loclaude 0.0.1-alpha.2 → 0.0.1-alpha.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -270,6 +270,76 @@ var require_bytes = __commonJS((exports, module) => {
270
270
  }
271
271
  });
272
272
 
273
+ // ../../node_modules/.bun/picocolors@1.1.1/node_modules/picocolors/picocolors.js
274
+ var require_picocolors = __commonJS((exports, module) => {
275
+ var p = process || {};
276
+ var argv = p.argv || [];
277
+ var env = p.env || {};
278
+ var isColorSupported = !(!!env.NO_COLOR || argv.includes("--no-color")) && (!!env.FORCE_COLOR || argv.includes("--color") || p.platform === "win32" || (p.stdout || {}).isTTY && env.TERM !== "dumb" || !!env.CI);
279
+ var formatter = (open, close, replace = open) => (input) => {
280
+ let string = "" + input, index = string.indexOf(close, open.length);
281
+ return ~index ? open + replaceClose(string, close, replace, index) + close : open + string + close;
282
+ };
283
+ var replaceClose = (string, close, replace, index) => {
284
+ let result = "", cursor = 0;
285
+ do {
286
+ result += string.substring(cursor, index) + replace;
287
+ cursor = index + close.length;
288
+ index = string.indexOf(close, cursor);
289
+ } while (~index);
290
+ return result + string.substring(cursor);
291
+ };
292
+ var createColors = (enabled = isColorSupported) => {
293
+ let f = enabled ? formatter : () => String;
294
+ return {
295
+ isColorSupported: enabled,
296
+ reset: f("\x1B[0m", "\x1B[0m"),
297
+ bold: f("\x1B[1m", "\x1B[22m", "\x1B[22m\x1B[1m"),
298
+ dim: f("\x1B[2m", "\x1B[22m", "\x1B[22m\x1B[2m"),
299
+ italic: f("\x1B[3m", "\x1B[23m"),
300
+ underline: f("\x1B[4m", "\x1B[24m"),
301
+ inverse: f("\x1B[7m", "\x1B[27m"),
302
+ hidden: f("\x1B[8m", "\x1B[28m"),
303
+ strikethrough: f("\x1B[9m", "\x1B[29m"),
304
+ black: f("\x1B[30m", "\x1B[39m"),
305
+ red: f("\x1B[31m", "\x1B[39m"),
306
+ green: f("\x1B[32m", "\x1B[39m"),
307
+ yellow: f("\x1B[33m", "\x1B[39m"),
308
+ blue: f("\x1B[34m", "\x1B[39m"),
309
+ magenta: f("\x1B[35m", "\x1B[39m"),
310
+ cyan: f("\x1B[36m", "\x1B[39m"),
311
+ white: f("\x1B[37m", "\x1B[39m"),
312
+ gray: f("\x1B[90m", "\x1B[39m"),
313
+ bgBlack: f("\x1B[40m", "\x1B[49m"),
314
+ bgRed: f("\x1B[41m", "\x1B[49m"),
315
+ bgGreen: f("\x1B[42m", "\x1B[49m"),
316
+ bgYellow: f("\x1B[43m", "\x1B[49m"),
317
+ bgBlue: f("\x1B[44m", "\x1B[49m"),
318
+ bgMagenta: f("\x1B[45m", "\x1B[49m"),
319
+ bgCyan: f("\x1B[46m", "\x1B[49m"),
320
+ bgWhite: f("\x1B[47m", "\x1B[49m"),
321
+ blackBright: f("\x1B[90m", "\x1B[39m"),
322
+ redBright: f("\x1B[91m", "\x1B[39m"),
323
+ greenBright: f("\x1B[92m", "\x1B[39m"),
324
+ yellowBright: f("\x1B[93m", "\x1B[39m"),
325
+ blueBright: f("\x1B[94m", "\x1B[39m"),
326
+ magentaBright: f("\x1B[95m", "\x1B[39m"),
327
+ cyanBright: f("\x1B[96m", "\x1B[39m"),
328
+ whiteBright: f("\x1B[97m", "\x1B[39m"),
329
+ bgBlackBright: f("\x1B[100m", "\x1B[49m"),
330
+ bgRedBright: f("\x1B[101m", "\x1B[49m"),
331
+ bgGreenBright: f("\x1B[102m", "\x1B[49m"),
332
+ bgYellowBright: f("\x1B[103m", "\x1B[49m"),
333
+ bgBlueBright: f("\x1B[104m", "\x1B[49m"),
334
+ bgMagentaBright: f("\x1B[105m", "\x1B[49m"),
335
+ bgCyanBright: f("\x1B[106m", "\x1B[49m"),
336
+ bgWhiteBright: f("\x1B[107m", "\x1B[49m")
337
+ };
338
+ };
339
+ module.exports = createColors();
340
+ module.exports.createColors = createColors;
341
+ });
342
+
273
343
  // ../../node_modules/.bun/cac@6.7.14/node_modules/cac/dist/index.mjs
274
344
  import { EventEmitter } from "events";
275
345
  function toArr(any) {
@@ -2671,15 +2741,67 @@ var dist_default3 = createPrompt((config, done) => {
2671
2741
  // lib/utils.ts
2672
2742
  var import_bytes = __toESM(require_bytes(), 1);
2673
2743
 
2744
+ // lib/output.ts
2745
+ var import_picocolors = __toESM(require_picocolors(), 1);
2746
+ var brand = (text) => import_picocolors.default.cyan(import_picocolors.default.bold(text));
2747
+ var success = (text) => `${import_picocolors.default.green("\u2713")} ${text}`;
2748
+ var warn = (text) => `${import_picocolors.default.yellow("\u26A0")} ${text}`;
2749
+ var error = (text) => `${import_picocolors.default.red("\u2717")} ${text}`;
2750
+ var info = (text) => `${import_picocolors.default.cyan("\u2139")} ${text}`;
2751
+ var dim = (text) => import_picocolors.default.dim(text);
2752
+ var green = (text) => import_picocolors.default.green(text);
2753
+ var yellow = (text) => import_picocolors.default.yellow(text);
2754
+ var red = (text) => import_picocolors.default.red(text);
2755
+ var cyan = (text) => import_picocolors.default.cyan(text);
2756
+ var magenta = (text) => import_picocolors.default.magenta(text);
2757
+ function header(text) {
2758
+ console.log("");
2759
+ console.log(brand(` ${text}`));
2760
+ console.log(import_picocolors.default.dim(" " + "\u2500".repeat(text.length + 2)));
2761
+ }
2762
+ function labelValue(label, value) {
2763
+ console.log(` ${import_picocolors.default.dim(label + ":")} ${value}`);
2764
+ }
2765
+ function statusLine(status, name, message, extra) {
2766
+ const icons = { ok: "\u2713", warning: "\u26A0", error: "\u2717" };
2767
+ const colors = { ok: import_picocolors.default.green, warning: import_picocolors.default.yellow, error: import_picocolors.default.red };
2768
+ let line = `${colors[status](icons[status])} ${name}: ${message}`;
2769
+ if (extra) {
2770
+ line += ` ${import_picocolors.default.dim(`(${extra})`)}`;
2771
+ }
2772
+ return line;
2773
+ }
2774
+ function tableRow(columns, widths) {
2775
+ return columns.map((col, i) => {
2776
+ const width = widths[i] || col.length;
2777
+ return col.padEnd(width);
2778
+ }).join(" ");
2779
+ }
2780
+ function tableHeader(columns, widths) {
2781
+ const headerRow = tableRow(columns.map((c) => import_picocolors.default.bold(c)), widths);
2782
+ const underlineRow = widths.map((w) => "\u2500".repeat(w)).join(" ");
2783
+ console.log(headerRow);
2784
+ console.log(import_picocolors.default.dim(underlineRow));
2785
+ }
2786
+ function url(urlStr) {
2787
+ return import_picocolors.default.underline(import_picocolors.default.cyan(urlStr));
2788
+ }
2789
+ function cmd(command) {
2790
+ return import_picocolors.default.cyan(command);
2791
+ }
2792
+ function file(filePath) {
2793
+ return import_picocolors.default.magenta(filePath);
2794
+ }
2795
+
2674
2796
  // lib/spawn.ts
2675
- async function spawn(cmd, opts = {}) {
2676
- const command = cmd[0];
2677
- const args = cmd.slice(1);
2797
+ async function spawn(cmd2, opts = {}) {
2798
+ const command = cmd2[0];
2799
+ const args = cmd2.slice(1);
2678
2800
  if (command === undefined) {
2679
2801
  throw new Error("No command provided");
2680
2802
  }
2681
2803
  if (typeof Bun !== "undefined") {
2682
- const proc = Bun.spawn(cmd, {
2804
+ const proc = Bun.spawn(cmd2, {
2683
2805
  env: opts.env ?? process.env,
2684
2806
  cwd: opts.cwd ?? process.cwd(),
2685
2807
  stdin: opts.stdin ?? "inherit",
@@ -2699,14 +2821,14 @@ async function spawn(cmd, opts = {}) {
2699
2821
  });
2700
2822
  }
2701
2823
  }
2702
- async function spawnCapture(cmd, opts = {}) {
2703
- const command = cmd[0];
2704
- const args = cmd.slice(1);
2824
+ async function spawnCapture(cmd2, opts = {}) {
2825
+ const command = cmd2[0];
2826
+ const args = cmd2.slice(1);
2705
2827
  if (command === undefined) {
2706
2828
  throw new Error("No command provided");
2707
2829
  }
2708
2830
  if (typeof Bun !== "undefined") {
2709
- const proc = Bun.spawn(cmd, {
2831
+ const proc = Bun.spawn(cmd2, {
2710
2832
  env: opts.env ?? process.env,
2711
2833
  cwd: opts.cwd,
2712
2834
  stdin: opts.stdin ?? "ignore",
@@ -2741,17 +2863,17 @@ async function spawnCapture(cmd, opts = {}) {
2741
2863
  });
2742
2864
  }
2743
2865
  }
2744
- async function commandExists(cmd) {
2866
+ async function commandExists(cmd2) {
2745
2867
  try {
2746
- const result = await spawnCapture(process.platform === "win32" ? ["where", cmd] : ["which", cmd]);
2868
+ const result = await spawnCapture(process.platform === "win32" ? ["where", cmd2] : ["which", cmd2]);
2747
2869
  return result.exitCode === 0;
2748
2870
  } catch {
2749
2871
  return false;
2750
2872
  }
2751
2873
  }
2752
- async function getCommandVersion(cmd) {
2874
+ async function getCommandVersion(cmd2) {
2753
2875
  try {
2754
- const result = await spawnCapture([cmd, "--version"]);
2876
+ const result = await spawnCapture([cmd2, "--version"]);
2755
2877
  if (result.exitCode === 0 && result.stdout) {
2756
2878
  return result.stdout.trim().split(`
2757
2879
  `)[0] ?? null;
@@ -2772,33 +2894,100 @@ async function fetchOllamaModels() {
2772
2894
  const data = await response.json();
2773
2895
  return data.models ?? [];
2774
2896
  }
2897
+ async function fetchRunningModels() {
2898
+ const ollamaUrl = getOllamaUrl();
2899
+ try {
2900
+ const response = await fetch(`${ollamaUrl}/api/ps`, {
2901
+ signal: AbortSignal.timeout(5000)
2902
+ });
2903
+ if (!response.ok) {
2904
+ return [];
2905
+ }
2906
+ const data = await response.json();
2907
+ return data.models ?? [];
2908
+ } catch (error2) {
2909
+ return [];
2910
+ }
2911
+ }
2912
+ async function isModelLoaded(modelName) {
2913
+ const runningModels = await fetchRunningModels();
2914
+ return runningModels.some((m) => m.model === modelName || m.name === modelName || m.model.startsWith(modelName + ":") || modelName.startsWith(m.model));
2915
+ }
2916
+ async function loadModel(modelName, keepAlive = "10m") {
2917
+ const ollamaUrl = getOllamaUrl();
2918
+ const response = await fetch(`${ollamaUrl}/api/generate`, {
2919
+ method: "POST",
2920
+ headers: {
2921
+ "Content-Type": "application/json"
2922
+ },
2923
+ body: JSON.stringify({
2924
+ model: modelName,
2925
+ prompt: "",
2926
+ stream: false,
2927
+ keep_alive: keepAlive
2928
+ })
2929
+ });
2930
+ if (!response.ok) {
2931
+ throw new Error(`Failed to load model: ${response.statusText}`);
2932
+ }
2933
+ await response.json();
2934
+ }
2935
+ async function ensureModelLoaded(modelName) {
2936
+ const isLoaded = await isModelLoaded(modelName);
2937
+ if (isLoaded) {
2938
+ console.log(dim(` Model ${magenta(modelName)} is already loaded`));
2939
+ return;
2940
+ }
2941
+ console.log(info(`Loading model ${magenta(modelName)}...`));
2942
+ console.log(dim(" This may take a moment on first run"));
2943
+ try {
2944
+ await loadModel(modelName, "10m");
2945
+ console.log(success(`Model ${magenta(modelName)} loaded (keep_alive: 10m)`));
2946
+ } catch (error2) {
2947
+ console.log(warn(`Could not pre-load model (will load on first request)`));
2948
+ console.log(dim(` ${error2 instanceof Error ? error2.message : "Unknown error"}`));
2949
+ }
2950
+ }
2775
2951
  async function selectModelInteractively() {
2776
2952
  const ollamaUrl = getOllamaUrl();
2777
2953
  let models;
2778
2954
  try {
2779
2955
  models = await fetchOllamaModels();
2780
- } catch (error) {
2781
- console.error("Error: Could not connect to Ollama at", ollamaUrl);
2782
- console.error("Make sure Ollama is running: loclaude docker-up");
2956
+ } catch (error2) {
2957
+ console.log(warn(`Could not connect to Ollama at ${ollamaUrl}`));
2958
+ console.log(dim(" Make sure Ollama is running: loclaude docker-up"));
2783
2959
  process.exit(1);
2784
2960
  }
2785
2961
  if (models.length === 0) {
2786
- console.error("Error: No models found in Ollama.");
2787
- console.error("Pull a model first: loclaude models-pull <model-name>");
2962
+ console.log(warn("No models found in Ollama."));
2963
+ console.log(dim(" Pull a model first: loclaude models-pull <model-name>"));
2788
2964
  process.exit(1);
2789
2965
  }
2966
+ const runningModels = await fetchRunningModels();
2967
+ const loadedModelNames = new Set(runningModels.map((m) => m.model));
2790
2968
  const selected = await dist_default3({
2791
2969
  message: "Select a model",
2792
- choices: models.map((model) => ({
2793
- name: `${model.name} (${import_bytes.default(model.size)})`,
2794
- value: model.name
2795
- }))
2970
+ choices: models.map((model) => {
2971
+ const isLoaded = loadedModelNames.has(model.name);
2972
+ const loadedIndicator = isLoaded ? " [loaded]" : "";
2973
+ return {
2974
+ name: `${model.name} (${import_bytes.default(model.size)})${loadedIndicator}`,
2975
+ value: model.name
2976
+ };
2977
+ })
2796
2978
  });
2797
2979
  return selected;
2798
2980
  }
2799
2981
  async function launchClaude(model, passthroughArgs) {
2800
2982
  const ollamaUrl = getOllamaUrl();
2801
2983
  const extraArgs = getClaudeExtraArgs();
2984
+ console.log("");
2985
+ console.log(cyan("Launching Claude Code with Ollama"));
2986
+ console.log(dim(` Model: ${magenta(model)}`));
2987
+ console.log(dim(` API: ${ollamaUrl}`));
2988
+ console.log("");
2989
+ await ensureModelLoaded(model);
2990
+ console.log("");
2802
2991
  const env = {
2803
2992
  ...process.env,
2804
2993
  ANTHROPIC_AUTH_TOKEN: "ollama",
@@ -2812,51 +3001,351 @@ async function launchClaude(model, passthroughArgs) {
2812
3001
  // lib/commands/init.ts
2813
3002
  import { existsSync as existsSync2, mkdirSync, writeFileSync, readFileSync as readFileSync2 } from "fs";
2814
3003
  import { join as join2 } from "path";
2815
- var DOCKER_COMPOSE_TEMPLATE = `services:
3004
+
3005
+ // lib/commands/doctor.ts
3006
+ async function checkDocker() {
3007
+ const exists = await commandExists("docker");
3008
+ if (!exists) {
3009
+ return {
3010
+ name: "Docker",
3011
+ status: "error",
3012
+ message: "Not installed",
3013
+ hint: "Install Docker: https://docs.docker.com/get-docker/"
3014
+ };
3015
+ }
3016
+ const version = await getCommandVersion("docker");
3017
+ return {
3018
+ name: "Docker",
3019
+ status: "ok",
3020
+ message: "Installed",
3021
+ version: version ?? undefined
3022
+ };
3023
+ }
3024
+ async function checkDockerCompose() {
3025
+ const result = await spawnCapture(["docker", "compose", "version"]);
3026
+ if (result.exitCode === 0) {
3027
+ const version = result.stdout?.trim().split(`
3028
+ `)[0];
3029
+ return {
3030
+ name: "Docker Compose",
3031
+ status: "ok",
3032
+ message: "Installed (v2)",
3033
+ version: version ?? undefined
3034
+ };
3035
+ }
3036
+ const v1Exists = await commandExists("docker-compose");
3037
+ if (v1Exists) {
3038
+ const version = await getCommandVersion("docker-compose");
3039
+ return {
3040
+ name: "Docker Compose",
3041
+ status: "warning",
3042
+ message: "Using legacy v1",
3043
+ version: version ?? undefined,
3044
+ hint: "Consider upgrading to Docker Compose v2"
3045
+ };
3046
+ }
3047
+ return {
3048
+ name: "Docker Compose",
3049
+ status: "error",
3050
+ message: "Not installed",
3051
+ hint: "Docker Compose is included with Docker Desktop, or install separately"
3052
+ };
3053
+ }
3054
+ async function checkNvidiaSmi() {
3055
+ const exists = await commandExists("nvidia-smi");
3056
+ if (!exists) {
3057
+ return {
3058
+ name: "NVIDIA GPU",
3059
+ status: "warning",
3060
+ message: "nvidia-smi not found",
3061
+ hint: "GPU support requires NVIDIA drivers. CPU-only mode will be used."
3062
+ };
3063
+ }
3064
+ const result = await spawnCapture(["nvidia-smi", "--query-gpu=name", "--format=csv,noheader"]);
3065
+ if (result.exitCode === 0 && result.stdout) {
3066
+ const gpus = result.stdout.trim().split(`
3067
+ `).filter(Boolean);
3068
+ return {
3069
+ name: "NVIDIA GPU",
3070
+ status: "ok",
3071
+ message: `${gpus.length} GPU(s) detected`,
3072
+ version: gpus[0]
3073
+ };
3074
+ }
3075
+ return {
3076
+ name: "NVIDIA GPU",
3077
+ status: "warning",
3078
+ message: "nvidia-smi failed",
3079
+ hint: "GPU may not be available. Check NVIDIA drivers."
3080
+ };
3081
+ }
3082
+ async function checkNvidiaContainerToolkit() {
3083
+ const result = await spawnCapture(["docker", "info", "--format", "{{.Runtimes}}"]);
3084
+ if (result.exitCode === 0 && result.stdout?.includes("nvidia")) {
3085
+ return {
3086
+ name: "NVIDIA Container Toolkit",
3087
+ status: "ok",
3088
+ message: "nvidia runtime available"
3089
+ };
3090
+ }
3091
+ return {
3092
+ name: "NVIDIA Container Toolkit",
3093
+ status: "warning",
3094
+ message: "nvidia runtime not found",
3095
+ hint: "Install: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html"
3096
+ };
3097
+ }
3098
+ async function checkClaude() {
3099
+ const exists = await commandExists("claude");
3100
+ if (!exists) {
3101
+ return {
3102
+ name: "Claude Code",
3103
+ status: "error",
3104
+ message: "Not installed",
3105
+ hint: "Install: npm install -g @anthropic-ai/claude-code"
3106
+ };
3107
+ }
3108
+ const version = await getCommandVersion("claude");
3109
+ return {
3110
+ name: "Claude Code",
3111
+ status: "ok",
3112
+ message: "Installed",
3113
+ version: version ?? undefined
3114
+ };
3115
+ }
3116
+ async function checkOllamaConnection() {
3117
+ const ollamaUrl = getOllamaUrl();
3118
+ try {
3119
+ const response = await fetch(`${ollamaUrl}/api/tags`, {
3120
+ signal: AbortSignal.timeout(5000)
3121
+ });
3122
+ if (response.ok) {
3123
+ const data = await response.json();
3124
+ const modelCount = data.models?.length ?? 0;
3125
+ return {
3126
+ name: "Ollama API",
3127
+ status: "ok",
3128
+ message: `Connected (${modelCount} model${modelCount === 1 ? "" : "s"})`,
3129
+ version: ollamaUrl
3130
+ };
3131
+ }
3132
+ return {
3133
+ name: "Ollama API",
3134
+ status: "warning",
3135
+ message: `HTTP ${response.status}`,
3136
+ hint: "Ollama may not be running. Try: loclaude docker-up"
3137
+ };
3138
+ } catch (error3) {
3139
+ return {
3140
+ name: "Ollama API",
3141
+ status: "warning",
3142
+ message: "Not reachable",
3143
+ hint: `Cannot connect to ${ollamaUrl}. Start Ollama: loclaude docker-up`
3144
+ };
3145
+ }
3146
+ }
3147
+ function formatCheck(check) {
3148
+ let line = statusLine(check.status, check.name, check.message, check.version);
3149
+ if (check.hint) {
3150
+ line += `
3151
+ ${dim("\u2192")} ${dim(check.hint)}`;
3152
+ }
3153
+ return line;
3154
+ }
3155
+ async function doctor() {
3156
+ header("System Health Check");
3157
+ console.log("");
3158
+ const checks = await Promise.all([
3159
+ checkDocker(),
3160
+ checkDockerCompose(),
3161
+ checkNvidiaSmi(),
3162
+ checkNvidiaContainerToolkit(),
3163
+ checkClaude(),
3164
+ checkOllamaConnection()
3165
+ ]);
3166
+ for (const check of checks) {
3167
+ console.log(formatCheck(check));
3168
+ }
3169
+ const errors2 = checks.filter((c) => c.status === "error");
3170
+ const warnings = checks.filter((c) => c.status === "warning");
3171
+ console.log("");
3172
+ if (errors2.length > 0) {
3173
+ console.log(red(`${errors2.length} error(s) found.`) + " Fix these before proceeding.");
3174
+ process.exit(1);
3175
+ } else if (warnings.length > 0) {
3176
+ console.log(yellow(`${warnings.length} warning(s).`) + " loclaude may work with limited functionality.");
3177
+ } else {
3178
+ console.log(green("All checks passed!") + " Ready to use loclaude.");
3179
+ }
3180
+ }
3181
+ async function hasNvidiaGpu() {
3182
+ const exists = await commandExists("nvidia-smi");
3183
+ if (!exists)
3184
+ return false;
3185
+ const result = await spawnCapture(["nvidia-smi", "--query-gpu=name", "--format=csv,noheader"]);
3186
+ return result.exitCode === 0 && Boolean(result.stdout?.trim());
3187
+ }
3188
+
3189
+ // lib/commands/init.ts
3190
+ var DOCKER_COMPOSE_TEMPLATE_GPU = `# =============================================================================
3191
+ # LOCLAUDE DOCKER COMPOSE - GPU MODE
3192
+ # =============================================================================
3193
+ # This configuration runs Ollama with NVIDIA GPU acceleration for fast inference.
3194
+ # Generated by: loclaude init
3195
+ #
3196
+ # Prerequisites:
3197
+ # - NVIDIA GPU with CUDA support
3198
+ # - NVIDIA drivers installed on host
3199
+ # - NVIDIA Container Toolkit: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit
3200
+ #
3201
+ # Quick test for GPU support:
3202
+ # docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi
3203
+ #
3204
+ # =============================================================================
3205
+
3206
+ services:
3207
+ # ===========================================================================
3208
+ # OLLAMA - Local LLM Inference Server
3209
+ # ===========================================================================
3210
+ # Ollama provides the AI backend that Claude Code connects to.
3211
+ # It runs large language models locally on your hardware.
3212
+ #
3213
+ # API Documentation: https://github.com/ollama/ollama/blob/main/docs/api.md
3214
+ # Model Library: https://ollama.com/library
3215
+ # ===========================================================================
2816
3216
  ollama:
3217
+ # Official Ollama image - 'latest' ensures newest features and model support
2817
3218
  image: ollama/ollama:latest
3219
+
3220
+ # Fixed container name for easy CLI access:
3221
+ # docker exec ollama ollama list
3222
+ # docker logs ollama
2818
3223
  container_name: ollama
3224
+
3225
+ # NVIDIA Container Runtime - Required for GPU access
3226
+ # This makes CUDA libraries available inside the container
2819
3227
  runtime: nvidia
3228
+
2820
3229
  environment:
3230
+ # ---------------------------------------------------------------------------
3231
+ # GPU Configuration
3232
+ # ---------------------------------------------------------------------------
3233
+ # NVIDIA_VISIBLE_DEVICES: Which GPUs to expose to the container
3234
+ # - 'all': Use all available GPUs (recommended for most setups)
3235
+ # - '0': Use only GPU 0
3236
+ # - '0,1': Use GPUs 0 and 1
2821
3237
  - NVIDIA_VISIBLE_DEVICES=all
3238
+
3239
+ # NVIDIA_DRIVER_CAPABILITIES: What GPU features to enable
3240
+ # - 'compute': CUDA compute (required for inference)
3241
+ # - 'utility': nvidia-smi and other tools
2822
3242
  - NVIDIA_DRIVER_CAPABILITIES=compute,utility
3243
+
3244
+ # ---------------------------------------------------------------------------
3245
+ # Ollama Configuration (Optional)
3246
+ # ---------------------------------------------------------------------------
3247
+ # Uncomment these to customize Ollama behavior:
3248
+
3249
+ # Maximum number of models loaded in memory simultaneously
3250
+ # Lower this if you're running out of VRAM
3251
+ # - OLLAMA_MAX_LOADED_MODELS=1
3252
+
3253
+ # Maximum parallel inference requests per model
3254
+ # Higher values use more VRAM but handle more concurrent requests
3255
+ # - OLLAMA_NUM_PARALLEL=1
3256
+
3257
+ # Enable debug logging for troubleshooting
3258
+ # - OLLAMA_DEBUG=1
3259
+
3260
+ # Custom model storage location (inside container)
3261
+ # - OLLAMA_MODELS=/root/.ollama
3262
+
2823
3263
  volumes:
3264
+ # ---------------------------------------------------------------------------
3265
+ # Model Storage
3266
+ # ---------------------------------------------------------------------------
3267
+ # Maps ./models on your host to /root/.ollama in the container
3268
+ # This persists downloaded models across container restarts
3269
+ #
3270
+ # Disk space requirements (approximate):
3271
+ # - 7B model: ~4GB
3272
+ # - 13B model: ~8GB
3273
+ # - 30B model: ~16GB
3274
+ # - 70B model: ~40GB
2824
3275
  - ./models:/root/.ollama
3276
+
2825
3277
  ports:
3278
+ # Ollama API port - access at http://localhost:11434
3279
+ # Used by Claude Code and other Ollama clients
2826
3280
  - "11434:11434"
3281
+
3282
+ # Restart policy - keeps Ollama running unless manually stopped
2827
3283
  restart: unless-stopped
3284
+
2828
3285
  healthcheck:
3286
+ # Verify Ollama is responsive by listing models
2829
3287
  test: ["CMD", "ollama", "list"]
2830
- interval: 300s
2831
- timeout: 2s
2832
- retries: 3
2833
- start_period: 40s
3288
+ interval: 300s # Check every 5 minutes
3289
+ timeout: 2s # Fail if no response in 2 seconds
3290
+ retries: 3 # Mark unhealthy after 3 consecutive failures
3291
+ start_period: 40s # Grace period for initial model loading
3292
+
2834
3293
  deploy:
2835
3294
  resources:
2836
3295
  reservations:
2837
3296
  devices:
3297
+ # Request GPU access from Docker
2838
3298
  - driver: nvidia
2839
- count: all
2840
- capabilities: [gpu]
3299
+ count: all # Use all available GPUs
3300
+ capabilities: [gpu] # Request GPU compute capability
2841
3301
 
3302
+ # ===========================================================================
3303
+ # OPEN WEBUI - Chat Interface (Optional)
3304
+ # ===========================================================================
3305
+ # Open WebUI provides a ChatGPT-like interface for your local models.
3306
+ # Access at http://localhost:3000 after starting containers.
3307
+ #
3308
+ # Features:
3309
+ # - Multi-model chat interface
3310
+ # - Conversation history
3311
+ # - Model management UI
3312
+ # - RAG/document upload support
3313
+ #
3314
+ # Documentation: https://docs.openwebui.com/
3315
+ # ===========================================================================
2842
3316
  open-webui:
3317
+ # CUDA-enabled image for GPU-accelerated features (embeddings, etc.)
3318
+ # Change to :main if you don't need GPU features in the UI
2843
3319
  image: ghcr.io/open-webui/open-webui:cuda
3320
+
2844
3321
  container_name: open-webui
3322
+
2845
3323
  ports:
3324
+ # Web UI port - access at http://localhost:3000
2846
3325
  - "3000:8080"
3326
+
2847
3327
  environment:
3328
+ # Tell Open WebUI where to find Ollama
3329
+ # Uses Docker internal networking (service name as hostname)
2848
3330
  - OLLAMA_BASE_URL=http://ollama:11434
3331
+
3332
+ # Wait for Ollama to be ready before starting
2849
3333
  depends_on:
2850
3334
  - ollama
3335
+
2851
3336
  restart: unless-stopped
3337
+
2852
3338
  healthcheck:
2853
3339
  test: ["CMD", "curl", "-f", "http://localhost:8080/health"]
2854
3340
  interval: 30s
2855
3341
  timeout: 10s
2856
3342
  retries: 3
2857
3343
  start_period: 60s
3344
+
2858
3345
  volumes:
3346
+ # Persistent storage for conversations, settings, and user data
2859
3347
  - open-webui:/app/backend/data
3348
+
2860
3349
  deploy:
2861
3350
  resources:
2862
3351
  reservations:
@@ -2865,32 +3354,174 @@ var DOCKER_COMPOSE_TEMPLATE = `services:
2865
3354
  count: all
2866
3355
  capabilities: [gpu]
2867
3356
 
3357
+ # =============================================================================
3358
+ # VOLUMES
3359
+ # =============================================================================
3360
+ # Named volumes for persistent data that survives container recreation
2868
3361
  volumes:
2869
3362
  open-webui:
3363
+ # Open WebUI data: conversations, user settings, uploads
3364
+ # Located at /var/lib/docker/volumes/open-webui/_data on host
2870
3365
  `;
2871
- var CONFIG_TEMPLATE = `{
2872
- "ollama": {
3366
+ var DOCKER_COMPOSE_TEMPLATE_CPU = `# =============================================================================
3367
+ # LOCLAUDE DOCKER COMPOSE - CPU MODE
3368
+ # =============================================================================
3369
+ # This configuration runs Ollama in CPU-only mode.
3370
+ # Inference will be slower than GPU mode but works on any system.
3371
+ # Generated by: loclaude init --no-gpu
3372
+ #
3373
+ # Performance notes:
3374
+ # - 7B models: ~10-20 tokens/sec on modern CPUs
3375
+ # - Larger models will be significantly slower
3376
+ # - Consider using quantized models (Q4_K_M, Q5_K_M) for better performance
3377
+ #
3378
+ # Recommended CPU-optimized models:
3379
+ # - llama3.2:3b (fast, good for simple tasks)
3380
+ # - qwen2.5-coder:7b (coding tasks)
3381
+ # - gemma2:9b (general purpose)
3382
+ #
3383
+ # =============================================================================
3384
+
3385
+ services:
3386
+ # ===========================================================================
3387
+ # OLLAMA - Local LLM Inference Server (CPU Mode)
3388
+ # ===========================================================================
3389
+ # Ollama provides the AI backend that Claude Code connects to.
3390
+ # Running in CPU mode - no GPU acceleration.
3391
+ #
3392
+ # API Documentation: https://github.com/ollama/ollama/blob/main/docs/api.md
3393
+ # Model Library: https://ollama.com/library
3394
+ # ===========================================================================
3395
+ ollama:
3396
+ # Official Ollama image - works for both CPU and GPU
3397
+ image: ollama/ollama:latest
3398
+
3399
+ # Fixed container name for easy CLI access
3400
+ container_name: ollama
3401
+
3402
+ # NOTE: No 'runtime: nvidia' - running in CPU mode
3403
+
3404
+ environment:
3405
+ # ---------------------------------------------------------------------------
3406
+ # Ollama Configuration (Optional)
3407
+ # ---------------------------------------------------------------------------
3408
+ # Uncomment these to customize Ollama behavior:
3409
+
3410
+ # Maximum number of models loaded in memory simultaneously
3411
+ # CPU mode uses system RAM instead of VRAM
3412
+ # - OLLAMA_MAX_LOADED_MODELS=1
3413
+
3414
+ # Number of CPU threads to use (default: auto-detect)
3415
+ # - OLLAMA_NUM_THREADS=8
3416
+
3417
+ # Enable debug logging for troubleshooting
3418
+ # - OLLAMA_DEBUG=1
3419
+
3420
+ volumes:
3421
+ # ---------------------------------------------------------------------------
3422
+ # Model Storage
3423
+ # ---------------------------------------------------------------------------
3424
+ # Maps ./models on your host to /root/.ollama in the container
3425
+ # This persists downloaded models across container restarts
3426
+ - ./models:/root/.ollama
3427
+
3428
+ ports:
3429
+ # Ollama API port - access at http://localhost:11434
3430
+ - "11434:11434"
3431
+
3432
+ restart: unless-stopped
3433
+
3434
+ healthcheck:
3435
+ test: ["CMD", "ollama", "list"]
3436
+ interval: 300s
3437
+ timeout: 2s
3438
+ retries: 3
3439
+ start_period: 40s
3440
+
3441
+ # CPU resource limits (optional - uncomment to constrain)
3442
+ # deploy:
3443
+ # resources:
3444
+ # limits:
3445
+ # cpus: '4' # Limit to 4 CPU cores
3446
+ # memory: 16G # Limit to 16GB RAM
3447
+ # reservations:
3448
+ # cpus: '2' # Reserve at least 2 cores
3449
+ # memory: 8G # Reserve at least 8GB RAM
3450
+
3451
+ # ===========================================================================
3452
+ # OPEN WEBUI - Chat Interface (Optional)
3453
+ # ===========================================================================
3454
+ # Open WebUI provides a ChatGPT-like interface for your local models.
3455
+ # Access at http://localhost:3000 after starting containers.
3456
+ #
3457
+ # Documentation: https://docs.openwebui.com/
3458
+ # ===========================================================================
3459
+ open-webui:
3460
+ # Standard image (no CUDA) - smaller download, CPU-only features
3461
+ image: ghcr.io/open-webui/open-webui:main
3462
+
3463
+ container_name: open-webui
3464
+
3465
+ ports:
3466
+ - "3000:8080"
3467
+
3468
+ environment:
3469
+ - OLLAMA_BASE_URL=http://ollama:11434
3470
+
3471
+ depends_on:
3472
+ - ollama
3473
+
3474
+ restart: unless-stopped
3475
+
3476
+ healthcheck:
3477
+ test: ["CMD", "curl", "-f", "http://localhost:8080/health"]
3478
+ interval: 30s
3479
+ timeout: 10s
3480
+ retries: 3
3481
+ start_period: 60s
3482
+
3483
+ volumes:
3484
+ - open-webui:/app/backend/data
3485
+
3486
+ # =============================================================================
3487
+ # VOLUMES
3488
+ # =============================================================================
3489
+ volumes:
3490
+ open-webui:
3491
+ `;
3492
+ function getConfigTemplate(gpu) {
3493
+ return `{
3494
+ "ollama": {
2873
3495
  "url": "http://localhost:11434",
2874
- "defaultModel": "qwen3-coder:30b"
3496
+ "defaultModel": "${gpu ? "qwen3-coder:30b" : "qwen2.5-coder:7b"}"
2875
3497
  },
2876
3498
  "docker": {
2877
3499
  "composeFile": "./docker-compose.yml",
2878
- "gpu": true
3500
+ "gpu": ${gpu}
2879
3501
  }
2880
3502
  }
2881
3503
  `;
3504
+ }
2882
3505
  var GITIGNORE_TEMPLATE = `# Ollama models (large binary files)
3506
+ # These are downloaded by Ollama and can be re-pulled anytime
2883
3507
  models/
2884
3508
  `;
2885
- var MISE_TOML_TEMPLATE = `# Mise task runner configuration
2886
- # Run \`mise tasks\` to see all available tasks
2887
- # https://mise.jdx.dev/
3509
+ var MISE_TOML_TEMPLATE = `# =============================================================================
3510
+ # MISE TASK RUNNER CONFIGURATION
3511
+ # =============================================================================
3512
+ # Mise is a task runner that provides convenient shortcuts for common operations.
3513
+ # Run 'mise tasks' to see all available tasks.
3514
+ #
3515
+ # Documentation: https://mise.jdx.dev/
3516
+ # Install: curl https://mise.jdx.dev/install.sh | sh
3517
+ # =============================================================================
2888
3518
 
2889
3519
  [tasks]
2890
3520
 
2891
3521
  # =============================================================================
2892
3522
  # Docker Management
2893
3523
  # =============================================================================
3524
+ # Commands for managing the Ollama and Open WebUI containers
2894
3525
 
2895
3526
  [tasks.up]
2896
3527
  description = "Start Ollama and Open WebUI containers"
@@ -2915,6 +3546,7 @@ run = "loclaude docker-logs --follow"
2915
3546
  # =============================================================================
2916
3547
  # Model Management
2917
3548
  # =============================================================================
3549
+ # Commands for managing Ollama models (download, remove, list)
2918
3550
 
2919
3551
  [tasks.models]
2920
3552
  description = "List installed models"
@@ -2924,9 +3556,14 @@ run = "loclaude models"
2924
3556
  description = "Pull a model (usage: mise run pull <model-name>)"
2925
3557
  run = "loclaude models-pull {{arg(name='model')}}"
2926
3558
 
3559
+ [tasks."pull:recommended"]
3560
+ description = "Pull the recommended coding model"
3561
+ run = "loclaude models-pull qwen3-coder:30b"
3562
+
2927
3563
  # =============================================================================
2928
3564
  # Claude Code
2929
3565
  # =============================================================================
3566
+ # Commands for running Claude Code with local Ollama
2930
3567
 
2931
3568
  [tasks.claude]
2932
3569
  description = "Run Claude Code with local Ollama"
@@ -2939,14 +3576,19 @@ run = "loclaude run -m {{arg(name='model')}}"
2939
3576
  # =============================================================================
2940
3577
  # Diagnostics
2941
3578
  # =============================================================================
3579
+ # Commands for checking system health and troubleshooting
2942
3580
 
2943
3581
  [tasks.doctor]
2944
3582
  description = "Check system requirements"
2945
3583
  run = "loclaude doctor"
2946
3584
 
2947
3585
  [tasks.gpu]
2948
- description = "Check GPU status"
3586
+ description = "Check GPU status (requires NVIDIA GPU)"
2949
3587
  run = "docker exec ollama nvidia-smi"
3588
+
3589
+ [tasks.config]
3590
+ description = "Show current configuration"
3591
+ run = "loclaude config"
2950
3592
  `;
2951
3593
  var README_TEMPLATE = `# Project Name
2952
3594
 
@@ -2955,18 +3597,24 @@ var README_TEMPLATE = `# Project Name
2955
3597
  ## Prerequisites
2956
3598
 
2957
3599
  - [Docker](https://docs.docker.com/get-docker/) with Docker Compose v2
2958
- - [NVIDIA GPU](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with drivers and container toolkit
2959
3600
  - [mise](https://mise.jdx.dev/) task runner (recommended)
2960
3601
  - [loclaude](https://www.npmjs.com/package/loclaude) CLI (\`npm install -g loclaude\`)
2961
3602
 
3603
+ ### For GPU Mode (Recommended)
3604
+
3605
+ - [NVIDIA GPU](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with CUDA support
3606
+ - NVIDIA drivers installed on host
3607
+ - [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
3608
+
2962
3609
  ## Quick Start
2963
3610
 
2964
3611
  \`\`\`bash
2965
3612
  # Start the LLM backend (Ollama + Open WebUI)
2966
3613
  mise run up
2967
3614
 
2968
- # Pull a model
2969
- mise run pull qwen3-coder:30b
3615
+ # Pull a model (adjust based on your hardware)
3616
+ mise run pull qwen3-coder:30b # GPU: 30B model (~16GB VRAM)
3617
+ mise run pull qwen2.5-coder:7b # CPU: 7B model (faster)
2970
3618
 
2971
3619
  # Run Claude Code with local LLM
2972
3620
  mise run claude
@@ -3001,7 +3649,7 @@ Run \`mise tasks\` to see all available commands.
3001
3649
  \`\`\`
3002
3650
  .
3003
3651
  \u251C\u2500\u2500 .claude/
3004
- \u2502 \u2514\u2500\u2500 CLAUDE.md # Claude Code instructions
3652
+ \u2502 \u2514\u2500\u2500 CLAUDE.md # Claude Code project instructions
3005
3653
  \u251C\u2500\u2500 .loclaude/
3006
3654
  \u2502 \u2514\u2500\u2500 config.json # Loclaude configuration
3007
3655
  \u251C\u2500\u2500 models/ # Ollama model storage (gitignored)
@@ -3033,6 +3681,25 @@ Run \`mise tasks\` to see all available commands.
3033
3681
  |----------|-------------|---------|
3034
3682
  | \`OLLAMA_URL\` | Ollama API endpoint | \`http://localhost:11434\` |
3035
3683
  | \`OLLAMA_MODEL\` | Default model name | \`qwen3-coder:30b\` |
3684
+ | \`LOCLAUDE_GPU\` | Enable GPU mode | \`true\` |
3685
+
3686
+ ## Recommended Models
3687
+
3688
+ ### For GPU (NVIDIA with 16GB+ VRAM)
3689
+
3690
+ | Model | Size | Use Case |
3691
+ |-------|------|----------|
3692
+ | \`qwen3-coder:30b\` | ~16GB | Best coding performance |
3693
+ | \`gpt-oss:20b\` | ~12GB | General purpose |
3694
+ | \`glm-4.7:cloud\` | Cloud | No local storage needed |
3695
+
3696
+ ### For CPU or Limited VRAM
3697
+
3698
+ | Model | Size | Use Case |
3699
+ |-------|------|----------|
3700
+ | \`qwen2.5-coder:7b\` | ~4GB | Coding on CPU |
3701
+ | \`llama3.2:3b\` | ~2GB | Fast, simple tasks |
3702
+ | \`gemma2:9b\` | ~5GB | General purpose |
3036
3703
 
3037
3704
  ## Troubleshooting
3038
3705
 
@@ -3054,6 +3721,12 @@ mise run logs
3054
3721
  mise run down && mise run up
3055
3722
  \`\`\`
3056
3723
 
3724
+ ### GPU Not Detected
3725
+
3726
+ 1. Verify NVIDIA drivers: \`nvidia-smi\`
3727
+ 2. Check Docker GPU access: \`docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi\`
3728
+ 3. Install NVIDIA Container Toolkit if missing
3729
+
3057
3730
  ## License
3058
3731
 
3059
3732
  MIT
@@ -3120,304 +3793,153 @@ async function init(options = {}) {
3120
3793
  const claudeDir = join2(cwd, ".claude");
3121
3794
  const claudeMdPath = join2(claudeDir, "CLAUDE.md");
3122
3795
  const readmePath = join2(cwd, "README.md");
3123
- console.log(`Initializing loclaude project...
3124
- `);
3796
+ header("Initializing loclaude project");
3797
+ console.log("");
3798
+ let gpuMode;
3799
+ if (options.gpu === false) {
3800
+ gpuMode = false;
3801
+ console.log(info("CPU-only mode (--no-gpu)"));
3802
+ } else if (options.gpu === true) {
3803
+ gpuMode = true;
3804
+ console.log(info("GPU mode enabled (--gpu)"));
3805
+ } else {
3806
+ console.log(dim(" Detecting GPU..."));
3807
+ gpuMode = await hasNvidiaGpu();
3808
+ if (gpuMode) {
3809
+ console.log(success("NVIDIA GPU detected - using GPU mode"));
3810
+ } else {
3811
+ console.log(warn("No NVIDIA GPU detected - using CPU mode"));
3812
+ console.log(dim(" Use --gpu to force GPU mode if you have an NVIDIA GPU"));
3813
+ }
3814
+ }
3815
+ console.log("");
3125
3816
  if (existsSync2(readmePath) && !options.force) {
3126
- console.log("\u26A0\uFE0F README.md already exists");
3817
+ console.log(warn(`${file("README.md")} already exists`));
3127
3818
  } else {
3128
3819
  writeFileSync(readmePath, README_TEMPLATE);
3129
- console.log("\u2713 Created README.md");
3820
+ console.log(success(`Created ${file("README.md")}`));
3130
3821
  }
3131
3822
  if (existsSync2(composePath) && !options.force) {
3132
- console.log("\u26A0\uFE0F docker-compose.yml already exists");
3133
- console.log(` Use --force to overwrite
3134
- `);
3823
+ console.log(warn(`${file("docker-compose.yml")} already exists`));
3824
+ console.log(dim(" Use --force to overwrite"));
3135
3825
  } else {
3136
- let composeContent = DOCKER_COMPOSE_TEMPLATE;
3826
+ let composeContent = gpuMode ? DOCKER_COMPOSE_TEMPLATE_GPU : DOCKER_COMPOSE_TEMPLATE_CPU;
3137
3827
  if (options.noWebui) {
3138
- composeContent = composeContent.replace(/\n open-webui:[\s\S]*?capabilities: \[gpu\]\n/m, `
3139
- `).replace(/\nvolumes:\n open-webui:\n/, `
3828
+ composeContent = composeContent.replace(/\n # =+\n # OPEN WEBUI[\s\S]*?capabilities: \[gpu\]\n/m, `
3829
+ `).replace(/\n # =+\n # OPEN WEBUI[\s\S]*?open-webui:\/app\/backend\/data\n/m, `
3830
+ `).replace(/\nvolumes:\n open-webui:\n.*$/m, `
3140
3831
  `);
3141
3832
  }
3142
3833
  writeFileSync(composePath, composeContent);
3143
- console.log("\u2713 Created docker-compose.yml");
3834
+ const modeLabel = gpuMode ? cyan("GPU") : cyan("CPU");
3835
+ console.log(success(`Created ${file("docker-compose.yml")} (${modeLabel} mode)`));
3144
3836
  }
3145
3837
  if (existsSync2(miseTomlPath) && !options.force) {
3146
- console.log("\u26A0\uFE0F mise.toml already exists");
3838
+ console.log(warn(`${file("mise.toml")} already exists`));
3147
3839
  } else {
3148
3840
  writeFileSync(miseTomlPath, MISE_TOML_TEMPLATE);
3149
- console.log("\u2713 Created mise.toml");
3841
+ console.log(success(`Created ${file("mise.toml")}`));
3150
3842
  }
3151
3843
  if (!existsSync2(claudeDir)) {
3152
3844
  mkdirSync(claudeDir, { recursive: true });
3153
3845
  }
3154
3846
  if (existsSync2(claudeMdPath) && !options.force) {
3155
- console.log("\u26A0\uFE0F .claude/CLAUDE.md already exists");
3847
+ console.log(warn(`${file(".claude/CLAUDE.md")} already exists`));
3156
3848
  } else {
3157
3849
  writeFileSync(claudeMdPath, CLAUDE_MD_TEMPLATE);
3158
- console.log("\u2713 Created .claude/CLAUDE.md");
3850
+ console.log(success(`Created ${file(".claude/CLAUDE.md")}`));
3159
3851
  }
3160
3852
  if (!existsSync2(configDir)) {
3161
3853
  mkdirSync(configDir, { recursive: true });
3162
- console.log("\u2713 Created .loclaude/ directory");
3854
+ console.log(success(`Created ${file(".loclaude/")} directory`));
3163
3855
  }
3164
3856
  if (existsSync2(configPath) && !options.force) {
3165
- console.log("\u26A0\uFE0F .loclaude/config.json already exists");
3857
+ console.log(warn(`${file(".loclaude/config.json")} already exists`));
3166
3858
  } else {
3167
- writeFileSync(configPath, CONFIG_TEMPLATE);
3168
- console.log("\u2713 Created .loclaude/config.json");
3859
+ writeFileSync(configPath, getConfigTemplate(gpuMode));
3860
+ console.log(success(`Created ${file(".loclaude/config.json")}`));
3169
3861
  }
3170
3862
  if (!existsSync2(modelsDir)) {
3171
3863
  mkdirSync(modelsDir, { recursive: true });
3172
- console.log("\u2713 Created models/ directory");
3864
+ console.log(success(`Created ${file("models/")} directory`));
3173
3865
  }
3174
3866
  if (existsSync2(gitignorePath)) {
3175
3867
  const existing = readFileSync2(gitignorePath, "utf-8");
3176
3868
  if (!existing.includes("models/")) {
3177
3869
  writeFileSync(gitignorePath, existing + `
3178
3870
  ` + GITIGNORE_TEMPLATE);
3179
- console.log("\u2713 Updated .gitignore");
3871
+ console.log(success(`Updated ${file(".gitignore")}`));
3180
3872
  }
3181
3873
  } else {
3182
3874
  writeFileSync(gitignorePath, GITIGNORE_TEMPLATE);
3183
- console.log("\u2713 Created .gitignore");
3184
- }
3185
- console.log(`
3186
- \uD83C\uDF89 Project initialized!
3187
- `);
3188
- console.log("Next steps:");
3189
- console.log(" 1. Start containers: mise run up");
3190
- console.log(" 2. Pull a model: mise run pull qwen3-coder:30b");
3191
- console.log(" 3. Run Claude: mise run claude");
3192
- console.log(`
3193
- Service URLs:`);
3194
- console.log(" Ollama API: http://localhost:11434");
3195
- if (!options.noWebui) {
3196
- console.log(" Open WebUI: http://localhost:3000");
3197
- }
3198
- }
3199
- // lib/commands/doctor.ts
3200
- async function checkDocker() {
3201
- const exists = await commandExists("docker");
3202
- if (!exists) {
3203
- return {
3204
- name: "Docker",
3205
- status: "error",
3206
- message: "Not installed",
3207
- hint: "Install Docker: https://docs.docker.com/get-docker/"
3208
- };
3209
- }
3210
- const version = await getCommandVersion("docker");
3211
- return {
3212
- name: "Docker",
3213
- status: "ok",
3214
- message: "Installed",
3215
- version: version ?? undefined
3216
- };
3217
- }
3218
- async function checkDockerCompose() {
3219
- const result = await spawnCapture(["docker", "compose", "version"]);
3220
- if (result.exitCode === 0) {
3221
- const version = result.stdout?.trim().split(`
3222
- `)[0];
3223
- return {
3224
- name: "Docker Compose",
3225
- status: "ok",
3226
- message: "Installed (v2)",
3227
- version: version ?? undefined
3228
- };
3229
- }
3230
- const v1Exists = await commandExists("docker-compose");
3231
- if (v1Exists) {
3232
- const version = await getCommandVersion("docker-compose");
3233
- return {
3234
- name: "Docker Compose",
3235
- status: "warning",
3236
- message: "Using legacy v1",
3237
- version: version ?? undefined,
3238
- hint: "Consider upgrading to Docker Compose v2"
3239
- };
3240
- }
3241
- return {
3242
- name: "Docker Compose",
3243
- status: "error",
3244
- message: "Not installed",
3245
- hint: "Docker Compose is included with Docker Desktop, or install separately"
3246
- };
3247
- }
3248
- async function checkNvidiaSmi() {
3249
- const exists = await commandExists("nvidia-smi");
3250
- if (!exists) {
3251
- return {
3252
- name: "NVIDIA GPU",
3253
- status: "warning",
3254
- message: "nvidia-smi not found",
3255
- hint: "GPU support requires NVIDIA drivers. CPU-only mode will be used."
3256
- };
3875
+ console.log(success(`Created ${file(".gitignore")}`));
3257
3876
  }
3258
- const result = await spawnCapture(["nvidia-smi", "--query-gpu=name", "--format=csv,noheader"]);
3259
- if (result.exitCode === 0 && result.stdout) {
3260
- const gpus = result.stdout.trim().split(`
3261
- `).filter(Boolean);
3262
- return {
3263
- name: "NVIDIA GPU",
3264
- status: "ok",
3265
- message: `${gpus.length} GPU(s) detected`,
3266
- version: gpus[0]
3267
- };
3268
- }
3269
- return {
3270
- name: "NVIDIA GPU",
3271
- status: "warning",
3272
- message: "nvidia-smi failed",
3273
- hint: "GPU may not be available. Check NVIDIA drivers."
3274
- };
3275
- }
3276
- async function checkNvidiaContainerToolkit() {
3277
- const result = await spawnCapture(["docker", "info", "--format", "{{.Runtimes}}"]);
3278
- if (result.exitCode === 0 && result.stdout?.includes("nvidia")) {
3279
- return {
3280
- name: "NVIDIA Container Toolkit",
3281
- status: "ok",
3282
- message: "nvidia runtime available"
3283
- };
3284
- }
3285
- return {
3286
- name: "NVIDIA Container Toolkit",
3287
- status: "warning",
3288
- message: "nvidia runtime not found",
3289
- hint: "Install: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html"
3290
- };
3291
- }
3292
- async function checkClaude() {
3293
- const exists = await commandExists("claude");
3294
- if (!exists) {
3295
- return {
3296
- name: "Claude Code",
3297
- status: "error",
3298
- message: "Not installed",
3299
- hint: "Install: npm install -g @anthropic-ai/claude-code"
3300
- };
3301
- }
3302
- const version = await getCommandVersion("claude");
3303
- return {
3304
- name: "Claude Code",
3305
- status: "ok",
3306
- message: "Installed",
3307
- version: version ?? undefined
3308
- };
3309
- }
3310
- async function checkOllamaConnection() {
3311
- const ollamaUrl = getOllamaUrl();
3312
- try {
3313
- const response = await fetch(`${ollamaUrl}/api/tags`, {
3314
- signal: AbortSignal.timeout(5000)
3315
- });
3316
- if (response.ok) {
3317
- const data = await response.json();
3318
- const modelCount = data.models?.length ?? 0;
3319
- return {
3320
- name: "Ollama API",
3321
- status: "ok",
3322
- message: `Connected (${modelCount} model${modelCount === 1 ? "" : "s"})`,
3323
- version: ollamaUrl
3324
- };
3325
- }
3326
- return {
3327
- name: "Ollama API",
3328
- status: "warning",
3329
- message: `HTTP ${response.status}`,
3330
- hint: "Ollama may not be running. Try: loclaude docker-up"
3331
- };
3332
- } catch (error) {
3333
- return {
3334
- name: "Ollama API",
3335
- status: "warning",
3336
- message: "Not reachable",
3337
- hint: `Cannot connect to ${ollamaUrl}. Start Ollama: loclaude docker-up`
3338
- };
3339
- }
3340
- }
3341
- function formatCheck(check) {
3342
- const icons = {
3343
- ok: "\u2713",
3344
- warning: "\u26A0",
3345
- error: "\u2717"
3346
- };
3347
- const colors = {
3348
- ok: "\x1B[32m",
3349
- warning: "\x1B[33m",
3350
- error: "\x1B[31m"
3351
- };
3352
- const reset = "\x1B[0m";
3353
- const icon = icons[check.status];
3354
- const color = colors[check.status];
3355
- let line = `${color}${icon}${reset} ${check.name}: ${check.message}`;
3356
- if (check.version) {
3357
- line += ` (${check.version})`;
3358
- }
3359
- if (check.hint) {
3360
- line += `
3361
- ${check.hint}`;
3362
- }
3363
- return line;
3364
- }
3365
- async function doctor() {
3366
- console.log(`Checking system requirements...
3367
- `);
3368
- const checks = await Promise.all([
3369
- checkDocker(),
3370
- checkDockerCompose(),
3371
- checkNvidiaSmi(),
3372
- checkNvidiaContainerToolkit(),
3373
- checkClaude(),
3374
- checkOllamaConnection()
3375
- ]);
3376
- for (const check of checks) {
3377
- console.log(formatCheck(check));
3378
- }
3379
- const errors2 = checks.filter((c) => c.status === "error");
3380
- const warnings = checks.filter((c) => c.status === "warning");
3877
+ const recommendedModel = gpuMode ? "qwen3-coder:30b" : "qwen2.5-coder:7b";
3381
3878
  console.log("");
3382
- if (errors2.length > 0) {
3383
- console.log(`\x1B[31m${errors2.length} error(s) found.\x1B[0m Fix these before proceeding.`);
3384
- process.exit(1);
3385
- } else if (warnings.length > 0) {
3386
- console.log(`\x1B[33m${warnings.length} warning(s).\x1B[0m loclaude may work with limited functionality.`);
3387
- } else {
3388
- console.log("\x1B[32mAll checks passed!\x1B[0m Ready to use loclaude.");
3879
+ console.log(green("Project initialized!"));
3880
+ console.log("");
3881
+ console.log(cyan("Next steps:"));
3882
+ console.log(` 1. Start containers: ${cmd("mise run up")}`);
3883
+ console.log(` 2. Pull a model: ${cmd(`mise run pull ${recommendedModel}`)}`);
3884
+ console.log(` 3. Run Claude: ${cmd("mise run claude")}`);
3885
+ console.log("");
3886
+ console.log(cyan("Service URLs:"));
3887
+ console.log(` Ollama API: ${url("http://localhost:11434")}`);
3888
+ if (!options.noWebui) {
3889
+ console.log(` Open WebUI: ${url("http://localhost:3000")}`);
3389
3890
  }
3390
3891
  }
3391
3892
  // lib/commands/config.ts
3392
- import { inspect } from "util";
3393
3893
  async function configShow() {
3394
3894
  const config = loadConfig();
3395
3895
  const activePath = getActiveConfigPath();
3396
- console.log(`Current configuration:
3397
- `);
3398
- console.log(inspect(config, false, 3, true));
3399
- console.log(`
3400
- ---`);
3896
+ header("Current Configuration");
3897
+ console.log("");
3898
+ console.log(cyan("Ollama:"));
3899
+ labelValue(" URL", config.ollama.url);
3900
+ labelValue(" Default Model", magenta(config.ollama.defaultModel));
3901
+ console.log("");
3902
+ console.log(cyan("Docker:"));
3903
+ labelValue(" Compose File", config.docker.composeFile);
3904
+ labelValue(" GPU Mode", config.docker.gpu ? green("enabled") : dim("disabled"));
3905
+ console.log("");
3906
+ console.log(cyan("Claude:"));
3907
+ if (config.claude.extraArgs.length > 0) {
3908
+ labelValue(" Extra Args", config.claude.extraArgs.join(" "));
3909
+ } else {
3910
+ labelValue(" Extra Args", dim("none"));
3911
+ }
3912
+ console.log("");
3913
+ console.log(dim("\u2500".repeat(40)));
3401
3914
  if (activePath) {
3402
- console.log(`Loaded from: ${activePath}`);
3915
+ console.log(dim(`Loaded from: ${file(activePath)}`));
3403
3916
  } else {
3404
- console.log("Using default configuration (no config file found)");
3917
+ console.log(dim("Using default configuration (no config file found)"));
3405
3918
  }
3406
3919
  }
3407
3920
  async function configPaths() {
3408
3921
  const paths = getConfigSearchPaths();
3409
3922
  const activePath = getActiveConfigPath();
3410
- console.log(`Config file search paths (in priority order):
3411
- `);
3412
- for (const path of paths) {
3413
- const isActive = path === activePath;
3414
- const marker = isActive ? " \u2190 active" : "";
3415
- console.log(` ${path}${marker}`);
3923
+ header("Config Search Paths");
3924
+ console.log("");
3925
+ console.log(dim("Files are checked in priority order (first found wins):"));
3926
+ console.log("");
3927
+ for (let i = 0;i < paths.length; i++) {
3928
+ const configPath = paths[i];
3929
+ if (!configPath)
3930
+ continue;
3931
+ const isActive = configPath === activePath;
3932
+ const num = `${i + 1}.`;
3933
+ if (isActive) {
3934
+ console.log(` ${num} ${file(configPath)} ${green("\u2190 active")}`);
3935
+ } else {
3936
+ console.log(` ${num} ${dim(configPath)}`);
3937
+ }
3416
3938
  }
3939
+ console.log("");
3417
3940
  if (!activePath) {
3418
- console.log(`
3419
- No config file found. Using defaults.`);
3420
- console.log("Run 'loclaude init' to create a project config.");
3941
+ console.log(info("No config file found. Using defaults."));
3942
+ console.log(dim(` Run ${cmd("loclaude init")} to create a project config.`));
3421
3943
  }
3422
3944
  }
3423
3945
  // lib/commands/docker.ts
@@ -3456,42 +3978,44 @@ function getComposeCommand() {
3456
3978
  async function runCompose(args, options = {}) {
3457
3979
  const composeFile = options.file ?? findComposeFile();
3458
3980
  if (!composeFile) {
3459
- console.error("Error: No docker-compose.yml found");
3460
- console.error("Run 'loclaude init' to create one, or specify --file");
3981
+ console.log(error("No docker-compose.yml found"));
3982
+ console.log(dim(` Run ${cmd("loclaude init")} to create one, or specify --file`));
3461
3983
  return 1;
3462
3984
  }
3463
- const cmd = [...getComposeCommand(), "-f", composeFile, ...args];
3464
- return spawn(cmd);
3985
+ const cmd_args = [...getComposeCommand(), "-f", composeFile, ...args];
3986
+ return spawn(cmd_args);
3465
3987
  }
3466
3988
  async function dockerUp(options = {}) {
3467
3989
  const args = ["up"];
3468
3990
  if (options.detach !== false) {
3469
3991
  args.push("-d");
3470
3992
  }
3471
- console.log(`Starting containers...
3472
- `);
3993
+ console.log(info("Starting containers..."));
3994
+ console.log("");
3473
3995
  const exitCode = await runCompose(args, options);
3474
3996
  if (exitCode === 0) {
3475
- console.log(`
3476
- \u2713 Containers started`);
3477
- console.log(`
3478
- Service URLs:`);
3479
- console.log(" Ollama API: http://localhost:11434");
3480
- console.log(" Open WebUI: http://localhost:3000");
3997
+ console.log("");
3998
+ console.log(success("Containers started"));
3999
+ console.log("");
4000
+ console.log(cyan("Service URLs:"));
4001
+ console.log(` Ollama API: ${url("http://localhost:11434")}`);
4002
+ console.log(` Open WebUI: ${url("http://localhost:3000")}`);
3481
4003
  }
3482
4004
  process.exit(exitCode);
3483
4005
  }
3484
4006
  async function dockerDown(options = {}) {
3485
- console.log(`Stopping containers...
3486
- `);
4007
+ console.log(info("Stopping containers..."));
4008
+ console.log("");
3487
4009
  const exitCode = await runCompose(["down"], options);
3488
4010
  if (exitCode === 0) {
3489
- console.log(`
3490
- \u2713 Containers stopped`);
4011
+ console.log("");
4012
+ console.log(success("Containers stopped"));
3491
4013
  }
3492
4014
  process.exit(exitCode);
3493
4015
  }
3494
4016
  async function dockerStatus(options = {}) {
4017
+ console.log(info("Container status:"));
4018
+ console.log("");
3495
4019
  const exitCode = await runCompose(["ps"], options);
3496
4020
  process.exit(exitCode);
3497
4021
  }
@@ -3502,17 +4026,21 @@ async function dockerLogs(options = {}) {
3502
4026
  }
3503
4027
  if (options.service) {
3504
4028
  args.push(options.service);
4029
+ console.log(info(`Logs for ${cyan(options.service)}:`));
4030
+ } else {
4031
+ console.log(info("Container logs:"));
3505
4032
  }
4033
+ console.log("");
3506
4034
  const exitCode = await runCompose(args, options);
3507
4035
  process.exit(exitCode);
3508
4036
  }
3509
4037
  async function dockerRestart(options = {}) {
3510
- console.log(`Restarting containers...
3511
- `);
4038
+ console.log(info("Restarting containers..."));
4039
+ console.log("");
3512
4040
  const exitCode = await runCompose(["restart"], options);
3513
4041
  if (exitCode === 0) {
3514
- console.log(`
3515
- \u2713 Containers restarted`);
4042
+ console.log("");
4043
+ console.log(success("Containers restarted"));
3516
4044
  }
3517
4045
  process.exit(exitCode);
3518
4046
  }
@@ -3529,11 +4057,11 @@ async function fetchModels() {
3529
4057
  }
3530
4058
  const data = await response.json();
3531
4059
  return data.models ?? [];
3532
- } catch (error) {
3533
- if (error instanceof Error && error.name === "TimeoutError") {
4060
+ } catch (error3) {
4061
+ if (error3 instanceof Error && error3.name === "TimeoutError") {
3534
4062
  throw new Error(`Connection to Ollama timed out (${ollamaUrl})`);
3535
4063
  }
3536
- throw error;
4064
+ throw error3;
3537
4065
  }
3538
4066
  }
3539
4067
  async function isOllamaInDocker() {
@@ -3548,83 +4076,99 @@ async function runOllamaCommand(args) {
3548
4076
  return spawn(["ollama", ...args]);
3549
4077
  }
3550
4078
  }
4079
+ function formatSize(sizeBytes) {
4080
+ const sizeStr = import_bytes2.default(sizeBytes) ?? "?";
4081
+ const sizeNum = sizeBytes / (1024 * 1024 * 1024);
4082
+ if (sizeNum > 20) {
4083
+ return yellow(sizeStr);
4084
+ } else if (sizeNum > 10) {
4085
+ return cyan(sizeStr);
4086
+ }
4087
+ return dim(sizeStr);
4088
+ }
3551
4089
  async function modelsList() {
3552
4090
  try {
3553
4091
  const models = await fetchModels();
3554
4092
  if (models.length === 0) {
3555
- console.log("No models installed.");
3556
- console.log(`
3557
- Pull a model with: loclaude models-pull <model-name>`);
3558
- console.log("Example: loclaude models-pull llama3.2");
4093
+ header("Installed Models");
4094
+ console.log("");
4095
+ console.log(info("No models installed."));
4096
+ console.log("");
4097
+ console.log(`Pull a model with: ${cmd("loclaude models-pull <model-name>")}`);
4098
+ console.log(`Example: ${cmd("loclaude models-pull llama3.2")}`);
3559
4099
  return;
3560
4100
  }
3561
- console.log(`Installed models:
3562
- `);
4101
+ header("Installed Models");
4102
+ console.log("");
3563
4103
  const nameWidth = Math.max(...models.map((m) => m.name.length), "NAME".length);
3564
4104
  const sizeWidth = 10;
3565
- console.log(`${"NAME".padEnd(nameWidth)} ${"SIZE".padStart(sizeWidth)} MODIFIED`);
3566
- console.log("-".repeat(nameWidth + sizeWidth + 30));
4105
+ const modifiedWidth = 20;
4106
+ tableHeader(["NAME", "SIZE", "MODIFIED"], [nameWidth, sizeWidth, modifiedWidth]);
3567
4107
  for (const model of models) {
3568
- const name = model.name.padEnd(nameWidth);
3569
- const size = (import_bytes2.default(model.size) ?? "?").padStart(sizeWidth);
3570
- const modified = formatRelativeTime(model.modified_at);
4108
+ const name = magenta(model.name.padEnd(nameWidth));
4109
+ const size = formatSize(model.size).padStart(sizeWidth);
4110
+ const modified = dim(formatRelativeTime(model.modified_at));
3571
4111
  console.log(`${name} ${size} ${modified}`);
3572
4112
  }
3573
- console.log(`
3574
- ${models.length} model(s) installed`);
3575
- } catch (error) {
4113
+ console.log("");
4114
+ console.log(dim(`${models.length} model(s) installed`));
4115
+ } catch (err) {
3576
4116
  const ollamaUrl = getOllamaUrl();
3577
- console.error("Error: Could not connect to Ollama at", ollamaUrl);
3578
- console.error("Make sure Ollama is running: loclaude docker-up");
4117
+ console.log(error(`Could not connect to Ollama at ${ollamaUrl}`));
4118
+ console.log(dim(` Make sure Ollama is running: ${cmd("loclaude docker-up")}`));
3579
4119
  process.exit(1);
3580
4120
  }
3581
4121
  }
3582
4122
  async function modelsPull(modelName) {
3583
4123
  if (!modelName) {
3584
- console.error("Error: Model name required");
3585
- console.error("Usage: loclaude models pull <model-name>");
3586
- console.error("Example: loclaude models pull llama3.2");
4124
+ console.log(error("Model name required"));
4125
+ console.log(dim(`Usage: ${cmd("loclaude models-pull <model-name>")}`));
4126
+ console.log(dim(`Example: ${cmd("loclaude models-pull llama3.2")}`));
3587
4127
  process.exit(1);
3588
4128
  }
3589
- console.log(`Pulling model: ${modelName}
3590
- `);
4129
+ console.log(info(`Pulling model: ${magenta(modelName)}`));
4130
+ console.log("");
3591
4131
  const exitCode = await runOllamaCommand(["pull", modelName]);
3592
4132
  if (exitCode === 0) {
3593
- console.log(`
3594
- \u2713 Model '${modelName}' pulled successfully`);
4133
+ console.log("");
4134
+ console.log(success(`Model '${magenta(modelName)}' pulled successfully`));
3595
4135
  }
3596
4136
  process.exit(exitCode);
3597
4137
  }
3598
4138
  async function modelsRm(modelName) {
3599
4139
  if (!modelName) {
3600
- console.error("Error: Model name required");
3601
- console.error("Usage: loclaude models rm <model-name>");
4140
+ console.log(error("Model name required"));
4141
+ console.log(dim(`Usage: ${cmd("loclaude models-rm <model-name>")}`));
3602
4142
  process.exit(1);
3603
4143
  }
3604
- console.log(`Removing model: ${modelName}
3605
- `);
4144
+ console.log(info(`Removing model: ${magenta(modelName)}`));
4145
+ console.log("");
3606
4146
  const exitCode = await runOllamaCommand(["rm", modelName]);
3607
4147
  if (exitCode === 0) {
3608
- console.log(`
3609
- \u2713 Model '${modelName}' removed`);
4148
+ console.log("");
4149
+ console.log(success(`Model '${magenta(modelName)}' removed`));
3610
4150
  }
3611
4151
  process.exit(exitCode);
3612
4152
  }
3613
4153
  async function modelsShow(modelName) {
3614
4154
  if (!modelName) {
3615
- console.error("Error: Model name required");
3616
- console.error("Usage: loclaude models show <model-name>");
4155
+ console.log(error("Model name required"));
4156
+ console.log(dim(`Usage: ${cmd("loclaude models-show <model-name>")}`));
3617
4157
  process.exit(1);
3618
4158
  }
4159
+ console.log(info(`Model details: ${magenta(modelName)}`));
4160
+ console.log("");
3619
4161
  const exitCode = await runOllamaCommand(["show", modelName]);
3620
4162
  process.exit(exitCode);
3621
4163
  }
3622
4164
  async function modelsRun(modelName) {
3623
4165
  if (!modelName) {
3624
- console.error("Error: Model name required");
3625
- console.error("Usage: loclaude models run <model-name>");
4166
+ console.log(error("Model name required"));
4167
+ console.log(dim(`Usage: ${cmd("loclaude models-run <model-name>")}`));
3626
4168
  process.exit(1);
3627
4169
  }
4170
+ console.log(info(`Running model: ${magenta(modelName)}`));
4171
+ console.log("");
3628
4172
  const exitCode = await runOllamaCommand(["run", modelName]);
3629
4173
  process.exit(exitCode);
3630
4174
  }
@@ -3664,7 +4208,7 @@ cli.command("run [...args]", "Run Claude Code with local Ollama", {
3664
4208
  }
3665
4209
  await launchClaude(model, args);
3666
4210
  });
3667
- cli.command("init", "Initialize a new loclaude project").option("--force", "Overwrite existing files").option("--no-webui", "Skip Open WebUI in docker-compose").action(async (options) => {
4211
+ cli.command("init", "Initialize a new loclaude project").option("--force", "Overwrite existing files").option("--no-webui", "Skip Open WebUI in docker-compose").option("--gpu", "Force GPU mode (NVIDIA)").option("--no-gpu", "Force CPU-only mode").action(async (options) => {
3668
4212
  await init(options);
3669
4213
  });
3670
4214
  cli.command("doctor", "Check system requirements and health").action(async () => {
@@ -3720,5 +4264,5 @@ export {
3720
4264
  cli
3721
4265
  };
3722
4266
 
3723
- //# debugId=44B75412CB54A27464756E2164756E21
4267
+ //# debugId=F2B1940FCE29928B64756E2164756E21
3724
4268
  //# sourceMappingURL=index.bun.js.map