)/e,this.elements[6]=-(t*x-r*k+i*A)/e,this.elements[7]=(t*w-r*j+i*M)/e,this.elements[8]=(a*y-o*D+c*N)/e,this.elements[9]=-(t*y-n*D+i*N)/e,this.elements[10]=(t*S-n*k+i*P)/e,this.elements[11]=-(t*T-n*j+i*F)/e,this.elements[12]=-(a*b-o*O+s*N)/e,this.elements[13]=(t*b-n*O+r*N)/e,this.elements[14]=-(t*C-n*A+r*P)/e,this.elements[15]=(t*E-n*M+r*F)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return this.elements[1]=i,this.elements[2]=c,this.elements[3]=f,this.elements[4]=t,this.elements[6]=l,this.elements[7]=p,this.elements[8]=n,this.elements[9]=o,this.elements[11]=m,this.elements[12]=r,this.elements[13]=s,this.elements[14]=d,this}divide(t){let{tmpMatrix:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}scale(e){let{order:n}=this;for(let r of t(n)){let i=r===n-1?1:e.elements[r];for(let e of t(n)){let t=r*n+e;this.elements[t]*=i}}return this}translate(e){let{x:t,y:n,z:r}=e,[i,a,o,s,c,l,u,d,f,p,m,h,g,_,v,y]=this.elements;return this.elements[12]=i*t+c*n+f*r+g,this.elements[13]=a*t+l*n+p*r+_,this.elements[14]=o*t+u*n+m*r+v,this.elements[15]=s*t+d*n+h*r+y,this}lookAt(e,t,n){let{x:r,y:i,z:a}=e,{x:o,y:s,z:c}=n,u=e.x-t.x,d=e.y-t.y,f=e.z-t.z,p=Math.sqrt(u**2+d**2+f**2);if(p<l)return this;u/=p,d/=p,f/=p;let m=s*f-c*d,h=c*u-o*f,g=o*d-s*u,_=Math.sqrt(m**2+h**2+g**2);_>0&&(m/=_,h/=_,g/=_);let v=d*g-f*h,y=f*m-u*g,b=u*h-d*m,x=Math.sqrt(v**2+y**2+b**2);x>0&&(v/=x,y/=x,b/=x);let S=-(m*r+h*i+g*a),C=-(v*r+y*i+b*a),w=-(u*r+d*i+f*a);return this.set(m,v,u,0,h,y,d,0,g,b,f,0,S,C,w,1),this}perspective(e,t,n,r){let i=1/Math.tan(e/2);return this.set(i/r,0,0,0,0,i,0,0,0,0,1,-1,0,0,1,0),n===1/0?(this.elements[10]=-1,this.elements[14]=-2*t):(this.elements[10]=-(n+t)/(n-t),this.elements[14]=-2*n*t/(n-t)),this}_applyVector(t,n,r,i){let{tmpVector:a}=e;a.set(t,n,r,i);let[o,s,c,l,u,d,f,p,m,h,g,_,v,y,b,x]=this.elements,S=o*t+u*n+m*r+v*i,C=s*t+d*n+h*r+y*i,w=c*t+f*n+g*r+b*i,T=l*t+p*n+_*r+x*i;return a.set(S,C,w,T),a}},d=0,f=1,p=2,m=class e{dimension=3;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=g.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e,t,n){this.elements=[e,t,n]}get x(){return this.elements[d]}set x(e){this.elements[d]=e}get y(){return this.elements[f]}set y(e){this.elements[f]=e}get z(){return this.elements[p]}set z(e){this.elements[p]=e}static zero(){return new e(0,0,0)}static one(){return new e(1,1,1)}clone(){let{x:t,y:n,z:r}=this;return new e(t,n,r)}isZero(){let{x:e,y:t,z:n}=this;return e===0&&t===0&&n===0}set(e,t,n){return this.x=e,this.y=t,this.z=n,this}copy(e){let{x:t,y:n,z:r}=e;return this.set(t,n,r)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this}length(){let{x:e,y:t,z:n}=this;return Math.sqrt(e**2+t**2+n**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}cross(e){let{x:t,y:n,z:r}=this,{x:i,y:a,z:o}=e,s=n*o-r*a,c=r*i-t*o,l=t*a-n*i;return this.set(s,c,l)}crossTo(e,t){return t.copy(this),t.cross(e)}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z);return this.set(r,i,a),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z,0);return this.set(r,i,a),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z,0);return this.set(r,i,a),this}},h=1e-8,g=class e{order=3;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=e.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=m.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c)}static identity(){return e.zero().setIdentity()}static zero(){return new e(0,0,0,0,0,0,0,0,0)}clone(){let[t,n,r,i,a,o,s,c,l]=this.elements;return new e(t,n,r,i,a,o,s,c,l)}set(e,t,n,r,i,a,o,s,c){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this}copy(e){let[t,n,r,i,a,o,s,c,l]=e.elements;this.set(t,n,r,i,a,o,s,c,l)}setIdentity(){return this.set(1,0,0,0,1,0,0,0,1),this}add(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]+=e.elements[r];return this}subtract(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]-=e.elements[r];return this}multiplyScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]*=e;return this}divideScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]/=e;return this}multiply(e){let[t,n,r,i,a,o,s,c,l]=this.elements,[u,d,f,p,m,h,g,_,v]=e.elements;return this.elements[0]=u*t+d*i+f*s,this.elements[1]=u*n+d*a+f*c,this.elements[2]=u*r+d*o+f*l,this.elements[3]=p*t+m*i+h*s,this.elements[4]=p*n+m*a+h*c,this.elements[5]=p*r+m*o+h*l,this.elements[6]=g*t+_*i+v*s,this.elements[7]=g*n+_*a+v*c,this.elements[8]=g*r+_*o+v*l,this}determinant(){let[e,t,n,r,i,a,o,s,c]=this.elements;return e*(c*i-a*s)+t*(-c*r+a*o)+n*(s*r-i*o)}invert(){let e=this.determinant();if(Math.abs(e)<h)return null;let[t,n,r,i,a,o,s,c,l]=this.elements,u=l*a-o*c,d=-l*i+o*s,f=c*i-a*s;return this.elements[0]=u/e,this.elements[1]=(-l*n+r*c)/e,this.elements[2]=(o*n-r*a)/e,this.elements[3]=d/e,this.elements[4]=(l*t-r*s)/e,this.elements[5]=(-o*t+r*i)/e,this.elements[6]=f/e,this.elements[7]=(-c*t+n*s)/e,this.elements[8]=(a*t-n*i)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c]=this.elements;return this.elements[1]=r,this.elements[2]=o,this.elements[3]=t,this.elements[5]=s,this.elements[6]=n,this.elements[7]=a,this}divide(t){let{tmpMatrix:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}_applyVector(t,n,r){let{tmpVector:i}=e;i.set(t,n,r);let[a,o,s,c,l,u,d,f,p]=this.elements,m=a*t+c*n+d*r,h=o*t+l*n+f*r,g=s*t+u*n+p*r;return i.set(m,h,g),i}},_=class{_phi;_theta;_radius;constructor(e,t,n){this._phi=e,this._theta=t,this._radius=n}get phi(){return this._phi}set phi(e){this._phi=e}get theta(){return this._theta}set theta(e){this._theta=e}get radius(){return this._radius}set radius(e){this._radius=e}toVector3(e){let{phi:t,theta:n,radius:r}=this,{cos:i,sin:a}=Math,o=a(n),s=r*o*i(t),c=r*o*a(t),l=r*i(n);e.set(s,c,l)}toTangentZ(e){let{phi:t,theta:n}=this,{cos:r,sin:i}=Math,a=r(n),o=-a*r(t),s=-a*i(t),c=i(n);e.set(o,s,c)}},v=class e{_a;_b;_c;_d;static temporary=e.identity();constructor(e,t,n,r){this._a=e,this._b=t,this._c=n,this._d=r}get a(){return this._a}get b(){return this._b}get c(){return this._c}get d(){return this._d}static identity(){return new e(1,0,0,0)}static fromAxisAndAngle(t,n){let r=e.identity();return r.setAxisAndAngle(t,n),r}clone(){let{a:t,b:n,c:r,d:i}=this;return new e(t,n,r,i)}set(e,t,n,r){return this._a=e,this._b=t,this._c=n,this._d=r,this}copy(e){let{a:t,b:n,c:r,d:i}=e;return this.set(t,n,r,i)}setIdentity(){this.set(1,0,0,0)}setAxisAndAngle(e,t){if(e.isZero())return this.setIdentity();e.normalize();let{x:n,y:r,z:i}=e,a=Math.sin(t/2);this.set(Math.cos(t/2),n*a,r*a,i*a)}squaredNorm(){let{a:e,b:t,c:n,d:r}=this;return e**2+t**2+n**2+r**2}norm(){return Math.sqrt(this.squaredNorm())}conjugate(){return this._b*=-1,this._c*=-1,this._d*=-1,this}add(e){let{a:t,b:n,c:r,d:i}=e;return this._a+=t,this._b+=n,this._c+=r,this._d+=i,this}subtract(e){let{a:t,b:n,c:r,d:i}=e;return this._a-=t,this._b-=n,this._c-=r,this._d-=i,this}multiply(e){let{a:t,b:n,c:r,d:i}=this,{a,b:o,c:s,d:c}=e;return this._a=t*a-n*o-r*s-i*c,this._b=t*o+n*a+r*c-i*s,this._c=t*s-n*c+r*a+i*o,this._d=t*c+n*s-r*o+i*a,this}invert(){let e=this.squaredNorm();return e<=0?null:this.conjugate().divideScalar(e)}divide(t){let{temporary:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}multiplyScalar(e){return this._a*=e,this._b*=e,this._c*=e,this._d*=e,this}divideScalar(e){return this._a/=e,this._b/=e,this._c/=e,this._d/=e,this}rotateX(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new m(1,0,0),t),this.multiply(n)}rotateY(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new m(0,1,0),t),this.multiply(n)}rotateZ(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new m(0,0,1),t),this.multiply(n)}},y=0,b=class e{dimension=1;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=g.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e){this.elements=[e]}get x(){return this.elements[y]}set x(e){this.elements[y]=e}static zero(){return new e(0)}static one(){return new e(1)}clone(){let{x:t}=this;return new e(t)}isZero(){return this.x===0}set(e){return this.x=e,this}copy(e){return this.x=e.x,this}add(e){return this.x+=e.x,this}subtract(e){return this.x-=e.x,this}multiplyScalar(e){return this.x*=e,this}divideScalar(e){return this.x/=e,this}length(){return Math.abs(this.x)}normalize(){return this.x/=this.length(),this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0);return this.set(r),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}},x=0,S=1,C=class e{dimension=2;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=g.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=u.identity(),this._tmpMatrix4}constructor(e,t){this.elements=[e,t]}get x(){return this.elements[x]}set x(e){this.elements[x]=e}get y(){return this.elements[S]}set y(e){this.elements[S]=e}static zero(){return new e(0,0)}static one(){return new e(1,1)}clone(){let{x:t,y:n}=this;return new e(t,n)}isZero(){let{x:e,y:t}=this;return e===0&&t===0}set(e,t){return this.x=e,this.y=t,this}copy(e){let{x:t,y:n}=e;return this.set(t,n)}add(e){return this.x+=e.x,this.y+=e.y,this}subtract(e){return this.x-=e.x,this.y-=e.y,this}multiplyScalar(e){return this.x*=e,this.y*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this}length(){let{x:e,y:t}=this;return Math.sqrt(e**2+t**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}rotate(e){let{cos:t,sin:n}=Math,r=this.x*t(e)-this.y*n(e),i=this.x*n(e)+this.y*t(e);return this.x=r,this.y=i,this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0);return this.set(r,i),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setQuaternion(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}};e.Matrix3=g,e.Matrix4=u,e.PolarCoordinate3=_,e.Quaternion=v,e.Vector1=b,e.Vector2=C,e.Vector3=m,e.Vector4=c,e.range=t,e.sum=n,e.sumMap=r});
1
+ (function(e,t){typeof exports==`object`&&typeof module<`u`?t(exports):typeof define==`function`&&define.amd?define([`exports`],t):(e=typeof globalThis<`u`?globalThis:e||self,t(e.mathue={}))})(this,function(e){function*t(e,t){let n=t?.start??0,r=t?.step??1;if(r!==0&&!(r>0&&n>e)&&!(r<0&&n<e))for(let t=n;r>0?t<e:t>e;t+=r)yield t}function n(e){let t=0;for(let n of e)t+=n;return t}function r(e,t){let n=0;for(let r of e)n+=t(r)??0;return n}var i=0,a=1,o=2,s=3,c=class e{dimension=4;elements;static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=d.identity(),this._tmpMatrix4}constructor(e,t,n,r){this.elements=[e,t,n,r]}get x(){return this.elements[i]}set x(e){this.elements[i]=e}get y(){return this.elements[a]}set y(e){this.elements[a]=e}get z(){return this.elements[o]}set z(e){this.elements[o]=e}get w(){return this.elements[s]}set w(e){this.elements[s]=e}static zero(){return new e(0,0,0,0)}static one(){return new e(1,1,1,1)}clone(){let{x:t,y:n,z:r,w:i}=this;return new e(t,n,r,i)}isZero(){let{x:e,y:t,z:n,w:r}=this;return e===0&&t===0&&n===0&&r===0}set(e,t,n,r){this.x=e,this.y=t,this.z=n,this.w=r}copy(e){let{x:t,y:n,z:r,w:i}=e;this.set(t,n,r,i)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this.w+=e.w,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this.w-=e.w,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this.w*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this.w/=e,this}length(){let{x:e,y:t,z:n,w:r}=this;return Math.sqrt(e**2+t**2+n**2+r**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r,y:i,z:a,w:o}=this,s=n._applyVector(r,i,a,o);return this.copy(s),this}},l=1e-8,u=!1,d=class e{order=4;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=e.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=c.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h)}static identity(){return e.zero().setIdentity()}static zero(){return new e(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)}clone(){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements;return new e(t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}set(e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this.elements[9]=l,this.elements[10]=u,this.elements[11]=d,this.elements[12]=f,this.elements[13]=p,this.elements[14]=m,this.elements[15]=h,this}copy(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=e.elements;this.set(t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g)}setIdentity(){return this.set(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),this}setScale(e){this.setIdentity();let{order:n}=this;for(let r of t(n)){let i=r===n-1?1:e.elements[r];for(let e of t(n)){let t=r*n+e;this.elements[t]*=i}}return this}setTranslation(e){let{x:t,y:n,z:r}=e;return this.setIdentity(),this.elements[12]=t,this.elements[13]=n,this.elements[14]=r,this}setRotation(e){let{a:t,b:n,c:r,d:i}=e,a=2/e.squaredNorm(),o=n**2,s=r**2,c=i**2,l=t*n,u=t*r,d=t*i,f=n*r,p=n*i,m=r*i;return this.set(1-a*(s+c),-a*(f-d),-a*(p+u),0,-a*(f+d),1-a*(o+c),-a*(m-l),0,-a*(p-u),-a*(m+l),1-a*(o+s),0,0,0,0,1),this}add(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]+=e.elements[r];return this}subtract(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]-=e.elements[r];return this}multiplyScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]*=e;return this}divideScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]/=e;return this}multiply(e){let[t,n,r,i,a,o,s,c,l,u,d,f,p,m,h,g]=this.elements,[_,v,y,b,x,S,C,w,T,E,D,O,k,A,j,M]=e.elements;return this.elements[0]=_*t+v*a+y*l+b*p,this.elements[1]=_*n+v*o+y*u+b*m,this.elements[2]=_*r+v*s+y*d+b*h,this.elements[3]=_*i+v*c+y*f+b*g,this.elements[4]=x*t+S*a+C*l+w*p,this.elements[5]=x*n+S*o+C*u+w*m,this.elements[6]=x*r+S*s+C*d+w*h,this.elements[7]=x*i+S*c+C*f+w*g,this.elements[8]=T*t+E*a+D*l+O*p,this.elements[9]=T*n+E*o+D*u+O*m,this.elements[10]=T*r+E*s+D*d+O*h,this.elements[11]=T*i+E*c+D*f+O*g,this.elements[12]=k*t+A*a+j*l+M*p,this.elements[13]=k*n+A*o+j*u+M*m,this.elements[14]=k*r+A*s+j*d+M*h,this.elements[15]=k*i+A*c+j*f+M*g,this}multiplyScale(t){return this.multiply(e.tmpMatrix.setScale(t))}multiplyTranslation(t){return this.multiply(e.tmpMatrix.setTranslation(t))}multiplyRotation(t){return this.multiply(e.tmpMatrix.setRotation(t))}determinant(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return e*(a*(u*h-d*m)-o*(l*h-d*p)+s*(l*m-u*p))-t*(i*(u*h-d*m)-o*(c*h-d*f)+s*(c*m-u*f))+n*(i*(l*h-d*p)-a*(c*h-d*f)+s*(c*p-l*f))-r*(i*(l*m-u*p)-a*(c*m-u*f)+o*(c*p-l*f))}invert(){let e=this.determinant();if(Math.abs(e)<l)return null;let[t,n,r,i,a,o,s,c,u,d,f,p,m,h,g,_]=this.elements,v=f*_-p*g,y=d*_-p*h,b=d*g-f*h,x=s*_-c*g,S=o*_-c*h,C=o*g-s*h,w=s*p-c*f,T=o*p-c*d,E=o*f-s*d,D=u*_-p*m,O=u*g-f*m,k=a*_-c*m,A=a*g-s*m,j=a*p-c*u,M=a*f-s*u,N=u*h-d*m,P=a*h-o*m,F=a*d-o*u;return this.elements[0]=(o*v-s*y+c*b)/e,this.elements[1]=-(n*v-r*y+i*b)/e,this.elements[2]=(n*x-r*S+i*C)/e,this.elements[3]=-(n*w-r*T+i*E)/e,this.elements[4]=-(a*v-s*D+c*O)/e,this.elements[5]=(t*v-r*D+i*O)/e,this.elements[6]=-(t*x-r*k+i*A)/e,this.elements[7]=(t*w-r*j+i*M)/e,this.elements[8]=(a*y-o*D+c*N)/e,this.elements[9]=-(t*y-n*D+i*N)/e,this.elements[10]=(t*S-n*k+i*P)/e,this.elements[11]=-(t*T-n*j+i*F)/e,this.elements[12]=-(a*b-o*O+s*N)/e,this.elements[13]=(t*b-n*O+r*N)/e,this.elements[14]=-(t*C-n*A+r*P)/e,this.elements[15]=(t*E-n*M+r*F)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c,l,u,d,f,p,m,h]=this.elements;return this.elements[1]=i,this.elements[2]=c,this.elements[3]=f,this.elements[4]=t,this.elements[6]=l,this.elements[7]=p,this.elements[8]=n,this.elements[9]=o,this.elements[11]=m,this.elements[12]=r,this.elements[13]=s,this.elements[14]=d,this}divide(t){let{tmpMatrix:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}lookAt(e,t,n){let{x:r,y:i,z:a}=e,{x:o,y:s,z:c}=n,u=e.x-t.x,d=e.y-t.y,f=e.z-t.z,p=Math.sqrt(u**2+d**2+f**2);if(p<l)return this;u/=p,d/=p,f/=p;let m=s*f-c*d,h=c*u-o*f,g=o*d-s*u,_=Math.sqrt(m**2+h**2+g**2);_>0&&(m/=_,h/=_,g/=_);let v=d*g-f*h,y=f*m-u*g,b=u*h-d*m,x=Math.sqrt(v**2+y**2+b**2);x>0&&(v/=x,y/=x,b/=x);let S=-(m*r+h*i+g*a),C=-(v*r+y*i+b*a),w=-(u*r+d*i+f*a);return this.set(m,v,u,0,h,y,d,0,g,b,f,0,S,C,w,1),this}orthographic(e,t,n,r,i,a,o){let s=o?.depthZeroToOne??u,c=t-e,l=r-n,d=a-i,f=(s?-1:-2)/d,p=-(t+e)/c,m=-(r+n)/l,h=(s?-i:-(a+i))/d;return this.set(2/c,0,0,0,0,2/l,0,0,0,0,f,0,p,m,h,1),this}perspective(e,t,n,r,i){let a=1/Math.tan(e/2);this.set(a/r,0,0,0,0,a,0,0,0,0,1,-1,0,0,1,0);let o=i?.depthZeroToOne??u,s=o?1:2;if(n!==1/0){let e=o?n:n+t;this.elements[10]=-e/(n-t),this.elements[14]=-s*n*t/(n-t)}else this.elements[10]=-1,this.elements[14]=-s*t;return this}_applyVector(t,n,r,i){let{tmpVector:a}=e;a.set(t,n,r,i);let[o,s,c,l,u,d,f,p,m,h,g,_,v,y,b,x]=this.elements,S=o*t+u*n+m*r+v*i,C=s*t+d*n+h*r+y*i,w=c*t+f*n+g*r+b*i,T=l*t+p*n+_*r+x*i;return a.set(S,C,w,T),a}},f=0,p=1,m=2,h=!1,g=class e{dimension=3;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=v.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=d.identity(),this._tmpMatrix4}constructor(e,t,n){this.elements=[e,t,n]}get x(){return this.elements[f]}set x(e){this.elements[f]=e}get y(){return this.elements[p]}set y(e){this.elements[p]=e}get z(){return this.elements[m]}set z(e){this.elements[m]=e}static zero(){return new e(0,0,0)}static one(){return new e(1,1,1)}clone(){let{x:t,y:n,z:r}=this;return new e(t,n,r)}isZero(){let{x:e,y:t,z:n}=this;return e===0&&t===0&&n===0}set(e,t,n){return this.x=e,this.y=t,this.z=n,this}copy(e){let{x:t,y:n,z:r}=e;return this.set(t,n,r)}add(e){return this.x+=e.x,this.y+=e.y,this.z+=e.z,this}subtract(e){return this.x-=e.x,this.y-=e.y,this.z-=e.z,this}multiplyScalar(e){return this.x*=e,this.y*=e,this.z*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this.z/=e,this}length(){let{x:e,y:t,z:n}=this;return Math.sqrt(e**2+t**2+n**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}cross(e){let{x:t,y:n,z:r}=this,{x:i,y:a,z:o}=e,s=n*o-r*a,c=r*i-t*o,l=t*a-n*i;return this.set(s,c,l)}crossTo(e,t){return t.copy(this),t.cross(e)}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z);return this.set(r,i,a),this}applyMatrix4(t,n){let{tmpMatrix4:r}=e;r.copy(t);let i=n?.asDirection??h,a=i?0:1,{x:o,y:s,z:c,w:l}=r._applyVector(this.x,this.y,this.z,a),u=i||l===0?o:o/l,d=i||l===0?s:s/l,f=i||l===0?c:c/l;return this.set(u,d,f),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r,y:i,z:a}=n._applyVector(this.x,this.y,this.z,0);return this.set(r,i,a),this}},_=1e-8,v=class e{order=3;elements;static _tmpMatrix;static get tmpMatrix(){return this._tmpMatrix||=e.identity(),this._tmpMatrix}static _tmpVector;static get tmpVector(){return this._tmpVector||=g.zero(),this._tmpVector}constructor(e,t,n,r,i,a,o,s,c){this.elements=Float32Array.of(e,t,n,r,i,a,o,s,c)}static identity(){return e.zero().setIdentity()}static zero(){return new e(0,0,0,0,0,0,0,0,0)}clone(){let[t,n,r,i,a,o,s,c,l]=this.elements;return new e(t,n,r,i,a,o,s,c,l)}set(e,t,n,r,i,a,o,s,c){return this.elements[0]=e,this.elements[1]=t,this.elements[2]=n,this.elements[3]=r,this.elements[4]=i,this.elements[5]=a,this.elements[6]=o,this.elements[7]=s,this.elements[8]=c,this}copy(e){let[t,n,r,i,a,o,s,c,l]=e.elements;this.set(t,n,r,i,a,o,s,c,l)}setIdentity(){return this.set(1,0,0,0,1,0,0,0,1),this}add(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]+=e.elements[r];return this}subtract(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]-=e.elements[r];return this}multiplyScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]*=e;return this}divideScalar(e){let{order:n}=this;for(let r of t(n**2))this.elements[r]/=e;return this}multiply(e){let[t,n,r,i,a,o,s,c,l]=this.elements,[u,d,f,p,m,h,g,_,v]=e.elements;return this.elements[0]=u*t+d*i+f*s,this.elements[1]=u*n+d*a+f*c,this.elements[2]=u*r+d*o+f*l,this.elements[3]=p*t+m*i+h*s,this.elements[4]=p*n+m*a+h*c,this.elements[5]=p*r+m*o+h*l,this.elements[6]=g*t+_*i+v*s,this.elements[7]=g*n+_*a+v*c,this.elements[8]=g*r+_*o+v*l,this}determinant(){let[e,t,n,r,i,a,o,s,c]=this.elements;return e*(c*i-a*s)+t*(-c*r+a*o)+n*(s*r-i*o)}invert(){let e=this.determinant();if(Math.abs(e)<_)return null;let[t,n,r,i,a,o,s,c,l]=this.elements,u=l*a-o*c,d=-l*i+o*s,f=c*i-a*s;return this.elements[0]=u/e,this.elements[1]=(-l*n+r*c)/e,this.elements[2]=(o*n-r*a)/e,this.elements[3]=d/e,this.elements[4]=(l*t-r*s)/e,this.elements[5]=(-o*t+r*i)/e,this.elements[6]=f/e,this.elements[7]=(-c*t+n*s)/e,this.elements[8]=(a*t-n*i)/e,this}transpose(){let[e,t,n,r,i,a,o,s,c]=this.elements;return this.elements[1]=r,this.elements[2]=o,this.elements[3]=t,this.elements[5]=s,this.elements[6]=n,this.elements[7]=a,this}divide(t){let{tmpMatrix:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}_applyVector(t,n,r){let{tmpVector:i}=e;i.set(t,n,r);let[a,o,s,c,l,u,d,f,p]=this.elements,m=a*t+c*n+d*r,h=o*t+l*n+f*r,g=s*t+u*n+p*r;return i.set(m,h,g),i}},y=class{_phi;_theta;_radius;constructor(e,t,n){this._phi=e,this._theta=t,this._radius=n}get phi(){return this._phi}set phi(e){this._phi=e}get theta(){return this._theta}set theta(e){this._theta=e}get radius(){return this._radius}set radius(e){this._radius=e}toVector3(e){let{phi:t,theta:n,radius:r}=this,{cos:i,sin:a}=Math,o=a(n),s=r*o*i(t),c=r*o*a(t),l=r*i(n);e.set(s,c,l)}toTangentZ(e){let{phi:t,theta:n}=this,{cos:r,sin:i}=Math,a=r(n),o=-a*r(t),s=-a*i(t),c=i(n);e.set(o,s,c)}},b=class e{_a;_b;_c;_d;static temporary=e.identity();constructor(e,t,n,r){this._a=e,this._b=t,this._c=n,this._d=r}get a(){return this._a}get b(){return this._b}get c(){return this._c}get d(){return this._d}static identity(){return new e(1,0,0,0)}static fromAxisAndAngle(t,n){let r=e.identity();return r.setAxisAndAngle(t,n),r}clone(){let{a:t,b:n,c:r,d:i}=this;return new e(t,n,r,i)}set(e,t,n,r){return this._a=e,this._b=t,this._c=n,this._d=r,this}copy(e){let{a:t,b:n,c:r,d:i}=e;return this.set(t,n,r,i)}setIdentity(){this.set(1,0,0,0)}setAxisAndAngle(e,t){if(e.isZero())return this.setIdentity();e.normalize();let{x:n,y:r,z:i}=e,a=Math.sin(t/2);this.set(Math.cos(t/2),n*a,r*a,i*a)}squaredNorm(){let{a:e,b:t,c:n,d:r}=this;return e**2+t**2+n**2+r**2}norm(){return Math.sqrt(this.squaredNorm())}conjugate(){return this._b*=-1,this._c*=-1,this._d*=-1,this}add(e){let{a:t,b:n,c:r,d:i}=e;return this._a+=t,this._b+=n,this._c+=r,this._d+=i,this}subtract(e){let{a:t,b:n,c:r,d:i}=e;return this._a-=t,this._b-=n,this._c-=r,this._d-=i,this}multiply(e){let{a:t,b:n,c:r,d:i}=this,{a,b:o,c:s,d:c}=e;return this._a=t*a-n*o-r*s-i*c,this._b=t*o+n*a+r*c-i*s,this._c=t*s-n*c+r*a+i*o,this._d=t*c+n*s-r*o+i*a,this}invert(){let e=this.squaredNorm();return e<=0?null:this.conjugate().divideScalar(e)}divide(t){let{temporary:n}=e;return n.copy(t),n.invert()?this.multiply(n):null}multiplyScalar(e){return this._a*=e,this._b*=e,this._c*=e,this._d*=e,this}divideScalar(e){return this._a/=e,this._b/=e,this._c/=e,this._d/=e,this}rotateX(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new g(1,0,0),t),this.multiply(n)}rotateY(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new g(0,1,0),t),this.multiply(n)}rotateZ(t){let{temporary:n}=e;return n.setIdentity(),n.setAxisAndAngle(new g(0,0,1),t),this.multiply(n)}},x=0,S=class e{dimension=1;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=v.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=d.identity(),this._tmpMatrix4}constructor(e){this.elements=[e]}get x(){return this.elements[x]}set x(e){this.elements[x]=e}static zero(){return new e(0)}static one(){return new e(1)}clone(){let{x:t}=this;return new e(t)}isZero(){return this.x===0}set(e){return this.x=e,this}copy(e){return this.x=e.x,this}add(e){return this.x+=e.x,this}subtract(e){return this.x-=e.x,this}multiplyScalar(e){return this.x*=e,this}divideScalar(e){return this.x/=e,this}length(){return Math.abs(this.x)}normalize(){return this.x/=this.length(),this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0);return this.set(r),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r}=n._applyVector(this.x,0,0,0);return this.set(r),this}},C=0,w=1,T=class e{dimension=2;elements;static _tmpMatrix3;static get tmpMatrix3(){return this._tmpMatrix3||=v.identity(),this._tmpMatrix3}static _tmpMatrix4;static get tmpMatrix4(){return this._tmpMatrix4||=d.identity(),this._tmpMatrix4}constructor(e,t){this.elements=[e,t]}get x(){return this.elements[C]}set x(e){this.elements[C]=e}get y(){return this.elements[w]}set y(e){this.elements[w]=e}static zero(){return new e(0,0)}static one(){return new e(1,1)}clone(){let{x:t,y:n}=this;return new e(t,n)}isZero(){let{x:e,y:t}=this;return e===0&&t===0}set(e,t){return this.x=e,this.y=t,this}copy(e){let{x:t,y:n}=e;return this.set(t,n)}add(e){return this.x+=e.x,this.y+=e.y,this}subtract(e){return this.x-=e.x,this.y-=e.y,this}multiplyScalar(e){return this.x*=e,this.y*=e,this}divideScalar(e){return this.x/=e,this.y/=e,this}length(){let{x:e,y:t}=this;return Math.sqrt(e**2+t**2)}normalize(){let e=this.length();return e<=0?this:this.divideScalar(e)}rotate(e){let{cos:t,sin:n}=Math,r=this.x*t(e)-this.y*n(e),i=this.x*n(e)+this.y*t(e);return this.x=r,this.y=i,this}applyMatrix3(t){let{tmpMatrix3:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0);return this.set(r,i),this}applyMatrix4(t){let{tmpMatrix4:n}=e;n.copy(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}applyQuaternion(t){let{tmpMatrix4:n}=e;n.setRotation(t);let{x:r,y:i}=n._applyVector(this.x,this.y,0,0);return this.set(r,i),this}};e.Matrix3=v,e.Matrix4=d,e.PolarCoordinate3=y,e.Quaternion=b,e.Vector1=S,e.Vector2=T,e.Vector3=g,e.Vector4=c,e.range=t,e.sum=n,e.sumMap=r});
package/package.json CHANGED
@@ -1,56 +1,65 @@
1
- {
2
- "name": "mathue",
3
- "version": "0.1.0",
4
- "type": "module",
5
- "types": "dist/index.d.ts",
6
- "main": "dist/mathue.js",
7
- "files": [
8
- "dist"
9
- ],
10
- "exports": {
11
- ".": {
12
- "types": "./dist/index.d.ts",
13
- "import": "./dist/mathue.js",
14
- "require": "./dist/mathue.cjs"
15
- }
16
- },
17
- "homepage": "https://sueuegunn.github.io/mathue",
18
- "repository": {
19
- "url": "https://github.com/sueuegunn/mathue"
20
- },
21
- "keywords": [
22
- "math",
23
- "mathematics",
24
- "linear-algebra",
25
- "vector",
26
- "matrix",
27
- "quaternion",
28
- "webgl",
29
- "webgpu",
30
- "graphics",
31
- "3d",
32
- "typescript",
33
- "zero-allocation",
34
- "performance"
35
- ],
36
- "scripts": {
37
- "dev": "vite",
38
- "build": "tsc --noEmit && vite build",
39
- "preview": "vite preview",
40
- "test": "vitest run",
41
- "test:cov": "vitest run --coverage",
42
- "docs": "typedoc"
43
- },
44
- "devDependencies": {
45
- "@types/node": "^24.9.2",
46
- "@vitest/coverage-v8": "^4.0.6",
47
- "typedoc": "^0.28.15",
48
- "typescript": "~5.9.3",
49
- "vite": "npm:rolldown-vite@7.1.14",
50
- "vite-plugin-dts": "^4.5.4",
51
- "vitest": "^4.0.6"
52
- },
53
- "overrides": {
54
- "vite": "npm:rolldown-vite@7.1.14"
55
- }
56
- }
1
+ {
2
+ "name": "mathue",
3
+ "description": "TypeScript math library",
4
+ "version": "0.1.2",
5
+ "license": "MIT",
6
+ "type": "module",
7
+ "types": "dist/index.d.ts",
8
+ "main": "dist/mathue.js",
9
+ "files": [
10
+ "dist"
11
+ ],
12
+ "exports": {
13
+ ".": {
14
+ "types": "./dist/index.d.ts",
15
+ "import": "./dist/mathue.js",
16
+ "require": "./dist/mathue.cjs"
17
+ }
18
+ },
19
+ "homepage": "https://sueuegunn.github.io/mathue",
20
+ "repository": {
21
+ "url": "https://github.com/sueuegunn/mathue"
22
+ },
23
+ "funding": {
24
+ "type": "github",
25
+ "url": "https://github.com/sponsors/sueuegunn"
26
+ },
27
+ "keywords": [
28
+ "math",
29
+ "mathematics",
30
+ "linear-algebra",
31
+ "vector",
32
+ "matrix",
33
+ "quaternion",
34
+ "webgl",
35
+ "webgpu",
36
+ "graphics",
37
+ "3d",
38
+ "typescript",
39
+ "zero-allocation",
40
+ "performance"
41
+ ],
42
+ "scripts": {
43
+ "dev": "vite",
44
+ "build": "tsc --noEmit && vite build",
45
+ "preview": "vite preview",
46
+ "test": "vitest run",
47
+ "test:cov": "vitest run --coverage",
48
+ "docs": "typedoc",
49
+ "version:major": "npm version major --git-tag-version false",
50
+ "version:minor": "npm version minor --git-tag-version false",
51
+ "version:patch": "npm version patch --git-tag-version false"
52
+ },
53
+ "devDependencies": {
54
+ "@types/node": "^24.9.2",
55
+ "@vitest/coverage-v8": "^4.0.6",
56
+ "typedoc": "^0.28.15",
57
+ "typescript": "~5.9.3",
58
+ "vite": "npm:rolldown-vite@7.1.14",
59
+ "vite-plugin-dts": "^4.5.4",
60
+ "vitest": "^4.0.6"
61
+ },
62
+ "overrides": {
63
+ "vite": "npm:rolldown-vite@7.1.14"
64
+ }
65
+ }