mathjs 11.12.0 → 12.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/HISTORY.md +54 -2
- package/README.md +1 -1
- package/lib/browser/math.js +1 -1
- package/lib/browser/math.js.LICENSE.txt +2 -2
- package/lib/browser/math.js.map +1 -1
- package/lib/cjs/entry/dependenciesAny/dependenciesEigs.generated.js +4 -0
- package/lib/cjs/entry/pureFunctionsAny.generated.js +2 -0
- package/lib/cjs/expression/embeddedDocs/function/arithmetic/round.js +2 -2
- package/lib/cjs/expression/embeddedDocs/function/matrix/eigs.js +2 -2
- package/lib/cjs/expression/node/AssignmentNode.js +1 -1
- package/lib/cjs/expression/node/FunctionAssignmentNode.js +1 -1
- package/lib/cjs/function/algebra/derivative.js +8 -31
- package/lib/cjs/function/arithmetic/gcd.js +4 -5
- package/lib/cjs/function/arithmetic/mod.js +2 -9
- package/lib/cjs/function/arithmetic/round.js +59 -16
- package/lib/cjs/function/matrix/eigs/complexEigs.js +73 -68
- package/lib/cjs/function/matrix/eigs/{realSymetric.js → realSymmetric.js} +57 -51
- package/lib/cjs/function/matrix/eigs.js +118 -45
- package/lib/cjs/function/probability/pickRandom.js +2 -2
- package/lib/cjs/header.js +2 -2
- package/lib/cjs/type/number.js +2 -2
- package/lib/cjs/utils/number.js +1 -1
- package/lib/cjs/utils/snapshot.js +6 -6
- package/lib/cjs/version.js +1 -1
- package/lib/esm/entry/dependenciesAny/dependenciesEigs.generated.js +4 -0
- package/lib/esm/entry/pureFunctionsAny.generated.js +2 -0
- package/lib/esm/expression/embeddedDocs/function/arithmetic/round.js +2 -2
- package/lib/esm/expression/embeddedDocs/function/matrix/eigs.js +2 -2
- package/lib/esm/expression/node/AssignmentNode.js +1 -1
- package/lib/esm/expression/node/FunctionAssignmentNode.js +1 -1
- package/lib/esm/function/algebra/derivative.js +8 -31
- package/lib/esm/function/arithmetic/mod.js +2 -9
- package/lib/esm/function/arithmetic/round.js +40 -17
- package/lib/esm/function/matrix/eigs/complexEigs.js +73 -68
- package/lib/esm/function/matrix/eigs/{realSymetric.js → realSymmetric.js} +55 -51
- package/lib/esm/function/matrix/eigs.js +119 -47
- package/lib/esm/function/probability/pickRandom.js +2 -2
- package/lib/esm/type/number.js +2 -2
- package/lib/esm/utils/number.js +1 -1
- package/lib/esm/version.js +1 -1
- package/package.json +14 -14
- package/types/EXPLANATION.md +54 -0
- package/types/index.d.ts +6825 -6483
@@ -1,18 +1,20 @@
|
|
1
1
|
"use strict";
|
2
2
|
|
3
|
+
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
|
3
4
|
Object.defineProperty(exports, "__esModule", {
|
4
5
|
value: true
|
5
6
|
});
|
6
7
|
exports.createEigs = void 0;
|
8
|
+
var _extends2 = _interopRequireDefault(require("@babel/runtime/helpers/extends"));
|
7
9
|
var _factory = require("../../utils/factory.js");
|
8
10
|
var _string = require("../../utils/string.js");
|
9
11
|
var _complexEigs = require("./eigs/complexEigs.js");
|
10
|
-
var
|
12
|
+
var _realSymmetric = require("./eigs/realSymmetric.js");
|
11
13
|
var _is = require("../../utils/is.js");
|
12
14
|
var name = 'eigs';
|
13
15
|
|
14
16
|
// The absolute state of math.js's dependency system:
|
15
|
-
var dependencies = ['config', 'typed', 'matrix', 'addScalar', 'equal', 'subtract', 'abs', 'atan', 'cos', 'sin', 'multiplyScalar', 'divideScalar', 'inv', 'bignumber', 'multiply', 'add', 'larger', 'column', 'flatten', 'number', 'complex', 'sqrt', 'diag', 'qr', 'usolve', 'usolveAll', 'im', 're', 'smaller', 'matrixFromColumns', 'dot'];
|
17
|
+
var dependencies = ['config', 'typed', 'matrix', 'addScalar', 'equal', 'subtract', 'abs', 'atan', 'cos', 'sin', 'multiplyScalar', 'divideScalar', 'inv', 'bignumber', 'multiply', 'add', 'larger', 'column', 'flatten', 'number', 'complex', 'sqrt', 'diag', 'size', 'reshape', 'qr', 'usolve', 'usolveAll', 'im', 're', 'smaller', 'matrixFromColumns', 'dot'];
|
16
18
|
var createEigs = exports.createEigs = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
17
19
|
var config = _ref.config,
|
18
20
|
typed = _ref.typed,
|
@@ -37,6 +39,8 @@ var createEigs = exports.createEigs = /* #__PURE__ */(0, _factory.factory)(name,
|
|
37
39
|
complex = _ref.complex,
|
38
40
|
sqrt = _ref.sqrt,
|
39
41
|
diag = _ref.diag,
|
42
|
+
size = _ref.size,
|
43
|
+
reshape = _ref.reshape,
|
40
44
|
qr = _ref.qr,
|
41
45
|
usolve = _ref.usolve,
|
42
46
|
usolveAll = _ref.usolveAll,
|
@@ -45,7 +49,7 @@ var createEigs = exports.createEigs = /* #__PURE__ */(0, _factory.factory)(name,
|
|
45
49
|
smaller = _ref.smaller,
|
46
50
|
matrixFromColumns = _ref.matrixFromColumns,
|
47
51
|
dot = _ref.dot;
|
48
|
-
var
|
52
|
+
var doRealSymmetric = (0, _realSymmetric.createRealSymmetric)({
|
49
53
|
config: config,
|
50
54
|
addScalar: addScalar,
|
51
55
|
subtract: subtract,
|
@@ -75,6 +79,8 @@ var createEigs = exports.createEigs = /* #__PURE__ */(0, _factory.factory)(name,
|
|
75
79
|
abs: abs,
|
76
80
|
bignumber: bignumber,
|
77
81
|
diag: diag,
|
82
|
+
size: size,
|
83
|
+
reshape: reshape,
|
78
84
|
qr: qr,
|
79
85
|
inv: inv,
|
80
86
|
usolve: usolve,
|
@@ -88,26 +94,54 @@ var createEigs = exports.createEigs = /* #__PURE__ */(0, _factory.factory)(name,
|
|
88
94
|
});
|
89
95
|
|
90
96
|
/**
|
91
|
-
* Compute eigenvalues and eigenvectors of a matrix.
|
92
|
-
*
|
93
|
-
*
|
94
|
-
*
|
97
|
+
* Compute eigenvalues and optionally eigenvectors of a square matrix.
|
98
|
+
* The eigenvalues are sorted by their absolute value, ascending, and
|
99
|
+
* returned as a vector in the `values` property of the returned project.
|
100
|
+
* An eigenvalue with algebraic multiplicity k will be listed k times, so
|
101
|
+
* that the returned `values` vector always has length equal to the size
|
102
|
+
* of the input matrix.
|
103
|
+
*
|
104
|
+
* The `eigenvectors` property of the return value provides the eigenvectors.
|
105
|
+
* It is an array of plain objects: the `value` property of each gives the
|
106
|
+
* associated eigenvalue, and the `vector` property gives the eigenvector
|
107
|
+
* itself. Note that the same `value` property will occur as many times in
|
108
|
+
* the list provided by `eigenvectors` as the geometric multiplicity of
|
109
|
+
* that value.
|
110
|
+
*
|
111
|
+
* If the algorithm fails to converge, it will throw an error –
|
112
|
+
* in that case, however, you may still find useful information
|
95
113
|
* in `err.values` and `err.vectors`.
|
96
114
|
*
|
115
|
+
* Note that the 'precision' option does not directly specify the _accuracy_
|
116
|
+
* of the returned eigenvalues. Rather, it determines how small an entry
|
117
|
+
* of the iterative approximations to an upper triangular matrix must be
|
118
|
+
* in order to be considered zero. The actual accuracy of the returned
|
119
|
+
* eigenvalues may be greater or less than the precision, depending on the
|
120
|
+
* conditioning of the matrix and how far apart or close the actual
|
121
|
+
* eigenvalues are. Note that currently, relatively simple, "traditional"
|
122
|
+
* methods of eigenvalue computation are being used; this is not a modern,
|
123
|
+
* high-precision eigenvalue computation. That said, it should typically
|
124
|
+
* produce fairly reasonable results.
|
125
|
+
*
|
97
126
|
* Syntax:
|
98
127
|
*
|
99
128
|
* math.eigs(x, [prec])
|
129
|
+
* math.eigs(x, {options})
|
100
130
|
*
|
101
131
|
* Examples:
|
102
132
|
*
|
103
|
-
* const { eigs, multiply, column, transpose } = math
|
133
|
+
* const { eigs, multiply, column, transpose, matrixFromColumns } = math
|
104
134
|
* const H = [[5, 2.3], [2.3, 1]]
|
105
|
-
* const ans = eigs(H) // returns {values: [E1,E2...sorted],
|
135
|
+
* const ans = eigs(H) // returns {values: [E1,E2...sorted], eigenvectors: [{value: E1, vector: v2}, {value: e, vector: v2}, ...]
|
106
136
|
* const E = ans.values
|
107
|
-
* const
|
108
|
-
* multiply(H,
|
109
|
-
* const
|
110
|
-
*
|
137
|
+
* const V = ans.eigenvectors
|
138
|
+
* multiply(H, V[0].vector)) // returns multiply(E[0], V[0].vector))
|
139
|
+
* const U = matrixFromColumns(...V.map(obj => obj.vector))
|
140
|
+
* const UTxHxU = multiply(transpose(U), H, U) // diagonalizes H if possible
|
141
|
+
* E[0] == UTxHxU[0][0] // returns true always
|
142
|
+
*
|
143
|
+
* // Compute only approximate eigenvalues:
|
144
|
+
* const {values} = eigs(H, {eigenvectors: false, precision: 1e-6})
|
111
145
|
*
|
112
146
|
* See also:
|
113
147
|
*
|
@@ -115,57 +149,96 @@ var createEigs = exports.createEigs = /* #__PURE__ */(0, _factory.factory)(name,
|
|
115
149
|
*
|
116
150
|
* @param {Array | Matrix} x Matrix to be diagonalized
|
117
151
|
*
|
118
|
-
* @param {number | BigNumber} [
|
119
|
-
* @return {{values: Array|Matrix,
|
152
|
+
* @param {number | BigNumber | OptsObject} [opts] Object with keys `precision`, defaulting to config.epsilon, and `eigenvectors`, defaulting to true and specifying whether to compute eigenvectors. If just a number, specifies precision.
|
153
|
+
* @return {{values: Array|Matrix, eigenvectors?: Array<EVobj>}} Object containing an array of eigenvalues and an array of {value: number|BigNumber, vector: Array|Matrix} objects. The eigenvectors property is undefined if eigenvectors were not requested.
|
120
154
|
*
|
121
155
|
*/
|
122
156
|
return typed('eigs', {
|
157
|
+
// The conversion to matrix in the first two implementations,
|
158
|
+
// just to convert back to an array right away in
|
159
|
+
// computeValuesAndVectors, is unfortunate, and should perhaps be
|
160
|
+
// streamlined. It is done because the Matrix object carries some
|
161
|
+
// type information about its entries, and so constructing the matrix
|
162
|
+
// is a roundabout way of doing type detection.
|
123
163
|
Array: function Array(x) {
|
124
|
-
|
125
|
-
return computeValuesAndVectors(mat);
|
164
|
+
return doEigs(matrix(x));
|
126
165
|
},
|
127
166
|
'Array, number|BigNumber': function ArrayNumberBigNumber(x, prec) {
|
128
|
-
|
129
|
-
|
167
|
+
return doEigs(matrix(x), {
|
168
|
+
precision: prec
|
169
|
+
});
|
170
|
+
},
|
171
|
+
'Array, Object': function ArrayObject(x, opts) {
|
172
|
+
return doEigs(matrix(x), opts);
|
130
173
|
},
|
131
174
|
Matrix: function Matrix(mat) {
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
return {
|
136
|
-
values: matrix(values),
|
137
|
-
vectors: matrix(vectors)
|
138
|
-
};
|
175
|
+
return doEigs(mat, {
|
176
|
+
matricize: true
|
177
|
+
});
|
139
178
|
},
|
140
179
|
'Matrix, number|BigNumber': function MatrixNumberBigNumber(mat, prec) {
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
180
|
+
return doEigs(mat, {
|
181
|
+
precision: prec,
|
182
|
+
matricize: true
|
183
|
+
});
|
184
|
+
},
|
185
|
+
'Matrix, Object': function MatrixObject(mat, opts) {
|
186
|
+
var useOpts = {
|
187
|
+
matricize: true
|
147
188
|
};
|
189
|
+
(0, _extends2["default"])(useOpts, opts);
|
190
|
+
return doEigs(mat, useOpts);
|
148
191
|
}
|
149
192
|
});
|
150
|
-
function
|
151
|
-
|
152
|
-
|
193
|
+
function doEigs(mat) {
|
194
|
+
var _opts$precision;
|
195
|
+
var opts = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {};
|
196
|
+
var computeVectors = 'eigenvectors' in opts ? opts.eigenvectors : true;
|
197
|
+
var prec = (_opts$precision = opts.precision) !== null && _opts$precision !== void 0 ? _opts$precision : config.epsilon;
|
198
|
+
var result = computeValuesAndVectors(mat, prec, computeVectors);
|
199
|
+
if (opts.matricize) {
|
200
|
+
result.values = matrix(result.values);
|
201
|
+
if (computeVectors) {
|
202
|
+
result.eigenvectors = result.eigenvectors.map(function (_ref2) {
|
203
|
+
var value = _ref2.value,
|
204
|
+
vector = _ref2.vector;
|
205
|
+
return {
|
206
|
+
value: value,
|
207
|
+
vector: matrix(vector)
|
208
|
+
};
|
209
|
+
});
|
210
|
+
}
|
211
|
+
}
|
212
|
+
if (computeVectors) {
|
213
|
+
Object.defineProperty(result, 'vectors', {
|
214
|
+
enumerable: false,
|
215
|
+
// to make sure that the eigenvectors can still be
|
216
|
+
// converted to string.
|
217
|
+
get: function get() {
|
218
|
+
throw new Error('eigs(M).vectors replaced with eigs(M).eigenvectors');
|
219
|
+
}
|
220
|
+
});
|
153
221
|
}
|
154
|
-
|
155
|
-
|
156
|
-
|
222
|
+
return result;
|
223
|
+
}
|
224
|
+
function computeValuesAndVectors(mat, prec, computeVectors) {
|
225
|
+
var arr = mat.toArray(); // NOTE: arr is guaranteed to be unaliased
|
226
|
+
// and so safe to modify in place
|
227
|
+
var asize = mat.size();
|
228
|
+
if (asize.length !== 2 || asize[0] !== asize[1]) {
|
229
|
+
throw new RangeError("Matrix must be square (size: ".concat((0, _string.format)(asize), ")"));
|
157
230
|
}
|
158
|
-
var
|
159
|
-
var N = size[0];
|
231
|
+
var N = asize[0];
|
160
232
|
if (isReal(arr, N, prec)) {
|
161
|
-
coerceReal(arr, N);
|
233
|
+
coerceReal(arr, N); // modifies arr by side effect
|
234
|
+
|
162
235
|
if (isSymmetric(arr, N, prec)) {
|
163
|
-
var _type = coerceTypes(mat, arr, N);
|
164
|
-
return
|
236
|
+
var _type = coerceTypes(mat, arr, N); // modifies arr by side effect
|
237
|
+
return doRealSymmetric(arr, N, prec, _type, computeVectors);
|
165
238
|
}
|
166
239
|
}
|
167
|
-
var type = coerceTypes(mat, arr, N);
|
168
|
-
return doComplexEigs(arr, N, prec, type);
|
240
|
+
var type = coerceTypes(mat, arr, N); // modifies arr by side effect
|
241
|
+
return doComplexEigs(arr, N, prec, type, computeVectors);
|
169
242
|
}
|
170
243
|
|
171
244
|
/** @return {boolean} */
|
@@ -56,8 +56,8 @@ var createPickRandom = exports.createPickRandom = /* #__PURE__ */(0, _factory.fa
|
|
56
56
|
* @param {Array | Matrix} array A one dimensional array
|
57
57
|
* @param {Int} number An int or float
|
58
58
|
* @param {Array | Matrix} weights An array of ints or floats
|
59
|
-
* @return {number | Array} Returns a single random value from array when number is
|
60
|
-
* Returns an array with the configured number of elements when number is
|
59
|
+
* @return {number | Array} Returns a single random value from array when number is undefined.
|
60
|
+
* Returns an array with the configured number of elements when number is defined.
|
61
61
|
*/
|
62
62
|
return typed(name, {
|
63
63
|
'Array | Matrix': function ArrayMatrix(possibles) {
|
package/lib/cjs/header.js
CHANGED
@@ -6,8 +6,8 @@
|
|
6
6
|
* It features real and complex numbers, units, matrices, a large set of
|
7
7
|
* mathematical functions, and a flexible expression parser.
|
8
8
|
*
|
9
|
-
* @version
|
10
|
-
* @date 2023-
|
9
|
+
* @version 12.1.0
|
10
|
+
* @date 2023-11-17
|
11
11
|
*
|
12
12
|
* @license
|
13
13
|
* Copyright (C) 2013-2023 Jos de Jong <wjosdejong@gmail.com>
|
package/lib/cjs/type/number.js
CHANGED
@@ -49,7 +49,7 @@ function makeNumberFromNonDecimalParts(parts) {
|
|
49
49
|
}
|
50
50
|
var result = n + f;
|
51
51
|
if (isNaN(result)) {
|
52
|
-
throw new SyntaxError('String "' + parts.input + '" is
|
52
|
+
throw new SyntaxError('String "' + parts.input + '" is not a valid number');
|
53
53
|
}
|
54
54
|
return result;
|
55
55
|
}
|
@@ -103,7 +103,7 @@ var createNumber = exports.createNumber = /* #__PURE__ */(0, _factory.factory)(n
|
|
103
103
|
}
|
104
104
|
var num = Number(x);
|
105
105
|
if (isNaN(num)) {
|
106
|
-
throw new SyntaxError('String "' + x + '" is
|
106
|
+
throw new SyntaxError('String "' + x + '" is not a valid number');
|
107
107
|
}
|
108
108
|
if (wordSizeSuffixMatch) {
|
109
109
|
// x is a signed bin, oct, or hex literal
|
package/lib/cjs/utils/number.js
CHANGED
@@ -604,7 +604,7 @@ function nearlyEqual(x, y, epsilon) {
|
|
604
604
|
if (isFinite(x) && isFinite(y)) {
|
605
605
|
// check numbers are very close, needed when comparing numbers near zero
|
606
606
|
var diff = Math.abs(x - y);
|
607
|
-
if (diff
|
607
|
+
if (diff <= DBL_EPSILON) {
|
608
608
|
return true;
|
609
609
|
} else {
|
610
610
|
// use relative error
|
@@ -18,12 +18,12 @@ function _getRequireWildcardCache(e) { if ("function" != typeof WeakMap) return
|
|
18
18
|
function _interopRequireWildcard(e, r) { if (!r && e && e.__esModule) return e; if (null === e || "object" != _typeof(e) && "function" != typeof e) return { "default": e }; var t = _getRequireWildcardCache(r); if (t && t.has(e)) return t.get(e); var n = { __proto__: null }, a = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var u in e) if ("default" !== u && Object.prototype.hasOwnProperty.call(e, u)) { var i = a ? Object.getOwnPropertyDescriptor(e, u) : null; i && (i.get || i.set) ? Object.defineProperty(n, u, i) : n[u] = e[u]; } return n["default"] = e, t && t.set(e, n), n; }
|
19
19
|
function ownKeys(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; }
|
20
20
|
function _objectSpread(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys(Object(t), !0).forEach(function (r) { (0, _defineProperty2["default"])(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; } /**
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
21
|
+
* This file contains helper methods to create expected snapshot structures
|
22
|
+
* of both instance and ES6 exports.
|
23
|
+
*
|
24
|
+
* The files are located here and not under /test or /tools so it's transpiled
|
25
|
+
* into ES5 code under /lib and can be used straight by node.js
|
26
|
+
*/
|
27
27
|
var validateTypeOf = exports.validateTypeOf = allIsFunctions.typeOf;
|
28
28
|
function validateBundle(expectedBundleStructure, bundle) {
|
29
29
|
var originalWarn = console.warn;
|
package/lib/cjs/version.js
CHANGED
@@ -4,6 +4,6 @@ Object.defineProperty(exports, "__esModule", {
|
|
4
4
|
value: true
|
5
5
|
});
|
6
6
|
exports.version = void 0;
|
7
|
-
var version = exports.version = '
|
7
|
+
var version = exports.version = '12.1.0';
|
8
8
|
// Note: This file is automatically generated when building math.js.
|
9
9
|
// Changes made in this file will be overwritten.
|
@@ -25,7 +25,9 @@ import { multiplyScalarDependencies } from './dependenciesMultiplyScalar.generat
|
|
25
25
|
import { numberDependencies } from './dependenciesNumber.generated.js';
|
26
26
|
import { qrDependencies } from './dependenciesQr.generated.js';
|
27
27
|
import { reDependencies } from './dependenciesRe.generated.js';
|
28
|
+
import { reshapeDependencies } from './dependenciesReshape.generated.js';
|
28
29
|
import { sinDependencies } from './dependenciesSin.generated.js';
|
30
|
+
import { sizeDependencies } from './dependenciesSize.generated.js';
|
29
31
|
import { smallerDependencies } from './dependenciesSmaller.generated.js';
|
30
32
|
import { sqrtDependencies } from './dependenciesSqrt.generated.js';
|
31
33
|
import { subtractDependencies } from './dependenciesSubtract.generated.js';
|
@@ -57,7 +59,9 @@ export var eigsDependencies = {
|
|
57
59
|
numberDependencies,
|
58
60
|
qrDependencies,
|
59
61
|
reDependencies,
|
62
|
+
reshapeDependencies,
|
60
63
|
sinDependencies,
|
64
|
+
sizeDependencies,
|
61
65
|
smallerDependencies,
|
62
66
|
sqrtDependencies,
|
63
67
|
subtractDependencies,
|
@@ -1,8 +1,8 @@
|
|
1
1
|
export var roundDocs = {
|
2
2
|
name: 'round',
|
3
3
|
category: 'Arithmetic',
|
4
|
-
syntax: ['round(x)', 'round(x, n)'],
|
4
|
+
syntax: ['round(x)', 'round(x, n)', 'round(unit, valuelessUnit)', 'round(unit, n, valuelessUnit)'],
|
5
5
|
description: 'round a value towards the nearest integer.If x is complex, both real and imaginary part are rounded towards the nearest integer. When n is specified, the value is rounded to n decimals.',
|
6
|
-
examples: ['round(3.2)', 'round(3.8)', 'round(-4.2)', 'round(-4.8)', 'round(pi, 3)', 'round(123.45678, 2)'],
|
6
|
+
examples: ['round(3.2)', 'round(3.8)', 'round(-4.2)', 'round(-4.8)', 'round(pi, 3)', 'round(123.45678, 2)', 'round(3.241cm, 2, cm)', 'round([3.2, 3.8, -4.7])'],
|
7
7
|
seealso: ['ceil', 'floor', 'fix']
|
8
8
|
};
|
@@ -2,7 +2,7 @@ export var eigsDocs = {
|
|
2
2
|
name: 'eigs',
|
3
3
|
category: 'Matrix',
|
4
4
|
syntax: ['eigs(x)'],
|
5
|
-
description: 'Calculate the eigenvalues and eigenvectors of a
|
6
|
-
examples: ['eigs([[5, 2.3], [2.3, 1]])'],
|
5
|
+
description: 'Calculate the eigenvalues and optionally eigenvectors of a square matrix',
|
6
|
+
examples: ['eigs([[5, 2.3], [2.3, 1]])', 'eigs([[1, 2, 3], [4, 5, 6], [7, 8, 9]], { precision: 1e-6, eigenvectors: false }'],
|
7
7
|
seealso: ['inv']
|
8
8
|
};
|
@@ -295,7 +295,7 @@ export var createAssignmentNode = /* #__PURE__ */factory(name, dependencies, _re
|
|
295
295
|
if (needParenthesis(this, options && options.parenthesis, options && options.implicit)) {
|
296
296
|
value = "\\left(".concat(value, "\\right)");
|
297
297
|
}
|
298
|
-
return object + index + '
|
298
|
+
return object + index + '=' + value;
|
299
299
|
}
|
300
300
|
}
|
301
301
|
_defineProperty(AssignmentNode, "name", name);
|
@@ -224,7 +224,7 @@ export var createFunctionAssignmentNode = /* #__PURE__ */factory(name, dependenc
|
|
224
224
|
if (needParenthesis(this, parenthesis, options && options.implicit)) {
|
225
225
|
expr = "\\left(".concat(expr, "\\right)");
|
226
226
|
}
|
227
|
-
return '\\mathrm{' + this.name + '}\\left(' + this.params.map(toSymbol).join(',') + '\\right)
|
227
|
+
return '\\mathrm{' + this.name + '}\\left(' + this.params.map(toSymbol).join(',') + '\\right)=' + expr;
|
228
228
|
}
|
229
229
|
}
|
230
230
|
_defineProperty(FunctionAssignmentNode, "name", name);
|
@@ -208,9 +208,6 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
208
208
|
return _derivative(node.expr, constNodes);
|
209
209
|
},
|
210
210
|
'FunctionNode, Object': function FunctionNodeObject(node, constNodes) {
|
211
|
-
if (node.args.length !== 1) {
|
212
|
-
funcArgsCheck(node);
|
213
|
-
}
|
214
211
|
if (constNodes[node] !== undefined) {
|
215
212
|
return createConstantNode(0);
|
216
213
|
}
|
@@ -259,9 +256,12 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
259
256
|
}
|
260
257
|
break;
|
261
258
|
case 'pow':
|
262
|
-
|
263
|
-
|
264
|
-
|
259
|
+
if (node.args.length === 2) {
|
260
|
+
constNodes[arg1] = constNodes[node.args[1]];
|
261
|
+
// Pass to pow operator node parser
|
262
|
+
return _derivative(new OperatorNode('^', 'pow', [arg0, node.args[1]]), constNodes);
|
263
|
+
}
|
264
|
+
break;
|
265
265
|
case 'exp':
|
266
266
|
// d/dx(e^x) = e^x
|
267
267
|
funcDerivative = new FunctionNode('exp', [arg0.clone()]);
|
@@ -391,7 +391,7 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
391
391
|
break;
|
392
392
|
case 'gamma': // Needs digamma function, d/dx(gamma(x)) = gamma(x)digamma(x)
|
393
393
|
default:
|
394
|
-
throw new Error('
|
394
|
+
throw new Error('Cannot process function "' + node.name + '" in derivative: ' + 'the function is not supported, undefined, or the number of arguments passed to it are not supported');
|
395
395
|
}
|
396
396
|
var op, func;
|
397
397
|
if (div) {
|
@@ -502,33 +502,10 @@ export var createDerivative = /* #__PURE__ */factory(name, dependencies, _ref =>
|
|
502
502
|
// Functional Power Rule, d/dx(f^g) = f^g*[f'*(g/f) + g'ln(f)]
|
503
503
|
return new OperatorNode('*', 'multiply', [new OperatorNode('^', 'pow', [_arg.clone(), _arg2.clone()]), new OperatorNode('+', 'add', [new OperatorNode('*', 'multiply', [_derivative(_arg, constNodes), new OperatorNode('/', 'divide', [_arg2.clone(), _arg.clone()])]), new OperatorNode('*', 'multiply', [_derivative(_arg2, constNodes), new FunctionNode('log', [_arg.clone()])])])]);
|
504
504
|
}
|
505
|
-
throw new Error('
|
505
|
+
throw new Error('Cannot process operator "' + node.op + '" in derivative: ' + 'the operator is not supported, undefined, or the number of arguments passed to it are not supported');
|
506
506
|
}
|
507
507
|
});
|
508
508
|
|
509
|
-
/**
|
510
|
-
* Ensures the number of arguments for a function are correct,
|
511
|
-
* and will throw an error otherwise.
|
512
|
-
*
|
513
|
-
* @param {FunctionNode} node
|
514
|
-
*/
|
515
|
-
function funcArgsCheck(node) {
|
516
|
-
// TODO add min, max etc
|
517
|
-
if ((node.name === 'log' || node.name === 'nthRoot' || node.name === 'pow') && node.args.length === 2) {
|
518
|
-
return;
|
519
|
-
}
|
520
|
-
|
521
|
-
// There should be an incorrect number of arguments if we reach here
|
522
|
-
|
523
|
-
// Change all args to constants to avoid unidentified
|
524
|
-
// symbol error when compiling function
|
525
|
-
for (var i = 0; i < node.args.length; ++i) {
|
526
|
-
node.args[i] = createConstantNode(0);
|
527
|
-
}
|
528
|
-
node.compile().evaluate();
|
529
|
-
throw new Error('Function "' + node.name + '" is not supported by derivative, or a wrong number of arguments is passed');
|
530
|
-
}
|
531
|
-
|
532
509
|
/**
|
533
510
|
* Helper function to create a constant node with a specific type
|
534
511
|
* (number, BigNumber, Fraction)
|
@@ -91,17 +91,10 @@ export var createMod = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
91
91
|
return typed(name, {
|
92
92
|
'number, number': _modNumber,
|
93
93
|
'BigNumber, BigNumber': function BigNumberBigNumber(x, y) {
|
94
|
-
|
95
|
-
throw new Error('Cannot calculate mod for a negative divisor');
|
96
|
-
}
|
97
|
-
return y.isZero() ? x : x.mod(y);
|
94
|
+
return y.isZero() ? x : x.sub(y.mul(floor(x.div(y))));
|
98
95
|
},
|
99
96
|
'Fraction, Fraction': function FractionFraction(x, y) {
|
100
|
-
|
101
|
-
throw new Error('Cannot calculate mod for a negative divisor');
|
102
|
-
}
|
103
|
-
// Workaround suggested in Fraction.js library to calculate correct modulo for negative dividend
|
104
|
-
return x.compare(0) >= 0 ? x.mod(y) : x.mod(y).add(y).mod(y);
|
97
|
+
return y.equals(0) ? x : x.sub(y.mul(floor(x.div(y))));
|
105
98
|
}
|
106
99
|
}, matrixAlgorithmSuite({
|
107
100
|
SS: matAlgo05xSfSf,
|
@@ -36,6 +36,8 @@ export var createRound = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
36
36
|
*
|
37
37
|
* math.round(x)
|
38
38
|
* math.round(x, n)
|
39
|
+
* math.round(unit, valuelessUnit)
|
40
|
+
* math.round(unit, n, valuelessUnit)
|
39
41
|
*
|
40
42
|
* Examples:
|
41
43
|
*
|
@@ -53,14 +55,21 @@ export var createRound = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
53
55
|
* const c = math.complex(3.2, -2.7)
|
54
56
|
* math.round(c) // returns Complex 3 - 3i
|
55
57
|
*
|
58
|
+
* const unit = math.unit('3.241 cm')
|
59
|
+
* const cm = math.unit('cm')
|
60
|
+
* const mm = math.unit('mm')
|
61
|
+
* math.round(unit, 1, cm) // returns Unit 3.2 cm
|
62
|
+
* math.round(unit, 1, mm) // returns Unit 32.4 mm
|
63
|
+
*
|
56
64
|
* math.round([3.2, 3.8, -4.7]) // returns Array [3, 4, -5]
|
57
65
|
*
|
58
66
|
* See also:
|
59
67
|
*
|
60
68
|
* ceil, fix, floor
|
61
69
|
*
|
62
|
-
* @param {number | BigNumber | Fraction | Complex | Array | Matrix} x
|
70
|
+
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} x Value to be rounded
|
63
71
|
* @param {number | BigNumber | Array} [n=0] Number of decimals
|
72
|
+
* @param {Unit} [valuelessUnit] A valueless unit
|
64
73
|
* @return {number | BigNumber | Fraction | Complex | Array | Matrix} Rounded value
|
65
74
|
*/
|
66
75
|
return typed(name, {
|
@@ -112,37 +121,51 @@ export var createRound = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
112
121
|
}
|
113
122
|
return x.round(n.toNumber());
|
114
123
|
},
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
124
|
+
'Unit, number, Unit': typed.referToSelf(self => function (x, n, unit) {
|
125
|
+
var valueless = x.toNumeric(unit);
|
126
|
+
return unit.multiply(self(valueless, n));
|
127
|
+
}),
|
128
|
+
'Unit, BigNumber, Unit': typed.referToSelf(self => (x, n, unit) => self(x, n.toNumber(), unit)),
|
129
|
+
'Unit, Unit': typed.referToSelf(self => (x, unit) => self(x, 0, unit)),
|
130
|
+
'Array | Matrix, number, Unit': typed.referToSelf(self => (x, n, unit) => {
|
131
|
+
// deep map collection, skip zeros since round(0) = 0
|
132
|
+
return deepMap(x, value => self(value, n, unit), true);
|
133
|
+
}),
|
134
|
+
'Array | Matrix, BigNumber, Unit': typed.referToSelf(self => (x, n, unit) => self(x, n.toNumber(), unit)),
|
135
|
+
'Array | Matrix, Unit': typed.referToSelf(self => (x, unit) => self(x, 0, unit)),
|
136
|
+
'Array | Matrix': typed.referToSelf(self => x => {
|
137
|
+
// deep map collection, skip zeros since round(0) = 0
|
138
|
+
return deepMap(x, self, true);
|
139
|
+
}),
|
140
|
+
'SparseMatrix, number | BigNumber': typed.referToSelf(self => (x, n) => {
|
141
|
+
return matAlgo11xS0s(x, n, self, false);
|
119
142
|
}),
|
120
|
-
'DenseMatrix, number | BigNumber': typed.referToSelf(self => (x,
|
121
|
-
return matAlgo14xDs(x,
|
143
|
+
'DenseMatrix, number | BigNumber': typed.referToSelf(self => (x, n) => {
|
144
|
+
return matAlgo14xDs(x, n, self, false);
|
122
145
|
}),
|
123
|
-
'Array, number | BigNumber': typed.referToSelf(self => (x,
|
146
|
+
'Array, number | BigNumber': typed.referToSelf(self => (x, n) => {
|
124
147
|
// use matrix implementation
|
125
|
-
return matAlgo14xDs(matrix(x),
|
148
|
+
return matAlgo14xDs(matrix(x), n, self, false).valueOf();
|
126
149
|
}),
|
127
|
-
'number | Complex | BigNumber | Fraction, SparseMatrix': typed.referToSelf(self => (x,
|
150
|
+
'number | Complex | BigNumber | Fraction, SparseMatrix': typed.referToSelf(self => (x, n) => {
|
128
151
|
// check scalar is zero
|
129
152
|
if (equalScalar(x, 0)) {
|
130
153
|
// do not execute algorithm, result will be a zero matrix
|
131
|
-
return zeros(
|
154
|
+
return zeros(n.size(), n.storage());
|
132
155
|
}
|
133
|
-
return matAlgo12xSfs(
|
156
|
+
return matAlgo12xSfs(n, x, self, true);
|
134
157
|
}),
|
135
|
-
'number | Complex | BigNumber | Fraction, DenseMatrix': typed.referToSelf(self => (x,
|
158
|
+
'number | Complex | BigNumber | Fraction, DenseMatrix': typed.referToSelf(self => (x, n) => {
|
136
159
|
// check scalar is zero
|
137
160
|
if (equalScalar(x, 0)) {
|
138
161
|
// do not execute algorithm, result will be a zero matrix
|
139
|
-
return zeros(
|
162
|
+
return zeros(n.size(), n.storage());
|
140
163
|
}
|
141
|
-
return matAlgo14xDs(
|
164
|
+
return matAlgo14xDs(n, x, self, true);
|
142
165
|
}),
|
143
|
-
'number | Complex | BigNumber | Fraction, Array': typed.referToSelf(self => (x,
|
166
|
+
'number | Complex | BigNumber | Fraction, Array': typed.referToSelf(self => (x, n) => {
|
144
167
|
// use matrix implementation
|
145
|
-
return matAlgo14xDs(matrix(
|
168
|
+
return matAlgo14xDs(matrix(n), x, self, true).valueOf();
|
146
169
|
})
|
147
170
|
});
|
148
171
|
});
|