mathjs 14.0.0 → 14.0.1
Sign up to get free protection for your applications and to get access to all the features.
- package/HISTORY.md +6 -0
- package/lib/browser/math.js +1 -1
- package/lib/browser/math.js.LICENSE.txt +2 -2
- package/lib/browser/math.js.map +1 -1
- package/lib/cjs/function/algebra/derivative.js +64 -77
- package/lib/cjs/header.js +2 -2
- package/lib/cjs/version.js +1 -1
- package/lib/esm/function/algebra/derivative.js +64 -77
- package/lib/esm/version.js +1 -1
- package/package.json +12 -12
- package/types/index.d.ts +5 -8
@@ -66,9 +66,18 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
66
66
|
let options = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {
|
67
67
|
simplify: true
|
68
68
|
};
|
69
|
-
const
|
70
|
-
|
71
|
-
|
69
|
+
const cache = new Map();
|
70
|
+
const variableName = variable.name;
|
71
|
+
function isConstCached(node) {
|
72
|
+
const cached = cache.get(node);
|
73
|
+
if (cached !== undefined) {
|
74
|
+
return cached;
|
75
|
+
}
|
76
|
+
const res = _isConst(isConstCached, node, variableName);
|
77
|
+
cache.set(node, res);
|
78
|
+
return res;
|
79
|
+
}
|
80
|
+
const res = _derivative(expr, isConstCached);
|
72
81
|
return options.simplify ? simplify(res) : res;
|
73
82
|
}
|
74
83
|
function parseIdentifier(string) {
|
@@ -88,9 +97,8 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
88
97
|
'Node, SymbolNode, ConstantNode': function (expr, variable, {order}) {
|
89
98
|
let res = expr
|
90
99
|
for (let i = 0; i < order; i++) {
|
91
|
-
|
92
|
-
|
93
|
-
res = _derivative(res, constNodes)
|
100
|
+
<create caching isConst>
|
101
|
+
res = _derivative(res, isConst)
|
94
102
|
}
|
95
103
|
return res
|
96
104
|
}
|
@@ -133,56 +141,39 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
133
141
|
});
|
134
142
|
|
135
143
|
/**
|
136
|
-
*
|
137
|
-
*
|
138
|
-
*
|
144
|
+
* Checks if a node is constants (e.g. 2 + 2).
|
145
|
+
* Accepts (usually memoized) version of self as the first parameter for recursive calls.
|
146
|
+
* Classification is done as follows:
|
139
147
|
*
|
140
148
|
* 1. ConstantNodes are constants.
|
141
149
|
* 2. If there exists a SymbolNode, of which we are differentiating over,
|
142
150
|
* in the subtree it is not constant.
|
143
151
|
*
|
144
|
-
* @param {
|
152
|
+
* @param {function} isConst Function that tells whether sub-expression is a constant
|
145
153
|
* @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node
|
146
154
|
* @param {string} varName Variable that we are differentiating
|
147
155
|
* @return {boolean} if node is constant
|
148
156
|
*/
|
149
|
-
|
150
|
-
|
151
|
-
'Object, ConstantNode, string': function (constNodes, node) {
|
152
|
-
constNodes[node] = true;
|
157
|
+
const _isConst = typed('_isConst', {
|
158
|
+
'function, ConstantNode, string': function () {
|
153
159
|
return true;
|
154
160
|
},
|
155
|
-
'
|
161
|
+
'function, SymbolNode, string': function (isConst, node, varName) {
|
156
162
|
// Treat other variables like constants. For reasoning, see:
|
157
163
|
// https://en.wikipedia.org/wiki/Partial_derivative
|
158
|
-
|
159
|
-
constNodes[node] = true;
|
160
|
-
return true;
|
161
|
-
}
|
162
|
-
return false;
|
164
|
+
return node.name !== varName;
|
163
165
|
},
|
164
|
-
'
|
165
|
-
return
|
166
|
+
'function, ParenthesisNode, string': function (isConst, node, varName) {
|
167
|
+
return isConst(node.content, varName);
|
166
168
|
},
|
167
|
-
'
|
169
|
+
'function, FunctionAssignmentNode, string': function (isConst, node, varName) {
|
168
170
|
if (!node.params.includes(varName)) {
|
169
|
-
constNodes[node] = true;
|
170
171
|
return true;
|
171
172
|
}
|
172
|
-
return
|
173
|
+
return isConst(node.expr, varName);
|
173
174
|
},
|
174
|
-
'
|
175
|
-
|
176
|
-
let isConst = constTag(constNodes, node.args[0], varName);
|
177
|
-
for (let i = 1; i < node.args.length; ++i) {
|
178
|
-
isConst = constTag(constNodes, node.args[i], varName) && isConst;
|
179
|
-
}
|
180
|
-
if (isConst) {
|
181
|
-
constNodes[node] = true;
|
182
|
-
return true;
|
183
|
-
}
|
184
|
-
}
|
185
|
-
return false;
|
175
|
+
'function, FunctionNode | OperatorNode, string': function (isConst, node, varName) {
|
176
|
+
return node.args.every(arg => isConst(arg, varName));
|
186
177
|
}
|
187
178
|
});
|
188
179
|
|
@@ -190,30 +181,30 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
190
181
|
* Applies differentiation rules.
|
191
182
|
*
|
192
183
|
* @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node
|
193
|
-
* @param {
|
184
|
+
* @param {function} isConst Function that tells if a node is constant
|
194
185
|
* @return {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} The derivative of `expr`
|
195
186
|
*/
|
196
187
|
const _derivative = typed('_derivative', {
|
197
|
-
'ConstantNode,
|
188
|
+
'ConstantNode, function': function () {
|
198
189
|
return createConstantNode(0);
|
199
190
|
},
|
200
|
-
'SymbolNode,
|
201
|
-
if (
|
191
|
+
'SymbolNode, function': function (node, isConst) {
|
192
|
+
if (isConst(node)) {
|
202
193
|
return createConstantNode(0);
|
203
194
|
}
|
204
195
|
return createConstantNode(1);
|
205
196
|
},
|
206
|
-
'ParenthesisNode,
|
207
|
-
return new ParenthesisNode(_derivative(node.content,
|
197
|
+
'ParenthesisNode, function': function (node, isConst) {
|
198
|
+
return new ParenthesisNode(_derivative(node.content, isConst));
|
208
199
|
},
|
209
|
-
'FunctionAssignmentNode,
|
210
|
-
if (
|
200
|
+
'FunctionAssignmentNode, function': function (node, isConst) {
|
201
|
+
if (isConst(node)) {
|
211
202
|
return createConstantNode(0);
|
212
203
|
}
|
213
|
-
return _derivative(node.expr,
|
204
|
+
return _derivative(node.expr, isConst);
|
214
205
|
},
|
215
|
-
'FunctionNode,
|
216
|
-
if (
|
206
|
+
'FunctionNode, function': function (node, isConst) {
|
207
|
+
if (isConst(node)) {
|
217
208
|
return createConstantNode(0);
|
218
209
|
}
|
219
210
|
const arg0 = node.args[0];
|
@@ -237,10 +228,7 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
237
228
|
} else if (node.args.length === 2) {
|
238
229
|
// Rearrange from nthRoot(x, a) -> x^(1/a)
|
239
230
|
arg1 = new OperatorNode('/', 'divide', [createConstantNode(1), node.args[1]]);
|
240
|
-
|
241
|
-
// Is a variable?
|
242
|
-
constNodes[arg1] = constNodes[node.args[1]];
|
243
|
-
return _derivative(new OperatorNode('^', 'pow', [arg0, arg1]), constNodes);
|
231
|
+
return _derivative(new OperatorNode('^', 'pow', [arg0, arg1]), isConst);
|
244
232
|
}
|
245
233
|
break;
|
246
234
|
case 'log10':
|
@@ -251,20 +239,19 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
251
239
|
// d/dx(log(x)) = 1 / x
|
252
240
|
funcDerivative = arg0.clone();
|
253
241
|
div = true;
|
254
|
-
} else if (node.args.length === 1 && arg1 || node.args.length === 2 &&
|
242
|
+
} else if (node.args.length === 1 && arg1 || node.args.length === 2 && isConst(node.args[1])) {
|
255
243
|
// d/dx(log(x, c)) = 1 / (x*ln(c))
|
256
244
|
funcDerivative = new OperatorNode('*', 'multiply', [arg0.clone(), new FunctionNode('log', [arg1 || node.args[1]])]);
|
257
245
|
div = true;
|
258
246
|
} else if (node.args.length === 2) {
|
259
247
|
// d/dx(log(f(x), g(x))) = d/dx(log(f(x)) / log(g(x)))
|
260
|
-
return _derivative(new OperatorNode('/', 'divide', [new FunctionNode('log', [arg0]), new FunctionNode('log', [node.args[1]])]),
|
248
|
+
return _derivative(new OperatorNode('/', 'divide', [new FunctionNode('log', [arg0]), new FunctionNode('log', [node.args[1]])]), isConst);
|
261
249
|
}
|
262
250
|
break;
|
263
251
|
case 'pow':
|
264
252
|
if (node.args.length === 2) {
|
265
|
-
constNodes[arg1] = constNodes[node.args[1]];
|
266
253
|
// Pass to pow operator node parser
|
267
|
-
return _derivative(new OperatorNode('^', 'pow', [arg0, node.args[1]]),
|
254
|
+
return _derivative(new OperatorNode('^', 'pow', [arg0, node.args[1]]), isConst);
|
268
255
|
}
|
269
256
|
break;
|
270
257
|
case 'exp':
|
@@ -410,51 +397,51 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
410
397
|
/* Apply chain rule to all functions:
|
411
398
|
F(x) = f(g(x))
|
412
399
|
F'(x) = g'(x)*f'(g(x)) */
|
413
|
-
let chainDerivative = _derivative(arg0,
|
400
|
+
let chainDerivative = _derivative(arg0, isConst);
|
414
401
|
if (negative) {
|
415
402
|
chainDerivative = new OperatorNode('-', 'unaryMinus', [chainDerivative]);
|
416
403
|
}
|
417
404
|
return new OperatorNode(op, func, [chainDerivative, funcDerivative]);
|
418
405
|
},
|
419
|
-
'OperatorNode,
|
420
|
-
if (
|
406
|
+
'OperatorNode, function': function (node, isConst) {
|
407
|
+
if (isConst(node)) {
|
421
408
|
return createConstantNode(0);
|
422
409
|
}
|
423
410
|
if (node.op === '+') {
|
424
411
|
// d/dx(sum(f(x)) = sum(f'(x))
|
425
412
|
return new OperatorNode(node.op, node.fn, node.args.map(function (arg) {
|
426
|
-
return _derivative(arg,
|
413
|
+
return _derivative(arg, isConst);
|
427
414
|
}));
|
428
415
|
}
|
429
416
|
if (node.op === '-') {
|
430
417
|
// d/dx(+/-f(x)) = +/-f'(x)
|
431
418
|
if (node.isUnary()) {
|
432
|
-
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0],
|
419
|
+
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0], isConst)]);
|
433
420
|
}
|
434
421
|
|
435
422
|
// Linearity of differentiation, d/dx(f(x) +/- g(x)) = f'(x) +/- g'(x)
|
436
423
|
if (node.isBinary()) {
|
437
|
-
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0],
|
424
|
+
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0], isConst), _derivative(node.args[1], isConst)]);
|
438
425
|
}
|
439
426
|
}
|
440
427
|
if (node.op === '*') {
|
441
428
|
// d/dx(c*f(x)) = c*f'(x)
|
442
429
|
const constantTerms = node.args.filter(function (arg) {
|
443
|
-
return
|
430
|
+
return isConst(arg);
|
444
431
|
});
|
445
432
|
if (constantTerms.length > 0) {
|
446
433
|
const nonConstantTerms = node.args.filter(function (arg) {
|
447
|
-
return
|
434
|
+
return !isConst(arg);
|
448
435
|
});
|
449
436
|
const nonConstantNode = nonConstantTerms.length === 1 ? nonConstantTerms[0] : new OperatorNode('*', 'multiply', nonConstantTerms);
|
450
|
-
const newArgs = constantTerms.concat(_derivative(nonConstantNode,
|
437
|
+
const newArgs = constantTerms.concat(_derivative(nonConstantNode, isConst));
|
451
438
|
return new OperatorNode('*', 'multiply', newArgs);
|
452
439
|
}
|
453
440
|
|
454
441
|
// Product Rule, d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)
|
455
442
|
return new OperatorNode('+', 'add', node.args.map(function (argOuter) {
|
456
443
|
return new OperatorNode('*', 'multiply', node.args.map(function (argInner) {
|
457
|
-
return argInner === argOuter ? _derivative(argInner,
|
444
|
+
return argInner === argOuter ? _derivative(argInner, isConst) : argInner.clone();
|
458
445
|
}));
|
459
446
|
}));
|
460
447
|
}
|
@@ -463,31 +450,31 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
463
450
|
const arg1 = node.args[1];
|
464
451
|
|
465
452
|
// d/dx(f(x) / c) = f'(x) / c
|
466
|
-
if (
|
467
|
-
return new OperatorNode('/', 'divide', [_derivative(arg0,
|
453
|
+
if (isConst(arg1)) {
|
454
|
+
return new OperatorNode('/', 'divide', [_derivative(arg0, isConst), arg1]);
|
468
455
|
}
|
469
456
|
|
470
457
|
// Reciprocal Rule, d/dx(c / f(x)) = -c(f'(x)/f(x)^2)
|
471
|
-
if (
|
472
|
-
return new OperatorNode('*', 'multiply', [new OperatorNode('-', 'unaryMinus', [arg0]), new OperatorNode('/', 'divide', [_derivative(arg1,
|
458
|
+
if (isConst(arg0)) {
|
459
|
+
return new OperatorNode('*', 'multiply', [new OperatorNode('-', 'unaryMinus', [arg0]), new OperatorNode('/', 'divide', [_derivative(arg1, isConst), new OperatorNode('^', 'pow', [arg1.clone(), createConstantNode(2)])])]);
|
473
460
|
}
|
474
461
|
|
475
462
|
// Quotient rule, d/dx(f(x) / g(x)) = (f'(x)g(x) - f(x)g'(x)) / g(x)^2
|
476
|
-
return new OperatorNode('/', 'divide', [new OperatorNode('-', 'subtract', [new OperatorNode('*', 'multiply', [_derivative(arg0,
|
463
|
+
return new OperatorNode('/', 'divide', [new OperatorNode('-', 'subtract', [new OperatorNode('*', 'multiply', [_derivative(arg0, isConst), arg1.clone()]), new OperatorNode('*', 'multiply', [arg0.clone(), _derivative(arg1, isConst)])]), new OperatorNode('^', 'pow', [arg1.clone(), createConstantNode(2)])]);
|
477
464
|
}
|
478
465
|
if (node.op === '^' && node.isBinary()) {
|
479
466
|
const arg0 = node.args[0];
|
480
467
|
const arg1 = node.args[1];
|
481
|
-
if (
|
468
|
+
if (isConst(arg0)) {
|
482
469
|
// If is secretly constant; 0^f(x) = 1 (in JS), 1^f(x) = 1
|
483
470
|
if ((0, _is.isConstantNode)(arg0) && (isZero(arg0.value) || equal(arg0.value, 1))) {
|
484
471
|
return createConstantNode(0);
|
485
472
|
}
|
486
473
|
|
487
474
|
// d/dx(c^f(x)) = c^f(x)*ln(c)*f'(x)
|
488
|
-
return new OperatorNode('*', 'multiply', [node, new OperatorNode('*', 'multiply', [new FunctionNode('log', [arg0.clone()]), _derivative(arg1.clone(),
|
475
|
+
return new OperatorNode('*', 'multiply', [node, new OperatorNode('*', 'multiply', [new FunctionNode('log', [arg0.clone()]), _derivative(arg1.clone(), isConst)])]);
|
489
476
|
}
|
490
|
-
if (
|
477
|
+
if (isConst(arg1)) {
|
491
478
|
if ((0, _is.isConstantNode)(arg1)) {
|
492
479
|
// If is secretly constant; f(x)^0 = 1 -> d/dx(1) = 0
|
493
480
|
if (isZero(arg1.value)) {
|
@@ -495,17 +482,17 @@ const createDerivative = exports.createDerivative = /* #__PURE__ */(0, _factory.
|
|
495
482
|
}
|
496
483
|
// Ignore exponent; f(x)^1 = f(x)
|
497
484
|
if (equal(arg1.value, 1)) {
|
498
|
-
return _derivative(arg0,
|
485
|
+
return _derivative(arg0, isConst);
|
499
486
|
}
|
500
487
|
}
|
501
488
|
|
502
489
|
// Elementary Power Rule, d/dx(f(x)^c) = c*f'(x)*f(x)^(c-1)
|
503
490
|
const powMinusOne = new OperatorNode('^', 'pow', [arg0.clone(), new OperatorNode('-', 'subtract', [arg1, createConstantNode(1)])]);
|
504
|
-
return new OperatorNode('*', 'multiply', [arg1.clone(), new OperatorNode('*', 'multiply', [_derivative(arg0,
|
491
|
+
return new OperatorNode('*', 'multiply', [arg1.clone(), new OperatorNode('*', 'multiply', [_derivative(arg0, isConst), powMinusOne])]);
|
505
492
|
}
|
506
493
|
|
507
494
|
// Functional Power Rule, d/dx(f^g) = f^g*[f'*(g/f) + g'ln(f)]
|
508
|
-
return new OperatorNode('*', 'multiply', [new OperatorNode('^', 'pow', [arg0.clone(), arg1.clone()]), new OperatorNode('+', 'add', [new OperatorNode('*', 'multiply', [_derivative(arg0,
|
495
|
+
return new OperatorNode('*', 'multiply', [new OperatorNode('^', 'pow', [arg0.clone(), arg1.clone()]), new OperatorNode('+', 'add', [new OperatorNode('*', 'multiply', [_derivative(arg0, isConst), new OperatorNode('/', 'divide', [arg1.clone(), arg0.clone()])]), new OperatorNode('*', 'multiply', [_derivative(arg1, isConst), new FunctionNode('log', [arg0.clone()])])])]);
|
509
496
|
}
|
510
497
|
throw new Error('Cannot process operator "' + node.op + '" in derivative: ' + 'the operator is not supported, undefined, or the number of arguments passed to it are not supported');
|
511
498
|
}
|
package/lib/cjs/header.js
CHANGED
@@ -6,8 +6,8 @@
|
|
6
6
|
* It features real and complex numbers, units, matrices, a large set of
|
7
7
|
* mathematical functions, and a flexible expression parser.
|
8
8
|
*
|
9
|
-
* @version 14.0.
|
10
|
-
* @date 2024-11
|
9
|
+
* @version 14.0.1
|
10
|
+
* @date 2024-12-11
|
11
11
|
*
|
12
12
|
* @license
|
13
13
|
* Copyright (C) 2013-2024 Jos de Jong <wjosdejong@gmail.com>
|
package/lib/cjs/version.js
CHANGED
@@ -4,6 +4,6 @@ Object.defineProperty(exports, "__esModule", {
|
|
4
4
|
value: true
|
5
5
|
});
|
6
6
|
exports.version = void 0;
|
7
|
-
const version = exports.version = '14.0.
|
7
|
+
const version = exports.version = '14.0.1';
|
8
8
|
// Note: This file is automatically generated when building math.js.
|
9
9
|
// Changes made in this file will be overwritten.
|
@@ -60,9 +60,18 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
60
60
|
var options = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {
|
61
61
|
simplify: true
|
62
62
|
};
|
63
|
-
var
|
64
|
-
|
65
|
-
|
63
|
+
var cache = new Map();
|
64
|
+
var variableName = variable.name;
|
65
|
+
function isConstCached(node) {
|
66
|
+
var cached = cache.get(node);
|
67
|
+
if (cached !== undefined) {
|
68
|
+
return cached;
|
69
|
+
}
|
70
|
+
var res = _isConst(isConstCached, node, variableName);
|
71
|
+
cache.set(node, res);
|
72
|
+
return res;
|
73
|
+
}
|
74
|
+
var res = _derivative(expr, isConstCached);
|
66
75
|
return options.simplify ? simplify(res) : res;
|
67
76
|
}
|
68
77
|
function parseIdentifier(string) {
|
@@ -82,9 +91,8 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
82
91
|
'Node, SymbolNode, ConstantNode': function (expr, variable, {order}) {
|
83
92
|
let res = expr
|
84
93
|
for (let i = 0; i < order; i++) {
|
85
|
-
|
86
|
-
|
87
|
-
res = _derivative(res, constNodes)
|
94
|
+
<create caching isConst>
|
95
|
+
res = _derivative(res, isConst)
|
88
96
|
}
|
89
97
|
return res
|
90
98
|
}
|
@@ -127,56 +135,39 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
127
135
|
});
|
128
136
|
|
129
137
|
/**
|
130
|
-
*
|
131
|
-
*
|
132
|
-
*
|
138
|
+
* Checks if a node is constants (e.g. 2 + 2).
|
139
|
+
* Accepts (usually memoized) version of self as the first parameter for recursive calls.
|
140
|
+
* Classification is done as follows:
|
133
141
|
*
|
134
142
|
* 1. ConstantNodes are constants.
|
135
143
|
* 2. If there exists a SymbolNode, of which we are differentiating over,
|
136
144
|
* in the subtree it is not constant.
|
137
145
|
*
|
138
|
-
* @param {
|
146
|
+
* @param {function} isConst Function that tells whether sub-expression is a constant
|
139
147
|
* @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node
|
140
148
|
* @param {string} varName Variable that we are differentiating
|
141
149
|
* @return {boolean} if node is constant
|
142
150
|
*/
|
143
|
-
|
144
|
-
|
145
|
-
'Object, ConstantNode, string': function Object_ConstantNode_string(constNodes, node) {
|
146
|
-
constNodes[node] = true;
|
151
|
+
var _isConst = typed('_isConst', {
|
152
|
+
'function, ConstantNode, string': function function_ConstantNode_string() {
|
147
153
|
return true;
|
148
154
|
},
|
149
|
-
'
|
155
|
+
'function, SymbolNode, string': function function_SymbolNode_string(isConst, node, varName) {
|
150
156
|
// Treat other variables like constants. For reasoning, see:
|
151
157
|
// https://en.wikipedia.org/wiki/Partial_derivative
|
152
|
-
|
153
|
-
constNodes[node] = true;
|
154
|
-
return true;
|
155
|
-
}
|
156
|
-
return false;
|
158
|
+
return node.name !== varName;
|
157
159
|
},
|
158
|
-
'
|
159
|
-
return
|
160
|
+
'function, ParenthesisNode, string': function function_ParenthesisNode_string(isConst, node, varName) {
|
161
|
+
return isConst(node.content, varName);
|
160
162
|
},
|
161
|
-
'
|
163
|
+
'function, FunctionAssignmentNode, string': function function_FunctionAssignmentNode_string(isConst, node, varName) {
|
162
164
|
if (!node.params.includes(varName)) {
|
163
|
-
constNodes[node] = true;
|
164
165
|
return true;
|
165
166
|
}
|
166
|
-
return
|
167
|
+
return isConst(node.expr, varName);
|
167
168
|
},
|
168
|
-
'
|
169
|
-
|
170
|
-
var isConst = constTag(constNodes, node.args[0], varName);
|
171
|
-
for (var i = 1; i < node.args.length; ++i) {
|
172
|
-
isConst = constTag(constNodes, node.args[i], varName) && isConst;
|
173
|
-
}
|
174
|
-
if (isConst) {
|
175
|
-
constNodes[node] = true;
|
176
|
-
return true;
|
177
|
-
}
|
178
|
-
}
|
179
|
-
return false;
|
169
|
+
'function, FunctionNode | OperatorNode, string': function function_FunctionNode__OperatorNode_string(isConst, node, varName) {
|
170
|
+
return node.args.every(arg => isConst(arg, varName));
|
180
171
|
}
|
181
172
|
});
|
182
173
|
|
@@ -184,30 +175,30 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
184
175
|
* Applies differentiation rules.
|
185
176
|
*
|
186
177
|
* @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node
|
187
|
-
* @param {
|
178
|
+
* @param {function} isConst Function that tells if a node is constant
|
188
179
|
* @return {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} The derivative of `expr`
|
189
180
|
*/
|
190
181
|
var _derivative = typed('_derivative', {
|
191
|
-
'ConstantNode,
|
182
|
+
'ConstantNode, function': function ConstantNode_function() {
|
192
183
|
return createConstantNode(0);
|
193
184
|
},
|
194
|
-
'SymbolNode,
|
195
|
-
if (
|
185
|
+
'SymbolNode, function': function SymbolNode_function(node, isConst) {
|
186
|
+
if (isConst(node)) {
|
196
187
|
return createConstantNode(0);
|
197
188
|
}
|
198
189
|
return createConstantNode(1);
|
199
190
|
},
|
200
|
-
'ParenthesisNode,
|
201
|
-
return new ParenthesisNode(_derivative(node.content,
|
191
|
+
'ParenthesisNode, function': function ParenthesisNode_function(node, isConst) {
|
192
|
+
return new ParenthesisNode(_derivative(node.content, isConst));
|
202
193
|
},
|
203
|
-
'FunctionAssignmentNode,
|
204
|
-
if (
|
194
|
+
'FunctionAssignmentNode, function': function FunctionAssignmentNode_function(node, isConst) {
|
195
|
+
if (isConst(node)) {
|
205
196
|
return createConstantNode(0);
|
206
197
|
}
|
207
|
-
return _derivative(node.expr,
|
198
|
+
return _derivative(node.expr, isConst);
|
208
199
|
},
|
209
|
-
'FunctionNode,
|
210
|
-
if (
|
200
|
+
'FunctionNode, function': function FunctionNode_function(node, isConst) {
|
201
|
+
if (isConst(node)) {
|
211
202
|
return createConstantNode(0);
|
212
203
|
}
|
213
204
|
var arg0 = node.args[0];
|
@@ -231,10 +222,7 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
231
222
|
} else if (node.args.length === 2) {
|
232
223
|
// Rearrange from nthRoot(x, a) -> x^(1/a)
|
233
224
|
arg1 = new OperatorNode('/', 'divide', [createConstantNode(1), node.args[1]]);
|
234
|
-
|
235
|
-
// Is a variable?
|
236
|
-
constNodes[arg1] = constNodes[node.args[1]];
|
237
|
-
return _derivative(new OperatorNode('^', 'pow', [arg0, arg1]), constNodes);
|
225
|
+
return _derivative(new OperatorNode('^', 'pow', [arg0, arg1]), isConst);
|
238
226
|
}
|
239
227
|
break;
|
240
228
|
case 'log10':
|
@@ -245,20 +233,19 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
245
233
|
// d/dx(log(x)) = 1 / x
|
246
234
|
funcDerivative = arg0.clone();
|
247
235
|
div = true;
|
248
|
-
} else if (node.args.length === 1 && arg1 || node.args.length === 2 &&
|
236
|
+
} else if (node.args.length === 1 && arg1 || node.args.length === 2 && isConst(node.args[1])) {
|
249
237
|
// d/dx(log(x, c)) = 1 / (x*ln(c))
|
250
238
|
funcDerivative = new OperatorNode('*', 'multiply', [arg0.clone(), new FunctionNode('log', [arg1 || node.args[1]])]);
|
251
239
|
div = true;
|
252
240
|
} else if (node.args.length === 2) {
|
253
241
|
// d/dx(log(f(x), g(x))) = d/dx(log(f(x)) / log(g(x)))
|
254
|
-
return _derivative(new OperatorNode('/', 'divide', [new FunctionNode('log', [arg0]), new FunctionNode('log', [node.args[1]])]),
|
242
|
+
return _derivative(new OperatorNode('/', 'divide', [new FunctionNode('log', [arg0]), new FunctionNode('log', [node.args[1]])]), isConst);
|
255
243
|
}
|
256
244
|
break;
|
257
245
|
case 'pow':
|
258
246
|
if (node.args.length === 2) {
|
259
|
-
constNodes[arg1] = constNodes[node.args[1]];
|
260
247
|
// Pass to pow operator node parser
|
261
|
-
return _derivative(new OperatorNode('^', 'pow', [arg0, node.args[1]]),
|
248
|
+
return _derivative(new OperatorNode('^', 'pow', [arg0, node.args[1]]), isConst);
|
262
249
|
}
|
263
250
|
break;
|
264
251
|
case 'exp':
|
@@ -404,51 +391,51 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
404
391
|
/* Apply chain rule to all functions:
|
405
392
|
F(x) = f(g(x))
|
406
393
|
F'(x) = g'(x)*f'(g(x)) */
|
407
|
-
var chainDerivative = _derivative(arg0,
|
394
|
+
var chainDerivative = _derivative(arg0, isConst);
|
408
395
|
if (negative) {
|
409
396
|
chainDerivative = new OperatorNode('-', 'unaryMinus', [chainDerivative]);
|
410
397
|
}
|
411
398
|
return new OperatorNode(op, func, [chainDerivative, funcDerivative]);
|
412
399
|
},
|
413
|
-
'OperatorNode,
|
414
|
-
if (
|
400
|
+
'OperatorNode, function': function OperatorNode_function(node, isConst) {
|
401
|
+
if (isConst(node)) {
|
415
402
|
return createConstantNode(0);
|
416
403
|
}
|
417
404
|
if (node.op === '+') {
|
418
405
|
// d/dx(sum(f(x)) = sum(f'(x))
|
419
406
|
return new OperatorNode(node.op, node.fn, node.args.map(function (arg) {
|
420
|
-
return _derivative(arg,
|
407
|
+
return _derivative(arg, isConst);
|
421
408
|
}));
|
422
409
|
}
|
423
410
|
if (node.op === '-') {
|
424
411
|
// d/dx(+/-f(x)) = +/-f'(x)
|
425
412
|
if (node.isUnary()) {
|
426
|
-
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0],
|
413
|
+
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0], isConst)]);
|
427
414
|
}
|
428
415
|
|
429
416
|
// Linearity of differentiation, d/dx(f(x) +/- g(x)) = f'(x) +/- g'(x)
|
430
417
|
if (node.isBinary()) {
|
431
|
-
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0],
|
418
|
+
return new OperatorNode(node.op, node.fn, [_derivative(node.args[0], isConst), _derivative(node.args[1], isConst)]);
|
432
419
|
}
|
433
420
|
}
|
434
421
|
if (node.op === '*') {
|
435
422
|
// d/dx(c*f(x)) = c*f'(x)
|
436
423
|
var constantTerms = node.args.filter(function (arg) {
|
437
|
-
return
|
424
|
+
return isConst(arg);
|
438
425
|
});
|
439
426
|
if (constantTerms.length > 0) {
|
440
427
|
var nonConstantTerms = node.args.filter(function (arg) {
|
441
|
-
return
|
428
|
+
return !isConst(arg);
|
442
429
|
});
|
443
430
|
var nonConstantNode = nonConstantTerms.length === 1 ? nonConstantTerms[0] : new OperatorNode('*', 'multiply', nonConstantTerms);
|
444
|
-
var newArgs = constantTerms.concat(_derivative(nonConstantNode,
|
431
|
+
var newArgs = constantTerms.concat(_derivative(nonConstantNode, isConst));
|
445
432
|
return new OperatorNode('*', 'multiply', newArgs);
|
446
433
|
}
|
447
434
|
|
448
435
|
// Product Rule, d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)
|
449
436
|
return new OperatorNode('+', 'add', node.args.map(function (argOuter) {
|
450
437
|
return new OperatorNode('*', 'multiply', node.args.map(function (argInner) {
|
451
|
-
return argInner === argOuter ? _derivative(argInner,
|
438
|
+
return argInner === argOuter ? _derivative(argInner, isConst) : argInner.clone();
|
452
439
|
}));
|
453
440
|
}));
|
454
441
|
}
|
@@ -457,31 +444,31 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
457
444
|
var arg1 = node.args[1];
|
458
445
|
|
459
446
|
// d/dx(f(x) / c) = f'(x) / c
|
460
|
-
if (
|
461
|
-
return new OperatorNode('/', 'divide', [_derivative(arg0,
|
447
|
+
if (isConst(arg1)) {
|
448
|
+
return new OperatorNode('/', 'divide', [_derivative(arg0, isConst), arg1]);
|
462
449
|
}
|
463
450
|
|
464
451
|
// Reciprocal Rule, d/dx(c / f(x)) = -c(f'(x)/f(x)^2)
|
465
|
-
if (
|
466
|
-
return new OperatorNode('*', 'multiply', [new OperatorNode('-', 'unaryMinus', [arg0]), new OperatorNode('/', 'divide', [_derivative(arg1,
|
452
|
+
if (isConst(arg0)) {
|
453
|
+
return new OperatorNode('*', 'multiply', [new OperatorNode('-', 'unaryMinus', [arg0]), new OperatorNode('/', 'divide', [_derivative(arg1, isConst), new OperatorNode('^', 'pow', [arg1.clone(), createConstantNode(2)])])]);
|
467
454
|
}
|
468
455
|
|
469
456
|
// Quotient rule, d/dx(f(x) / g(x)) = (f'(x)g(x) - f(x)g'(x)) / g(x)^2
|
470
|
-
return new OperatorNode('/', 'divide', [new OperatorNode('-', 'subtract', [new OperatorNode('*', 'multiply', [_derivative(arg0,
|
457
|
+
return new OperatorNode('/', 'divide', [new OperatorNode('-', 'subtract', [new OperatorNode('*', 'multiply', [_derivative(arg0, isConst), arg1.clone()]), new OperatorNode('*', 'multiply', [arg0.clone(), _derivative(arg1, isConst)])]), new OperatorNode('^', 'pow', [arg1.clone(), createConstantNode(2)])]);
|
471
458
|
}
|
472
459
|
if (node.op === '^' && node.isBinary()) {
|
473
460
|
var _arg = node.args[0];
|
474
461
|
var _arg2 = node.args[1];
|
475
|
-
if (
|
462
|
+
if (isConst(_arg)) {
|
476
463
|
// If is secretly constant; 0^f(x) = 1 (in JS), 1^f(x) = 1
|
477
464
|
if (isConstantNode(_arg) && (isZero(_arg.value) || equal(_arg.value, 1))) {
|
478
465
|
return createConstantNode(0);
|
479
466
|
}
|
480
467
|
|
481
468
|
// d/dx(c^f(x)) = c^f(x)*ln(c)*f'(x)
|
482
|
-
return new OperatorNode('*', 'multiply', [node, new OperatorNode('*', 'multiply', [new FunctionNode('log', [_arg.clone()]), _derivative(_arg2.clone(),
|
469
|
+
return new OperatorNode('*', 'multiply', [node, new OperatorNode('*', 'multiply', [new FunctionNode('log', [_arg.clone()]), _derivative(_arg2.clone(), isConst)])]);
|
483
470
|
}
|
484
|
-
if (
|
471
|
+
if (isConst(_arg2)) {
|
485
472
|
if (isConstantNode(_arg2)) {
|
486
473
|
// If is secretly constant; f(x)^0 = 1 -> d/dx(1) = 0
|
487
474
|
if (isZero(_arg2.value)) {
|
@@ -489,17 +476,17 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
489
476
|
}
|
490
477
|
// Ignore exponent; f(x)^1 = f(x)
|
491
478
|
if (equal(_arg2.value, 1)) {
|
492
|
-
return _derivative(_arg,
|
479
|
+
return _derivative(_arg, isConst);
|
493
480
|
}
|
494
481
|
}
|
495
482
|
|
496
483
|
// Elementary Power Rule, d/dx(f(x)^c) = c*f'(x)*f(x)^(c-1)
|
497
484
|
var powMinusOne = new OperatorNode('^', 'pow', [_arg.clone(), new OperatorNode('-', 'subtract', [_arg2, createConstantNode(1)])]);
|
498
|
-
return new OperatorNode('*', 'multiply', [_arg2.clone(), new OperatorNode('*', 'multiply', [_derivative(_arg,
|
485
|
+
return new OperatorNode('*', 'multiply', [_arg2.clone(), new OperatorNode('*', 'multiply', [_derivative(_arg, isConst), powMinusOne])]);
|
499
486
|
}
|
500
487
|
|
501
488
|
// Functional Power Rule, d/dx(f^g) = f^g*[f'*(g/f) + g'ln(f)]
|
502
|
-
return new OperatorNode('*', 'multiply', [new OperatorNode('^', 'pow', [_arg.clone(), _arg2.clone()]), new OperatorNode('+', 'add', [new OperatorNode('*', 'multiply', [_derivative(_arg,
|
489
|
+
return new OperatorNode('*', 'multiply', [new OperatorNode('^', 'pow', [_arg.clone(), _arg2.clone()]), new OperatorNode('+', 'add', [new OperatorNode('*', 'multiply', [_derivative(_arg, isConst), new OperatorNode('/', 'divide', [_arg2.clone(), _arg.clone()])]), new OperatorNode('*', 'multiply', [_derivative(_arg2, isConst), new FunctionNode('log', [_arg.clone()])])])]);
|
503
490
|
}
|
504
491
|
throw new Error('Cannot process operator "' + node.op + '" in derivative: ' + 'the operator is not supported, undefined, or the number of arguments passed to it are not supported');
|
505
492
|
}
|
package/lib/esm/version.js
CHANGED