linearly 0.3.0 → 0.4.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. package/lib/{common.d.ts → cjs/common.d.ts} +1 -0
  2. package/lib/cjs/common.d.ts.map +1 -0
  3. package/lib/cjs/common.js +20 -0
  4. package/lib/{index.d.ts → cjs/index.d.ts} +1 -0
  5. package/lib/cjs/index.d.ts.map +1 -0
  6. package/lib/cjs/index.js +35 -0
  7. package/lib/{mat2.d.ts → cjs/mat2.d.ts} +1 -0
  8. package/lib/cjs/mat2.d.ts.map +1 -0
  9. package/lib/cjs/mat2.js +224 -0
  10. package/lib/{mat2d.d.ts → cjs/mat2d.d.ts} +1 -0
  11. package/lib/cjs/mat2d.d.ts.map +1 -0
  12. package/lib/cjs/mat2d.js +291 -0
  13. package/lib/{mat3.d.ts → cjs/mat3.d.ts} +1 -0
  14. package/lib/cjs/mat3.d.ts.map +1 -0
  15. package/lib/cjs/mat3.js +450 -0
  16. package/lib/{mat4.d.ts → cjs/mat4.d.ts} +1 -0
  17. package/lib/cjs/mat4.d.ts.map +1 -0
  18. package/lib/cjs/mat4.js +1250 -0
  19. package/lib/{quat.d.ts → cjs/quat.d.ts} +1 -0
  20. package/lib/cjs/quat.d.ts.map +1 -0
  21. package/lib/cjs/quat.js +504 -0
  22. package/lib/{vec2.d.ts → cjs/vec2.d.ts} +1 -0
  23. package/lib/cjs/vec2.d.ts.map +1 -0
  24. package/lib/cjs/vec2.js +205 -0
  25. package/lib/{vec3.d.ts → cjs/vec3.d.ts} +1 -0
  26. package/lib/cjs/vec3.d.ts.map +1 -0
  27. package/lib/cjs/vec3.js +409 -0
  28. package/lib/{vec4.d.ts → cjs/vec4.d.ts} +1 -0
  29. package/lib/cjs/vec4.d.ts.map +1 -0
  30. package/lib/cjs/vec4.js +319 -0
  31. package/lib/esm/common.d.ts +12 -0
  32. package/lib/esm/common.d.ts.map +1 -0
  33. package/lib/esm/common.js +16 -0
  34. package/lib/esm/index.d.ts +17 -0
  35. package/lib/esm/index.d.ts.map +1 -0
  36. package/lib/esm/index.js +9 -0
  37. package/lib/esm/mat2.d.ts +91 -0
  38. package/lib/esm/mat2.d.ts.map +1 -0
  39. package/lib/esm/mat2.js +179 -0
  40. package/lib/esm/mat2d.d.ts +102 -0
  41. package/lib/esm/mat2d.d.ts.map +1 -0
  42. package/lib/esm/mat2d.js +246 -0
  43. package/lib/esm/mat3.d.ts +120 -0
  44. package/lib/esm/mat3.d.ts.map +1 -0
  45. package/lib/esm/mat3.js +400 -0
  46. package/lib/esm/mat4.d.ts +313 -0
  47. package/lib/esm/mat4.d.ts.map +1 -0
  48. package/lib/esm/mat4.js +1183 -0
  49. package/lib/esm/quat.d.ts +220 -0
  50. package/lib/esm/quat.d.ts.map +1 -0
  51. package/lib/esm/quat.js +458 -0
  52. package/lib/esm/vec2.d.ts +66 -0
  53. package/lib/esm/vec2.d.ts.map +1 -0
  54. package/lib/esm/vec2.js +149 -0
  55. package/lib/esm/vec3.d.ts +167 -0
  56. package/lib/esm/vec3.d.ts.map +1 -0
  57. package/lib/esm/vec3.js +348 -0
  58. package/lib/esm/vec4.d.ts +116 -0
  59. package/lib/esm/vec4.d.ts.map +1 -0
  60. package/lib/esm/vec4.js +266 -0
  61. package/package.json +6 -4
  62. package/lib/common.js +0 -30
  63. package/lib/index.js +0 -45
  64. package/lib/mat2.js +0 -234
  65. package/lib/mat2d.js +0 -301
  66. package/lib/mat2d.test.d.ts +0 -1
  67. package/lib/mat2d.test.js +0 -123
  68. package/lib/mat3.js +0 -460
  69. package/lib/mat4.js +0 -1260
  70. package/lib/quat.js +0 -514
  71. package/lib/vec2.js +0 -215
  72. package/lib/vec2.test.d.ts +0 -1
  73. package/lib/vec2.test.js +0 -147
  74. package/lib/vec3.js +0 -419
  75. package/lib/vec3.test.d.ts +0 -1
  76. package/lib/vec3.test.js +0 -149
  77. package/lib/vec4.js +0 -329
  78. package/lib/vec4.test.d.ts +0 -1
  79. package/lib/vec4.test.js +0 -45
@@ -9,3 +9,4 @@ export declare const EPSILON = 0.000001;
9
9
  export declare function round(a: number): number;
10
10
  export type AngleOrder = 'xyz' | 'xzy' | 'yxz' | 'yzx' | 'zxy' | 'zyx';
11
11
  export declare const DEFAULT_ANGLE_ORDER: AngleOrder;
12
+ //# sourceMappingURL=common.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"common.d.ts","sourceRoot":"","sources":["../../src/common.ts"],"names":[],"mappings":"AAAA;;GAEG;AAGH,eAAO,MAAM,OAAO,WAAW,CAAA;AAE/B;;;GAGG;AACH,wBAAgB,KAAK,CAAC,CAAC,EAAE,MAAM,UAG9B;AAED,MAAM,MAAM,UAAU,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,CAAA;AAEtE,eAAO,MAAM,mBAAmB,EAAE,UAAkB,CAAA"}
@@ -0,0 +1,20 @@
1
+ "use strict";
2
+ /**
3
+ * Common utilities
4
+ */
5
+ Object.defineProperty(exports, "__esModule", { value: true });
6
+ exports.DEFAULT_ANGLE_ORDER = exports.round = exports.EPSILON = void 0;
7
+ // Configuration Constants
8
+ exports.EPSILON = 0.000001;
9
+ /**
10
+ * Symmetric round
11
+ * see https://www.npmjs.com/package/round-half-up-symmetric#user-content-detailed-background
12
+ */
13
+ function round(a) {
14
+ if (a >= 0)
15
+ return Math.round(a);
16
+ return a % 0.5 === 0 ? Math.floor(a) : Math.round(a);
17
+ }
18
+ exports.round = round;
19
+ exports.DEFAULT_ANGLE_ORDER = 'zyx';
20
+ //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiY29tbW9uLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vc3JjL2NvbW1vbi50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiO0FBQUE7O0dBRUc7OztBQUVILDBCQUEwQjtBQUNiLFFBQUEsT0FBTyxHQUFHLFFBQVEsQ0FBQTtBQUUvQjs7O0dBR0c7QUFDSCxTQUFnQixLQUFLLENBQUMsQ0FBUztJQUM5QixJQUFJLENBQUMsSUFBSSxDQUFDO1FBQUUsT0FBTyxJQUFJLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ2hDLE9BQU8sQ0FBQyxHQUFHLEdBQUcsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFDckQsQ0FBQztBQUhELHNCQUdDO0FBSVksUUFBQSxtQkFBbUIsR0FBZSxLQUFLLENBQUEifQ==
@@ -14,3 +14,4 @@ export * as mat4 from './mat4';
14
14
  export type { Mat4 } from './mat4';
15
15
  export * as quat from './quat';
16
16
  export type { Quat } from './quat';
17
+ //# sourceMappingURL=index.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../src/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,IAAI,MAAM,QAAQ,CAAA;AAC9B,YAAY,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAEhC,OAAO,KAAK,IAAI,MAAM,QAAQ,CAAA;AAC9B,YAAY,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAEhC,OAAO,KAAK,IAAI,MAAM,QAAQ,CAAA;AAC9B,YAAY,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAEhC,OAAO,KAAK,IAAI,MAAM,QAAQ,CAAA;AAC9B,YAAY,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAEhC,OAAO,KAAK,KAAK,MAAM,SAAS,CAAA;AAChC,YAAY,EAAC,KAAK,EAAC,MAAM,SAAS,CAAA;AAElC,OAAO,KAAK,IAAI,MAAM,QAAQ,CAAA;AAC9B,YAAY,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAEhC,OAAO,KAAK,IAAI,MAAM,QAAQ,CAAA;AAC9B,YAAY,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAEhC,OAAO,KAAK,IAAI,MAAM,QAAQ,CAAA;AAC9B,YAAY,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA"}
@@ -0,0 +1,35 @@
1
+ "use strict";
2
+ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
3
+ if (k2 === undefined) k2 = k;
4
+ var desc = Object.getOwnPropertyDescriptor(m, k);
5
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
6
+ desc = { enumerable: true, get: function() { return m[k]; } };
7
+ }
8
+ Object.defineProperty(o, k2, desc);
9
+ }) : (function(o, m, k, k2) {
10
+ if (k2 === undefined) k2 = k;
11
+ o[k2] = m[k];
12
+ }));
13
+ var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
14
+ Object.defineProperty(o, "default", { enumerable: true, value: v });
15
+ }) : function(o, v) {
16
+ o["default"] = v;
17
+ });
18
+ var __importStar = (this && this.__importStar) || function (mod) {
19
+ if (mod && mod.__esModule) return mod;
20
+ var result = {};
21
+ if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
22
+ __setModuleDefault(result, mod);
23
+ return result;
24
+ };
25
+ Object.defineProperty(exports, "__esModule", { value: true });
26
+ exports.quat = exports.mat4 = exports.mat3 = exports.mat2d = exports.mat2 = exports.vec4 = exports.vec3 = exports.vec2 = void 0;
27
+ exports.vec2 = __importStar(require("./vec2"));
28
+ exports.vec3 = __importStar(require("./vec3"));
29
+ exports.vec4 = __importStar(require("./vec4"));
30
+ exports.mat2 = __importStar(require("./mat2"));
31
+ exports.mat2d = __importStar(require("./mat2d"));
32
+ exports.mat3 = __importStar(require("./mat3"));
33
+ exports.mat4 = __importStar(require("./mat4"));
34
+ exports.quat = __importStar(require("./quat"));
35
+ //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXguanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi8uLi9zcmMvaW5kZXgudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6Ijs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7QUFBQSwrQ0FBOEI7QUFHOUIsK0NBQThCO0FBRzlCLCtDQUE4QjtBQUc5QiwrQ0FBOEI7QUFHOUIsaURBQWdDO0FBR2hDLCtDQUE4QjtBQUc5QiwrQ0FBOEI7QUFHOUIsK0NBQThCIn0=
@@ -88,3 +88,4 @@ export declare function multiplyScalar(a: Mat2, s: number): Mat2;
88
88
  * Adds two mat2's after multiplying each element of the second operand by a scalar value.
89
89
  */
90
90
  export declare function multiplyScalarAndAdd(a: Mat2, b: Mat2, scale: number): Mat2;
91
+ //# sourceMappingURL=mat2.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"mat2.d.ts","sourceRoot":"","sources":["../../src/mat2.ts"],"names":[],"mappings":"AACA,OAAO,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAE3B,MAAM,MAAM,IAAI,GAAG,SAAS,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAA;AAE5D,wBAAgB,EAAE,CAAC,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,GAAG,IAAI,CAE3E;AAED;;;GAGG;AACH,eAAO,MAAM,QAAQ,EAAE,IAAkC,CAAA;AAEzD,eAAO,MAAM,IAAI,EAAE,IAAkC,CAAA;AAErD;;GAEG;AACH,wBAAgB,SAAS,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAMvC;AAED;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,CAgB3C;AAED;;GAEG;AACH,wBAAgB,OAAO,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAIrC;AAED;;;GAGG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,IAAI,UAElC;AAED;;GAEG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAU/C;AAED;;;;;GAKG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,IAAI,EAAE,GAAG,EAAE,MAAM,GAAG,IAAI,CAMjD;AAED;;IAEI;AACJ,wBAAgB,KAAK,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAK5C;AAED;;;GAGG;AACH,wBAAgB,IAAI,CAAC,CAAC,EAAE,IAAI,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GAAG,IAAI,CAE1D;AAED;;GAEG;AACH,wBAAgB,YAAY,CAAC,GAAG,EAAE,MAAM,GAAG,IAAI,CAI9C;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAEzC;AAED;;;GAGG;AACH,wBAAgB,QAAQ,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GAAG,IAAI,CASrD;AAED;;GAEG;AACH,wBAAgB,IAAI,CAAC,CAAC,EAAE,IAAI,UAE3B;AAED;;GAEG;AACH,wBAAgB,GAAG,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAE1C;AAED;;GAEG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAE/C;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,WAE3C;AAED;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,WAatC;AAED;;;;;GAKG;AACH,wBAAgB,cAAc,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,MAAM,GAAG,IAAI,CAEvD;AAED;;GAEG;AACH,wBAAgB,oBAAoB,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,EAAE,KAAK,EAAE,MAAM,GAAG,IAAI,CAO1E"}
@@ -0,0 +1,224 @@
1
+ "use strict";
2
+ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
3
+ if (k2 === undefined) k2 = k;
4
+ var desc = Object.getOwnPropertyDescriptor(m, k);
5
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
6
+ desc = { enumerable: true, get: function() { return m[k]; } };
7
+ }
8
+ Object.defineProperty(o, k2, desc);
9
+ }) : (function(o, m, k, k2) {
10
+ if (k2 === undefined) k2 = k;
11
+ o[k2] = m[k];
12
+ }));
13
+ var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
14
+ Object.defineProperty(o, "default", { enumerable: true, value: v });
15
+ }) : function(o, v) {
16
+ o["default"] = v;
17
+ });
18
+ var __importStar = (this && this.__importStar) || function (mod) {
19
+ if (mod && mod.__esModule) return mod;
20
+ var result = {};
21
+ if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
22
+ __setModuleDefault(result, mod);
23
+ return result;
24
+ };
25
+ Object.defineProperty(exports, "__esModule", { value: true });
26
+ exports.multiplyScalarAndAdd = exports.multiplyScalar = exports.equals = exports.exactEquals = exports.subtract = exports.add = exports.frob = exports.fromSkew = exports.fromScaling = exports.fromRotation = exports.skew = exports.scale = exports.rotate = exports.multiply = exports.determinant = exports.adjoint = exports.invert = exports.transpose = exports.zero = exports.identity = exports.of = void 0;
27
+ const Common = __importStar(require("./common"));
28
+ function of(m00, m01, m10, m11) {
29
+ return [m00, m01, m10, m11];
30
+ }
31
+ exports.of = of;
32
+ /**
33
+ * The identity matrix of mat2
34
+ *
35
+ */
36
+ exports.identity = Object.freeze([1, 0, 0, 1]);
37
+ exports.zero = Object.freeze([0, 0, 0, 0]);
38
+ /**
39
+ * Transpose the values of a mat2
40
+ */
41
+ function transpose(a) {
42
+ // prettier-ignore
43
+ return [
44
+ a[0], a[2],
45
+ a[1], a[3],
46
+ ];
47
+ }
48
+ exports.transpose = transpose;
49
+ /**
50
+ * Inverts a mat2
51
+ */
52
+ function invert(a) {
53
+ const [a0, a1, a2, a3] = a;
54
+ // Calculate the determinant
55
+ const det = a0 * a3 - a2 * a1;
56
+ if (!det) {
57
+ return null;
58
+ }
59
+ const detinv = 1 / det;
60
+ // prettier-ignore
61
+ return [
62
+ a3 * detinv, -a1 * detinv,
63
+ -a2 * detinv, a0 * detinv
64
+ ];
65
+ }
66
+ exports.invert = invert;
67
+ /**
68
+ * Calculates the adjugate of a mat2
69
+ */
70
+ function adjoint(a) {
71
+ // Caching this value is necessary if out == a
72
+ const a0 = a[0];
73
+ return [a[3], -a[1], -a[2], a0];
74
+ }
75
+ exports.adjoint = adjoint;
76
+ /**
77
+ * Calculates the determinant of a mat2
78
+ * @returns determinant of a
79
+ */
80
+ function determinant(a) {
81
+ return a[0] * a[3] - a[2] * a[1];
82
+ }
83
+ exports.determinant = determinant;
84
+ /**
85
+ * Multiplies two mat2's
86
+ */
87
+ function multiply(a, b) {
88
+ const [a0, a1, a2, a3] = a;
89
+ const [b0, b1, b2, b3] = b;
90
+ return [
91
+ a0 * b0 + a2 * b1,
92
+ a1 * b0 + a3 * b1,
93
+ a0 * b2 + a2 * b3,
94
+ a1 * b2 + a3 * b3,
95
+ ];
96
+ }
97
+ exports.multiply = multiply;
98
+ /**
99
+ * Rotates a mat2 by the given angle
100
+ *
101
+ * @param a the matrix to rotate
102
+ * @param rad the angle to rotate the matrix by
103
+ */
104
+ function rotate(a, rad) {
105
+ const [a0, a1, a2, a3] = a;
106
+ const s = Math.sin(rad);
107
+ const c = Math.cos(rad);
108
+ return [a0 * c + a2 * s, a1 * c + a3 * s, a0 * -s + a2 * c, a1 * -s + a3 * c];
109
+ }
110
+ exports.rotate = rotate;
111
+ /**
112
+ * Scales the mat2 by the dimensions in the given vec2
113
+ **/
114
+ function scale(a, v) {
115
+ const [a0, a1, a2, a3] = a;
116
+ const [v0, v1] = v;
117
+ return [a0 * v0, a1 * v0, a2 * v1, a3 * v1];
118
+ }
119
+ exports.scale = scale;
120
+ /**
121
+ * Apply skew to the mat2d by the given angles
122
+ * https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skew
123
+ */
124
+ function skew(m, ax, ay) {
125
+ return multiply(m, fromSkew(ax, ay));
126
+ }
127
+ exports.skew = skew;
128
+ /**
129
+ * Creates a matrix from a given angle
130
+ */
131
+ function fromRotation(rad) {
132
+ const s = Math.sin(rad);
133
+ const c = Math.cos(rad);
134
+ return [c, s, -s, c];
135
+ }
136
+ exports.fromRotation = fromRotation;
137
+ /**
138
+ * Creates a matrix from a vector scaling
139
+ */
140
+ function fromScaling(v) {
141
+ return [v[0], 0, 0, v[1]];
142
+ }
143
+ exports.fromScaling = fromScaling;
144
+ /**
145
+ * Creates a matrix from a vector skew
146
+ * https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skew
147
+ */
148
+ function fromSkew(ax, ay) {
149
+ const x = Math.tan(ax);
150
+ const y = Math.tan(ay);
151
+ // prettier-ignore
152
+ return [
153
+ 1, y,
154
+ x, 1,
155
+ ];
156
+ }
157
+ exports.fromSkew = fromSkew;
158
+ /**
159
+ * Returns Frobenius norm of a mat2
160
+ */
161
+ function frob(a) {
162
+ return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3]);
163
+ }
164
+ exports.frob = frob;
165
+ /**
166
+ * Adds two mat2's
167
+ */
168
+ function add(a, b) {
169
+ return [a[0] + b[0], a[1] + b[1], a[2] + b[2], a[3] + b[3]];
170
+ }
171
+ exports.add = add;
172
+ /**
173
+ * Subtracts matrix b from matrix a
174
+ */
175
+ function subtract(a, b) {
176
+ return [a[0] - b[0], a[1] - b[1], a[2] - b[2], a[3] - b[3]];
177
+ }
178
+ exports.subtract = subtract;
179
+ /**
180
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
181
+ */
182
+ function exactEquals(a, b) {
183
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
184
+ }
185
+ exports.exactEquals = exactEquals;
186
+ /**
187
+ * Returns whether or not the matrices have approximately the same elements in the same position.
188
+ */
189
+ function equals(a, b) {
190
+ const [a0, a1, a2, a3] = a;
191
+ const [b0, b1, b2, b3] = b;
192
+ return (Math.abs(a0 - b0) <=
193
+ Common.EPSILON * Math.max(1, Math.abs(a0), Math.abs(b0)) &&
194
+ Math.abs(a1 - b1) <=
195
+ Common.EPSILON * Math.max(1, Math.abs(a1), Math.abs(b1)) &&
196
+ Math.abs(a2 - b2) <=
197
+ Common.EPSILON * Math.max(1, Math.abs(a2), Math.abs(b2)) &&
198
+ Math.abs(a3 - b3) <=
199
+ Common.EPSILON * Math.max(1, Math.abs(a3), Math.abs(b3)));
200
+ }
201
+ exports.equals = equals;
202
+ /**
203
+ * Multiply each element of the matrix by a scalar.
204
+ *
205
+ * @param a the matrix to scale
206
+ * @param s amount to scale the matrix's elements by
207
+ */
208
+ function multiplyScalar(a, s) {
209
+ return [a[0] * s, a[1] * s, a[2] * s, a[3] * s];
210
+ }
211
+ exports.multiplyScalar = multiplyScalar;
212
+ /**
213
+ * Adds two mat2's after multiplying each element of the second operand by a scalar value.
214
+ */
215
+ function multiplyScalarAndAdd(a, b, scale) {
216
+ return [
217
+ a[0] + b[0] * scale,
218
+ a[1] + b[1] * scale,
219
+ a[2] + b[2] * scale,
220
+ a[3] + b[3] * scale,
221
+ ];
222
+ }
223
+ exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
224
+ //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWF0Mi5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uL3NyYy9tYXQyLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiI7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0FBQUEsaURBQWtDO0FBS2xDLFNBQWdCLEVBQUUsQ0FBQyxHQUFXLEVBQUUsR0FBVyxFQUFFLEdBQVcsRUFBRSxHQUFXO0lBQ3BFLE9BQU8sQ0FBQyxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLENBQUMsQ0FBQTtBQUM1QixDQUFDO0FBRkQsZ0JBRUM7QUFFRDs7O0dBR0c7QUFDVSxRQUFBLFFBQVEsR0FBUyxNQUFNLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUU1QyxRQUFBLElBQUksR0FBUyxNQUFNLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUVyRDs7R0FFRztBQUNILFNBQWdCLFNBQVMsQ0FBQyxDQUFPO0lBQ2hDLGtCQUFrQjtJQUNsQixPQUFPO1FBQ04sQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDVixDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztLQUNWLENBQUE7QUFDRixDQUFDO0FBTkQsOEJBTUM7QUFFRDs7R0FFRztBQUNILFNBQWdCLE1BQU0sQ0FBQyxDQUFPO0lBQzdCLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7SUFFMUIsNEJBQTRCO0lBQzVCLE1BQU0sR0FBRyxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsQ0FBQTtJQUU3QixJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ1QsT0FBTyxJQUFJLENBQUE7S0FDWDtJQUNELE1BQU0sTUFBTSxHQUFHLENBQUMsR0FBRyxHQUFHLENBQUE7SUFFdEIsa0JBQWtCO0lBQ2xCLE9BQU87UUFDSixFQUFFLEdBQUcsTUFBTSxFQUFFLENBQUMsRUFBRSxHQUFHLE1BQU07UUFDMUIsQ0FBQyxFQUFFLEdBQUcsTUFBTSxFQUFHLEVBQUUsR0FBRyxNQUFNO0tBQzNCLENBQUE7QUFDRixDQUFDO0FBaEJELHdCQWdCQztBQUVEOztHQUVHO0FBQ0gsU0FBZ0IsT0FBTyxDQUFDLENBQU87SUFDOUIsOENBQThDO0lBQzlDLE1BQU0sRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUNmLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUE7QUFDaEMsQ0FBQztBQUpELDBCQUlDO0FBRUQ7OztHQUdHO0FBQ0gsU0FBZ0IsV0FBVyxDQUFDLENBQU87SUFDbEMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFDakMsQ0FBQztBQUZELGtDQUVDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixRQUFRLENBQUMsQ0FBTyxFQUFFLENBQU87SUFDeEMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUMxQixNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBRTFCLE9BQU87UUFDTixFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFO1FBQ2pCLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7UUFDakIsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRTtRQUNqQixFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFO0tBQ2pCLENBQUE7QUFDRixDQUFDO0FBVkQsNEJBVUM7QUFFRDs7Ozs7R0FLRztBQUNILFNBQWdCLE1BQU0sQ0FBQyxDQUFPLEVBQUUsR0FBVztJQUMxQyxNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQzFCLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDdkIsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUV2QixPQUFPLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxFQUFFLEdBQUcsQ0FBQyxFQUFFLEVBQUUsR0FBRyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsRUFBRSxFQUFFLEdBQUcsQ0FBQyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsRUFBRSxFQUFFLEdBQUcsQ0FBQyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFBO0FBQzlFLENBQUM7QUFORCx3QkFNQztBQUVEOztJQUVJO0FBQ0osU0FBZ0IsS0FBSyxDQUFDLENBQU8sRUFBRSxDQUFPO0lBQ3JDLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDMUIsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7SUFFbEIsT0FBTyxDQUFDLEVBQUUsR0FBRyxFQUFFLEVBQUUsRUFBRSxHQUFHLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFLENBQUMsQ0FBQTtBQUM1QyxDQUFDO0FBTEQsc0JBS0M7QUFFRDs7O0dBR0c7QUFDSCxTQUFnQixJQUFJLENBQUMsQ0FBTyxFQUFFLEVBQVUsRUFBRSxFQUFVO0lBQ25ELE9BQU8sUUFBUSxDQUFDLENBQUMsRUFBRSxRQUFRLENBQUMsRUFBRSxFQUFFLEVBQUUsQ0FBQyxDQUFDLENBQUE7QUFDckMsQ0FBQztBQUZELG9CQUVDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixZQUFZLENBQUMsR0FBVztJQUN2QyxNQUFNLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQ3ZCLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDdkIsT0FBTyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7QUFDckIsQ0FBQztBQUpELG9DQUlDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixXQUFXLENBQUMsQ0FBTztJQUNsQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFDMUIsQ0FBQztBQUZELGtDQUVDO0FBRUQ7OztHQUdHO0FBQ0gsU0FBZ0IsUUFBUSxDQUFDLEVBQVUsRUFBRSxFQUFVO0lBQzlDLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUE7SUFDdEIsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQTtJQUV0QixrQkFBa0I7SUFDbEIsT0FBTztRQUNOLENBQUMsRUFBRSxDQUFDO1FBQ0osQ0FBQyxFQUFFLENBQUM7S0FDSixDQUFBO0FBQ0YsQ0FBQztBQVRELDRCQVNDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixJQUFJLENBQUMsQ0FBTztJQUMzQixPQUFPLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFBO0FBQ3hFLENBQUM7QUFGRCxvQkFFQztBQUVEOztHQUVHO0FBQ0gsU0FBZ0IsR0FBRyxDQUFDLENBQU8sRUFBRSxDQUFPO0lBQ25DLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFDNUQsQ0FBQztBQUZELGtCQUVDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixRQUFRLENBQUMsQ0FBTyxFQUFFLENBQU87SUFDeEMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUM1RCxDQUFDO0FBRkQsNEJBRUM7QUFFRDs7R0FFRztBQUNILFNBQWdCLFdBQVcsQ0FBQyxDQUFPLEVBQUUsQ0FBTztJQUMzQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFDeEUsQ0FBQztBQUZELGtDQUVDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixNQUFNLENBQUMsQ0FBTyxFQUFFLENBQU87SUFDdEMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUMxQixNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQzFCLE9BQU8sQ0FDTixJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsR0FBRyxFQUFFLENBQUM7UUFDaEIsTUFBTSxDQUFDLE9BQU8sR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUM7UUFDekQsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLEdBQUcsRUFBRSxDQUFDO1lBQ2hCLE1BQU0sQ0FBQyxPQUFPLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQ3pELElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxHQUFHLEVBQUUsQ0FBQztZQUNoQixNQUFNLENBQUMsT0FBTyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUN6RCxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsR0FBRyxFQUFFLENBQUM7WUFDaEIsTUFBTSxDQUFDLE9BQU8sR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FDekQsQ0FBQTtBQUNGLENBQUM7QUFiRCx3QkFhQztBQUVEOzs7OztHQUtHO0FBQ0gsU0FBZ0IsY0FBYyxDQUFDLENBQU8sRUFBRSxDQUFTO0lBQ2hELE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUE7QUFDaEQsQ0FBQztBQUZELHdDQUVDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixvQkFBb0IsQ0FBQyxDQUFPLEVBQUUsQ0FBTyxFQUFFLEtBQWE7SUFDbkUsT0FBTztRQUNOLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsS0FBSztRQUNuQixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEtBQUs7UUFDbkIsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxLQUFLO1FBQ25CLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsS0FBSztLQUNuQixDQUFBO0FBQ0YsQ0FBQztBQVBELG9EQU9DIn0=
@@ -99,3 +99,4 @@ export declare function exactEquals(a: Mat2d, b: Mat2d): boolean;
99
99
  * Returns whether or not the matrices have approximately the same elements in the same position.
100
100
  */
101
101
  export declare function equals(a: Mat2d, b: Mat2d): boolean;
102
+ //# sourceMappingURL=mat2d.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"mat2d.d.ts","sourceRoot":"","sources":["../../src/mat2d.ts"],"names":[],"mappings":"AACA,OAAO,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAE3B;;;;;;;;;;;;;;;;;GAiBG;AAEH,MAAM,MAAM,KAAK,GAAG,SAAS,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAA;AAG7E,wBAAgB,EAAE,CACjB,CAAC,EAAE,MAAM,EAAG,CAAC,EAAE,MAAM,EACrB,CAAC,EAAE,MAAM,EAAG,CAAC,EAAE,MAAM,EACrB,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GACpB,KAAK,CAEP;AAED;;GAEG;AAEH,eAAO,MAAM,QAAQ,mBAInB,CAAA;AAEF,eAAO,MAAM,IAAI,EAAE,KAAyC,CAAA;AAE5D;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,KAAK,GAAG,KAAK,GAAG,IAAI,CAmB7C;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,KAAK,UAEnC;AAED;;GAEG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,KAAK,GAAG,KAAK,CAYlD;AAED;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,MAAM,GAAG,KAAK,CAWnD;AAED;;IAEI;AACJ,wBAAgB,KAAK,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,IAAI,GAAG,KAAK,CAU9C;AAED;;IAEI;AACJ,wBAAgB,SAAS,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,IAAI,GAAG,KAAK,CAUlD;AAED;;;GAGG;AACH,wBAAgB,IAAI,CAAC,CAAC,EAAE,KAAK,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GAAG,KAAK,CAE5D;AAED;;;GAGG;AACH,wBAAgB,YAAY,CAAC,GAAG,EAAE,MAAM,GAAG,KAAK,CAU/C;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,IAAI,GAAG,KAAK,CAS1C;AAED;;GAEG;AACH,wBAAgB,eAAe,CAAC,CAAC,EAAE,IAAI,GAAG,KAAK,CAS9C;AAED;;;GAGG;AACH,wBAAgB,QAAQ,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GAAG,KAAK,CAUtD;AAED;;GAEG;AACH,wBAAgB,IAAI,CAAC,CAAC,EAAE,KAAK,UAU5B;AAED;;GAEG;AACH,wBAAgB,GAAG,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,KAAK,GAAG,KAAK,CAS7C;AAED;;GAEG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,KAAK,GAAG,KAAK,CASlD;AAED;;GAEG;AACH,wBAAgB,cAAc,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,MAAM,GAAG,KAAK,CAOzD;AAED;;GAEG;AACH,wBAAgB,oBAAoB,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,KAAK,EAAE,KAAK,EAAE,MAAM,GAAG,KAAK,CAS7E;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,KAAK,WAS7C;AAED;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,KAAK,WAiBxC"}
@@ -0,0 +1,291 @@
1
+ "use strict";
2
+ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
3
+ if (k2 === undefined) k2 = k;
4
+ var desc = Object.getOwnPropertyDescriptor(m, k);
5
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
6
+ desc = { enumerable: true, get: function() { return m[k]; } };
7
+ }
8
+ Object.defineProperty(o, k2, desc);
9
+ }) : (function(o, m, k, k2) {
10
+ if (k2 === undefined) k2 = k;
11
+ o[k2] = m[k];
12
+ }));
13
+ var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
14
+ Object.defineProperty(o, "default", { enumerable: true, value: v });
15
+ }) : function(o, v) {
16
+ o["default"] = v;
17
+ });
18
+ var __importStar = (this && this.__importStar) || function (mod) {
19
+ if (mod && mod.__esModule) return mod;
20
+ var result = {};
21
+ if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
22
+ __setModuleDefault(result, mod);
23
+ return result;
24
+ };
25
+ Object.defineProperty(exports, "__esModule", { value: true });
26
+ exports.equals = exports.exactEquals = exports.multiplyScalarAndAdd = exports.multiplyScalar = exports.subtract = exports.add = exports.frob = exports.fromSkew = exports.fromTranslation = exports.fromScaling = exports.fromRotation = exports.skew = exports.translate = exports.scale = exports.rotate = exports.multiply = exports.determinant = exports.invert = exports.zero = exports.identity = exports.of = void 0;
27
+ const Common = __importStar(require("./common"));
28
+ // prettier-ignore
29
+ function of(a, b, c, d, tx, ty) {
30
+ return [a, b, c, d, tx, ty];
31
+ }
32
+ exports.of = of;
33
+ /**
34
+ * The identity matrix of mat2d
35
+ */
36
+ // prettier-ignore
37
+ exports.identity = Object.freeze([
38
+ 1, 0,
39
+ 0, 1,
40
+ 0, 0
41
+ ]);
42
+ exports.zero = Object.freeze([0, 0, 0, 0, 0, 0]);
43
+ /**
44
+ * Inverts a mat2d
45
+ */
46
+ function invert(a) {
47
+ const [aa, ab, ac, ad, atx, aty] = a;
48
+ const det = aa * ad - ab * ac;
49
+ if (!det) {
50
+ return null;
51
+ }
52
+ const detinv = 1 / det;
53
+ // prettier-ignore
54
+ return [
55
+ ad * detinv, -ab * detinv,
56
+ -ac * detinv, aa * detinv,
57
+ (ac * aty - ad * atx) * detinv,
58
+ (ab * atx - aa * aty) * detinv,
59
+ ];
60
+ }
61
+ exports.invert = invert;
62
+ /**
63
+ * Calculates the determinant of a mat2d
64
+ */
65
+ function determinant(a) {
66
+ return a[0] * a[3] - a[1] * a[2];
67
+ }
68
+ exports.determinant = determinant;
69
+ /**
70
+ * Multiplies two mat2d's
71
+ */
72
+ function multiply(a, b) {
73
+ const [a0, a1, a2, a3, a4, a5] = a;
74
+ const [b0, b1, b2, b3, b4, b5] = b;
75
+ // prettier-ignore
76
+ return [
77
+ a0 * b0 + a2 * b1, a1 * b0 + a3 * b1,
78
+ a0 * b2 + a2 * b3, a1 * b2 + a3 * b3,
79
+ a0 * b4 + a2 * b5 + a4,
80
+ a1 * b4 + a3 * b5 + a5,
81
+ ];
82
+ }
83
+ exports.multiply = multiply;
84
+ /**
85
+ * Rotates a mat2d by the given angle
86
+ */
87
+ function rotate(a, rad) {
88
+ const [a0, a1, a2, a3, tx, ty] = a;
89
+ const s = Math.sin(rad);
90
+ const c = Math.cos(rad);
91
+ // prettier-ignore
92
+ return [
93
+ a0 * c + a2 * s, a1 * c + a3 * s,
94
+ a0 * -s + a2 * c, a1 * -s + a3 * c,
95
+ tx, ty
96
+ ];
97
+ }
98
+ exports.rotate = rotate;
99
+ /**
100
+ * Scales the mat2d by the dimensions in the given vec2
101
+ **/
102
+ function scale(a, v) {
103
+ const [a0, a1, a2, a3, tx, ty] = a;
104
+ const [sx, sy] = v;
105
+ // prettier-ignore
106
+ return [
107
+ a0 * sx, a1 * sx,
108
+ a2 * sy, a3 * sy,
109
+ tx, ty
110
+ ];
111
+ }
112
+ exports.scale = scale;
113
+ /**
114
+ * Translates the mat2d by the dimensions in the given vec2
115
+ **/
116
+ function translate(m, v) {
117
+ const [a, b, c, d, tx, ty] = m;
118
+ const [x, y] = v;
119
+ // prettier-ignore
120
+ return [
121
+ a, b,
122
+ c, d,
123
+ a * x + c * y + tx,
124
+ b * x + d * y + ty
125
+ ];
126
+ }
127
+ exports.translate = translate;
128
+ /**
129
+ * Apply skew to the mat2d by the given angles
130
+ * https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skew
131
+ */
132
+ function skew(m, ax, ay) {
133
+ return multiply(m, fromSkew(ax, ay));
134
+ }
135
+ exports.skew = skew;
136
+ /**
137
+ * Creates a matrix from a given angle
138
+ * This is equivalent to (but much faster than):
139
+ */
140
+ function fromRotation(rad) {
141
+ const s = Math.sin(rad);
142
+ const c = Math.cos(rad);
143
+ // prettier-ignore
144
+ return [
145
+ c, s,
146
+ -s, c,
147
+ 0, 0,
148
+ ];
149
+ }
150
+ exports.fromRotation = fromRotation;
151
+ /**
152
+ * Creates a matrix from a vector scaling
153
+ */
154
+ function fromScaling(v) {
155
+ const [x, y] = v;
156
+ // prettier-ignore
157
+ return [
158
+ x, 0,
159
+ 0, y,
160
+ 0, 0,
161
+ ];
162
+ }
163
+ exports.fromScaling = fromScaling;
164
+ /**
165
+ * Creates a matrix from a vector translation
166
+ */
167
+ function fromTranslation(v) {
168
+ const [x, y] = v;
169
+ // prettier-ignore
170
+ return [
171
+ 1, 0,
172
+ 0, 1,
173
+ x, y,
174
+ ];
175
+ }
176
+ exports.fromTranslation = fromTranslation;
177
+ /**
178
+ * Creates a matrix from a vector skew
179
+ * https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skew
180
+ */
181
+ function fromSkew(ax, ay) {
182
+ const x = Math.tan(ax);
183
+ const y = Math.tan(ay);
184
+ // prettier-ignore
185
+ return [
186
+ 1, y,
187
+ x, 1,
188
+ 0, 0,
189
+ ];
190
+ }
191
+ exports.fromSkew = fromSkew;
192
+ /**
193
+ * Returns Frobenius norm of a mat2d
194
+ */
195
+ function frob(a) {
196
+ // prettier-ignore
197
+ return Math.sqrt(a[0] ** 2 +
198
+ a[1] ** 2 +
199
+ a[2] ** 2 +
200
+ a[3] ** 2 +
201
+ a[4] ** 2 +
202
+ a[5] ** 2 + 1);
203
+ }
204
+ exports.frob = frob;
205
+ /**
206
+ * Adds two mat2d's
207
+ */
208
+ function add(a, b) {
209
+ return [
210
+ a[0] + b[0],
211
+ a[1] + b[1],
212
+ a[2] + b[2],
213
+ a[3] + b[3],
214
+ a[4] + b[4],
215
+ a[5] + b[5],
216
+ ];
217
+ }
218
+ exports.add = add;
219
+ /**
220
+ * Subtracts matrix b from matrix a
221
+ */
222
+ function subtract(a, b) {
223
+ return [
224
+ a[0] - b[0],
225
+ a[1] - b[1],
226
+ a[2] - b[2],
227
+ a[3] - b[3],
228
+ a[4] - b[4],
229
+ a[5] - b[5],
230
+ ];
231
+ }
232
+ exports.subtract = subtract;
233
+ /**
234
+ * Multiply each element of the matrix by a scalar.
235
+ */
236
+ function multiplyScalar(a, s) {
237
+ // prettier-ignore
238
+ return [
239
+ a[0] * s, a[1] * s,
240
+ a[2] * s, a[3] * s,
241
+ a[4] * s, a[5] * s,
242
+ ];
243
+ }
244
+ exports.multiplyScalar = multiplyScalar;
245
+ /**
246
+ * Adds two mat2d's after multiplying each element of the second operand by a scalar value.
247
+ */
248
+ function multiplyScalarAndAdd(a, b, scale) {
249
+ return [
250
+ a[0] + b[0] * scale,
251
+ a[1] + b[1] * scale,
252
+ a[2] + b[2] * scale,
253
+ a[3] + b[3] * scale,
254
+ a[4] + b[4] * scale,
255
+ a[5] + b[5] * scale,
256
+ ];
257
+ }
258
+ exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
259
+ /**
260
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
261
+ */
262
+ function exactEquals(a, b) {
263
+ return (a[0] === b[0] &&
264
+ a[1] === b[1] &&
265
+ a[2] === b[2] &&
266
+ a[3] === b[3] &&
267
+ a[4] === b[4] &&
268
+ a[5] === b[5]);
269
+ }
270
+ exports.exactEquals = exactEquals;
271
+ /**
272
+ * Returns whether or not the matrices have approximately the same elements in the same position.
273
+ */
274
+ function equals(a, b) {
275
+ const [a0, a1, a2, a3, a4, a5] = a;
276
+ const [b0, b1, b2, b3, b4, b5] = b;
277
+ return (Math.abs(a0 - b0) <=
278
+ Common.EPSILON * Math.max(1, Math.abs(a0), Math.abs(b0)) &&
279
+ Math.abs(a1 - b1) <=
280
+ Common.EPSILON * Math.max(1, Math.abs(a1), Math.abs(b1)) &&
281
+ Math.abs(a2 - b2) <=
282
+ Common.EPSILON * Math.max(1, Math.abs(a2), Math.abs(b2)) &&
283
+ Math.abs(a3 - b3) <=
284
+ Common.EPSILON * Math.max(1, Math.abs(a3), Math.abs(b3)) &&
285
+ Math.abs(a4 - b4) <=
286
+ Common.EPSILON * Math.max(1, Math.abs(a4), Math.abs(b4)) &&
287
+ Math.abs(a5 - b5) <=
288
+ Common.EPSILON * Math.max(1, Math.abs(a5), Math.abs(b5)));
289
+ }
290
+ exports.equals = equals;
291
+ //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWF0MmQuanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi8uLi9zcmMvbWF0MmQudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6Ijs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7QUFBQSxpREFBa0M7QUF3QmxDLGtCQUFrQjtBQUNsQixTQUFnQixFQUFFLENBQ2pCLENBQVMsRUFBRyxDQUFTLEVBQ3JCLENBQVMsRUFBRyxDQUFTLEVBQ3JCLEVBQVUsRUFBRSxFQUFVO0lBRXRCLE9BQU8sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxDQUFBO0FBQzVCLENBQUM7QUFORCxnQkFNQztBQUVEOztHQUVHO0FBQ0gsa0JBQWtCO0FBQ0wsUUFBQSxRQUFRLEdBQUcsTUFBTSxDQUFDLE1BQU0sQ0FBQztJQUNyQyxDQUFDLEVBQUUsQ0FBQztJQUNKLENBQUMsRUFBRSxDQUFDO0lBQ0osQ0FBQyxFQUFFLENBQUM7Q0FDSixDQUFDLENBQUE7QUFFVyxRQUFBLElBQUksR0FBVSxNQUFNLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFBO0FBRTVEOztHQUVHO0FBQ0gsU0FBZ0IsTUFBTSxDQUFDLENBQVE7SUFDOUIsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxHQUFHLEVBQUUsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBRXBDLE1BQU0sR0FBRyxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsQ0FBQTtJQUU3QixJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ1QsT0FBTyxJQUFJLENBQUE7S0FDWDtJQUVELE1BQU0sTUFBTSxHQUFHLENBQUMsR0FBRyxHQUFHLENBQUE7SUFFdEIsa0JBQWtCO0lBQ2xCLE9BQU87UUFDSixFQUFFLEdBQUcsTUFBTSxFQUFFLENBQUMsRUFBRSxHQUFHLE1BQU07UUFDMUIsQ0FBQyxFQUFFLEdBQUcsTUFBTSxFQUFHLEVBQUUsR0FBRyxNQUFNO1FBRTFCLENBQUMsRUFBRSxHQUFHLEdBQUcsR0FBRyxFQUFFLEdBQUcsR0FBRyxDQUFDLEdBQUcsTUFBTTtRQUMvQixDQUFDLEVBQUUsR0FBRyxHQUFHLEdBQUcsRUFBRSxHQUFHLEdBQUcsQ0FBQyxHQUFHLE1BQU07S0FDOUIsQ0FBQTtBQUNGLENBQUM7QUFuQkQsd0JBbUJDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixXQUFXLENBQUMsQ0FBUTtJQUNuQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUNqQyxDQUFDO0FBRkQsa0NBRUM7QUFFRDs7R0FFRztBQUNILFNBQWdCLFFBQVEsQ0FBQyxDQUFRLEVBQUUsQ0FBUTtJQUMxQyxNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDbEMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBRWxDLGtCQUFrQjtJQUNsQixPQUFPO1FBQ04sRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7UUFDcEMsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7UUFFcEMsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7UUFDdEIsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7S0FDdEIsQ0FBQTtBQUNGLENBQUM7QUFaRCw0QkFZQztBQUVEOztHQUVHO0FBQ0gsU0FBZ0IsTUFBTSxDQUFDLENBQVEsRUFBRSxHQUFXO0lBQzNDLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUNsQyxNQUFNLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQ3ZCLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7SUFFdkIsa0JBQWtCO0lBQ2xCLE9BQU87UUFDTixFQUFFLEdBQUksQ0FBQyxHQUFHLEVBQUUsR0FBRyxDQUFDLEVBQUcsRUFBRSxHQUFJLENBQUMsR0FBRyxFQUFFLEdBQUcsQ0FBQztRQUNuQyxFQUFFLEdBQUcsQ0FBQyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsRUFBRyxFQUFFLEdBQUcsQ0FBQyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUM7UUFDbkMsRUFBRSxFQUFFLEVBQUU7S0FDTixDQUFBO0FBQ0YsQ0FBQztBQVhELHdCQVdDO0FBRUQ7O0lBRUk7QUFDSixTQUFnQixLQUFLLENBQUMsQ0FBUSxFQUFFLENBQU87SUFDdEMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQ2xDLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBRWxCLGtCQUFrQjtJQUNsQixPQUFPO1FBQ04sRUFBRSxHQUFHLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRTtRQUNoQixFQUFFLEdBQUcsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFO1FBQ2hCLEVBQUUsRUFBTyxFQUFFO0tBQ1gsQ0FBQTtBQUNGLENBQUM7QUFWRCxzQkFVQztBQUVEOztJQUVJO0FBQ0osU0FBZ0IsU0FBUyxDQUFDLENBQVEsRUFBRSxDQUFPO0lBQzFDLE1BQU0sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUM5QixNQUFNLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUVoQixrQkFBa0I7SUFDbEIsT0FBTztRQUNOLENBQUMsRUFBRSxDQUFDO1FBQ0osQ0FBQyxFQUFFLENBQUM7UUFDSixDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsRUFBRTtRQUNsQixDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsRUFBRTtLQUFDLENBQUE7QUFDckIsQ0FBQztBQVZELDhCQVVDO0FBRUQ7OztHQUdHO0FBQ0gsU0FBZ0IsSUFBSSxDQUFDLENBQVEsRUFBRSxFQUFVLEVBQUUsRUFBVTtJQUNwRCxPQUFPLFFBQVEsQ0FBQyxDQUFDLEVBQUUsUUFBUSxDQUFDLEVBQUUsRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFBO0FBQ3JDLENBQUM7QUFGRCxvQkFFQztBQUVEOzs7R0FHRztBQUNILFNBQWdCLFlBQVksQ0FBQyxHQUFXO0lBQ3ZDLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDdkIsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUV2QixrQkFBa0I7SUFDbEIsT0FBTztRQUNMLENBQUMsRUFBRSxDQUFDO1FBQ0wsQ0FBQyxDQUFDLEVBQUUsQ0FBQztRQUNKLENBQUMsRUFBRSxDQUFDO0tBQ0wsQ0FBQTtBQUNGLENBQUM7QUFWRCxvQ0FVQztBQUVEOztHQUVHO0FBQ0gsU0FBZ0IsV0FBVyxDQUFDLENBQU87SUFDbEMsTUFBTSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUE7SUFFaEIsa0JBQWtCO0lBQ2xCLE9BQU87UUFDTCxDQUFDLEVBQUUsQ0FBQztRQUNMLENBQUMsRUFBRSxDQUFDO1FBQ0osQ0FBQyxFQUFFLENBQUM7S0FDSixDQUFBO0FBQ0YsQ0FBQztBQVRELGtDQVNDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixlQUFlLENBQUMsQ0FBTztJQUN0QyxNQUFNLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUVoQixrQkFBa0I7SUFDbEIsT0FBTztRQUNOLENBQUMsRUFBRSxDQUFDO1FBQ0osQ0FBQyxFQUFFLENBQUM7UUFDSixDQUFDLEVBQUUsQ0FBQztLQUNKLENBQUE7QUFDRixDQUFDO0FBVEQsMENBU0M7QUFFRDs7O0dBR0c7QUFDSCxTQUFnQixRQUFRLENBQUMsRUFBVSxFQUFFLEVBQVU7SUFDOUMsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQTtJQUN0QixNQUFNLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFBO0lBRXRCLGtCQUFrQjtJQUNsQixPQUFPO1FBQ04sQ0FBQyxFQUFFLENBQUM7UUFDSixDQUFDLEVBQUUsQ0FBQztRQUNKLENBQUMsRUFBRSxDQUFDO0tBQ0osQ0FBQTtBQUNGLENBQUM7QUFWRCw0QkFVQztBQUVEOztHQUVHO0FBQ0gsU0FBZ0IsSUFBSSxDQUFDLENBQVE7SUFDNUIsa0JBQWtCO0lBQ2xCLE9BQU8sSUFBSSxDQUFDLElBQUksQ0FDZixDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQztRQUNULENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDO1FBQ1QsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUM7UUFDVCxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQztRQUNULENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDO1FBQ1QsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQ2IsQ0FBQTtBQUNGLENBQUM7QUFWRCxvQkFVQztBQUVEOztHQUVHO0FBQ0gsU0FBZ0IsR0FBRyxDQUFDLENBQVEsRUFBRSxDQUFRO0lBQ3JDLE9BQU87UUFDTixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNYLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ1gsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDWCxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNYLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ1gsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7S0FDWCxDQUFBO0FBQ0YsQ0FBQztBQVRELGtCQVNDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixRQUFRLENBQUMsQ0FBUSxFQUFFLENBQVE7SUFDMUMsT0FBTztRQUNOLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ1gsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDWCxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNYLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ1gsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDWCxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztLQUNYLENBQUE7QUFDRixDQUFDO0FBVEQsNEJBU0M7QUFFRDs7R0FFRztBQUNILFNBQWdCLGNBQWMsQ0FBQyxDQUFRLEVBQUUsQ0FBUztJQUNqRCxrQkFBa0I7SUFDbEIsT0FBTztRQUNOLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUM7UUFDbEIsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQztRQUNsQixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDO0tBQ2xCLENBQUE7QUFDRixDQUFDO0FBUEQsd0NBT0M7QUFFRDs7R0FFRztBQUNILFNBQWdCLG9CQUFvQixDQUFDLENBQVEsRUFBRSxDQUFRLEVBQUUsS0FBYTtJQUNyRSxPQUFPO1FBQ04sQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxLQUFLO1FBQ25CLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsS0FBSztRQUNuQixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEtBQUs7UUFDbkIsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxLQUFLO1FBQ25CLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsS0FBSztRQUNuQixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEtBQUs7S0FDbkIsQ0FBQTtBQUNGLENBQUM7QUFURCxvREFTQztBQUVEOztHQUVHO0FBQ0gsU0FBZ0IsV0FBVyxDQUFDLENBQVEsRUFBRSxDQUFRO0lBQzdDLE9BQU8sQ0FDTixDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNiLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2IsQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDYixDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNiLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2IsQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FDYixDQUFBO0FBQ0YsQ0FBQztBQVRELGtDQVNDO0FBRUQ7O0dBRUc7QUFDSCxTQUFnQixNQUFNLENBQUMsQ0FBUSxFQUFFLENBQVE7SUFDeEMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQ2xDLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUNsQyxPQUFPLENBQ04sSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLEdBQUcsRUFBRSxDQUFDO1FBQ2hCLE1BQU0sQ0FBQyxPQUFPLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQ3pELElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxHQUFHLEVBQUUsQ0FBQztZQUNoQixNQUFNLENBQUMsT0FBTyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUN6RCxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsR0FBRyxFQUFFLENBQUM7WUFDaEIsTUFBTSxDQUFDLE9BQU8sR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUM7UUFDekQsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLEdBQUcsRUFBRSxDQUFDO1lBQ2hCLE1BQU0sQ0FBQyxPQUFPLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQ3pELElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxHQUFHLEVBQUUsQ0FBQztZQUNoQixNQUFNLENBQUMsT0FBTyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUN6RCxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsR0FBRyxFQUFFLENBQUM7WUFDaEIsTUFBTSxDQUFDLE9BQU8sR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FDekQsQ0FBQTtBQUNGLENBQUM7QUFqQkQsd0JBaUJDIn0=
@@ -117,3 +117,4 @@ export declare function exactEquals(a: Mat3, b: Mat3): boolean;
117
117
  * Returns whether or not the matrices have approximately the same elements in the same position.
118
118
  */
119
119
  export declare function equals(a: Mat3, b: Mat3): boolean;
120
+ //# sourceMappingURL=mat3.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"mat3.d.ts","sourceRoot":"","sources":["../../src/mat3.ts"],"names":[],"mappings":"AACA,OAAO,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAC3B,OAAO,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAC3B,OAAO,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAC3B,OAAO,EAAC,IAAI,EAAC,MAAM,QAAQ,CAAA;AAG3B,MAAM,MAAM,IAAI,GAAG,SAAS;IAC3B,MAAM;IAAE,MAAM;IAAE,MAAM;IACtB,MAAM;IAAE,MAAM;IAAE,MAAM;IACtB,MAAM;IAAE,MAAM;IAAE,MAAM;CACtB,CAAA;AAGD,wBAAgB,EAAE,CACjB,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EACrC,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EACrC,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,GACnC,IAAI,CAON;AAED;;;GAGG;AAEH;;GAEG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAOtC;AAED;;GAEG;AAEH,eAAO,MAAM,QAAQ,mBAInB,CAAA;AAEF,eAAO,MAAM,IAAI,EAAE,IAAiD,CAAA;AAEpE;;GAEG;AACH,wBAAgB,SAAS,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAOvC;AAED;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,CA2B3C;AAED;;GAEG;AACH,wBAAgB,OAAO,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAcrC;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,IAAI,UAQlC;AAED;;GAEG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAiB/C;AAED;;GAEG;AACH,wBAAgB,SAAS,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAahD;AAED;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,IAAI,EAAE,GAAG,EAAE,MAAM,GAAG,IAAI,CAiBjD;AAED;;IAEI;AACJ,wBAAgB,KAAK,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAS5C;AAED;;GAEG;AACH,wBAAgB,eAAe,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAS7C;AAED;;GAEG;AACH,wBAAgB,YAAY,CAAC,GAAG,EAAE,MAAM,GAAG,IAAI,CAU9C;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CASzC;AAED;;IAEI;AACJ,wBAAgB,SAAS,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAOvC;AAED;;;GAGG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CA8BtC;AAED;;;GAGG;AACH,wBAAgB,cAAc,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,CA4CnD;AAED;;GAEG;AACH,wBAAgB,UAAU,CAAC,KAAK,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,IAAI,CAE9D;AAED;;GAEG;AACH,wBAAgB,IAAI,CAAC,CAAC,EAAE,IAAI,UAY3B;AAED;;GAEG;AACH,wBAAgB,GAAG,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAY1C;AAED;;GAEG;AACH,wBAAgB,QAAQ,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,GAAG,IAAI,CAY/C;AAED;;GAEG;AACH,wBAAgB,cAAc,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,MAAM,GAAG,IAAI,CAYvD;AAED;;GAEG;AACH,wBAAgB,oBAAoB,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,EAAE,KAAK,EAAE,MAAM,GAAG,IAAI,CAY1E;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,WAY3C;AAED;;GAEG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,WAuCtC"}