llmist 0.2.0 → 0.2.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +3 -3
- package/dist/{chunk-MO5ONHPZ.js → chunk-I55AV3WV.js} +2 -2
- package/dist/{chunk-PVHHXDCV.js → chunk-VRTKJK2X.js} +2 -2
- package/dist/{chunk-J3NCIWMY.js → chunk-VYBRYR2S.js} +82 -33
- package/dist/chunk-VYBRYR2S.js.map +1 -0
- package/dist/cli.cjs +250 -39
- package/dist/cli.cjs.map +1 -1
- package/dist/cli.js +172 -9
- package/dist/cli.js.map +1 -1
- package/dist/index.cjs +81 -32
- package/dist/index.cjs.map +1 -1
- package/dist/index.d.cts +1 -1
- package/dist/index.d.ts +1 -1
- package/dist/index.js +3 -3
- package/dist/testing/index.cjs +81 -32
- package/dist/testing/index.cjs.map +1 -1
- package/dist/testing/index.js +2 -2
- package/package.json +1 -1
- package/dist/chunk-J3NCIWMY.js.map +0 -1
- /package/dist/{chunk-MO5ONHPZ.js.map → chunk-I55AV3WV.js.map} +0 -0
- /package/dist/{chunk-PVHHXDCV.js.map → chunk-VRTKJK2X.js.map} +0 -0
package/dist/cli.cjs
CHANGED
|
@@ -86,17 +86,17 @@ var init_model_shortcuts = __esm({
|
|
|
86
86
|
"gpt5-mini": "openai:gpt-5-mini",
|
|
87
87
|
"gpt5-nano": "openai:gpt-5-nano",
|
|
88
88
|
// Anthropic aliases
|
|
89
|
-
sonnet: "anthropic:claude-
|
|
90
|
-
"claude-sonnet": "anthropic:claude-
|
|
91
|
-
haiku: "anthropic:claude-
|
|
92
|
-
"claude-haiku": "anthropic:claude-
|
|
93
|
-
opus: "anthropic:claude-
|
|
94
|
-
"claude-opus": "anthropic:claude-
|
|
89
|
+
sonnet: "anthropic:claude-sonnet-4-5",
|
|
90
|
+
"claude-sonnet": "anthropic:claude-sonnet-4-5",
|
|
91
|
+
haiku: "anthropic:claude-haiku-4-5",
|
|
92
|
+
"claude-haiku": "anthropic:claude-haiku-4-5",
|
|
93
|
+
opus: "anthropic:claude-opus-4-5",
|
|
94
|
+
"claude-opus": "anthropic:claude-opus-4-5",
|
|
95
95
|
// Gemini aliases
|
|
96
96
|
flash: "gemini:gemini-2.0-flash",
|
|
97
97
|
"gemini-flash": "gemini:gemini-2.0-flash",
|
|
98
|
-
"gemini-pro": "gemini:gemini-2.
|
|
99
|
-
pro: "gemini:gemini-2.
|
|
98
|
+
"gemini-pro": "gemini:gemini-2.5-pro",
|
|
99
|
+
pro: "gemini:gemini-2.5-pro"
|
|
100
100
|
};
|
|
101
101
|
KNOWN_MODEL_PATTERNS = [
|
|
102
102
|
/^gpt-?\d/i,
|
|
@@ -2070,30 +2070,6 @@ var init_anthropic_models = __esm({
|
|
|
2070
2070
|
"src/providers/anthropic-models.ts"() {
|
|
2071
2071
|
"use strict";
|
|
2072
2072
|
ANTHROPIC_MODELS = [
|
|
2073
|
-
{
|
|
2074
|
-
provider: "anthropic",
|
|
2075
|
-
modelId: "claude-opus-4-5-20251124",
|
|
2076
|
-
displayName: "Claude Opus 4.5",
|
|
2077
|
-
contextWindow: 2e5,
|
|
2078
|
-
maxOutputTokens: 64e3,
|
|
2079
|
-
pricing: {
|
|
2080
|
-
input: 5,
|
|
2081
|
-
output: 25,
|
|
2082
|
-
cachedInput: 0.5
|
|
2083
|
-
},
|
|
2084
|
-
knowledgeCutoff: "2025-03",
|
|
2085
|
-
features: {
|
|
2086
|
-
streaming: true,
|
|
2087
|
-
functionCalling: true,
|
|
2088
|
-
vision: true,
|
|
2089
|
-
reasoning: true
|
|
2090
|
-
},
|
|
2091
|
-
metadata: {
|
|
2092
|
-
family: "Claude 4",
|
|
2093
|
-
releaseDate: "2025-11-24",
|
|
2094
|
-
notes: "Most powerful model. 80.9% SWE-bench Verified, 66.3% OSWorld. Best for coding and computer use."
|
|
2095
|
-
}
|
|
2096
|
-
},
|
|
2097
2073
|
{
|
|
2098
2074
|
provider: "anthropic",
|
|
2099
2075
|
modelId: "claude-sonnet-4-5-20250929",
|
|
@@ -2282,6 +2258,79 @@ var init_anthropic_models = __esm({
|
|
|
2282
2258
|
releaseDate: "2024-03-07",
|
|
2283
2259
|
notes: "Legacy model - upgrade to Haiku 4.5 for better performance"
|
|
2284
2260
|
}
|
|
2261
|
+
},
|
|
2262
|
+
// Modern aliases (recommended by Anthropic)
|
|
2263
|
+
{
|
|
2264
|
+
provider: "anthropic",
|
|
2265
|
+
modelId: "claude-haiku-4-5",
|
|
2266
|
+
displayName: "Claude Haiku 4.5",
|
|
2267
|
+
contextWindow: 2e5,
|
|
2268
|
+
maxOutputTokens: 64e3,
|
|
2269
|
+
pricing: {
|
|
2270
|
+
input: 1,
|
|
2271
|
+
output: 5,
|
|
2272
|
+
cachedInput: 0.1
|
|
2273
|
+
},
|
|
2274
|
+
knowledgeCutoff: "2025-02",
|
|
2275
|
+
features: {
|
|
2276
|
+
streaming: true,
|
|
2277
|
+
functionCalling: true,
|
|
2278
|
+
vision: true,
|
|
2279
|
+
reasoning: true
|
|
2280
|
+
},
|
|
2281
|
+
metadata: {
|
|
2282
|
+
family: "Claude 4",
|
|
2283
|
+
releaseDate: "2025-10-01",
|
|
2284
|
+
notes: "Alias for claude-haiku-4-5-20251001. Fastest model with near-frontier intelligence."
|
|
2285
|
+
}
|
|
2286
|
+
},
|
|
2287
|
+
{
|
|
2288
|
+
provider: "anthropic",
|
|
2289
|
+
modelId: "claude-sonnet-4-5",
|
|
2290
|
+
displayName: "Claude Sonnet 4.5",
|
|
2291
|
+
contextWindow: 2e5,
|
|
2292
|
+
maxOutputTokens: 64e3,
|
|
2293
|
+
pricing: {
|
|
2294
|
+
input: 3,
|
|
2295
|
+
output: 15,
|
|
2296
|
+
cachedInput: 0.3
|
|
2297
|
+
},
|
|
2298
|
+
knowledgeCutoff: "2025-01",
|
|
2299
|
+
features: {
|
|
2300
|
+
streaming: true,
|
|
2301
|
+
functionCalling: true,
|
|
2302
|
+
vision: true,
|
|
2303
|
+
reasoning: true
|
|
2304
|
+
},
|
|
2305
|
+
metadata: {
|
|
2306
|
+
family: "Claude 4",
|
|
2307
|
+
releaseDate: "2025-09-29",
|
|
2308
|
+
notes: "Alias for claude-sonnet-4-5-20250929. Smartest model for complex agents and coding."
|
|
2309
|
+
}
|
|
2310
|
+
},
|
|
2311
|
+
{
|
|
2312
|
+
provider: "anthropic",
|
|
2313
|
+
modelId: "claude-opus-4-5",
|
|
2314
|
+
displayName: "Claude Opus 4.5",
|
|
2315
|
+
contextWindow: 2e5,
|
|
2316
|
+
maxOutputTokens: 64e3,
|
|
2317
|
+
pricing: {
|
|
2318
|
+
input: 5,
|
|
2319
|
+
output: 25,
|
|
2320
|
+
cachedInput: 0.5
|
|
2321
|
+
},
|
|
2322
|
+
knowledgeCutoff: "2025-03",
|
|
2323
|
+
features: {
|
|
2324
|
+
streaming: true,
|
|
2325
|
+
functionCalling: true,
|
|
2326
|
+
vision: true,
|
|
2327
|
+
reasoning: true
|
|
2328
|
+
},
|
|
2329
|
+
metadata: {
|
|
2330
|
+
family: "Claude 4",
|
|
2331
|
+
releaseDate: "2025-11-24",
|
|
2332
|
+
notes: "Alias for claude-opus-4-5-20251124. Most powerful model for coding and computer use."
|
|
2333
|
+
}
|
|
2285
2334
|
}
|
|
2286
2335
|
];
|
|
2287
2336
|
}
|
|
@@ -4216,7 +4265,8 @@ var CLI_NAME = "llmist";
|
|
|
4216
4265
|
var CLI_DESCRIPTION = "Command line utilities for llmist agents and direct LLM access.";
|
|
4217
4266
|
var COMMANDS = {
|
|
4218
4267
|
complete: "complete",
|
|
4219
|
-
agent: "agent"
|
|
4268
|
+
agent: "agent",
|
|
4269
|
+
models: "models"
|
|
4220
4270
|
};
|
|
4221
4271
|
var LOG_LEVELS = ["silly", "trace", "debug", "info", "warn", "error", "fatal"];
|
|
4222
4272
|
var DEFAULT_MODEL = "openai:gpt-5-nano";
|
|
@@ -4234,7 +4284,7 @@ var OPTION_FLAGS = {
|
|
|
4234
4284
|
noBuiltins: "--no-builtins"
|
|
4235
4285
|
};
|
|
4236
4286
|
var OPTION_DESCRIPTIONS = {
|
|
4237
|
-
model: "Model identifier, e.g. openai:gpt-5-nano or anthropic:claude-
|
|
4287
|
+
model: "Model identifier, e.g. openai:gpt-5-nano or anthropic:claude-sonnet-4-5.",
|
|
4238
4288
|
systemPrompt: "Optional system prompt prepended to the conversation.",
|
|
4239
4289
|
temperature: "Sampling temperature between 0 and 2.",
|
|
4240
4290
|
maxTokens: "Maximum number of output tokens requested from the model.",
|
|
@@ -5285,9 +5335,169 @@ function registerCompleteCommand(program, env) {
|
|
|
5285
5335
|
);
|
|
5286
5336
|
}
|
|
5287
5337
|
|
|
5338
|
+
// src/cli/models-command.ts
|
|
5339
|
+
var import_chalk3 = __toESM(require("chalk"), 1);
|
|
5340
|
+
init_model_shortcuts();
|
|
5341
|
+
async function handleModelsCommand(options, env) {
|
|
5342
|
+
const client = env.createClient();
|
|
5343
|
+
const models = client.modelRegistry.listModels(options.provider);
|
|
5344
|
+
if (options.format === "json") {
|
|
5345
|
+
renderJSON(models, env.stdout);
|
|
5346
|
+
} else {
|
|
5347
|
+
renderTable(models, options.verbose || false, env.stdout);
|
|
5348
|
+
}
|
|
5349
|
+
}
|
|
5350
|
+
function renderTable(models, verbose, stream2) {
|
|
5351
|
+
const grouped = /* @__PURE__ */ new Map();
|
|
5352
|
+
for (const model of models) {
|
|
5353
|
+
const provider = model.provider;
|
|
5354
|
+
if (!grouped.has(provider)) {
|
|
5355
|
+
grouped.set(provider, []);
|
|
5356
|
+
}
|
|
5357
|
+
grouped.get(provider).push(model);
|
|
5358
|
+
}
|
|
5359
|
+
stream2.write(import_chalk3.default.bold.cyan("\nAvailable Models\n"));
|
|
5360
|
+
stream2.write(import_chalk3.default.cyan("=".repeat(80)) + "\n\n");
|
|
5361
|
+
const providers = Array.from(grouped.keys()).sort();
|
|
5362
|
+
for (const provider of providers) {
|
|
5363
|
+
const providerModels = grouped.get(provider);
|
|
5364
|
+
const providerName = provider.charAt(0).toUpperCase() + provider.slice(1);
|
|
5365
|
+
stream2.write(import_chalk3.default.bold.yellow(`${providerName} Models
|
|
5366
|
+
`));
|
|
5367
|
+
if (verbose) {
|
|
5368
|
+
renderVerboseTable(providerModels, stream2);
|
|
5369
|
+
} else {
|
|
5370
|
+
renderCompactTable(providerModels, stream2);
|
|
5371
|
+
}
|
|
5372
|
+
stream2.write("\n");
|
|
5373
|
+
}
|
|
5374
|
+
stream2.write(import_chalk3.default.bold.magenta("Model Shortcuts\n"));
|
|
5375
|
+
stream2.write(import_chalk3.default.dim("\u2500".repeat(80)) + "\n");
|
|
5376
|
+
const shortcuts = Object.entries(MODEL_ALIASES).sort((a, b) => a[0].localeCompare(b[0]));
|
|
5377
|
+
for (const [shortcut, fullName] of shortcuts) {
|
|
5378
|
+
stream2.write(import_chalk3.default.cyan(` ${shortcut.padEnd(15)}`) + import_chalk3.default.dim(" \u2192 ") + import_chalk3.default.white(fullName) + "\n");
|
|
5379
|
+
}
|
|
5380
|
+
stream2.write("\n");
|
|
5381
|
+
}
|
|
5382
|
+
function renderCompactTable(models, stream2) {
|
|
5383
|
+
const idWidth = 25;
|
|
5384
|
+
const nameWidth = 22;
|
|
5385
|
+
const contextWidth = 13;
|
|
5386
|
+
const inputWidth = 10;
|
|
5387
|
+
const outputWidth = 10;
|
|
5388
|
+
stream2.write(import_chalk3.default.dim("\u2500".repeat(idWidth + nameWidth + contextWidth + inputWidth + outputWidth + 8)) + "\n");
|
|
5389
|
+
stream2.write(
|
|
5390
|
+
import_chalk3.default.bold(
|
|
5391
|
+
"Model ID".padEnd(idWidth) + " " + "Display Name".padEnd(nameWidth) + " " + "Context".padEnd(contextWidth) + " " + "Input".padEnd(inputWidth) + " " + "Output".padEnd(outputWidth)
|
|
5392
|
+
) + "\n"
|
|
5393
|
+
);
|
|
5394
|
+
stream2.write(import_chalk3.default.dim("\u2500".repeat(idWidth + nameWidth + contextWidth + inputWidth + outputWidth + 8)) + "\n");
|
|
5395
|
+
for (const model of models) {
|
|
5396
|
+
const contextFormatted = formatTokens(model.contextWindow);
|
|
5397
|
+
const inputPrice = `$${model.pricing.input.toFixed(2)}`;
|
|
5398
|
+
const outputPrice = `$${model.pricing.output.toFixed(2)}`;
|
|
5399
|
+
stream2.write(
|
|
5400
|
+
import_chalk3.default.green(model.modelId.padEnd(idWidth)) + " " + import_chalk3.default.white(model.displayName.padEnd(nameWidth)) + " " + import_chalk3.default.yellow(contextFormatted.padEnd(contextWidth)) + " " + import_chalk3.default.cyan(inputPrice.padEnd(inputWidth)) + " " + import_chalk3.default.cyan(outputPrice.padEnd(outputWidth)) + "\n"
|
|
5401
|
+
);
|
|
5402
|
+
}
|
|
5403
|
+
stream2.write(import_chalk3.default.dim("\u2500".repeat(idWidth + nameWidth + contextWidth + inputWidth + outputWidth + 8)) + "\n");
|
|
5404
|
+
stream2.write(import_chalk3.default.dim(` * Prices are per 1M tokens
|
|
5405
|
+
`));
|
|
5406
|
+
}
|
|
5407
|
+
function renderVerboseTable(models, stream2) {
|
|
5408
|
+
for (const model of models) {
|
|
5409
|
+
stream2.write(import_chalk3.default.bold.green(`
|
|
5410
|
+
${model.modelId}
|
|
5411
|
+
`));
|
|
5412
|
+
stream2.write(import_chalk3.default.dim(" " + "\u2500".repeat(60)) + "\n");
|
|
5413
|
+
stream2.write(` ${import_chalk3.default.dim("Name:")} ${import_chalk3.default.white(model.displayName)}
|
|
5414
|
+
`);
|
|
5415
|
+
stream2.write(` ${import_chalk3.default.dim("Context:")} ${import_chalk3.default.yellow(formatTokens(model.contextWindow))}
|
|
5416
|
+
`);
|
|
5417
|
+
stream2.write(` ${import_chalk3.default.dim("Max Output:")} ${import_chalk3.default.yellow(formatTokens(model.maxOutputTokens))}
|
|
5418
|
+
`);
|
|
5419
|
+
stream2.write(` ${import_chalk3.default.dim("Pricing:")} ${import_chalk3.default.cyan(`$${model.pricing.input.toFixed(2)} input`)} ${import_chalk3.default.dim("/")} ${import_chalk3.default.cyan(`$${model.pricing.output.toFixed(2)} output`)} ${import_chalk3.default.dim("(per 1M tokens)")}
|
|
5420
|
+
`);
|
|
5421
|
+
if (model.pricing.cachedInput !== void 0) {
|
|
5422
|
+
stream2.write(` ${import_chalk3.default.dim("Cached Input:")} ${import_chalk3.default.cyan(`$${model.pricing.cachedInput.toFixed(2)} per 1M tokens`)}
|
|
5423
|
+
`);
|
|
5424
|
+
}
|
|
5425
|
+
if (model.knowledgeCutoff) {
|
|
5426
|
+
stream2.write(` ${import_chalk3.default.dim("Knowledge:")} ${model.knowledgeCutoff}
|
|
5427
|
+
`);
|
|
5428
|
+
}
|
|
5429
|
+
const features = [];
|
|
5430
|
+
if (model.features.streaming) features.push("streaming");
|
|
5431
|
+
if (model.features.functionCalling) features.push("function-calling");
|
|
5432
|
+
if (model.features.vision) features.push("vision");
|
|
5433
|
+
if (model.features.reasoning) features.push("reasoning");
|
|
5434
|
+
if (model.features.structuredOutputs) features.push("structured-outputs");
|
|
5435
|
+
if (model.features.fineTuning) features.push("fine-tuning");
|
|
5436
|
+
if (features.length > 0) {
|
|
5437
|
+
stream2.write(` ${import_chalk3.default.dim("Features:")} ${import_chalk3.default.blue(features.join(", "))}
|
|
5438
|
+
`);
|
|
5439
|
+
}
|
|
5440
|
+
if (model.metadata) {
|
|
5441
|
+
if (model.metadata.family) {
|
|
5442
|
+
stream2.write(` ${import_chalk3.default.dim("Family:")} ${model.metadata.family}
|
|
5443
|
+
`);
|
|
5444
|
+
}
|
|
5445
|
+
if (model.metadata.releaseDate) {
|
|
5446
|
+
stream2.write(` ${import_chalk3.default.dim("Released:")} ${model.metadata.releaseDate}
|
|
5447
|
+
`);
|
|
5448
|
+
}
|
|
5449
|
+
if (model.metadata.notes) {
|
|
5450
|
+
stream2.write(` ${import_chalk3.default.dim("Notes:")} ${import_chalk3.default.italic(model.metadata.notes)}
|
|
5451
|
+
`);
|
|
5452
|
+
}
|
|
5453
|
+
}
|
|
5454
|
+
}
|
|
5455
|
+
stream2.write("\n");
|
|
5456
|
+
}
|
|
5457
|
+
function renderJSON(models, stream2) {
|
|
5458
|
+
const output = {
|
|
5459
|
+
models: models.map((model) => ({
|
|
5460
|
+
provider: model.provider,
|
|
5461
|
+
modelId: model.modelId,
|
|
5462
|
+
displayName: model.displayName,
|
|
5463
|
+
contextWindow: model.contextWindow,
|
|
5464
|
+
maxOutputTokens: model.maxOutputTokens,
|
|
5465
|
+
pricing: {
|
|
5466
|
+
input: model.pricing.input,
|
|
5467
|
+
output: model.pricing.output,
|
|
5468
|
+
cachedInput: model.pricing.cachedInput,
|
|
5469
|
+
currency: "USD",
|
|
5470
|
+
per: "1M tokens"
|
|
5471
|
+
},
|
|
5472
|
+
knowledgeCutoff: model.knowledgeCutoff,
|
|
5473
|
+
features: model.features,
|
|
5474
|
+
metadata: model.metadata
|
|
5475
|
+
})),
|
|
5476
|
+
shortcuts: MODEL_ALIASES
|
|
5477
|
+
};
|
|
5478
|
+
stream2.write(JSON.stringify(output, null, 2) + "\n");
|
|
5479
|
+
}
|
|
5480
|
+
function formatTokens(count) {
|
|
5481
|
+
if (count >= 1e6) {
|
|
5482
|
+
return `${(count / 1e6).toFixed(1)}M tokens`;
|
|
5483
|
+
} else if (count >= 1e3) {
|
|
5484
|
+
return `${(count / 1e3).toFixed(0)}K tokens`;
|
|
5485
|
+
} else {
|
|
5486
|
+
return `${count} tokens`;
|
|
5487
|
+
}
|
|
5488
|
+
}
|
|
5489
|
+
function registerModelsCommand(program, env) {
|
|
5490
|
+
program.command(COMMANDS.models).description("List all available LLM models with pricing and capabilities.").option("--provider <name>", "Filter by provider (openai, anthropic, gemini)").option("--format <format>", "Output format: table or json", "table").option("--verbose", "Show detailed model information", false).action(
|
|
5491
|
+
(options) => executeAction(
|
|
5492
|
+
() => handleModelsCommand(options, env),
|
|
5493
|
+
env
|
|
5494
|
+
)
|
|
5495
|
+
);
|
|
5496
|
+
}
|
|
5497
|
+
|
|
5288
5498
|
// src/cli/environment.ts
|
|
5289
5499
|
var import_node_readline = __toESM(require("readline"), 1);
|
|
5290
|
-
var
|
|
5500
|
+
var import_chalk4 = __toESM(require("chalk"), 1);
|
|
5291
5501
|
init_client();
|
|
5292
5502
|
init_logger();
|
|
5293
5503
|
var LOG_LEVEL_MAP = {
|
|
@@ -5333,14 +5543,14 @@ function createPromptFunction(stdin, stdout) {
|
|
|
5333
5543
|
output: stdout
|
|
5334
5544
|
});
|
|
5335
5545
|
stdout.write("\n");
|
|
5336
|
-
stdout.write(`${
|
|
5546
|
+
stdout.write(`${import_chalk4.default.cyan("\u2500".repeat(60))}
|
|
5337
5547
|
`);
|
|
5338
|
-
stdout.write(
|
|
5548
|
+
stdout.write(import_chalk4.default.cyan.bold("\u{1F916} Agent asks:\n"));
|
|
5339
5549
|
stdout.write(`${question}
|
|
5340
5550
|
`);
|
|
5341
|
-
stdout.write(`${
|
|
5551
|
+
stdout.write(`${import_chalk4.default.cyan("\u2500".repeat(60))}
|
|
5342
5552
|
`);
|
|
5343
|
-
rl.question(
|
|
5553
|
+
rl.question(import_chalk4.default.green.bold("You: "), (answer) => {
|
|
5344
5554
|
rl.close();
|
|
5345
5555
|
resolve(answer);
|
|
5346
5556
|
});
|
|
@@ -5383,6 +5593,7 @@ function createProgram(env) {
|
|
|
5383
5593
|
});
|
|
5384
5594
|
registerCompleteCommand(program, env);
|
|
5385
5595
|
registerAgentCommand(program, env);
|
|
5596
|
+
registerModelsCommand(program, env);
|
|
5386
5597
|
return program;
|
|
5387
5598
|
}
|
|
5388
5599
|
async function runCLI(overrides = {}) {
|