learngraph 0.1.0 → 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +106 -5
- package/dist/cjs/index.js +1 -1
- package/dist/esm/index.js +1 -1
- package/dist/types/index.d.ts +1 -1
- package/package.json +30 -5
package/README.md
CHANGED
|
@@ -1,8 +1,27 @@
|
|
|
1
|
-
#
|
|
1
|
+
# LearnGraph
|
|
2
2
|
|
|
3
|
-
AI-powered
|
|
3
|
+
**The world's first AI-powered learning path generator.**
|
|
4
4
|
|
|
5
|
-
|
|
5
|
+
Transform any syllabus into personalized mastery paths with learning science built in. Every student's path to mastery, powered by decades of educational research.
|
|
6
|
+
|
|
7
|
+
[](https://www.npmjs.com/package/learngraph)
|
|
8
|
+
[](https://opensource.org/licenses/MIT)
|
|
9
|
+
|
|
10
|
+
## Why LearnGraph?
|
|
11
|
+
|
|
12
|
+
**The Problem**: Traditional curricula treat all learners the same. They present content linearly, ignore prerequisite gaps, and fail to adapt to individual progress.
|
|
13
|
+
|
|
14
|
+
**The Solution**: LearnGraph decomposes curricula into skill graphs, automatically identifies each learner's Zone of Proximal Development (ZPD), and generates personalized learning paths that respect cognitive load limits.
|
|
15
|
+
|
|
16
|
+
### Key Features
|
|
17
|
+
|
|
18
|
+
- **Zone of Proximal Development (ZPD)** - Identifies skills that are challenging but achievable
|
|
19
|
+
- **Bloom's Taxonomy Integration** - Automatic detection and progression through cognitive levels
|
|
20
|
+
- **Bayesian Knowledge Tracing (BKT)** - Probabilistic mastery estimation from performance data
|
|
21
|
+
- **Spaced Repetition** - Optimal review scheduling based on memory science
|
|
22
|
+
- **Prerequisite Mapping** - Hard, soft, and recommended dependency relationships
|
|
23
|
+
- **Threshold Concepts** - Identifies transformative "gateway" skills that unlock understanding
|
|
24
|
+
- **Cognitive Load Management** - Respects working memory limits in session planning
|
|
6
25
|
|
|
7
26
|
## Installation
|
|
8
27
|
|
|
@@ -13,13 +32,95 @@ npm install learngraph
|
|
|
13
32
|
## Quick Start
|
|
14
33
|
|
|
15
34
|
```typescript
|
|
16
|
-
import {
|
|
35
|
+
import {
|
|
36
|
+
createSkillId,
|
|
37
|
+
detectBloomLevel,
|
|
38
|
+
hasMastery,
|
|
39
|
+
type SkillNode
|
|
40
|
+
} from 'learngraph';
|
|
17
41
|
|
|
18
42
|
// Detect Bloom's level from a learning objective
|
|
19
43
|
const level = detectBloomLevel('Calculate the derivative of a polynomial');
|
|
20
44
|
console.log(level); // 'apply'
|
|
45
|
+
|
|
46
|
+
// Define a skill in the knowledge graph
|
|
47
|
+
const skill: SkillNode = {
|
|
48
|
+
id: createSkillId('derivatives-polynomials'),
|
|
49
|
+
name: 'Polynomial Derivatives',
|
|
50
|
+
description: 'Calculate derivatives of polynomial functions using power rule',
|
|
51
|
+
bloomLevel: 'apply',
|
|
52
|
+
difficulty: 0.4,
|
|
53
|
+
isThresholdConcept: false,
|
|
54
|
+
masteryThreshold: 0.8,
|
|
55
|
+
estimatedMinutes: 30,
|
|
56
|
+
tags: ['calculus', 'derivatives'],
|
|
57
|
+
metadata: {},
|
|
58
|
+
createdAt: new Date().toISOString(),
|
|
59
|
+
updatedAt: new Date().toISOString(),
|
|
60
|
+
};
|
|
61
|
+
|
|
62
|
+
// Check if learner has mastered a skill
|
|
63
|
+
const mastered = hasMastery(0.85); // true (above 0.8 threshold)
|
|
64
|
+
```
|
|
65
|
+
|
|
66
|
+
## Educational Research Foundations
|
|
67
|
+
|
|
68
|
+
LearnGraph is built on decades of peer-reviewed educational psychology research:
|
|
69
|
+
|
|
70
|
+
| Framework | Purpose | Key Benefit |
|
|
71
|
+
|-----------|---------|-------------|
|
|
72
|
+
| **Zone of Proximal Development** | Vygotsky's theory of optimal learning challenge | Keeps learners in the "sweet spot" |
|
|
73
|
+
| **Bloom's Taxonomy** | Cognitive complexity hierarchy | Ensures proper skill progression |
|
|
74
|
+
| **Bayesian Knowledge Tracing** | Probabilistic mastery modeling | Accurate knowledge state estimation |
|
|
75
|
+
| **Item Response Theory** | Skill difficulty calibration | Fair assessment across items |
|
|
76
|
+
| **Spaced Repetition** | Memory consolidation optimization | Long-term retention |
|
|
77
|
+
| **Cognitive Load Theory** | Working memory management | Prevents overwhelm |
|
|
78
|
+
|
|
79
|
+
## Submodule Exports
|
|
80
|
+
|
|
81
|
+
```typescript
|
|
82
|
+
// Core types and utilities
|
|
83
|
+
import { SkillNode, SkillEdge } from 'learngraph';
|
|
84
|
+
|
|
85
|
+
// Storage adapters (Neo4j, LevelGraph)
|
|
86
|
+
import { GraphStorage } from 'learngraph/storage';
|
|
87
|
+
|
|
88
|
+
// LLM integration for curriculum decomposition
|
|
89
|
+
import { LLMProvider } from 'learngraph/llm';
|
|
90
|
+
|
|
91
|
+
// Query builders and ZPD calculation
|
|
92
|
+
import { ZPDResult, LearningPath } from 'learngraph/query';
|
|
93
|
+
|
|
94
|
+
// Educational utilities (Bloom's, mastery, etc.)
|
|
95
|
+
import { detectBloomLevel, hasMastery } from 'learngraph/education';
|
|
21
96
|
```
|
|
22
97
|
|
|
98
|
+
## Use Cases
|
|
99
|
+
|
|
100
|
+
- **Intelligent Tutoring Systems (ITS)** - Build adaptive learning platforms
|
|
101
|
+
- **Curriculum Decomposition** - Transform syllabi into skill graphs
|
|
102
|
+
- **Learning Path Generation** - Personalized routes to mastery
|
|
103
|
+
- **Prerequisite Analysis** - Identify and fill knowledge gaps
|
|
104
|
+
- **Competency-Based Education** - Track and verify skill mastery
|
|
105
|
+
- **Corporate Training** - Personalized upskilling programs
|
|
106
|
+
|
|
107
|
+
## Author
|
|
108
|
+
|
|
109
|
+
**Dr. Ernesto Lee** - Educational technologist and learning scientist
|
|
110
|
+
|
|
111
|
+
- Email: dr.ernesto.lee@gmail.com
|
|
112
|
+
- GitHub: [@fenago](https://github.com/fenago)
|
|
113
|
+
|
|
114
|
+
## Contributing
|
|
115
|
+
|
|
116
|
+
Contributions are welcome! Please see the [main repository](https://github.com/fenago/Jali) for guidelines.
|
|
117
|
+
|
|
23
118
|
## License
|
|
24
119
|
|
|
25
|
-
MIT
|
|
120
|
+
MIT - See [LICENSE](./LICENSE) for details.
|
|
121
|
+
|
|
122
|
+
## Links
|
|
123
|
+
|
|
124
|
+
- [GitHub Repository](https://github.com/fenago/Jali)
|
|
125
|
+
- [Issue Tracker](https://github.com/fenago/Jali/issues)
|
|
126
|
+
- [Sponsor](https://github.com/sponsors/fenago)
|
package/dist/cjs/index.js
CHANGED
package/dist/esm/index.js
CHANGED
package/dist/types/index.d.ts
CHANGED
package/package.json
CHANGED
|
@@ -1,14 +1,22 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "learngraph",
|
|
3
|
-
"version": "0.1.
|
|
4
|
-
"description": "AI-powered
|
|
5
|
-
"author": "
|
|
3
|
+
"version": "0.1.1",
|
|
4
|
+
"description": "The world's first AI-powered learning path generator. Transform syllabi into personalized mastery paths with Zone of Proximal Development (ZPD), Bloom's Taxonomy, spaced repetition, and Bayesian Knowledge Tracing built in. Every student's path to mastery.",
|
|
5
|
+
"author": "Dr. Ernesto Lee <dr.ernesto.lee@gmail.com>",
|
|
6
6
|
"license": "MIT",
|
|
7
|
+
"homepage": "https://github.com/fenago/Jali#readme",
|
|
8
|
+
"bugs": {
|
|
9
|
+
"url": "https://github.com/fenago/Jali/issues"
|
|
10
|
+
},
|
|
7
11
|
"repository": {
|
|
8
12
|
"type": "git",
|
|
9
|
-
"url": "https://github.com/fenago/Jali.git",
|
|
13
|
+
"url": "git+https://github.com/fenago/Jali.git",
|
|
10
14
|
"directory": "packages/core"
|
|
11
15
|
},
|
|
16
|
+
"funding": {
|
|
17
|
+
"type": "github",
|
|
18
|
+
"url": "https://github.com/sponsors/fenago"
|
|
19
|
+
},
|
|
12
20
|
"keywords": [
|
|
13
21
|
"education",
|
|
14
22
|
"knowledge-graph",
|
|
@@ -20,9 +28,26 @@
|
|
|
20
28
|
"llm",
|
|
21
29
|
"mastery-learning",
|
|
22
30
|
"zpd",
|
|
31
|
+
"zone-of-proximal-development",
|
|
23
32
|
"blooms-taxonomy",
|
|
24
33
|
"adaptive-learning",
|
|
25
|
-
"edtech"
|
|
34
|
+
"edtech",
|
|
35
|
+
"intelligent-tutoring-system",
|
|
36
|
+
"its",
|
|
37
|
+
"bayesian-knowledge-tracing",
|
|
38
|
+
"bkt",
|
|
39
|
+
"item-response-theory",
|
|
40
|
+
"irt",
|
|
41
|
+
"spaced-repetition",
|
|
42
|
+
"cognitive-load-theory",
|
|
43
|
+
"personalized-learning",
|
|
44
|
+
"learning-path",
|
|
45
|
+
"skill-graph",
|
|
46
|
+
"prerequisite-mapping",
|
|
47
|
+
"educational-psychology",
|
|
48
|
+
"learning-science",
|
|
49
|
+
"curriculum-decomposition",
|
|
50
|
+
"mastery-threshold"
|
|
26
51
|
],
|
|
27
52
|
"type": "module",
|
|
28
53
|
"main": "./dist/cjs/index.js",
|