mathjs 10.0.0 → 10.0.1

Sign up to get free protection for your applications and to get access to all the features.
@@ -49,44 +49,42 @@ var createGamma = /* #__PURE__ */(0, _factory.factory)(name, dependencies, funct
49
49
  Complex: function Complex(n) {
50
50
  if (n.im === 0) {
51
51
  return this(n.re);
52
- }
52
+ } // Lanczos approximation doesn't work well with real part lower than 0.5
53
+ // So reflection formula is required
54
+
55
+
56
+ if (n.re < 0.5) {
57
+ // Euler's reflection formula
58
+ // gamma(1-z) * gamma(z) = PI / sin(PI * z)
59
+ // real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined]
60
+ // thanks to imperfect sin implementation sin(PI * n) != 0
61
+ // we can safely use it anyway
62
+ var _t = new _Complex(1 - n.re, -n.im);
63
+
64
+ var r = new _Complex(Math.PI * n.re, Math.PI * n.im);
65
+ return new _Complex(Math.PI).div(r.sin()).div(this(_t));
66
+ } // Lanczos approximation
67
+ // z -= 1
68
+
53
69
 
54
- n = new _Complex(n.re - 1, n.im);
55
- var x = new _Complex(_index.gammaP[0], 0);
70
+ n = new _Complex(n.re - 1, n.im); // x = gammaPval[0]
71
+
72
+ var x = new _Complex(_index.gammaP[0], 0); // for (i, gammaPval) in enumerate(gammaP):
56
73
 
57
74
  for (var i = 1; i < _index.gammaP.length; ++i) {
58
- var real = n.re + i; // x += p[i]/(n+i)
75
+ // x += gammaPval / (z + i)
76
+ var gammaPval = new _Complex(_index.gammaP[i], 0);
77
+ x = x.add(gammaPval.div(n.add(i)));
78
+ } // t = z + gammaG + 0.5
59
79
 
60
- var den = real * real + n.im * n.im;
61
80
 
62
- if (den !== 0) {
63
- x.re += _index.gammaP[i] * real / den;
64
- x.im += -(_index.gammaP[i] * n.im) / den;
65
- } else {
66
- x.re = _index.gammaP[i] < 0 ? -Infinity : Infinity;
67
- }
68
- }
81
+ var t = new _Complex(n.re + _index.gammaG + 0.5, n.im); // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x
69
82
 
70
- var t = new _Complex(n.re + _index.gammaG + 0.5, n.im);
71
83
  var twoPiSqrt = Math.sqrt(2 * Math.PI);
72
- n.re += 0.5;
73
- var result = pow(t, n);
74
-
75
- if (result.im === 0) {
76
- // sqrt(2*PI)*result
77
- result.re *= twoPiSqrt;
78
- } else if (result.re === 0) {
79
- result.im *= twoPiSqrt;
80
- } else {
81
- result.re *= twoPiSqrt;
82
- result.im *= twoPiSqrt;
83
- }
84
-
85
- var r = Math.exp(-t.re); // exp(-t)
84
+ var tpow = t.pow(n.add(0.5));
85
+ var expt = t.neg().exp(); // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)]
86
86
 
87
- t.re = r * Math.cos(-t.im);
88
- t.im = r * Math.sin(-t.im);
89
- return multiplyScalar(multiplyScalar(result, t), x);
87
+ return x.mul(twoPiSqrt).mul(tpow).mul(expt);
90
88
  },
91
89
  BigNumber: function BigNumber(n) {
92
90
  if (n.isInteger()) {
package/lib/cjs/header.js CHANGED
@@ -6,8 +6,8 @@
6
6
  * It features real and complex numbers, units, matrices, a large set of
7
7
  * mathematical functions, and a flexible expression parser.
8
8
  *
9
- * @version 10.0.0
10
- * @date 2021-11-03
9
+ * @version 10.0.1
10
+ * @date 2021-12-22
11
11
  *
12
12
  * @license
13
13
  * Copyright (C) 2013-2021 Jos de Jong <wjosdejong@gmail.com>
@@ -4,7 +4,7 @@ Object.defineProperty(exports, "__esModule", {
4
4
  value: true
5
5
  });
6
6
  exports.version = void 0;
7
- var version = '10.0.0'; // Note: This file is automatically generated when building math.js.
7
+ var version = '10.0.1'; // Note: This file is automatically generated when building math.js.
8
8
  // Changes made in this file will be overwritten.
9
9
 
10
10
  exports.version = version;
@@ -41,44 +41,42 @@ export var createGamma = /* #__PURE__ */factory(name, dependencies, _ref => {
41
41
  Complex: function Complex(n) {
42
42
  if (n.im === 0) {
43
43
  return this(n.re);
44
- }
44
+ } // Lanczos approximation doesn't work well with real part lower than 0.5
45
+ // So reflection formula is required
46
+
47
+
48
+ if (n.re < 0.5) {
49
+ // Euler's reflection formula
50
+ // gamma(1-z) * gamma(z) = PI / sin(PI * z)
51
+ // real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined]
52
+ // thanks to imperfect sin implementation sin(PI * n) != 0
53
+ // we can safely use it anyway
54
+ var _t = new _Complex(1 - n.re, -n.im);
55
+
56
+ var r = new _Complex(Math.PI * n.re, Math.PI * n.im);
57
+ return new _Complex(Math.PI).div(r.sin()).div(this(_t));
58
+ } // Lanczos approximation
59
+ // z -= 1
60
+
45
61
 
46
- n = new _Complex(n.re - 1, n.im);
47
- var x = new _Complex(gammaP[0], 0);
62
+ n = new _Complex(n.re - 1, n.im); // x = gammaPval[0]
63
+
64
+ var x = new _Complex(gammaP[0], 0); // for (i, gammaPval) in enumerate(gammaP):
48
65
 
49
66
  for (var i = 1; i < gammaP.length; ++i) {
50
- var real = n.re + i; // x += p[i]/(n+i)
67
+ // x += gammaPval / (z + i)
68
+ var gammaPval = new _Complex(gammaP[i], 0);
69
+ x = x.add(gammaPval.div(n.add(i)));
70
+ } // t = z + gammaG + 0.5
51
71
 
52
- var den = real * real + n.im * n.im;
53
72
 
54
- if (den !== 0) {
55
- x.re += gammaP[i] * real / den;
56
- x.im += -(gammaP[i] * n.im) / den;
57
- } else {
58
- x.re = gammaP[i] < 0 ? -Infinity : Infinity;
59
- }
60
- }
73
+ var t = new _Complex(n.re + gammaG + 0.5, n.im); // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x
61
74
 
62
- var t = new _Complex(n.re + gammaG + 0.5, n.im);
63
75
  var twoPiSqrt = Math.sqrt(2 * Math.PI);
64
- n.re += 0.5;
65
- var result = pow(t, n);
66
-
67
- if (result.im === 0) {
68
- // sqrt(2*PI)*result
69
- result.re *= twoPiSqrt;
70
- } else if (result.re === 0) {
71
- result.im *= twoPiSqrt;
72
- } else {
73
- result.re *= twoPiSqrt;
74
- result.im *= twoPiSqrt;
75
- }
76
-
77
- var r = Math.exp(-t.re); // exp(-t)
76
+ var tpow = t.pow(n.add(0.5));
77
+ var expt = t.neg().exp(); // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)]
78
78
 
79
- t.re = r * Math.cos(-t.im);
80
- t.im = r * Math.sin(-t.im);
81
- return multiplyScalar(multiplyScalar(result, t), x);
79
+ return x.mul(twoPiSqrt).mul(tpow).mul(expt);
82
80
  },
83
81
  BigNumber: function BigNumber(n) {
84
82
  if (n.isInteger()) {
@@ -1,2 +1,2 @@
1
- export var version = '10.0.0'; // Note: This file is automatically generated when building math.js.
1
+ export var version = '10.0.1'; // Note: This file is automatically generated when building math.js.
2
2
  // Changes made in this file will be overwritten.
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "mathjs",
3
- "version": "10.0.0",
3
+ "version": "10.0.1",
4
4
  "description": "Math.js is an extensive math library for JavaScript and Node.js. It features a flexible expression parser with support for symbolic computation, comes with a large set of built-in functions and constants, and offers an integrated solution to work with different data types like numbers, big numbers, complex numbers, fractions, units, and matrices.",
5
5
  "author": "Jos de Jong <wjosdejong@gmail.com> (https://github.com/josdejong)",
6
6
  "homepage": "https://mathjs.org",