learngraph 0.1.0 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,8 +1,27 @@
1
- # jali
1
+ # LearnGraph
2
2
 
3
- AI-powered educational knowledge graph infrastructure.
3
+ **The world's first AI-powered learning path generator.**
4
4
 
5
- See the [main README](../../README.md) for full documentation.
5
+ Transform any syllabus into personalized mastery paths with learning science built in. Every student's path to mastery, powered by decades of educational research.
6
+
7
+ [![npm version](https://img.shields.io/npm/v/learngraph.svg)](https://www.npmjs.com/package/learngraph)
8
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
9
+
10
+ ## Why LearnGraph?
11
+
12
+ **The Problem**: Traditional curricula treat all learners the same. They present content linearly, ignore prerequisite gaps, and fail to adapt to individual progress.
13
+
14
+ **The Solution**: LearnGraph decomposes curricula into skill graphs, automatically identifies each learner's Zone of Proximal Development (ZPD), and generates personalized learning paths that respect cognitive load limits.
15
+
16
+ ### Key Features
17
+
18
+ - **Zone of Proximal Development (ZPD)** - Identifies skills that are challenging but achievable
19
+ - **Bloom's Taxonomy Integration** - Automatic detection and progression through cognitive levels
20
+ - **Bayesian Knowledge Tracing (BKT)** - Probabilistic mastery estimation from performance data
21
+ - **Spaced Repetition** - Optimal review scheduling based on memory science
22
+ - **Prerequisite Mapping** - Hard, soft, and recommended dependency relationships
23
+ - **Threshold Concepts** - Identifies transformative "gateway" skills that unlock understanding
24
+ - **Cognitive Load Management** - Respects working memory limits in session planning
6
25
 
7
26
  ## Installation
8
27
 
@@ -13,13 +32,95 @@ npm install learngraph
13
32
  ## Quick Start
14
33
 
15
34
  ```typescript
16
- import { createSkillId, type SkillNode, detectBloomLevel } from 'learngraph';
35
+ import {
36
+ createSkillId,
37
+ detectBloomLevel,
38
+ hasMastery,
39
+ type SkillNode
40
+ } from 'learngraph';
17
41
 
18
42
  // Detect Bloom's level from a learning objective
19
43
  const level = detectBloomLevel('Calculate the derivative of a polynomial');
20
44
  console.log(level); // 'apply'
45
+
46
+ // Define a skill in the knowledge graph
47
+ const skill: SkillNode = {
48
+ id: createSkillId('derivatives-polynomials'),
49
+ name: 'Polynomial Derivatives',
50
+ description: 'Calculate derivatives of polynomial functions using power rule',
51
+ bloomLevel: 'apply',
52
+ difficulty: 0.4,
53
+ isThresholdConcept: false,
54
+ masteryThreshold: 0.8,
55
+ estimatedMinutes: 30,
56
+ tags: ['calculus', 'derivatives'],
57
+ metadata: {},
58
+ createdAt: new Date().toISOString(),
59
+ updatedAt: new Date().toISOString(),
60
+ };
61
+
62
+ // Check if learner has mastered a skill
63
+ const mastered = hasMastery(0.85); // true (above 0.8 threshold)
64
+ ```
65
+
66
+ ## Educational Research Foundations
67
+
68
+ LearnGraph is built on decades of peer-reviewed educational psychology research:
69
+
70
+ | Framework | Purpose | Key Benefit |
71
+ |-----------|---------|-------------|
72
+ | **Zone of Proximal Development** | Vygotsky's theory of optimal learning challenge | Keeps learners in the "sweet spot" |
73
+ | **Bloom's Taxonomy** | Cognitive complexity hierarchy | Ensures proper skill progression |
74
+ | **Bayesian Knowledge Tracing** | Probabilistic mastery modeling | Accurate knowledge state estimation |
75
+ | **Item Response Theory** | Skill difficulty calibration | Fair assessment across items |
76
+ | **Spaced Repetition** | Memory consolidation optimization | Long-term retention |
77
+ | **Cognitive Load Theory** | Working memory management | Prevents overwhelm |
78
+
79
+ ## Submodule Exports
80
+
81
+ ```typescript
82
+ // Core types and utilities
83
+ import { SkillNode, SkillEdge } from 'learngraph';
84
+
85
+ // Storage adapters (Neo4j, LevelGraph)
86
+ import { GraphStorage } from 'learngraph/storage';
87
+
88
+ // LLM integration for curriculum decomposition
89
+ import { LLMProvider } from 'learngraph/llm';
90
+
91
+ // Query builders and ZPD calculation
92
+ import { ZPDResult, LearningPath } from 'learngraph/query';
93
+
94
+ // Educational utilities (Bloom's, mastery, etc.)
95
+ import { detectBloomLevel, hasMastery } from 'learngraph/education';
21
96
  ```
22
97
 
98
+ ## Use Cases
99
+
100
+ - **Intelligent Tutoring Systems (ITS)** - Build adaptive learning platforms
101
+ - **Curriculum Decomposition** - Transform syllabi into skill graphs
102
+ - **Learning Path Generation** - Personalized routes to mastery
103
+ - **Prerequisite Analysis** - Identify and fill knowledge gaps
104
+ - **Competency-Based Education** - Track and verify skill mastery
105
+ - **Corporate Training** - Personalized upskilling programs
106
+
107
+ ## Author
108
+
109
+ **Dr. Ernesto Lee** - Educational technologist and learning scientist
110
+
111
+ - Email: dr.ernesto.lee@gmail.com
112
+ - GitHub: [@fenago](https://github.com/fenago)
113
+
114
+ ## Contributing
115
+
116
+ Contributions are welcome! Please see the [main repository](https://github.com/fenago/Jali) for guidelines.
117
+
23
118
  ## License
24
119
 
25
- MIT
120
+ MIT - See [LICENSE](./LICENSE) for details.
121
+
122
+ ## Links
123
+
124
+ - [GitHub Repository](https://github.com/fenago/Jali)
125
+ - [Issue Tracker](https://github.com/fenago/Jali/issues)
126
+ - [Sponsor](https://github.com/sponsors/fenago)
package/dist/cjs/index.js CHANGED
@@ -53,7 +53,7 @@ __exportStar(require("./types/index.js"), exports);
53
53
  /**
54
54
  * Package version
55
55
  */
56
- exports.VERSION = '0.1.0';
56
+ exports.VERSION = '0.1.1';
57
57
  /**
58
58
  * Package name
59
59
  */
package/dist/esm/index.js CHANGED
@@ -36,7 +36,7 @@ export * from './types/index.js';
36
36
  /**
37
37
  * Package version
38
38
  */
39
- export const VERSION = '0.1.0';
39
+ export const VERSION = '0.1.1';
40
40
  /**
41
41
  * Package name
42
42
  */
@@ -30,7 +30,7 @@ export * from './types/index.js';
30
30
  /**
31
31
  * Package version
32
32
  */
33
- export declare const VERSION = "0.1.0";
33
+ export declare const VERSION = "0.1.1";
34
34
  /**
35
35
  * Package name
36
36
  */
package/package.json CHANGED
@@ -1,14 +1,22 @@
1
1
  {
2
2
  "name": "learngraph",
3
- "version": "0.1.0",
4
- "description": "AI-powered educational knowledge graph infrastructure - decompose curricula into skill graphs with learning science built in",
5
- "author": "LearnGraph Team",
3
+ "version": "0.1.1",
4
+ "description": "The world's first AI-powered learning path generator. Transform syllabi into personalized mastery paths with Zone of Proximal Development (ZPD), Bloom's Taxonomy, spaced repetition, and Bayesian Knowledge Tracing built in. Every student's path to mastery.",
5
+ "author": "Dr. Ernesto Lee <dr.ernesto.lee@gmail.com>",
6
6
  "license": "MIT",
7
+ "homepage": "https://github.com/fenago/Jali#readme",
8
+ "bugs": {
9
+ "url": "https://github.com/fenago/Jali/issues"
10
+ },
7
11
  "repository": {
8
12
  "type": "git",
9
- "url": "https://github.com/fenago/Jali.git",
13
+ "url": "git+https://github.com/fenago/Jali.git",
10
14
  "directory": "packages/core"
11
15
  },
16
+ "funding": {
17
+ "type": "github",
18
+ "url": "https://github.com/sponsors/fenago"
19
+ },
12
20
  "keywords": [
13
21
  "education",
14
22
  "knowledge-graph",
@@ -20,9 +28,26 @@
20
28
  "llm",
21
29
  "mastery-learning",
22
30
  "zpd",
31
+ "zone-of-proximal-development",
23
32
  "blooms-taxonomy",
24
33
  "adaptive-learning",
25
- "edtech"
34
+ "edtech",
35
+ "intelligent-tutoring-system",
36
+ "its",
37
+ "bayesian-knowledge-tracing",
38
+ "bkt",
39
+ "item-response-theory",
40
+ "irt",
41
+ "spaced-repetition",
42
+ "cognitive-load-theory",
43
+ "personalized-learning",
44
+ "learning-path",
45
+ "skill-graph",
46
+ "prerequisite-mapping",
47
+ "educational-psychology",
48
+ "learning-science",
49
+ "curriculum-decomposition",
50
+ "mastery-threshold"
26
51
  ],
27
52
  "type": "module",
28
53
  "main": "./dist/cjs/index.js",