linearly 0.0.0 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,3 +1,18 @@
1
1
  # Lienarly
2
2
 
3
3
  [glMatrix](https://github.com/toji/gl-matrix)-like library but using immutable data structure.
4
+
5
+ ```js
6
+ // in gl-Matrix
7
+ const dir = vec3.fromValues(2, 1, 3)
8
+ vec3.normalize(dir, dir)
9
+
10
+ const out = vec3.create()
11
+ vec3.cross(out, dir, [0, 1, 0])
12
+ vec2.scale(out, out, 3)
13
+
14
+ // in linearly, you can simply write like this:
15
+ const dir = vec3.normalize([2, 1, 3])
16
+ let out = vec3.cross(dir, [0, 1, 0])
17
+ out = vec3.scale(out, 3)
18
+ ```
package/lib/common.js CHANGED
@@ -1,16 +1,30 @@
1
1
  /**
2
2
  * Common utilities
3
3
  */
4
- // Configuration Constants
5
- export const EPSILON = 0.000001;
6
- /**
7
- * Symmetric round
8
- * see https://www.npmjs.com/package/round-half-up-symmetric#user-content-detailed-background
9
- */
10
- export function round(a) {
11
- if (a >= 0)
12
- return Math.round(a);
13
- return a % 0.5 === 0 ? Math.floor(a) : Math.round(a);
14
- }
15
- export const DEFAULT_ANGLE_ORDER = 'zyx';
16
- //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiY29tbW9uLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vc3JjL2NvbW1vbi50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQTs7R0FFRztBQUVILDBCQUEwQjtBQUMxQixNQUFNLENBQUMsTUFBTSxPQUFPLEdBQUcsUUFBUSxDQUFBO0FBRS9COzs7R0FHRztBQUNILE1BQU0sVUFBVSxLQUFLLENBQUMsQ0FBUztJQUM5QixJQUFJLENBQUMsSUFBSSxDQUFDO1FBQUUsT0FBTyxJQUFJLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ2hDLE9BQU8sQ0FBQyxHQUFHLEdBQUcsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFDckQsQ0FBQztBQUlELE1BQU0sQ0FBQyxNQUFNLG1CQUFtQixHQUFlLEtBQUssQ0FBQSJ9
4
+ (function (factory) {
5
+ if (typeof module === "object" && typeof module.exports === "object") {
6
+ var v = factory(require, exports);
7
+ if (v !== undefined) module.exports = v;
8
+ }
9
+ else if (typeof define === "function" && define.amd) {
10
+ define(["require", "exports"], factory);
11
+ }
12
+ })(function (require, exports) {
13
+ "use strict";
14
+ Object.defineProperty(exports, "__esModule", { value: true });
15
+ exports.DEFAULT_ANGLE_ORDER = exports.round = exports.EPSILON = void 0;
16
+ // Configuration Constants
17
+ exports.EPSILON = 0.000001;
18
+ /**
19
+ * Symmetric round
20
+ * see https://www.npmjs.com/package/round-half-up-symmetric#user-content-detailed-background
21
+ */
22
+ function round(a) {
23
+ if (a >= 0)
24
+ return Math.round(a);
25
+ return a % 0.5 === 0 ? Math.floor(a) : Math.round(a);
26
+ }
27
+ exports.round = round;
28
+ exports.DEFAULT_ANGLE_ORDER = 'zyx';
29
+ });
30
+ //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiY29tbW9uLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vc3JjL2NvbW1vbi50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQTs7R0FFRzs7Ozs7Ozs7Ozs7OztJQUVILDBCQUEwQjtJQUNiLFFBQUEsT0FBTyxHQUFHLFFBQVEsQ0FBQTtJQUUvQjs7O09BR0c7SUFDSCxTQUFnQixLQUFLLENBQUMsQ0FBUztRQUM5QixJQUFJLENBQUMsSUFBSSxDQUFDO1lBQUUsT0FBTyxJQUFJLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFBO1FBQ2hDLE9BQU8sQ0FBQyxHQUFHLEdBQUcsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDckQsQ0FBQztJQUhELHNCQUdDO0lBSVksUUFBQSxtQkFBbUIsR0FBZSxLQUFLLENBQUEifQ==
package/lib/index.js CHANGED
@@ -1,9 +1,45 @@
1
- export * as vec2 from './vec2';
2
- export * as vec3 from './vec3';
3
- export * as vec4 from './vec4';
4
- export * as mat2 from './mat2';
5
- export * as mat2d from './mat2d';
6
- export * as mat3 from './mat3';
7
- export * as mat4 from './mat4';
8
- export * as quat from './quat';
9
- //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXguanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi9zcmMvaW5kZXgudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6IkFBQUEsT0FBTyxLQUFLLElBQUksTUFBTSxRQUFRLENBQUE7QUFHOUIsT0FBTyxLQUFLLElBQUksTUFBTSxRQUFRLENBQUE7QUFHOUIsT0FBTyxLQUFLLElBQUksTUFBTSxRQUFRLENBQUE7QUFHOUIsT0FBTyxLQUFLLElBQUksTUFBTSxRQUFRLENBQUE7QUFHOUIsT0FBTyxLQUFLLEtBQUssTUFBTSxTQUFTLENBQUE7QUFHaEMsT0FBTyxLQUFLLElBQUksTUFBTSxRQUFRLENBQUE7QUFHOUIsT0FBTyxLQUFLLElBQUksTUFBTSxRQUFRLENBQUE7QUFHOUIsT0FBTyxLQUFLLElBQUksTUFBTSxRQUFRLENBQUEifQ==
1
+ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
2
+ if (k2 === undefined) k2 = k;
3
+ var desc = Object.getOwnPropertyDescriptor(m, k);
4
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
5
+ desc = { enumerable: true, get: function() { return m[k]; } };
6
+ }
7
+ Object.defineProperty(o, k2, desc);
8
+ }) : (function(o, m, k, k2) {
9
+ if (k2 === undefined) k2 = k;
10
+ o[k2] = m[k];
11
+ }));
12
+ var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
13
+ Object.defineProperty(o, "default", { enumerable: true, value: v });
14
+ }) : function(o, v) {
15
+ o["default"] = v;
16
+ });
17
+ var __importStar = (this && this.__importStar) || function (mod) {
18
+ if (mod && mod.__esModule) return mod;
19
+ var result = {};
20
+ if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
21
+ __setModuleDefault(result, mod);
22
+ return result;
23
+ };
24
+ (function (factory) {
25
+ if (typeof module === "object" && typeof module.exports === "object") {
26
+ var v = factory(require, exports);
27
+ if (v !== undefined) module.exports = v;
28
+ }
29
+ else if (typeof define === "function" && define.amd) {
30
+ define(["require", "exports", "./vec2", "./vec3", "./vec4", "./mat2", "./mat2d", "./mat3", "./mat4", "./quat"], factory);
31
+ }
32
+ })(function (require, exports) {
33
+ "use strict";
34
+ Object.defineProperty(exports, "__esModule", { value: true });
35
+ exports.quat = exports.mat4 = exports.mat3 = exports.mat2d = exports.mat2 = exports.vec4 = exports.vec3 = exports.vec2 = void 0;
36
+ exports.vec2 = __importStar(require("./vec2"));
37
+ exports.vec3 = __importStar(require("./vec3"));
38
+ exports.vec4 = __importStar(require("./vec4"));
39
+ exports.mat2 = __importStar(require("./mat2"));
40
+ exports.mat2d = __importStar(require("./mat2d"));
41
+ exports.mat3 = __importStar(require("./mat3"));
42
+ exports.mat4 = __importStar(require("./mat4"));
43
+ exports.quat = __importStar(require("./quat"));
44
+ });
45
+ //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXguanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi9zcmMvaW5kZXgudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6Ijs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7SUFBQSwrQ0FBOEI7SUFHOUIsK0NBQThCO0lBRzlCLCtDQUE4QjtJQUc5QiwrQ0FBOEI7SUFHOUIsaURBQWdDO0lBR2hDLCtDQUE4QjtJQUc5QiwrQ0FBOEI7SUFHOUIsK0NBQThCIn0=
package/lib/mat2.d.ts CHANGED
@@ -5,6 +5,7 @@ export type Mat2 = readonly [number, number, number, number];
5
5
  *
6
6
  */
7
7
  export declare const identity: Mat2;
8
+ export declare const zero: Mat2;
8
9
  /**
9
10
  * Transpose the values of a mat2
10
11
  */
package/lib/mat2.js CHANGED
@@ -1,155 +1,208 @@
1
- import * as Common from './common';
2
- /**
3
- * The identity matrix of mat2
4
- *
5
- */
6
- export const identity = Object.freeze([1, 0, 0, 1]);
7
- /**
8
- * Transpose the values of a mat2
9
- */
10
- export function transpose(a) {
11
- // prettier-ignore
12
- return [
13
- a[0], a[2],
14
- a[1], a[3],
15
- ];
16
- }
17
- /**
18
- * Inverts a mat2
19
- */
20
- export function invert(a) {
21
- const [a0, a1, a2, a3] = a;
22
- // Calculate the determinant
23
- const det = a0 * a3 - a2 * a1;
24
- if (!det) {
25
- return null;
26
- }
27
- const detinv = 1 / det;
28
- // prettier-ignore
29
- return [
30
- a3 * detinv, -a1 * detinv,
31
- -a2 * detinv, a0 * detinv
32
- ];
33
- }
34
- /**
35
- * Calculates the adjugate of a mat2
36
- */
37
- export function adjoint(a) {
38
- // Caching this value is necessary if out == a
39
- const a0 = a[0];
40
- return [a[3], -a[1], -a[2], a0];
41
- }
42
- /**
43
- * Calculates the determinant of a mat2
44
- * @returns determinant of a
45
- */
46
- export function determinant(a) {
47
- return a[0] * a[3] - a[2] * a[1];
48
- }
49
- /**
50
- * Multiplies two mat2's
51
- */
52
- export function multiply(a, b) {
53
- const [a0, a1, a2, a3] = a;
54
- const [b0, b1, b2, b3] = b;
55
- return [
56
- a0 * b0 + a2 * b1,
57
- a1 * b0 + a3 * b1,
58
- a0 * b2 + a2 * b3,
59
- a1 * b2 + a3 * b3,
60
- ];
61
- }
62
- /**
63
- * Rotates a mat2 by the given angle
64
- *
65
- * @param a the matrix to rotate
66
- * @param rad the angle to rotate the matrix by
67
- */
68
- export function rotate(a, rad) {
69
- const [a0, a1, a2, a3] = a;
70
- const s = Math.sin(rad);
71
- const c = Math.cos(rad);
72
- return [a0 * c + a2 * s, a1 * c + a3 * s, a0 * -s + a2 * c, a1 * -s + a3 * c];
73
- }
74
- /**
75
- * Scales the mat2 by the dimensions in the given vec2
76
- **/
77
- export function scale(a, v) {
78
- const [a0, a1, a2, a3] = a;
79
- const [v0, v1] = v;
80
- return [a0 * v0, a1 * v0, a2 * v1, a3 * v1];
81
- }
82
- /**
83
- * Creates a matrix from a given angle
84
- */
85
- export function fromRotation(rad) {
86
- const s = Math.sin(rad);
87
- const c = Math.cos(rad);
88
- return [c, s, -s, c];
89
- }
90
- /**
91
- * Creates a matrix from a vector scaling
92
- */
93
- export function fromScaling(v) {
94
- return [v[0], 0, 0, v[1]];
95
- }
96
- /**
97
- * Returns Frobenius norm of a mat2
98
- */
99
- export function frob(a) {
100
- return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3]);
101
- }
102
- /**
103
- * Adds two mat2's
104
- */
105
- export function add(a, b) {
106
- return [a[0] + b[0], a[1] + b[1], a[2] + b[2], a[3] + b[3]];
107
- }
108
- /**
109
- * Subtracts matrix b from matrix a
110
- */
111
- export function subtract(a, b) {
112
- return [a[0] - b[0], a[1] - b[1], a[2] - b[2], a[3] - b[3]];
113
- }
114
- /**
115
- * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
116
- */
117
- export function exactEquals(a, b) {
118
- return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
119
- }
120
- /**
121
- * Returns whether or not the matrices have approximately the same elements in the same position.
122
- */
123
- export function equals(a, b) {
124
- const [a0, a1, a2, a3] = a;
125
- const [b0, b1, b2, b3] = b;
126
- return (Math.abs(a0 - b0) <=
127
- Common.EPSILON * Math.max(1, Math.abs(a0), Math.abs(b0)) &&
128
- Math.abs(a1 - b1) <=
129
- Common.EPSILON * Math.max(1, Math.abs(a1), Math.abs(b1)) &&
130
- Math.abs(a2 - b2) <=
131
- Common.EPSILON * Math.max(1, Math.abs(a2), Math.abs(b2)) &&
132
- Math.abs(a3 - b3) <=
133
- Common.EPSILON * Math.max(1, Math.abs(a3), Math.abs(b3)));
134
- }
135
- /**
136
- * Multiply each element of the matrix by a scalar.
137
- *
138
- * @param a the matrix to scale
139
- * @param s amount to scale the matrix's elements by
140
- */
141
- export function multiplyScalar(a, s) {
142
- return [a[0] * s, a[1] * s, a[2] * s, a[3] * s];
143
- }
144
- /**
145
- * Adds two mat2's after multiplying each element of the second operand by a scalar value.
146
- */
147
- export function multiplyScalarAndAdd(a, b, scale) {
148
- return [
149
- a[0] + b[0] * scale,
150
- a[1] + b[1] * scale,
151
- a[2] + b[2] * scale,
152
- a[3] + b[3] * scale,
153
- ];
154
- }
155
- //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWF0Mi5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uL3NyYy9tYXQyLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBLE9BQU8sS0FBSyxNQUFNLE1BQU0sVUFBVSxDQUFBO0FBS2xDOzs7R0FHRztBQUNILE1BQU0sQ0FBQyxNQUFNLFFBQVEsR0FBUyxNQUFNLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUV6RDs7R0FFRztBQUNILE1BQU0sVUFBVSxTQUFTLENBQUMsQ0FBTztJQUNoQyxrQkFBa0I7SUFDbEIsT0FBTztRQUNOLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ1YsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7S0FDVixDQUFBO0FBQ0YsQ0FBQztBQUVEOztHQUVHO0FBQ0gsTUFBTSxVQUFVLE1BQU0sQ0FBQyxDQUFPO0lBQzdCLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7SUFFMUIsNEJBQTRCO0lBQzVCLE1BQU0sR0FBRyxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsQ0FBQTtJQUU3QixJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ1QsT0FBTyxJQUFJLENBQUE7S0FDWDtJQUNELE1BQU0sTUFBTSxHQUFHLENBQUMsR0FBRyxHQUFHLENBQUE7SUFFdEIsa0JBQWtCO0lBQ2xCLE9BQU87UUFDSixFQUFFLEdBQUcsTUFBTSxFQUFFLENBQUMsRUFBRSxHQUFHLE1BQU07UUFDMUIsQ0FBQyxFQUFFLEdBQUcsTUFBTSxFQUFHLEVBQUUsR0FBRyxNQUFNO0tBQzNCLENBQUE7QUFDRixDQUFDO0FBRUQ7O0dBRUc7QUFDSCxNQUFNLFVBQVUsT0FBTyxDQUFDLENBQU87SUFDOUIsOENBQThDO0lBQzlDLE1BQU0sRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUNmLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUE7QUFDaEMsQ0FBQztBQUVEOzs7R0FHRztBQUNILE1BQU0sVUFBVSxXQUFXLENBQUMsQ0FBTztJQUNsQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUNqQyxDQUFDO0FBRUQ7O0dBRUc7QUFDSCxNQUFNLFVBQVUsUUFBUSxDQUFDLENBQU8sRUFBRSxDQUFPO0lBQ3hDLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDMUIsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUUxQixPQUFPO1FBQ04sRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRTtRQUNqQixFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFO1FBQ2pCLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7UUFDakIsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRTtLQUNqQixDQUFBO0FBQ0YsQ0FBQztBQUVEOzs7OztHQUtHO0FBQ0gsTUFBTSxVQUFVLE1BQU0sQ0FBQyxDQUFPLEVBQUUsR0FBVztJQUMxQyxNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQzFCLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDdkIsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUV2QixPQUFPLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxFQUFFLEdBQUcsQ0FBQyxFQUFFLEVBQUUsR0FBRyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsRUFBRSxFQUFFLEdBQUcsQ0FBQyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsRUFBRSxFQUFFLEdBQUcsQ0FBQyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFBO0FBQzlFLENBQUM7QUFFRDs7SUFFSTtBQUNKLE1BQU0sVUFBVSxLQUFLLENBQUMsQ0FBTyxFQUFFLENBQU87SUFDckMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUMxQixNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUVsQixPQUFPLENBQUMsRUFBRSxHQUFHLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFLEVBQUUsRUFBRSxHQUFHLEVBQUUsQ0FBQyxDQUFBO0FBQzVDLENBQUM7QUFFRDs7R0FFRztBQUNILE1BQU0sVUFBVSxZQUFZLENBQUMsR0FBVztJQUN2QyxNQUFNLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQ3ZCLE1BQU0sQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUE7SUFDdkIsT0FBTyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7QUFDckIsQ0FBQztBQUVEOztHQUVHO0FBQ0gsTUFBTSxVQUFVLFdBQVcsQ0FBQyxDQUFPO0lBQ2xDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUMxQixDQUFDO0FBRUQ7O0dBRUc7QUFDSCxNQUFNLFVBQVUsSUFBSSxDQUFDLENBQU87SUFDM0IsT0FBTyxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtBQUN4RSxDQUFDO0FBRUQ7O0dBRUc7QUFDSCxNQUFNLFVBQVUsR0FBRyxDQUFDLENBQU8sRUFBRSxDQUFPO0lBQ25DLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUE7QUFDNUQsQ0FBQztBQUVEOztHQUVHO0FBQ0gsTUFBTSxVQUFVLFFBQVEsQ0FBQyxDQUFPLEVBQUUsQ0FBTztJQUN4QyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFBO0FBQzVELENBQUM7QUFFRDs7R0FFRztBQUNILE1BQU0sVUFBVSxXQUFXLENBQUMsQ0FBTyxFQUFFLENBQU87SUFDM0MsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFBO0FBQ3hFLENBQUM7QUFFRDs7R0FFRztBQUNILE1BQU0sVUFBVSxNQUFNLENBQUMsQ0FBTyxFQUFFLENBQU87SUFDdEMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtJQUMxQixNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0lBQzFCLE9BQU8sQ0FDTixJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsR0FBRyxFQUFFLENBQUM7UUFDaEIsTUFBTSxDQUFDLE9BQU8sR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUM7UUFDekQsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLEdBQUcsRUFBRSxDQUFDO1lBQ2hCLE1BQU0sQ0FBQyxPQUFPLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQ3pELElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxHQUFHLEVBQUUsQ0FBQztZQUNoQixNQUFNLENBQUMsT0FBTyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUN6RCxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsR0FBRyxFQUFFLENBQUM7WUFDaEIsTUFBTSxDQUFDLE9BQU8sR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FDekQsQ0FBQTtBQUNGLENBQUM7QUFFRDs7Ozs7R0FLRztBQUNILE1BQU0sVUFBVSxjQUFjLENBQUMsQ0FBTyxFQUFFLENBQVM7SUFDaEQsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQTtBQUNoRCxDQUFDO0FBRUQ7O0dBRUc7QUFDSCxNQUFNLFVBQVUsb0JBQW9CLENBQUMsQ0FBTyxFQUFFLENBQU8sRUFBRSxLQUFhO0lBQ25FLE9BQU87UUFDTixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEtBQUs7UUFDbkIsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxLQUFLO1FBQ25CLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsS0FBSztRQUNuQixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEtBQUs7S0FDbkIsQ0FBQTtBQUNGLENBQUMifQ==
1
+ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
2
+ if (k2 === undefined) k2 = k;
3
+ var desc = Object.getOwnPropertyDescriptor(m, k);
4
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
5
+ desc = { enumerable: true, get: function() { return m[k]; } };
6
+ }
7
+ Object.defineProperty(o, k2, desc);
8
+ }) : (function(o, m, k, k2) {
9
+ if (k2 === undefined) k2 = k;
10
+ o[k2] = m[k];
11
+ }));
12
+ var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
13
+ Object.defineProperty(o, "default", { enumerable: true, value: v });
14
+ }) : function(o, v) {
15
+ o["default"] = v;
16
+ });
17
+ var __importStar = (this && this.__importStar) || function (mod) {
18
+ if (mod && mod.__esModule) return mod;
19
+ var result = {};
20
+ if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
21
+ __setModuleDefault(result, mod);
22
+ return result;
23
+ };
24
+ (function (factory) {
25
+ if (typeof module === "object" && typeof module.exports === "object") {
26
+ var v = factory(require, exports);
27
+ if (v !== undefined) module.exports = v;
28
+ }
29
+ else if (typeof define === "function" && define.amd) {
30
+ define(["require", "exports", "./common"], factory);
31
+ }
32
+ })(function (require, exports) {
33
+ "use strict";
34
+ Object.defineProperty(exports, "__esModule", { value: true });
35
+ exports.multiplyScalarAndAdd = exports.multiplyScalar = exports.equals = exports.exactEquals = exports.subtract = exports.add = exports.frob = exports.fromScaling = exports.fromRotation = exports.scale = exports.rotate = exports.multiply = exports.determinant = exports.adjoint = exports.invert = exports.transpose = exports.zero = exports.identity = void 0;
36
+ const Common = __importStar(require("./common"));
37
+ /**
38
+ * The identity matrix of mat2
39
+ *
40
+ */
41
+ exports.identity = Object.freeze([1, 0, 0, 1]);
42
+ exports.zero = Object.freeze([0, 0, 0, 0]);
43
+ /**
44
+ * Transpose the values of a mat2
45
+ */
46
+ function transpose(a) {
47
+ // prettier-ignore
48
+ return [
49
+ a[0], a[2],
50
+ a[1], a[3],
51
+ ];
52
+ }
53
+ exports.transpose = transpose;
54
+ /**
55
+ * Inverts a mat2
56
+ */
57
+ function invert(a) {
58
+ const [a0, a1, a2, a3] = a;
59
+ // Calculate the determinant
60
+ const det = a0 * a3 - a2 * a1;
61
+ if (!det) {
62
+ return null;
63
+ }
64
+ const detinv = 1 / det;
65
+ // prettier-ignore
66
+ return [
67
+ a3 * detinv, -a1 * detinv,
68
+ -a2 * detinv, a0 * detinv
69
+ ];
70
+ }
71
+ exports.invert = invert;
72
+ /**
73
+ * Calculates the adjugate of a mat2
74
+ */
75
+ function adjoint(a) {
76
+ // Caching this value is necessary if out == a
77
+ const a0 = a[0];
78
+ return [a[3], -a[1], -a[2], a0];
79
+ }
80
+ exports.adjoint = adjoint;
81
+ /**
82
+ * Calculates the determinant of a mat2
83
+ * @returns determinant of a
84
+ */
85
+ function determinant(a) {
86
+ return a[0] * a[3] - a[2] * a[1];
87
+ }
88
+ exports.determinant = determinant;
89
+ /**
90
+ * Multiplies two mat2's
91
+ */
92
+ function multiply(a, b) {
93
+ const [a0, a1, a2, a3] = a;
94
+ const [b0, b1, b2, b3] = b;
95
+ return [
96
+ a0 * b0 + a2 * b1,
97
+ a1 * b0 + a3 * b1,
98
+ a0 * b2 + a2 * b3,
99
+ a1 * b2 + a3 * b3,
100
+ ];
101
+ }
102
+ exports.multiply = multiply;
103
+ /**
104
+ * Rotates a mat2 by the given angle
105
+ *
106
+ * @param a the matrix to rotate
107
+ * @param rad the angle to rotate the matrix by
108
+ */
109
+ function rotate(a, rad) {
110
+ const [a0, a1, a2, a3] = a;
111
+ const s = Math.sin(rad);
112
+ const c = Math.cos(rad);
113
+ return [a0 * c + a2 * s, a1 * c + a3 * s, a0 * -s + a2 * c, a1 * -s + a3 * c];
114
+ }
115
+ exports.rotate = rotate;
116
+ /**
117
+ * Scales the mat2 by the dimensions in the given vec2
118
+ **/
119
+ function scale(a, v) {
120
+ const [a0, a1, a2, a3] = a;
121
+ const [v0, v1] = v;
122
+ return [a0 * v0, a1 * v0, a2 * v1, a3 * v1];
123
+ }
124
+ exports.scale = scale;
125
+ /**
126
+ * Creates a matrix from a given angle
127
+ */
128
+ function fromRotation(rad) {
129
+ const s = Math.sin(rad);
130
+ const c = Math.cos(rad);
131
+ return [c, s, -s, c];
132
+ }
133
+ exports.fromRotation = fromRotation;
134
+ /**
135
+ * Creates a matrix from a vector scaling
136
+ */
137
+ function fromScaling(v) {
138
+ return [v[0], 0, 0, v[1]];
139
+ }
140
+ exports.fromScaling = fromScaling;
141
+ /**
142
+ * Returns Frobenius norm of a mat2
143
+ */
144
+ function frob(a) {
145
+ return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3]);
146
+ }
147
+ exports.frob = frob;
148
+ /**
149
+ * Adds two mat2's
150
+ */
151
+ function add(a, b) {
152
+ return [a[0] + b[0], a[1] + b[1], a[2] + b[2], a[3] + b[3]];
153
+ }
154
+ exports.add = add;
155
+ /**
156
+ * Subtracts matrix b from matrix a
157
+ */
158
+ function subtract(a, b) {
159
+ return [a[0] - b[0], a[1] - b[1], a[2] - b[2], a[3] - b[3]];
160
+ }
161
+ exports.subtract = subtract;
162
+ /**
163
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
164
+ */
165
+ function exactEquals(a, b) {
166
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
167
+ }
168
+ exports.exactEquals = exactEquals;
169
+ /**
170
+ * Returns whether or not the matrices have approximately the same elements in the same position.
171
+ */
172
+ function equals(a, b) {
173
+ const [a0, a1, a2, a3] = a;
174
+ const [b0, b1, b2, b3] = b;
175
+ return (Math.abs(a0 - b0) <=
176
+ Common.EPSILON * Math.max(1, Math.abs(a0), Math.abs(b0)) &&
177
+ Math.abs(a1 - b1) <=
178
+ Common.EPSILON * Math.max(1, Math.abs(a1), Math.abs(b1)) &&
179
+ Math.abs(a2 - b2) <=
180
+ Common.EPSILON * Math.max(1, Math.abs(a2), Math.abs(b2)) &&
181
+ Math.abs(a3 - b3) <=
182
+ Common.EPSILON * Math.max(1, Math.abs(a3), Math.abs(b3)));
183
+ }
184
+ exports.equals = equals;
185
+ /**
186
+ * Multiply each element of the matrix by a scalar.
187
+ *
188
+ * @param a the matrix to scale
189
+ * @param s amount to scale the matrix's elements by
190
+ */
191
+ function multiplyScalar(a, s) {
192
+ return [a[0] * s, a[1] * s, a[2] * s, a[3] * s];
193
+ }
194
+ exports.multiplyScalar = multiplyScalar;
195
+ /**
196
+ * Adds two mat2's after multiplying each element of the second operand by a scalar value.
197
+ */
198
+ function multiplyScalarAndAdd(a, b, scale) {
199
+ return [
200
+ a[0] + b[0] * scale,
201
+ a[1] + b[1] * scale,
202
+ a[2] + b[2] * scale,
203
+ a[3] + b[3] * scale,
204
+ ];
205
+ }
206
+ exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
207
+ });
208
+ //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWF0Mi5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uL3NyYy9tYXQyLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiI7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0lBQUEsaURBQWtDO0lBS2xDOzs7T0FHRztJQUNVLFFBQUEsUUFBUSxHQUFTLE1BQU0sQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBRTVDLFFBQUEsSUFBSSxHQUFTLE1BQU0sQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBRXJEOztPQUVHO0lBQ0gsU0FBZ0IsU0FBUyxDQUFDLENBQU87UUFDaEMsa0JBQWtCO1FBQ2xCLE9BQU87WUFDTixDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUNWLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ1YsQ0FBQTtJQUNGLENBQUM7SUFORCw4QkFNQztJQUVEOztPQUVHO0lBQ0gsU0FBZ0IsTUFBTSxDQUFDLENBQU87UUFDN0IsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUUxQiw0QkFBNEI7UUFDNUIsTUFBTSxHQUFHLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxDQUFBO1FBRTdCLElBQUksQ0FBQyxHQUFHLEVBQUU7WUFDVCxPQUFPLElBQUksQ0FBQTtTQUNYO1FBQ0QsTUFBTSxNQUFNLEdBQUcsQ0FBQyxHQUFHLEdBQUcsQ0FBQTtRQUV0QixrQkFBa0I7UUFDbEIsT0FBTztZQUNKLEVBQUUsR0FBRyxNQUFNLEVBQUUsQ0FBQyxFQUFFLEdBQUcsTUFBTTtZQUMxQixDQUFDLEVBQUUsR0FBRyxNQUFNLEVBQUcsRUFBRSxHQUFHLE1BQU07U0FDM0IsQ0FBQTtJQUNGLENBQUM7SUFoQkQsd0JBZ0JDO0lBRUQ7O09BRUc7SUFDSCxTQUFnQixPQUFPLENBQUMsQ0FBTztRQUM5Qiw4Q0FBOEM7UUFDOUMsTUFBTSxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFBO1FBQ2YsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQTtJQUNoQyxDQUFDO0lBSkQsMEJBSUM7SUFFRDs7O09BR0c7SUFDSCxTQUFnQixXQUFXLENBQUMsQ0FBTztRQUNsQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUNqQyxDQUFDO0lBRkQsa0NBRUM7SUFFRDs7T0FFRztJQUNILFNBQWdCLFFBQVEsQ0FBQyxDQUFPLEVBQUUsQ0FBTztRQUN4QyxNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQzFCLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7UUFFMUIsT0FBTztZQUNOLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7WUFDakIsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRTtZQUNqQixFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFO1lBQ2pCLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUU7U0FDakIsQ0FBQTtJQUNGLENBQUM7SUFWRCw0QkFVQztJQUVEOzs7OztPQUtHO0lBQ0gsU0FBZ0IsTUFBTSxDQUFDLENBQU8sRUFBRSxHQUFXO1FBQzFDLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDMUIsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUN2QixNQUFNLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBRXZCLE9BQU8sQ0FBQyxFQUFFLEdBQUcsQ0FBQyxHQUFHLEVBQUUsR0FBRyxDQUFDLEVBQUUsRUFBRSxHQUFHLENBQUMsR0FBRyxFQUFFLEdBQUcsQ0FBQyxFQUFFLEVBQUUsR0FBRyxDQUFDLENBQUMsR0FBRyxFQUFFLEdBQUcsQ0FBQyxFQUFFLEVBQUUsR0FBRyxDQUFDLENBQUMsR0FBRyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUE7SUFDOUUsQ0FBQztJQU5ELHdCQU1DO0lBRUQ7O1FBRUk7SUFDSixTQUFnQixLQUFLLENBQUMsQ0FBTyxFQUFFLENBQU87UUFDckMsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUMxQixNQUFNLENBQUMsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUVsQixPQUFPLENBQUMsRUFBRSxHQUFHLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFLEVBQUUsRUFBRSxHQUFHLEVBQUUsQ0FBQyxDQUFBO0lBQzVDLENBQUM7SUFMRCxzQkFLQztJQUVEOztPQUVHO0lBQ0gsU0FBZ0IsWUFBWSxDQUFDLEdBQVc7UUFDdkMsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUN2QixNQUFNLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFBO1FBQ3ZCLE9BQU8sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFBO0lBQ3JCLENBQUM7SUFKRCxvQ0FJQztJQUVEOztPQUVHO0lBQ0gsU0FBZ0IsV0FBVyxDQUFDLENBQU87UUFDbEMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQzFCLENBQUM7SUFGRCxrQ0FFQztJQUVEOztPQUVHO0lBQ0gsU0FBZ0IsSUFBSSxDQUFDLENBQU87UUFDM0IsT0FBTyxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQTtJQUN4RSxDQUFDO0lBRkQsb0JBRUM7SUFFRDs7T0FFRztJQUNILFNBQWdCLEdBQUcsQ0FBQyxDQUFPLEVBQUUsQ0FBTztRQUNuQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQzVELENBQUM7SUFGRCxrQkFFQztJQUVEOztPQUVHO0lBQ0gsU0FBZ0IsUUFBUSxDQUFDLENBQU8sRUFBRSxDQUFPO1FBQ3hDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUE7SUFDNUQsQ0FBQztJQUZELDRCQUVDO0lBRUQ7O09BRUc7SUFDSCxTQUFnQixXQUFXLENBQUMsQ0FBTyxFQUFFLENBQU87UUFDM0MsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFBO0lBQ3hFLENBQUM7SUFGRCxrQ0FFQztJQUVEOztPQUVHO0lBQ0gsU0FBZ0IsTUFBTSxDQUFDLENBQU8sRUFBRSxDQUFPO1FBQ3RDLE1BQU0sQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDMUIsTUFBTSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtRQUMxQixPQUFPLENBQ04sSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLEdBQUcsRUFBRSxDQUFDO1lBQ2hCLE1BQU0sQ0FBQyxPQUFPLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1lBQ3pELElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxHQUFHLEVBQUUsQ0FBQztnQkFDaEIsTUFBTSxDQUFDLE9BQU8sR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUM7WUFDekQsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLEdBQUcsRUFBRSxDQUFDO2dCQUNoQixNQUFNLENBQUMsT0FBTyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQztZQUN6RCxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsR0FBRyxFQUFFLENBQUM7Z0JBQ2hCLE1BQU0sQ0FBQyxPQUFPLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQ3pELENBQUE7SUFDRixDQUFDO0lBYkQsd0JBYUM7SUFFRDs7Ozs7T0FLRztJQUNILFNBQWdCLGNBQWMsQ0FBQyxDQUFPLEVBQUUsQ0FBUztRQUNoRCxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFBO0lBQ2hELENBQUM7SUFGRCx3Q0FFQztJQUVEOztPQUVHO0lBQ0gsU0FBZ0Isb0JBQW9CLENBQUMsQ0FBTyxFQUFFLENBQU8sRUFBRSxLQUFhO1FBQ25FLE9BQU87WUFDTixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEtBQUs7WUFDbkIsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxLQUFLO1lBQ25CLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsS0FBSztZQUNuQixDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEtBQUs7U0FDbkIsQ0FBQTtJQUNGLENBQUM7SUFQRCxvREFPQyJ9
package/lib/mat2d.d.ts CHANGED
@@ -22,6 +22,7 @@ export type Mat2d = readonly [number, number, number, number, number, number];
22
22
  * The identity matrix of mat2d
23
23
  */
24
24
  export declare const identity: readonly number[];
25
+ export declare const zero: Mat2d;
25
26
  /**
26
27
  * Inverts a mat2d
27
28
  */