langchain 1.0.5 → 1.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (216) hide show
  1. package/CHANGELOG.md +26 -0
  2. package/README.md +1 -1
  3. package/chat_models/universal.cjs +1 -0
  4. package/chat_models/universal.d.cts +1 -0
  5. package/chat_models/universal.d.ts +1 -0
  6. package/chat_models/universal.js +1 -0
  7. package/dist/agents/ReactAgent.cjs +43 -39
  8. package/dist/agents/ReactAgent.cjs.map +1 -1
  9. package/dist/agents/ReactAgent.js +46 -42
  10. package/dist/agents/ReactAgent.js.map +1 -1
  11. package/dist/agents/index.d.cts +0 -2
  12. package/dist/agents/index.d.ts +0 -2
  13. package/dist/agents/middleware/constants.cjs +16 -0
  14. package/dist/agents/middleware/constants.cjs.map +1 -0
  15. package/dist/agents/middleware/constants.js +15 -0
  16. package/dist/agents/middleware/constants.js.map +1 -0
  17. package/dist/agents/middleware/contextEditing.cjs.map +1 -1
  18. package/dist/agents/middleware/contextEditing.d.cts +23 -7
  19. package/dist/agents/middleware/contextEditing.d.ts +23 -7
  20. package/dist/agents/middleware/contextEditing.js.map +1 -1
  21. package/dist/agents/middleware/dynamicSystemPrompt.cjs +5 -2
  22. package/dist/agents/middleware/dynamicSystemPrompt.cjs.map +1 -1
  23. package/dist/agents/middleware/dynamicSystemPrompt.d.cts +2 -1
  24. package/dist/agents/middleware/dynamicSystemPrompt.d.ts +2 -1
  25. package/dist/agents/middleware/dynamicSystemPrompt.js +4 -2
  26. package/dist/agents/middleware/dynamicSystemPrompt.js.map +1 -1
  27. package/dist/agents/middleware/error.cjs +20 -0
  28. package/dist/agents/middleware/error.cjs.map +1 -0
  29. package/dist/agents/middleware/error.js +19 -0
  30. package/dist/agents/middleware/error.js.map +1 -0
  31. package/dist/agents/middleware/index.cjs +4 -2
  32. package/dist/agents/middleware/index.d.ts +18 -0
  33. package/dist/agents/middleware/index.js +4 -2
  34. package/dist/agents/middleware/modelRetry.cjs +162 -0
  35. package/dist/agents/middleware/modelRetry.cjs.map +1 -0
  36. package/dist/agents/middleware/modelRetry.d.cts +134 -0
  37. package/dist/agents/middleware/modelRetry.d.ts +134 -0
  38. package/dist/agents/middleware/modelRetry.js +161 -0
  39. package/dist/agents/middleware/modelRetry.js.map +1 -0
  40. package/dist/agents/middleware/{promptCaching.cjs → provider/anthropic/promptCaching.cjs} +3 -3
  41. package/dist/agents/middleware/provider/anthropic/promptCaching.cjs.map +1 -0
  42. package/dist/agents/middleware/{promptCaching.d.cts → provider/anthropic/promptCaching.d.cts} +2 -2
  43. package/dist/agents/middleware/{promptCaching.d.ts → provider/anthropic/promptCaching.d.ts} +2 -2
  44. package/dist/agents/middleware/{promptCaching.js → provider/anthropic/promptCaching.js} +2 -2
  45. package/dist/agents/middleware/provider/anthropic/promptCaching.js.map +1 -0
  46. package/dist/agents/middleware/provider/openai/moderation.cjs +299 -0
  47. package/dist/agents/middleware/provider/openai/moderation.cjs.map +1 -0
  48. package/dist/agents/middleware/provider/openai/moderation.d.cts +133 -0
  49. package/dist/agents/middleware/provider/openai/moderation.d.ts +133 -0
  50. package/dist/agents/middleware/provider/openai/moderation.js +298 -0
  51. package/dist/agents/middleware/provider/openai/moderation.js.map +1 -0
  52. package/dist/agents/middleware/summarization.d.cts +0 -4
  53. package/dist/agents/middleware/summarization.d.ts +0 -4
  54. package/dist/agents/middleware/todoListMiddleware.cjs +1 -1
  55. package/dist/agents/middleware/todoListMiddleware.cjs.map +1 -1
  56. package/dist/agents/middleware/todoListMiddleware.js +1 -1
  57. package/dist/agents/middleware/todoListMiddleware.js.map +1 -1
  58. package/dist/agents/middleware/toolRetry.cjs +32 -44
  59. package/dist/agents/middleware/toolRetry.cjs.map +1 -1
  60. package/dist/agents/middleware/toolRetry.d.cts +16 -36
  61. package/dist/agents/middleware/toolRetry.d.ts +16 -36
  62. package/dist/agents/middleware/toolRetry.js +32 -44
  63. package/dist/agents/middleware/toolRetry.js.map +1 -1
  64. package/dist/agents/middleware/types.d.cts +9 -10
  65. package/dist/agents/middleware/types.d.ts +9 -10
  66. package/dist/agents/middleware/utils.cjs +23 -0
  67. package/dist/agents/middleware/utils.cjs.map +1 -1
  68. package/dist/agents/middleware/utils.d.ts +2 -0
  69. package/dist/agents/middleware/utils.js +23 -1
  70. package/dist/agents/middleware/utils.js.map +1 -1
  71. package/dist/agents/nodes/AgentNode.cjs +72 -28
  72. package/dist/agents/nodes/AgentNode.cjs.map +1 -1
  73. package/dist/agents/nodes/AgentNode.js +74 -31
  74. package/dist/agents/nodes/AgentNode.js.map +1 -1
  75. package/dist/agents/nodes/ToolNode.cjs +5 -0
  76. package/dist/agents/nodes/ToolNode.cjs.map +1 -1
  77. package/dist/agents/nodes/ToolNode.js +5 -1
  78. package/dist/agents/nodes/ToolNode.js.map +1 -1
  79. package/dist/agents/nodes/types.d.cts +39 -3
  80. package/dist/agents/nodes/types.d.ts +39 -3
  81. package/dist/agents/responses.cjs.map +1 -1
  82. package/dist/agents/responses.d.cts +2 -19
  83. package/dist/agents/responses.d.ts +2 -19
  84. package/dist/agents/responses.js.map +1 -1
  85. package/dist/agents/runtime.d.ts +1 -0
  86. package/dist/agents/tests/utils.cjs +10 -1
  87. package/dist/agents/tests/utils.cjs.map +1 -1
  88. package/dist/agents/tests/utils.js +10 -1
  89. package/dist/agents/tests/utils.js.map +1 -1
  90. package/dist/agents/types.d.cts +68 -2
  91. package/dist/agents/types.d.ts +68 -2
  92. package/dist/agents/utils.cjs +15 -12
  93. package/dist/agents/utils.cjs.map +1 -1
  94. package/dist/agents/utils.js +16 -13
  95. package/dist/agents/utils.js.map +1 -1
  96. package/dist/chat_models/universal.cjs +50 -16
  97. package/dist/chat_models/universal.cjs.map +1 -1
  98. package/dist/chat_models/universal.d.cts +19 -1
  99. package/dist/chat_models/universal.d.ts +19 -1
  100. package/dist/chat_models/universal.js +50 -16
  101. package/dist/chat_models/universal.js.map +1 -1
  102. package/dist/index.cjs +8 -2
  103. package/dist/index.d.cts +5 -3
  104. package/dist/index.d.ts +6 -3
  105. package/dist/index.js +7 -3
  106. package/dist/load/import_constants.cjs +2 -1
  107. package/dist/load/import_constants.cjs.map +1 -1
  108. package/dist/load/import_constants.js +2 -1
  109. package/dist/load/import_constants.js.map +1 -1
  110. package/dist/load/import_map.cjs +2 -19
  111. package/dist/load/import_map.cjs.map +1 -1
  112. package/dist/load/import_map.js +2 -19
  113. package/dist/load/import_map.js.map +1 -1
  114. package/hub/node.cjs +1 -0
  115. package/hub/node.d.cts +1 -0
  116. package/hub/node.d.ts +1 -0
  117. package/hub/node.js +1 -0
  118. package/hub.cjs +1 -0
  119. package/hub.d.cts +1 -0
  120. package/hub.d.ts +1 -0
  121. package/hub.js +1 -0
  122. package/load/serializable.cjs +1 -0
  123. package/load/serializable.d.cts +1 -0
  124. package/load/serializable.d.ts +1 -0
  125. package/load/serializable.js +1 -0
  126. package/load.cjs +1 -0
  127. package/load.d.cts +1 -0
  128. package/load.d.ts +1 -0
  129. package/load.js +1 -0
  130. package/package.json +65 -52
  131. package/storage/encoder_backed.cjs +1 -0
  132. package/storage/encoder_backed.d.cts +1 -0
  133. package/storage/encoder_backed.d.ts +1 -0
  134. package/storage/encoder_backed.js +1 -0
  135. package/storage/file_system.cjs +1 -0
  136. package/storage/file_system.d.cts +1 -0
  137. package/storage/file_system.d.ts +1 -0
  138. package/storage/file_system.js +1 -0
  139. package/storage/in_memory.cjs +1 -0
  140. package/storage/in_memory.d.cts +1 -0
  141. package/storage/in_memory.d.ts +1 -0
  142. package/storage/in_memory.js +1 -0
  143. package/dist/agents/ReactAgent.d.cts.map +0 -1
  144. package/dist/agents/ReactAgent.d.ts.map +0 -1
  145. package/dist/agents/constants.cjs +0 -7
  146. package/dist/agents/constants.cjs.map +0 -1
  147. package/dist/agents/constants.d.cts.map +0 -1
  148. package/dist/agents/constants.d.ts.map +0 -1
  149. package/dist/agents/constants.js +0 -6
  150. package/dist/agents/constants.js.map +0 -1
  151. package/dist/agents/errors.d.cts.map +0 -1
  152. package/dist/agents/errors.d.ts.map +0 -1
  153. package/dist/agents/index.d.cts.map +0 -1
  154. package/dist/agents/index.d.ts.map +0 -1
  155. package/dist/agents/middleware/contextEditing.d.cts.map +0 -1
  156. package/dist/agents/middleware/contextEditing.d.ts.map +0 -1
  157. package/dist/agents/middleware/dynamicSystemPrompt.d.cts.map +0 -1
  158. package/dist/agents/middleware/dynamicSystemPrompt.d.ts.map +0 -1
  159. package/dist/agents/middleware/hitl.d.cts.map +0 -1
  160. package/dist/agents/middleware/hitl.d.ts.map +0 -1
  161. package/dist/agents/middleware/llmToolSelector.d.cts.map +0 -1
  162. package/dist/agents/middleware/llmToolSelector.d.ts.map +0 -1
  163. package/dist/agents/middleware/modelCallLimit.d.cts.map +0 -1
  164. package/dist/agents/middleware/modelCallLimit.d.ts.map +0 -1
  165. package/dist/agents/middleware/modelFallback.d.cts.map +0 -1
  166. package/dist/agents/middleware/modelFallback.d.ts.map +0 -1
  167. package/dist/agents/middleware/pii.d.cts.map +0 -1
  168. package/dist/agents/middleware/pii.d.ts.map +0 -1
  169. package/dist/agents/middleware/piiRedaction.d.cts.map +0 -1
  170. package/dist/agents/middleware/piiRedaction.d.ts.map +0 -1
  171. package/dist/agents/middleware/promptCaching.cjs.map +0 -1
  172. package/dist/agents/middleware/promptCaching.d.cts.map +0 -1
  173. package/dist/agents/middleware/promptCaching.d.ts.map +0 -1
  174. package/dist/agents/middleware/promptCaching.js.map +0 -1
  175. package/dist/agents/middleware/summarization.d.cts.map +0 -1
  176. package/dist/agents/middleware/summarization.d.ts.map +0 -1
  177. package/dist/agents/middleware/todoListMiddleware.d.cts.map +0 -1
  178. package/dist/agents/middleware/todoListMiddleware.d.ts.map +0 -1
  179. package/dist/agents/middleware/toolCallLimit.d.cts.map +0 -1
  180. package/dist/agents/middleware/toolCallLimit.d.ts.map +0 -1
  181. package/dist/agents/middleware/toolEmulator.d.cts.map +0 -1
  182. package/dist/agents/middleware/toolEmulator.d.ts.map +0 -1
  183. package/dist/agents/middleware/toolRetry.d.cts.map +0 -1
  184. package/dist/agents/middleware/toolRetry.d.ts.map +0 -1
  185. package/dist/agents/middleware/types.d.cts.map +0 -1
  186. package/dist/agents/middleware/types.d.ts.map +0 -1
  187. package/dist/agents/middleware/utils.d.cts.map +0 -1
  188. package/dist/agents/middleware/utils.d.ts.map +0 -1
  189. package/dist/agents/middleware.d.cts.map +0 -1
  190. package/dist/agents/middleware.d.ts.map +0 -1
  191. package/dist/agents/nodes/types.d.cts.map +0 -1
  192. package/dist/agents/nodes/types.d.ts.map +0 -1
  193. package/dist/agents/responses.d.cts.map +0 -1
  194. package/dist/agents/responses.d.ts.map +0 -1
  195. package/dist/agents/runtime.d.cts.map +0 -1
  196. package/dist/agents/runtime.d.ts.map +0 -1
  197. package/dist/agents/tests/utils.d.cts.map +0 -1
  198. package/dist/agents/tests/utils.d.ts.map +0 -1
  199. package/dist/agents/types.d.cts.map +0 -1
  200. package/dist/agents/types.d.ts.map +0 -1
  201. package/dist/chat_models/universal.d.cts.map +0 -1
  202. package/dist/chat_models/universal.d.ts.map +0 -1
  203. package/dist/hub/base.d.cts.map +0 -1
  204. package/dist/hub/base.d.ts.map +0 -1
  205. package/dist/hub/index.d.cts.map +0 -1
  206. package/dist/hub/index.d.ts.map +0 -1
  207. package/dist/hub/node.d.cts.map +0 -1
  208. package/dist/hub/node.d.ts.map +0 -1
  209. package/dist/load/import_type.d.cts.map +0 -1
  210. package/dist/load/import_type.d.ts.map +0 -1
  211. package/dist/load/index.d.cts.map +0 -1
  212. package/dist/load/index.d.ts.map +0 -1
  213. package/dist/storage/encoder_backed.d.cts.map +0 -1
  214. package/dist/storage/encoder_backed.d.ts.map +0 -1
  215. package/dist/storage/file_system.d.cts.map +0 -1
  216. package/dist/storage/file_system.d.ts.map +0 -1
@@ -55,7 +55,16 @@ var FakeToolCallingModel = class FakeToolCallingModel extends __langchain_core_l
55
55
  let content = lastMessage.content;
56
56
  if (messages.length > 1) {
57
57
  const parts = messages.map((m) => m.content).filter(Boolean);
58
- content = parts.join("-");
58
+ content = parts.map((part) => {
59
+ if (typeof part === "string") return part;
60
+ else if (typeof part === "object" && "text" in part) return part.text;
61
+ else if (Array.isArray(part)) return part.map((p) => {
62
+ if (typeof p === "string") return p;
63
+ else if (typeof p === "object" && "text" in p) return p.text;
64
+ return "";
65
+ }).join("-");
66
+ else return JSON.stringify(part);
67
+ }).join("-");
59
68
  }
60
69
  const isStartOfConversation = messages.length === 1 || messages.length === 2 && messages.every(__langchain_core_messages.HumanMessage.isInstance);
61
70
  if (isStartOfConversation && this.index !== 0) this.index = 0;
@@ -1 +1 @@
1
- {"version":3,"file":"utils.cjs","names":["BaseChatModel","value: number","tools: StructuredTool[]","_schema: any","RunnableLambda","messages: BaseMessage[]","_options?: this[\"ParsedCallOptions\"]","_runManager?: CallbackManagerForLLMRun","HumanMessage","AIMessage"],"sources":["../../../src/agents/tests/utils.ts"],"sourcesContent":["/* eslint-disable @typescript-eslint/no-explicit-any */\n/* eslint-disable import/no-extraneous-dependencies */\nimport { expect } from \"vitest\";\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport {\n BaseChatModel,\n BaseChatModelParams,\n BaseChatModelCallOptions,\n BindToolsInput,\n ToolChoice,\n} from \"@langchain/core/language_models/chat_models\";\nimport { StructuredTool } from \"@langchain/core/tools\";\nimport {\n BaseMessage,\n AIMessage,\n HumanMessage,\n BaseMessageFields,\n AIMessageFields,\n ToolMessage,\n ToolMessageFields,\n} from \"@langchain/core/messages\";\nimport { ChatResult } from \"@langchain/core/outputs\";\nimport {\n Runnable,\n RunnableConfig,\n RunnableLambda,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\nimport {\n MemorySaver,\n Checkpoint,\n CheckpointMetadata,\n type BaseCheckpointSaver,\n} from \"@langchain/langgraph-checkpoint\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { z } from \"zod/v3\";\n\nexport class _AnyIdAIMessage extends AIMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"AIMessage\"];\n }\n\n constructor(fields: AIMessageFields | string) {\n let fieldsWithJestMatcher: Partial<AIMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as AIMessageFields);\n }\n}\n\nexport class _AnyIdHumanMessage extends HumanMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"HumanMessage\"];\n }\n\n constructor(fields: BaseMessageFields | string) {\n let fieldsWithJestMatcher: Partial<BaseMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as BaseMessageFields);\n }\n}\n\nexport class _AnyIdToolMessage extends ToolMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"ToolMessage\"];\n }\n\n constructor(fields: ToolMessageFields) {\n const fieldsWithJestMatcher: Partial<ToolMessageFields> = {\n id: expect.any(String) as unknown as string,\n ...fields,\n };\n super(fieldsWithJestMatcher as ToolMessageFields);\n }\n}\n\nexport class FakeConfigurableModel extends BaseChatModel {\n _queuedMethodOperations: Record<string, any> = {};\n\n _chatModel: LanguageModelLike;\n\n constructor(\n fields: {\n model: LanguageModelLike;\n } & BaseChatModelParams\n ) {\n super(fields);\n this._chatModel = fields.model;\n }\n\n _llmType() {\n return \"fake_configurable\";\n }\n\n async _generate(\n _messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n throw new Error(\"Not implemented\");\n }\n\n async _model() {\n return this._chatModel;\n }\n\n bindTools(tools: BindToolsInput[]) {\n const modelWithTools = new FakeConfigurableModel({\n model: (this._chatModel as FakeToolCallingChatModel).bindTools(tools),\n });\n modelWithTools._queuedMethodOperations.bindTools = tools;\n return modelWithTools;\n }\n}\n\nexport class FakeToolCallingChatModel extends BaseChatModel {\n sleep?: number = 50;\n\n responses?: BaseMessage[];\n\n thrownErrorString?: string;\n\n idx: number;\n\n toolStyle: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\" = \"openai\";\n\n structuredResponse?: Record<string, unknown>;\n\n // Track messages passed to structured output calls\n structuredOutputMessages: BaseMessage[][] = [];\n\n constructor(\n fields: {\n sleep?: number;\n responses?: BaseMessage[];\n thrownErrorString?: string;\n toolStyle?: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\";\n structuredResponse?: Record<string, unknown>;\n } & BaseChatModelParams\n ) {\n super(fields);\n this.sleep = fields.sleep ?? this.sleep;\n this.responses = fields.responses;\n this.thrownErrorString = fields.thrownErrorString;\n this.idx = 0;\n this.toolStyle = fields.toolStyle ?? this.toolStyle;\n this.structuredResponse = fields.structuredResponse;\n this.structuredOutputMessages = [];\n }\n\n _llmType() {\n return \"fake\";\n }\n\n async _generate(\n messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.thrownErrorString) {\n throw new Error(this.thrownErrorString);\n }\n if (this.sleep !== undefined) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n const responses = this.responses?.length ? this.responses : messages;\n const msg = responses[this.idx % responses.length];\n const generation: ChatResult = {\n generations: [\n {\n text: \"\",\n message: msg,\n },\n ],\n };\n this.idx += 1;\n\n if (typeof msg.content === \"string\") {\n await runManager?.handleLLMNewToken(msg.content);\n }\n return generation;\n }\n\n bindTools(tools: BindToolsInput[]): Runnable<any> {\n const toolDicts = [];\n const serverTools = [];\n for (const tool of tools) {\n if (!(\"name\" in tool)) {\n serverTools.push(tool);\n continue;\n }\n\n // NOTE: this is a simplified tool spec for testing purposes only\n if (this.toolStyle === \"openai\") {\n toolDicts.push({\n type: \"function\",\n function: {\n name: tool.name,\n },\n });\n } else if ([\"anthropic\", \"google\"].includes(this.toolStyle)) {\n toolDicts.push({\n name: tool.name,\n });\n } else if (this.toolStyle === \"bedrock\") {\n toolDicts.push({\n toolSpec: {\n name: tool.name,\n },\n });\n }\n }\n let toolsToBind: BindToolsInput[] = toolDicts;\n if (this.toolStyle === \"google\") {\n toolsToBind = [{ functionDeclarations: toolDicts }];\n }\n return this.withConfig({\n tools: [...toolsToBind, ...serverTools],\n } as BaseChatModelCallOptions);\n }\n\n withStructuredOutput<\n RunOutput extends Record<string, any> = Record<string, any>\n >(_: unknown): Runnable<any> {\n if (!this.structuredResponse) {\n throw new Error(\"No structured response provided\");\n }\n // Create a runnable that returns the proper structured format\n return RunnableLambda.from(async (messages: BaseMessage[]) => {\n if (this.sleep) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n\n // Store the messages that were sent to generate structured output\n this.structuredOutputMessages.push([...messages]);\n\n // Return in the format expected: { raw: BaseMessage, parsed: RunOutput }\n return this.structuredResponse as RunOutput;\n });\n }\n}\n\nexport class MemorySaverAssertImmutable extends MemorySaver {\n storageForCopies: Record<string, Record<string, Uint8Array>> = {};\n\n constructor() {\n super();\n this.storageForCopies = {};\n }\n\n async put(\n config: RunnableConfig,\n checkpoint: Checkpoint,\n metadata: CheckpointMetadata\n ): Promise<RunnableConfig> {\n const thread_id = config.configurable?.thread_id;\n this.storageForCopies[thread_id] ??= {};\n\n // assert checkpoint hasn't been modified since last written\n const saved = await this.get(config);\n if (saved) {\n const savedId = saved.id;\n if (this.storageForCopies[thread_id][savedId]) {\n const loaded = await this.serde.loadsTyped(\n \"json\",\n this.storageForCopies[thread_id][savedId]\n );\n\n expect(\n saved,\n `Checkpoint [${savedId}] has been modified since last written`\n ).toEqual(loaded);\n }\n }\n const [, serializedCheckpoint] = await this.serde.dumpsTyped(checkpoint);\n // save a copy of the checkpoint\n this.storageForCopies[thread_id][checkpoint.id] = serializedCheckpoint;\n\n return super.put(config, checkpoint, metadata);\n }\n}\n\ninterface ToolCall {\n name: string;\n args: Record<string, any>;\n id: string;\n type?: \"tool_call\";\n}\n\ninterface FakeToolCallingModelFields {\n toolCalls?: ToolCall[][];\n toolStyle?: \"openai\" | \"anthropic\";\n index?: number;\n structuredResponse?: any;\n}\n\n// Helper function to create checkpointer\nexport function createCheckpointer(): BaseCheckpointSaver {\n return new MemorySaver();\n}\n\n/**\n * Fake chat model for testing tool calling functionality\n */\nexport class FakeToolCallingModel extends BaseChatModel {\n toolCalls: ToolCall[][];\n\n toolStyle: \"openai\" | \"anthropic\";\n\n // Use a shared reference object so the index persists across bindTools calls\n private indexRef: { current: number };\n\n structuredResponse?: any;\n\n private tools: StructuredTool[] = [];\n\n constructor({\n toolCalls = [],\n toolStyle = \"openai\",\n index = 0,\n structuredResponse,\n indexRef,\n ...rest\n }: FakeToolCallingModelFields & { indexRef?: { current: number } } = {}) {\n super(rest);\n this.toolCalls = toolCalls;\n this.toolStyle = toolStyle;\n // Share the same index reference across instances\n this.indexRef = indexRef ?? { current: index };\n this.structuredResponse = structuredResponse;\n }\n\n // Getter/setter for backwards compatibility\n get index(): number {\n return this.indexRef.current;\n }\n\n set index(value: number) {\n this.indexRef.current = value;\n }\n\n _llmType(): string {\n return \"fake-tool-calling\";\n }\n\n _combineLLMOutput() {\n return [];\n }\n\n bindTools(\n tools: StructuredTool[]\n ):\n | FakeToolCallingModel\n | RunnableBinding<\n any,\n any,\n any & { tool_choice?: ToolChoice | undefined }\n > {\n const newInstance = new FakeToolCallingModel({\n toolCalls: this.toolCalls,\n toolStyle: this.toolStyle,\n structuredResponse: this.structuredResponse,\n // Pass the same indexRef so all instances share the same index state\n indexRef: this.indexRef,\n });\n newInstance.tools = [...this.tools, ...tools];\n return newInstance;\n }\n\n withStructuredOutput(_schema: any) {\n return new RunnableLambda({\n func: async () => {\n return this.structuredResponse;\n },\n });\n }\n\n async _generate(\n messages: BaseMessage[],\n _options?: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n const lastMessage = messages[messages.length - 1];\n let content = lastMessage.content as string;\n\n // Handle prompt concatenation\n if (messages.length > 1) {\n const parts = messages.map((m) => m.content).filter(Boolean);\n content = parts.join(\"-\");\n }\n\n // Reset index at the start of a new conversation (only human message)\n // This allows the model to be reused across multiple agent.invoke() calls\n const isStartOfConversation =\n messages.length === 1 ||\n (messages.length === 2 && messages.every(HumanMessage.isInstance));\n if (isStartOfConversation && this.index !== 0) {\n this.index = 0;\n }\n\n const currentToolCalls = this.toolCalls[this.index] || [];\n const messageId = this.index.toString();\n\n // Move to next set of tool calls for subsequent invocations\n this.index = (this.index + 1) % Math.max(1, this.toolCalls.length);\n\n const message = new AIMessage({\n content,\n id: messageId,\n tool_calls:\n currentToolCalls.length > 0\n ? currentToolCalls.map((tc) => ({\n ...tc,\n type: \"tool_call\" as const,\n }))\n : undefined,\n });\n\n return {\n generations: [\n {\n text: content,\n message,\n },\n ],\n llmOutput: {},\n };\n }\n}\n\nexport class SearchAPI extends StructuredTool {\n name = \"search_api\";\n\n description = \"A simple API that returns the input string.\";\n\n schema = z.object({\n query: z.string().describe(\"The query to search for.\"),\n });\n\n async _call(input: z.infer<typeof this.schema>) {\n if (input?.query === \"error\") {\n throw new Error(\"Error\");\n }\n return `result for ${input?.query}`;\n }\n}\n"],"mappings":";;;;;;;;;;;;AAuUA,IAAa,uBAAb,MAAa,6BAA6BA,2DAAc;CACtD;CAEA;CAGA,AAAQ;CAER;CAEA,AAAQ,QAA0B,CAAE;CAEpC,YAAY,EACV,YAAY,CAAE,GACd,YAAY,UACZ,QAAQ,GACR,oBACA,SACA,GAAG,MAC6D,GAAG,CAAE,GAAE;EACvE,MAAM,KAAK;EACX,KAAK,YAAY;EACjB,KAAK,YAAY;EAEjB,KAAK,WAAW,YAAY,EAAE,SAAS,MAAO;EAC9C,KAAK,qBAAqB;CAC3B;CAGD,IAAI,QAAgB;AAClB,SAAO,KAAK,SAAS;CACtB;CAED,IAAI,MAAMC,OAAe;EACvB,KAAK,SAAS,UAAU;CACzB;CAED,WAAmB;AACjB,SAAO;CACR;CAED,oBAAoB;AAClB,SAAO,CAAE;CACV;CAED,UACEC,OAOI;EACJ,MAAM,cAAc,IAAI,qBAAqB;GAC3C,WAAW,KAAK;GAChB,WAAW,KAAK;GAChB,oBAAoB,KAAK;GAEzB,UAAU,KAAK;EAChB;EACD,YAAY,QAAQ,CAAC,GAAG,KAAK,OAAO,GAAG,KAAM;AAC7C,SAAO;CACR;CAED,qBAAqBC,SAAc;AACjC,SAAO,IAAIC,0CAAe,EACxB,MAAM,YAAY;AAChB,UAAO,KAAK;EACb,EACF;CACF;CAED,MAAM,UACJC,UACAC,UACAC,aACqB;EACrB,MAAM,cAAc,SAAS,SAAS,SAAS;EAC/C,IAAI,UAAU,YAAY;AAG1B,MAAI,SAAS,SAAS,GAAG;GACvB,MAAM,QAAQ,SAAS,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC,OAAO,QAAQ;GAC5D,UAAU,MAAM,KAAK,IAAI;EAC1B;EAID,MAAM,wBACJ,SAAS,WAAW,KACnB,SAAS,WAAW,KAAK,SAAS,MAAMC,uCAAa,WAAW;AACnE,MAAI,yBAAyB,KAAK,UAAU,GAC1C,KAAK,QAAQ;EAGf,MAAM,mBAAmB,KAAK,UAAU,KAAK,UAAU,CAAE;EACzD,MAAM,YAAY,KAAK,MAAM,UAAU;EAGvC,KAAK,SAAS,KAAK,QAAQ,KAAK,KAAK,IAAI,GAAG,KAAK,UAAU,OAAO;EAElE,MAAM,UAAU,IAAIC,oCAAU;GAC5B;GACA,IAAI;GACJ,YACE,iBAAiB,SAAS,IACtB,iBAAiB,IAAI,CAAC,QAAQ;IAC5B,GAAG;IACH,MAAM;GACP,GAAE,GACH;EACP;AAED,SAAO;GACL,aAAa,CACX;IACE,MAAM;IACN;GACD,CACF;GACD,WAAW,CAAE;EACd;CACF;AACF"}
1
+ {"version":3,"file":"utils.cjs","names":["BaseChatModel","value: number","tools: StructuredTool[]","_schema: any","RunnableLambda","messages: BaseMessage[]","_options?: this[\"ParsedCallOptions\"]","_runManager?: CallbackManagerForLLMRun","HumanMessage","AIMessage"],"sources":["../../../src/agents/tests/utils.ts"],"sourcesContent":["/* eslint-disable @typescript-eslint/no-explicit-any */\n/* eslint-disable import/no-extraneous-dependencies */\nimport { expect } from \"vitest\";\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport {\n BaseChatModel,\n BaseChatModelParams,\n BaseChatModelCallOptions,\n BindToolsInput,\n ToolChoice,\n} from \"@langchain/core/language_models/chat_models\";\nimport { StructuredTool } from \"@langchain/core/tools\";\nimport {\n BaseMessage,\n AIMessage,\n HumanMessage,\n BaseMessageFields,\n AIMessageFields,\n ToolMessage,\n ToolMessageFields,\n} from \"@langchain/core/messages\";\nimport { ChatResult } from \"@langchain/core/outputs\";\nimport {\n Runnable,\n RunnableConfig,\n RunnableLambda,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\nimport {\n MemorySaver,\n Checkpoint,\n CheckpointMetadata,\n type BaseCheckpointSaver,\n} from \"@langchain/langgraph-checkpoint\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { z } from \"zod/v3\";\n\nexport class _AnyIdAIMessage extends AIMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"AIMessage\"];\n }\n\n constructor(fields: AIMessageFields | string) {\n let fieldsWithJestMatcher: Partial<AIMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as AIMessageFields);\n }\n}\n\nexport class _AnyIdHumanMessage extends HumanMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"HumanMessage\"];\n }\n\n constructor(fields: BaseMessageFields | string) {\n let fieldsWithJestMatcher: Partial<BaseMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as BaseMessageFields);\n }\n}\n\nexport class _AnyIdToolMessage extends ToolMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"ToolMessage\"];\n }\n\n constructor(fields: ToolMessageFields) {\n const fieldsWithJestMatcher: Partial<ToolMessageFields> = {\n id: expect.any(String) as unknown as string,\n ...fields,\n };\n super(fieldsWithJestMatcher as ToolMessageFields);\n }\n}\n\nexport class FakeConfigurableModel extends BaseChatModel {\n _queuedMethodOperations: Record<string, any> = {};\n\n _chatModel: LanguageModelLike;\n\n constructor(\n fields: {\n model: LanguageModelLike;\n } & BaseChatModelParams\n ) {\n super(fields);\n this._chatModel = fields.model;\n }\n\n _llmType() {\n return \"fake_configurable\";\n }\n\n async _generate(\n _messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n throw new Error(\"Not implemented\");\n }\n\n async _model() {\n return this._chatModel;\n }\n\n bindTools(tools: BindToolsInput[]) {\n const modelWithTools = new FakeConfigurableModel({\n model: (this._chatModel as FakeToolCallingChatModel).bindTools(tools),\n });\n modelWithTools._queuedMethodOperations.bindTools = tools;\n return modelWithTools;\n }\n}\n\nexport class FakeToolCallingChatModel extends BaseChatModel {\n sleep?: number = 50;\n\n responses?: BaseMessage[];\n\n thrownErrorString?: string;\n\n idx: number;\n\n toolStyle: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\" = \"openai\";\n\n structuredResponse?: Record<string, unknown>;\n\n // Track messages passed to structured output calls\n structuredOutputMessages: BaseMessage[][] = [];\n\n constructor(\n fields: {\n sleep?: number;\n responses?: BaseMessage[];\n thrownErrorString?: string;\n toolStyle?: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\";\n structuredResponse?: Record<string, unknown>;\n } & BaseChatModelParams\n ) {\n super(fields);\n this.sleep = fields.sleep ?? this.sleep;\n this.responses = fields.responses;\n this.thrownErrorString = fields.thrownErrorString;\n this.idx = 0;\n this.toolStyle = fields.toolStyle ?? this.toolStyle;\n this.structuredResponse = fields.structuredResponse;\n this.structuredOutputMessages = [];\n }\n\n _llmType() {\n return \"fake\";\n }\n\n async _generate(\n messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.thrownErrorString) {\n throw new Error(this.thrownErrorString);\n }\n if (this.sleep !== undefined) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n const responses = this.responses?.length ? this.responses : messages;\n const msg = responses[this.idx % responses.length];\n const generation: ChatResult = {\n generations: [\n {\n text: \"\",\n message: msg,\n },\n ],\n };\n this.idx += 1;\n\n if (typeof msg.content === \"string\") {\n await runManager?.handleLLMNewToken(msg.content);\n }\n return generation;\n }\n\n bindTools(tools: BindToolsInput[]): Runnable<any> {\n const toolDicts = [];\n const serverTools = [];\n for (const tool of tools) {\n if (!(\"name\" in tool)) {\n serverTools.push(tool);\n continue;\n }\n\n // NOTE: this is a simplified tool spec for testing purposes only\n if (this.toolStyle === \"openai\") {\n toolDicts.push({\n type: \"function\",\n function: {\n name: tool.name,\n },\n });\n } else if ([\"anthropic\", \"google\"].includes(this.toolStyle)) {\n toolDicts.push({\n name: tool.name,\n });\n } else if (this.toolStyle === \"bedrock\") {\n toolDicts.push({\n toolSpec: {\n name: tool.name,\n },\n });\n }\n }\n let toolsToBind: BindToolsInput[] = toolDicts;\n if (this.toolStyle === \"google\") {\n toolsToBind = [{ functionDeclarations: toolDicts }];\n }\n return this.withConfig({\n tools: [...toolsToBind, ...serverTools],\n } as BaseChatModelCallOptions);\n }\n\n withStructuredOutput<\n RunOutput extends Record<string, any> = Record<string, any>\n >(_: unknown): Runnable<any> {\n if (!this.structuredResponse) {\n throw new Error(\"No structured response provided\");\n }\n // Create a runnable that returns the proper structured format\n return RunnableLambda.from(async (messages: BaseMessage[]) => {\n if (this.sleep) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n\n // Store the messages that were sent to generate structured output\n this.structuredOutputMessages.push([...messages]);\n\n // Return in the format expected: { raw: BaseMessage, parsed: RunOutput }\n return this.structuredResponse as RunOutput;\n });\n }\n}\n\nexport class MemorySaverAssertImmutable extends MemorySaver {\n storageForCopies: Record<string, Record<string, Uint8Array>> = {};\n\n constructor() {\n super();\n this.storageForCopies = {};\n }\n\n async put(\n config: RunnableConfig,\n checkpoint: Checkpoint,\n metadata: CheckpointMetadata\n ): Promise<RunnableConfig> {\n const thread_id = config.configurable?.thread_id;\n this.storageForCopies[thread_id] ??= {};\n\n // assert checkpoint hasn't been modified since last written\n const saved = await this.get(config);\n if (saved) {\n const savedId = saved.id;\n if (this.storageForCopies[thread_id][savedId]) {\n const loaded = await this.serde.loadsTyped(\n \"json\",\n this.storageForCopies[thread_id][savedId]\n );\n\n expect(\n saved,\n `Checkpoint [${savedId}] has been modified since last written`\n ).toEqual(loaded);\n }\n }\n const [, serializedCheckpoint] = await this.serde.dumpsTyped(checkpoint);\n // save a copy of the checkpoint\n this.storageForCopies[thread_id][checkpoint.id] = serializedCheckpoint;\n\n return super.put(config, checkpoint, metadata);\n }\n}\n\ninterface ToolCall {\n name: string;\n args: Record<string, any>;\n id: string;\n type?: \"tool_call\";\n}\n\ninterface FakeToolCallingModelFields {\n toolCalls?: ToolCall[][];\n toolStyle?: \"openai\" | \"anthropic\";\n index?: number;\n structuredResponse?: any;\n}\n\n// Helper function to create checkpointer\nexport function createCheckpointer(): BaseCheckpointSaver {\n return new MemorySaver();\n}\n\n/**\n * Fake chat model for testing tool calling functionality\n */\nexport class FakeToolCallingModel extends BaseChatModel {\n toolCalls: ToolCall[][];\n\n toolStyle: \"openai\" | \"anthropic\";\n\n // Use a shared reference object so the index persists across bindTools calls\n private indexRef: { current: number };\n\n structuredResponse?: any;\n\n private tools: StructuredTool[] = [];\n\n constructor({\n toolCalls = [],\n toolStyle = \"openai\",\n index = 0,\n structuredResponse,\n indexRef,\n ...rest\n }: FakeToolCallingModelFields & { indexRef?: { current: number } } = {}) {\n super(rest);\n this.toolCalls = toolCalls;\n this.toolStyle = toolStyle;\n // Share the same index reference across instances\n this.indexRef = indexRef ?? { current: index };\n this.structuredResponse = structuredResponse;\n }\n\n // Getter/setter for backwards compatibility\n get index(): number {\n return this.indexRef.current;\n }\n\n set index(value: number) {\n this.indexRef.current = value;\n }\n\n _llmType(): string {\n return \"fake-tool-calling\";\n }\n\n _combineLLMOutput() {\n return [];\n }\n\n bindTools(\n tools: StructuredTool[]\n ):\n | FakeToolCallingModel\n | RunnableBinding<\n any,\n any,\n any & { tool_choice?: ToolChoice | undefined }\n > {\n const newInstance = new FakeToolCallingModel({\n toolCalls: this.toolCalls,\n toolStyle: this.toolStyle,\n structuredResponse: this.structuredResponse,\n // Pass the same indexRef so all instances share the same index state\n indexRef: this.indexRef,\n });\n newInstance.tools = [...this.tools, ...tools];\n return newInstance;\n }\n\n withStructuredOutput(_schema: any) {\n return new RunnableLambda({\n func: async () => {\n return this.structuredResponse;\n },\n });\n }\n\n async _generate(\n messages: BaseMessage[],\n _options?: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n const lastMessage = messages[messages.length - 1];\n let content = lastMessage.content as string;\n\n // Handle prompt concatenation\n if (messages.length > 1) {\n const parts = messages.map((m) => m.content).filter(Boolean);\n content = parts\n .map((part) => {\n if (typeof part === \"string\") {\n return part;\n } else if (typeof part === \"object\" && \"text\" in part) {\n return part.text;\n } else if (Array.isArray(part)) {\n return part\n .map((p) => {\n if (typeof p === \"string\") {\n return p;\n } else if (typeof p === \"object\" && \"text\" in p) {\n return p.text;\n }\n return \"\";\n })\n .join(\"-\");\n } else {\n return JSON.stringify(part);\n }\n })\n .join(\"-\");\n }\n\n // Reset index at the start of a new conversation (only human message)\n // This allows the model to be reused across multiple agent.invoke() calls\n const isStartOfConversation =\n messages.length === 1 ||\n (messages.length === 2 && messages.every(HumanMessage.isInstance));\n if (isStartOfConversation && this.index !== 0) {\n this.index = 0;\n }\n\n const currentToolCalls = this.toolCalls[this.index] || [];\n const messageId = this.index.toString();\n\n // Move to next set of tool calls for subsequent invocations\n this.index = (this.index + 1) % Math.max(1, this.toolCalls.length);\n\n const message = new AIMessage({\n content,\n id: messageId,\n tool_calls:\n currentToolCalls.length > 0\n ? currentToolCalls.map((tc) => ({\n ...tc,\n type: \"tool_call\" as const,\n }))\n : undefined,\n });\n\n return {\n generations: [\n {\n text: content,\n message,\n },\n ],\n llmOutput: {},\n };\n }\n}\n\nexport class SearchAPI extends StructuredTool {\n name = \"search_api\";\n\n description = \"A simple API that returns the input string.\";\n\n schema = z.object({\n query: z.string().describe(\"The query to search for.\"),\n });\n\n async _call(input: z.infer<typeof this.schema>) {\n if (input?.query === \"error\") {\n throw new Error(\"Error\");\n }\n return `result for ${input?.query}`;\n }\n}\n"],"mappings":";;;;;;;;;;;;AAuUA,IAAa,uBAAb,MAAa,6BAA6BA,2DAAc;CACtD;CAEA;CAGA,AAAQ;CAER;CAEA,AAAQ,QAA0B,CAAE;CAEpC,YAAY,EACV,YAAY,CAAE,GACd,YAAY,UACZ,QAAQ,GACR,oBACA,SACA,GAAG,MAC6D,GAAG,CAAE,GAAE;EACvE,MAAM,KAAK;EACX,KAAK,YAAY;EACjB,KAAK,YAAY;EAEjB,KAAK,WAAW,YAAY,EAAE,SAAS,MAAO;EAC9C,KAAK,qBAAqB;CAC3B;CAGD,IAAI,QAAgB;AAClB,SAAO,KAAK,SAAS;CACtB;CAED,IAAI,MAAMC,OAAe;EACvB,KAAK,SAAS,UAAU;CACzB;CAED,WAAmB;AACjB,SAAO;CACR;CAED,oBAAoB;AAClB,SAAO,CAAE;CACV;CAED,UACEC,OAOI;EACJ,MAAM,cAAc,IAAI,qBAAqB;GAC3C,WAAW,KAAK;GAChB,WAAW,KAAK;GAChB,oBAAoB,KAAK;GAEzB,UAAU,KAAK;EAChB;EACD,YAAY,QAAQ,CAAC,GAAG,KAAK,OAAO,GAAG,KAAM;AAC7C,SAAO;CACR;CAED,qBAAqBC,SAAc;AACjC,SAAO,IAAIC,0CAAe,EACxB,MAAM,YAAY;AAChB,UAAO,KAAK;EACb,EACF;CACF;CAED,MAAM,UACJC,UACAC,UACAC,aACqB;EACrB,MAAM,cAAc,SAAS,SAAS,SAAS;EAC/C,IAAI,UAAU,YAAY;AAG1B,MAAI,SAAS,SAAS,GAAG;GACvB,MAAM,QAAQ,SAAS,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC,OAAO,QAAQ;GAC5D,UAAU,MACP,IAAI,CAAC,SAAS;AACb,QAAI,OAAO,SAAS,SAClB,QAAO;aACE,OAAO,SAAS,YAAY,UAAU,KAC/C,QAAO,KAAK;aACH,MAAM,QAAQ,KAAK,CAC5B,QAAO,KACJ,IAAI,CAAC,MAAM;AACV,SAAI,OAAO,MAAM,SACf,QAAO;cACE,OAAO,MAAM,YAAY,UAAU,EAC5C,QAAO,EAAE;AAEX,YAAO;IACR,EAAC,CACD,KAAK,IAAI;QAEZ,QAAO,KAAK,UAAU,KAAK;GAE9B,EAAC,CACD,KAAK,IAAI;EACb;EAID,MAAM,wBACJ,SAAS,WAAW,KACnB,SAAS,WAAW,KAAK,SAAS,MAAMC,uCAAa,WAAW;AACnE,MAAI,yBAAyB,KAAK,UAAU,GAC1C,KAAK,QAAQ;EAGf,MAAM,mBAAmB,KAAK,UAAU,KAAK,UAAU,CAAE;EACzD,MAAM,YAAY,KAAK,MAAM,UAAU;EAGvC,KAAK,SAAS,KAAK,QAAQ,KAAK,KAAK,IAAI,GAAG,KAAK,UAAU,OAAO;EAElE,MAAM,UAAU,IAAIC,oCAAU;GAC5B;GACA,IAAI;GACJ,YACE,iBAAiB,SAAS,IACtB,iBAAiB,IAAI,CAAC,QAAQ;IAC5B,GAAG;IACH,MAAM;GACP,GAAE,GACH;EACP;AAED,SAAO;GACL,aAAa,CACX;IACE,MAAM;IACN;GACD,CACF;GACD,WAAW,CAAE;EACd;CACF;AACF"}
@@ -54,7 +54,16 @@ var FakeToolCallingModel = class FakeToolCallingModel extends BaseChatModel {
54
54
  let content = lastMessage.content;
55
55
  if (messages.length > 1) {
56
56
  const parts = messages.map((m) => m.content).filter(Boolean);
57
- content = parts.join("-");
57
+ content = parts.map((part) => {
58
+ if (typeof part === "string") return part;
59
+ else if (typeof part === "object" && "text" in part) return part.text;
60
+ else if (Array.isArray(part)) return part.map((p) => {
61
+ if (typeof p === "string") return p;
62
+ else if (typeof p === "object" && "text" in p) return p.text;
63
+ return "";
64
+ }).join("-");
65
+ else return JSON.stringify(part);
66
+ }).join("-");
58
67
  }
59
68
  const isStartOfConversation = messages.length === 1 || messages.length === 2 && messages.every(HumanMessage.isInstance);
60
69
  if (isStartOfConversation && this.index !== 0) this.index = 0;
@@ -1 +1 @@
1
- {"version":3,"file":"utils.js","names":["value: number","tools: StructuredTool[]","_schema: any","messages: BaseMessage[]","_options?: this[\"ParsedCallOptions\"]","_runManager?: CallbackManagerForLLMRun"],"sources":["../../../src/agents/tests/utils.ts"],"sourcesContent":["/* eslint-disable @typescript-eslint/no-explicit-any */\n/* eslint-disable import/no-extraneous-dependencies */\nimport { expect } from \"vitest\";\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport {\n BaseChatModel,\n BaseChatModelParams,\n BaseChatModelCallOptions,\n BindToolsInput,\n ToolChoice,\n} from \"@langchain/core/language_models/chat_models\";\nimport { StructuredTool } from \"@langchain/core/tools\";\nimport {\n BaseMessage,\n AIMessage,\n HumanMessage,\n BaseMessageFields,\n AIMessageFields,\n ToolMessage,\n ToolMessageFields,\n} from \"@langchain/core/messages\";\nimport { ChatResult } from \"@langchain/core/outputs\";\nimport {\n Runnable,\n RunnableConfig,\n RunnableLambda,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\nimport {\n MemorySaver,\n Checkpoint,\n CheckpointMetadata,\n type BaseCheckpointSaver,\n} from \"@langchain/langgraph-checkpoint\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { z } from \"zod/v3\";\n\nexport class _AnyIdAIMessage extends AIMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"AIMessage\"];\n }\n\n constructor(fields: AIMessageFields | string) {\n let fieldsWithJestMatcher: Partial<AIMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as AIMessageFields);\n }\n}\n\nexport class _AnyIdHumanMessage extends HumanMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"HumanMessage\"];\n }\n\n constructor(fields: BaseMessageFields | string) {\n let fieldsWithJestMatcher: Partial<BaseMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as BaseMessageFields);\n }\n}\n\nexport class _AnyIdToolMessage extends ToolMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"ToolMessage\"];\n }\n\n constructor(fields: ToolMessageFields) {\n const fieldsWithJestMatcher: Partial<ToolMessageFields> = {\n id: expect.any(String) as unknown as string,\n ...fields,\n };\n super(fieldsWithJestMatcher as ToolMessageFields);\n }\n}\n\nexport class FakeConfigurableModel extends BaseChatModel {\n _queuedMethodOperations: Record<string, any> = {};\n\n _chatModel: LanguageModelLike;\n\n constructor(\n fields: {\n model: LanguageModelLike;\n } & BaseChatModelParams\n ) {\n super(fields);\n this._chatModel = fields.model;\n }\n\n _llmType() {\n return \"fake_configurable\";\n }\n\n async _generate(\n _messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n throw new Error(\"Not implemented\");\n }\n\n async _model() {\n return this._chatModel;\n }\n\n bindTools(tools: BindToolsInput[]) {\n const modelWithTools = new FakeConfigurableModel({\n model: (this._chatModel as FakeToolCallingChatModel).bindTools(tools),\n });\n modelWithTools._queuedMethodOperations.bindTools = tools;\n return modelWithTools;\n }\n}\n\nexport class FakeToolCallingChatModel extends BaseChatModel {\n sleep?: number = 50;\n\n responses?: BaseMessage[];\n\n thrownErrorString?: string;\n\n idx: number;\n\n toolStyle: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\" = \"openai\";\n\n structuredResponse?: Record<string, unknown>;\n\n // Track messages passed to structured output calls\n structuredOutputMessages: BaseMessage[][] = [];\n\n constructor(\n fields: {\n sleep?: number;\n responses?: BaseMessage[];\n thrownErrorString?: string;\n toolStyle?: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\";\n structuredResponse?: Record<string, unknown>;\n } & BaseChatModelParams\n ) {\n super(fields);\n this.sleep = fields.sleep ?? this.sleep;\n this.responses = fields.responses;\n this.thrownErrorString = fields.thrownErrorString;\n this.idx = 0;\n this.toolStyle = fields.toolStyle ?? this.toolStyle;\n this.structuredResponse = fields.structuredResponse;\n this.structuredOutputMessages = [];\n }\n\n _llmType() {\n return \"fake\";\n }\n\n async _generate(\n messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.thrownErrorString) {\n throw new Error(this.thrownErrorString);\n }\n if (this.sleep !== undefined) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n const responses = this.responses?.length ? this.responses : messages;\n const msg = responses[this.idx % responses.length];\n const generation: ChatResult = {\n generations: [\n {\n text: \"\",\n message: msg,\n },\n ],\n };\n this.idx += 1;\n\n if (typeof msg.content === \"string\") {\n await runManager?.handleLLMNewToken(msg.content);\n }\n return generation;\n }\n\n bindTools(tools: BindToolsInput[]): Runnable<any> {\n const toolDicts = [];\n const serverTools = [];\n for (const tool of tools) {\n if (!(\"name\" in tool)) {\n serverTools.push(tool);\n continue;\n }\n\n // NOTE: this is a simplified tool spec for testing purposes only\n if (this.toolStyle === \"openai\") {\n toolDicts.push({\n type: \"function\",\n function: {\n name: tool.name,\n },\n });\n } else if ([\"anthropic\", \"google\"].includes(this.toolStyle)) {\n toolDicts.push({\n name: tool.name,\n });\n } else if (this.toolStyle === \"bedrock\") {\n toolDicts.push({\n toolSpec: {\n name: tool.name,\n },\n });\n }\n }\n let toolsToBind: BindToolsInput[] = toolDicts;\n if (this.toolStyle === \"google\") {\n toolsToBind = [{ functionDeclarations: toolDicts }];\n }\n return this.withConfig({\n tools: [...toolsToBind, ...serverTools],\n } as BaseChatModelCallOptions);\n }\n\n withStructuredOutput<\n RunOutput extends Record<string, any> = Record<string, any>\n >(_: unknown): Runnable<any> {\n if (!this.structuredResponse) {\n throw new Error(\"No structured response provided\");\n }\n // Create a runnable that returns the proper structured format\n return RunnableLambda.from(async (messages: BaseMessage[]) => {\n if (this.sleep) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n\n // Store the messages that were sent to generate structured output\n this.structuredOutputMessages.push([...messages]);\n\n // Return in the format expected: { raw: BaseMessage, parsed: RunOutput }\n return this.structuredResponse as RunOutput;\n });\n }\n}\n\nexport class MemorySaverAssertImmutable extends MemorySaver {\n storageForCopies: Record<string, Record<string, Uint8Array>> = {};\n\n constructor() {\n super();\n this.storageForCopies = {};\n }\n\n async put(\n config: RunnableConfig,\n checkpoint: Checkpoint,\n metadata: CheckpointMetadata\n ): Promise<RunnableConfig> {\n const thread_id = config.configurable?.thread_id;\n this.storageForCopies[thread_id] ??= {};\n\n // assert checkpoint hasn't been modified since last written\n const saved = await this.get(config);\n if (saved) {\n const savedId = saved.id;\n if (this.storageForCopies[thread_id][savedId]) {\n const loaded = await this.serde.loadsTyped(\n \"json\",\n this.storageForCopies[thread_id][savedId]\n );\n\n expect(\n saved,\n `Checkpoint [${savedId}] has been modified since last written`\n ).toEqual(loaded);\n }\n }\n const [, serializedCheckpoint] = await this.serde.dumpsTyped(checkpoint);\n // save a copy of the checkpoint\n this.storageForCopies[thread_id][checkpoint.id] = serializedCheckpoint;\n\n return super.put(config, checkpoint, metadata);\n }\n}\n\ninterface ToolCall {\n name: string;\n args: Record<string, any>;\n id: string;\n type?: \"tool_call\";\n}\n\ninterface FakeToolCallingModelFields {\n toolCalls?: ToolCall[][];\n toolStyle?: \"openai\" | \"anthropic\";\n index?: number;\n structuredResponse?: any;\n}\n\n// Helper function to create checkpointer\nexport function createCheckpointer(): BaseCheckpointSaver {\n return new MemorySaver();\n}\n\n/**\n * Fake chat model for testing tool calling functionality\n */\nexport class FakeToolCallingModel extends BaseChatModel {\n toolCalls: ToolCall[][];\n\n toolStyle: \"openai\" | \"anthropic\";\n\n // Use a shared reference object so the index persists across bindTools calls\n private indexRef: { current: number };\n\n structuredResponse?: any;\n\n private tools: StructuredTool[] = [];\n\n constructor({\n toolCalls = [],\n toolStyle = \"openai\",\n index = 0,\n structuredResponse,\n indexRef,\n ...rest\n }: FakeToolCallingModelFields & { indexRef?: { current: number } } = {}) {\n super(rest);\n this.toolCalls = toolCalls;\n this.toolStyle = toolStyle;\n // Share the same index reference across instances\n this.indexRef = indexRef ?? { current: index };\n this.structuredResponse = structuredResponse;\n }\n\n // Getter/setter for backwards compatibility\n get index(): number {\n return this.indexRef.current;\n }\n\n set index(value: number) {\n this.indexRef.current = value;\n }\n\n _llmType(): string {\n return \"fake-tool-calling\";\n }\n\n _combineLLMOutput() {\n return [];\n }\n\n bindTools(\n tools: StructuredTool[]\n ):\n | FakeToolCallingModel\n | RunnableBinding<\n any,\n any,\n any & { tool_choice?: ToolChoice | undefined }\n > {\n const newInstance = new FakeToolCallingModel({\n toolCalls: this.toolCalls,\n toolStyle: this.toolStyle,\n structuredResponse: this.structuredResponse,\n // Pass the same indexRef so all instances share the same index state\n indexRef: this.indexRef,\n });\n newInstance.tools = [...this.tools, ...tools];\n return newInstance;\n }\n\n withStructuredOutput(_schema: any) {\n return new RunnableLambda({\n func: async () => {\n return this.structuredResponse;\n },\n });\n }\n\n async _generate(\n messages: BaseMessage[],\n _options?: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n const lastMessage = messages[messages.length - 1];\n let content = lastMessage.content as string;\n\n // Handle prompt concatenation\n if (messages.length > 1) {\n const parts = messages.map((m) => m.content).filter(Boolean);\n content = parts.join(\"-\");\n }\n\n // Reset index at the start of a new conversation (only human message)\n // This allows the model to be reused across multiple agent.invoke() calls\n const isStartOfConversation =\n messages.length === 1 ||\n (messages.length === 2 && messages.every(HumanMessage.isInstance));\n if (isStartOfConversation && this.index !== 0) {\n this.index = 0;\n }\n\n const currentToolCalls = this.toolCalls[this.index] || [];\n const messageId = this.index.toString();\n\n // Move to next set of tool calls for subsequent invocations\n this.index = (this.index + 1) % Math.max(1, this.toolCalls.length);\n\n const message = new AIMessage({\n content,\n id: messageId,\n tool_calls:\n currentToolCalls.length > 0\n ? currentToolCalls.map((tc) => ({\n ...tc,\n type: \"tool_call\" as const,\n }))\n : undefined,\n });\n\n return {\n generations: [\n {\n text: content,\n message,\n },\n ],\n llmOutput: {},\n };\n }\n}\n\nexport class SearchAPI extends StructuredTool {\n name = \"search_api\";\n\n description = \"A simple API that returns the input string.\";\n\n schema = z.object({\n query: z.string().describe(\"The query to search for.\"),\n });\n\n async _call(input: z.infer<typeof this.schema>) {\n if (input?.query === \"error\") {\n throw new Error(\"Error\");\n }\n return `result for ${input?.query}`;\n }\n}\n"],"mappings":";;;;;;;;;;;AAuUA,IAAa,uBAAb,MAAa,6BAA6B,cAAc;CACtD;CAEA;CAGA,AAAQ;CAER;CAEA,AAAQ,QAA0B,CAAE;CAEpC,YAAY,EACV,YAAY,CAAE,GACd,YAAY,UACZ,QAAQ,GACR,oBACA,SACA,GAAG,MAC6D,GAAG,CAAE,GAAE;EACvE,MAAM,KAAK;EACX,KAAK,YAAY;EACjB,KAAK,YAAY;EAEjB,KAAK,WAAW,YAAY,EAAE,SAAS,MAAO;EAC9C,KAAK,qBAAqB;CAC3B;CAGD,IAAI,QAAgB;AAClB,SAAO,KAAK,SAAS;CACtB;CAED,IAAI,MAAMA,OAAe;EACvB,KAAK,SAAS,UAAU;CACzB;CAED,WAAmB;AACjB,SAAO;CACR;CAED,oBAAoB;AAClB,SAAO,CAAE;CACV;CAED,UACEC,OAOI;EACJ,MAAM,cAAc,IAAI,qBAAqB;GAC3C,WAAW,KAAK;GAChB,WAAW,KAAK;GAChB,oBAAoB,KAAK;GAEzB,UAAU,KAAK;EAChB;EACD,YAAY,QAAQ,CAAC,GAAG,KAAK,OAAO,GAAG,KAAM;AAC7C,SAAO;CACR;CAED,qBAAqBC,SAAc;AACjC,SAAO,IAAI,eAAe,EACxB,MAAM,YAAY;AAChB,UAAO,KAAK;EACb,EACF;CACF;CAED,MAAM,UACJC,UACAC,UACAC,aACqB;EACrB,MAAM,cAAc,SAAS,SAAS,SAAS;EAC/C,IAAI,UAAU,YAAY;AAG1B,MAAI,SAAS,SAAS,GAAG;GACvB,MAAM,QAAQ,SAAS,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC,OAAO,QAAQ;GAC5D,UAAU,MAAM,KAAK,IAAI;EAC1B;EAID,MAAM,wBACJ,SAAS,WAAW,KACnB,SAAS,WAAW,KAAK,SAAS,MAAM,aAAa,WAAW;AACnE,MAAI,yBAAyB,KAAK,UAAU,GAC1C,KAAK,QAAQ;EAGf,MAAM,mBAAmB,KAAK,UAAU,KAAK,UAAU,CAAE;EACzD,MAAM,YAAY,KAAK,MAAM,UAAU;EAGvC,KAAK,SAAS,KAAK,QAAQ,KAAK,KAAK,IAAI,GAAG,KAAK,UAAU,OAAO;EAElE,MAAM,UAAU,IAAI,UAAU;GAC5B;GACA,IAAI;GACJ,YACE,iBAAiB,SAAS,IACtB,iBAAiB,IAAI,CAAC,QAAQ;IAC5B,GAAG;IACH,MAAM;GACP,GAAE,GACH;EACP;AAED,SAAO;GACL,aAAa,CACX;IACE,MAAM;IACN;GACD,CACF;GACD,WAAW,CAAE;EACd;CACF;AACF"}
1
+ {"version":3,"file":"utils.js","names":["value: number","tools: StructuredTool[]","_schema: any","messages: BaseMessage[]","_options?: this[\"ParsedCallOptions\"]","_runManager?: CallbackManagerForLLMRun"],"sources":["../../../src/agents/tests/utils.ts"],"sourcesContent":["/* eslint-disable @typescript-eslint/no-explicit-any */\n/* eslint-disable import/no-extraneous-dependencies */\nimport { expect } from \"vitest\";\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport {\n BaseChatModel,\n BaseChatModelParams,\n BaseChatModelCallOptions,\n BindToolsInput,\n ToolChoice,\n} from \"@langchain/core/language_models/chat_models\";\nimport { StructuredTool } from \"@langchain/core/tools\";\nimport {\n BaseMessage,\n AIMessage,\n HumanMessage,\n BaseMessageFields,\n AIMessageFields,\n ToolMessage,\n ToolMessageFields,\n} from \"@langchain/core/messages\";\nimport { ChatResult } from \"@langchain/core/outputs\";\nimport {\n Runnable,\n RunnableConfig,\n RunnableLambda,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\nimport {\n MemorySaver,\n Checkpoint,\n CheckpointMetadata,\n type BaseCheckpointSaver,\n} from \"@langchain/langgraph-checkpoint\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { z } from \"zod/v3\";\n\nexport class _AnyIdAIMessage extends AIMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"AIMessage\"];\n }\n\n constructor(fields: AIMessageFields | string) {\n let fieldsWithJestMatcher: Partial<AIMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as AIMessageFields);\n }\n}\n\nexport class _AnyIdHumanMessage extends HumanMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"HumanMessage\"];\n }\n\n constructor(fields: BaseMessageFields | string) {\n let fieldsWithJestMatcher: Partial<BaseMessageFields> = {\n id: expect.any(String) as unknown as string,\n };\n if (typeof fields === \"string\") {\n fieldsWithJestMatcher = {\n content: fields,\n ...fieldsWithJestMatcher,\n };\n } else {\n fieldsWithJestMatcher = {\n ...fields,\n ...fieldsWithJestMatcher,\n };\n }\n super(fieldsWithJestMatcher as BaseMessageFields);\n }\n}\n\nexport class _AnyIdToolMessage extends ToolMessage {\n get lc_id() {\n return [\"langchain_core\", \"messages\", \"ToolMessage\"];\n }\n\n constructor(fields: ToolMessageFields) {\n const fieldsWithJestMatcher: Partial<ToolMessageFields> = {\n id: expect.any(String) as unknown as string,\n ...fields,\n };\n super(fieldsWithJestMatcher as ToolMessageFields);\n }\n}\n\nexport class FakeConfigurableModel extends BaseChatModel {\n _queuedMethodOperations: Record<string, any> = {};\n\n _chatModel: LanguageModelLike;\n\n constructor(\n fields: {\n model: LanguageModelLike;\n } & BaseChatModelParams\n ) {\n super(fields);\n this._chatModel = fields.model;\n }\n\n _llmType() {\n return \"fake_configurable\";\n }\n\n async _generate(\n _messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n throw new Error(\"Not implemented\");\n }\n\n async _model() {\n return this._chatModel;\n }\n\n bindTools(tools: BindToolsInput[]) {\n const modelWithTools = new FakeConfigurableModel({\n model: (this._chatModel as FakeToolCallingChatModel).bindTools(tools),\n });\n modelWithTools._queuedMethodOperations.bindTools = tools;\n return modelWithTools;\n }\n}\n\nexport class FakeToolCallingChatModel extends BaseChatModel {\n sleep?: number = 50;\n\n responses?: BaseMessage[];\n\n thrownErrorString?: string;\n\n idx: number;\n\n toolStyle: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\" = \"openai\";\n\n structuredResponse?: Record<string, unknown>;\n\n // Track messages passed to structured output calls\n structuredOutputMessages: BaseMessage[][] = [];\n\n constructor(\n fields: {\n sleep?: number;\n responses?: BaseMessage[];\n thrownErrorString?: string;\n toolStyle?: \"openai\" | \"anthropic\" | \"bedrock\" | \"google\";\n structuredResponse?: Record<string, unknown>;\n } & BaseChatModelParams\n ) {\n super(fields);\n this.sleep = fields.sleep ?? this.sleep;\n this.responses = fields.responses;\n this.thrownErrorString = fields.thrownErrorString;\n this.idx = 0;\n this.toolStyle = fields.toolStyle ?? this.toolStyle;\n this.structuredResponse = fields.structuredResponse;\n this.structuredOutputMessages = [];\n }\n\n _llmType() {\n return \"fake\";\n }\n\n async _generate(\n messages: BaseMessage[],\n _options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.thrownErrorString) {\n throw new Error(this.thrownErrorString);\n }\n if (this.sleep !== undefined) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n const responses = this.responses?.length ? this.responses : messages;\n const msg = responses[this.idx % responses.length];\n const generation: ChatResult = {\n generations: [\n {\n text: \"\",\n message: msg,\n },\n ],\n };\n this.idx += 1;\n\n if (typeof msg.content === \"string\") {\n await runManager?.handleLLMNewToken(msg.content);\n }\n return generation;\n }\n\n bindTools(tools: BindToolsInput[]): Runnable<any> {\n const toolDicts = [];\n const serverTools = [];\n for (const tool of tools) {\n if (!(\"name\" in tool)) {\n serverTools.push(tool);\n continue;\n }\n\n // NOTE: this is a simplified tool spec for testing purposes only\n if (this.toolStyle === \"openai\") {\n toolDicts.push({\n type: \"function\",\n function: {\n name: tool.name,\n },\n });\n } else if ([\"anthropic\", \"google\"].includes(this.toolStyle)) {\n toolDicts.push({\n name: tool.name,\n });\n } else if (this.toolStyle === \"bedrock\") {\n toolDicts.push({\n toolSpec: {\n name: tool.name,\n },\n });\n }\n }\n let toolsToBind: BindToolsInput[] = toolDicts;\n if (this.toolStyle === \"google\") {\n toolsToBind = [{ functionDeclarations: toolDicts }];\n }\n return this.withConfig({\n tools: [...toolsToBind, ...serverTools],\n } as BaseChatModelCallOptions);\n }\n\n withStructuredOutput<\n RunOutput extends Record<string, any> = Record<string, any>\n >(_: unknown): Runnable<any> {\n if (!this.structuredResponse) {\n throw new Error(\"No structured response provided\");\n }\n // Create a runnable that returns the proper structured format\n return RunnableLambda.from(async (messages: BaseMessage[]) => {\n if (this.sleep) {\n await new Promise((resolve) => setTimeout(resolve, this.sleep));\n }\n\n // Store the messages that were sent to generate structured output\n this.structuredOutputMessages.push([...messages]);\n\n // Return in the format expected: { raw: BaseMessage, parsed: RunOutput }\n return this.structuredResponse as RunOutput;\n });\n }\n}\n\nexport class MemorySaverAssertImmutable extends MemorySaver {\n storageForCopies: Record<string, Record<string, Uint8Array>> = {};\n\n constructor() {\n super();\n this.storageForCopies = {};\n }\n\n async put(\n config: RunnableConfig,\n checkpoint: Checkpoint,\n metadata: CheckpointMetadata\n ): Promise<RunnableConfig> {\n const thread_id = config.configurable?.thread_id;\n this.storageForCopies[thread_id] ??= {};\n\n // assert checkpoint hasn't been modified since last written\n const saved = await this.get(config);\n if (saved) {\n const savedId = saved.id;\n if (this.storageForCopies[thread_id][savedId]) {\n const loaded = await this.serde.loadsTyped(\n \"json\",\n this.storageForCopies[thread_id][savedId]\n );\n\n expect(\n saved,\n `Checkpoint [${savedId}] has been modified since last written`\n ).toEqual(loaded);\n }\n }\n const [, serializedCheckpoint] = await this.serde.dumpsTyped(checkpoint);\n // save a copy of the checkpoint\n this.storageForCopies[thread_id][checkpoint.id] = serializedCheckpoint;\n\n return super.put(config, checkpoint, metadata);\n }\n}\n\ninterface ToolCall {\n name: string;\n args: Record<string, any>;\n id: string;\n type?: \"tool_call\";\n}\n\ninterface FakeToolCallingModelFields {\n toolCalls?: ToolCall[][];\n toolStyle?: \"openai\" | \"anthropic\";\n index?: number;\n structuredResponse?: any;\n}\n\n// Helper function to create checkpointer\nexport function createCheckpointer(): BaseCheckpointSaver {\n return new MemorySaver();\n}\n\n/**\n * Fake chat model for testing tool calling functionality\n */\nexport class FakeToolCallingModel extends BaseChatModel {\n toolCalls: ToolCall[][];\n\n toolStyle: \"openai\" | \"anthropic\";\n\n // Use a shared reference object so the index persists across bindTools calls\n private indexRef: { current: number };\n\n structuredResponse?: any;\n\n private tools: StructuredTool[] = [];\n\n constructor({\n toolCalls = [],\n toolStyle = \"openai\",\n index = 0,\n structuredResponse,\n indexRef,\n ...rest\n }: FakeToolCallingModelFields & { indexRef?: { current: number } } = {}) {\n super(rest);\n this.toolCalls = toolCalls;\n this.toolStyle = toolStyle;\n // Share the same index reference across instances\n this.indexRef = indexRef ?? { current: index };\n this.structuredResponse = structuredResponse;\n }\n\n // Getter/setter for backwards compatibility\n get index(): number {\n return this.indexRef.current;\n }\n\n set index(value: number) {\n this.indexRef.current = value;\n }\n\n _llmType(): string {\n return \"fake-tool-calling\";\n }\n\n _combineLLMOutput() {\n return [];\n }\n\n bindTools(\n tools: StructuredTool[]\n ):\n | FakeToolCallingModel\n | RunnableBinding<\n any,\n any,\n any & { tool_choice?: ToolChoice | undefined }\n > {\n const newInstance = new FakeToolCallingModel({\n toolCalls: this.toolCalls,\n toolStyle: this.toolStyle,\n structuredResponse: this.structuredResponse,\n // Pass the same indexRef so all instances share the same index state\n indexRef: this.indexRef,\n });\n newInstance.tools = [...this.tools, ...tools];\n return newInstance;\n }\n\n withStructuredOutput(_schema: any) {\n return new RunnableLambda({\n func: async () => {\n return this.structuredResponse;\n },\n });\n }\n\n async _generate(\n messages: BaseMessage[],\n _options?: this[\"ParsedCallOptions\"],\n _runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n const lastMessage = messages[messages.length - 1];\n let content = lastMessage.content as string;\n\n // Handle prompt concatenation\n if (messages.length > 1) {\n const parts = messages.map((m) => m.content).filter(Boolean);\n content = parts\n .map((part) => {\n if (typeof part === \"string\") {\n return part;\n } else if (typeof part === \"object\" && \"text\" in part) {\n return part.text;\n } else if (Array.isArray(part)) {\n return part\n .map((p) => {\n if (typeof p === \"string\") {\n return p;\n } else if (typeof p === \"object\" && \"text\" in p) {\n return p.text;\n }\n return \"\";\n })\n .join(\"-\");\n } else {\n return JSON.stringify(part);\n }\n })\n .join(\"-\");\n }\n\n // Reset index at the start of a new conversation (only human message)\n // This allows the model to be reused across multiple agent.invoke() calls\n const isStartOfConversation =\n messages.length === 1 ||\n (messages.length === 2 && messages.every(HumanMessage.isInstance));\n if (isStartOfConversation && this.index !== 0) {\n this.index = 0;\n }\n\n const currentToolCalls = this.toolCalls[this.index] || [];\n const messageId = this.index.toString();\n\n // Move to next set of tool calls for subsequent invocations\n this.index = (this.index + 1) % Math.max(1, this.toolCalls.length);\n\n const message = new AIMessage({\n content,\n id: messageId,\n tool_calls:\n currentToolCalls.length > 0\n ? currentToolCalls.map((tc) => ({\n ...tc,\n type: \"tool_call\" as const,\n }))\n : undefined,\n });\n\n return {\n generations: [\n {\n text: content,\n message,\n },\n ],\n llmOutput: {},\n };\n }\n}\n\nexport class SearchAPI extends StructuredTool {\n name = \"search_api\";\n\n description = \"A simple API that returns the input string.\";\n\n schema = z.object({\n query: z.string().describe(\"The query to search for.\"),\n });\n\n async _call(input: z.infer<typeof this.schema>) {\n if (input?.query === \"error\") {\n throw new Error(\"Error\");\n }\n return `result for ${input?.query}`;\n }\n}\n"],"mappings":";;;;;;;;;;;AAuUA,IAAa,uBAAb,MAAa,6BAA6B,cAAc;CACtD;CAEA;CAGA,AAAQ;CAER;CAEA,AAAQ,QAA0B,CAAE;CAEpC,YAAY,EACV,YAAY,CAAE,GACd,YAAY,UACZ,QAAQ,GACR,oBACA,SACA,GAAG,MAC6D,GAAG,CAAE,GAAE;EACvE,MAAM,KAAK;EACX,KAAK,YAAY;EACjB,KAAK,YAAY;EAEjB,KAAK,WAAW,YAAY,EAAE,SAAS,MAAO;EAC9C,KAAK,qBAAqB;CAC3B;CAGD,IAAI,QAAgB;AAClB,SAAO,KAAK,SAAS;CACtB;CAED,IAAI,MAAMA,OAAe;EACvB,KAAK,SAAS,UAAU;CACzB;CAED,WAAmB;AACjB,SAAO;CACR;CAED,oBAAoB;AAClB,SAAO,CAAE;CACV;CAED,UACEC,OAOI;EACJ,MAAM,cAAc,IAAI,qBAAqB;GAC3C,WAAW,KAAK;GAChB,WAAW,KAAK;GAChB,oBAAoB,KAAK;GAEzB,UAAU,KAAK;EAChB;EACD,YAAY,QAAQ,CAAC,GAAG,KAAK,OAAO,GAAG,KAAM;AAC7C,SAAO;CACR;CAED,qBAAqBC,SAAc;AACjC,SAAO,IAAI,eAAe,EACxB,MAAM,YAAY;AAChB,UAAO,KAAK;EACb,EACF;CACF;CAED,MAAM,UACJC,UACAC,UACAC,aACqB;EACrB,MAAM,cAAc,SAAS,SAAS,SAAS;EAC/C,IAAI,UAAU,YAAY;AAG1B,MAAI,SAAS,SAAS,GAAG;GACvB,MAAM,QAAQ,SAAS,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC,OAAO,QAAQ;GAC5D,UAAU,MACP,IAAI,CAAC,SAAS;AACb,QAAI,OAAO,SAAS,SAClB,QAAO;aACE,OAAO,SAAS,YAAY,UAAU,KAC/C,QAAO,KAAK;aACH,MAAM,QAAQ,KAAK,CAC5B,QAAO,KACJ,IAAI,CAAC,MAAM;AACV,SAAI,OAAO,MAAM,SACf,QAAO;cACE,OAAO,MAAM,YAAY,UAAU,EAC5C,QAAO,EAAE;AAEX,YAAO;IACR,EAAC,CACD,KAAK,IAAI;QAEZ,QAAO,KAAK,UAAU,KAAK;GAE9B,EAAC,CACD,KAAK,IAAI;EACb;EAID,MAAM,wBACJ,SAAS,WAAW,KACnB,SAAS,WAAW,KAAK,SAAS,MAAM,aAAa,WAAW;AACnE,MAAI,yBAAyB,KAAK,UAAU,GAC1C,KAAK,QAAQ;EAGf,MAAM,mBAAmB,KAAK,UAAU,KAAK,UAAU,CAAE;EACzD,MAAM,YAAY,KAAK,MAAM,UAAU;EAGvC,KAAK,SAAS,KAAK,QAAQ,KAAK,KAAK,IAAI,GAAG,KAAK,UAAU,OAAO;EAElE,MAAM,UAAU,IAAI,UAAU;GAC5B;GACA,IAAI;GACJ,YACE,iBAAiB,SAAS,IACtB,iBAAiB,IAAI,CAAC,QAAQ;IAC5B,GAAG;IACH,MAAM;GACP,GAAE,GACH;EACP;AAED,SAAO;GACL,aAAa,CACX;IACE,MAAM;IACN;GACD,CACF;GACD,WAAW,CAAE;EACd;CACF;AACF"}
@@ -2,7 +2,7 @@ import { JsonSchemaFormat, ProviderStrategy, ResponseFormat, ResponseFormatUndef
2
2
  import { JumpToTarget } from "./constants.cjs";
3
3
  import { AgentMiddleware, AnyAnnotationRoot, InferSchemaInput } from "./middleware/types.cjs";
4
4
  import { LanguageModelLike } from "@langchain/core/language_models/base";
5
- import { BaseMessage } from "@langchain/core/messages";
5
+ import { BaseMessage, SystemMessage } from "@langchain/core/messages";
6
6
  import { ClientTool, ServerTool } from "@langchain/core/tools";
7
7
  import { InteropZodObject, InteropZodType } from "@langchain/core/utils/types";
8
8
  import { END, START, StateGraph } from "@langchain/langgraph";
@@ -159,8 +159,74 @@ type CreateAgentParams<StructuredResponseType extends Record<string, any> = Reco
159
159
  tools?: (ServerTool | ClientTool)[];
160
160
  /**
161
161
  * An optional system message for the model.
162
+ *
163
+ * **Use a `string`** for simple, static system prompts. This is the most common use case
164
+ * and works well with template literals for dynamic content. When a string is provided,
165
+ * it's converted to a single text block internally.
166
+ *
167
+ * **Use a `SystemMessage`** when you need advanced features that require structured content:
168
+ * - **Anthropic cache control**: Use `SystemMessage` with array content to enable per-block
169
+ * cache control settings (e.g., `cache_control: { type: "ephemeral" }`). This allows you
170
+ * to have different cache settings for different parts of your system prompt.
171
+ * - **Multiple content blocks**: When you need multiple text blocks with different metadata
172
+ * or formatting requirements.
173
+ * - **Integration with existing code**: When working with code that already produces
174
+ * `SystemMessage` instances.
175
+ *
176
+ * @example Using a string (recommended for most cases)
177
+ * ```ts
178
+ * const agent = createAgent({
179
+ * model: "anthropic:claude-3-5-sonnet",
180
+ * systemPrompt: "You are a helpful assistant.",
181
+ * // ...
182
+ * });
183
+ * ```
184
+ *
185
+ * @example Using a string with template literals
186
+ * ```ts
187
+ * const userRole = "premium";
188
+ * const agent = createAgent({
189
+ * model: "anthropic:claude-3-5-sonnet",
190
+ * systemPrompt: `You are a helpful assistant for ${userRole} users.`,
191
+ * // ...
192
+ * });
193
+ * ```
194
+ *
195
+ * @example Using SystemMessage with cache control (Anthropic)
196
+ * ```ts
197
+ * import { SystemMessage } from "@langchain/core/messages";
198
+ *
199
+ * const agent = createAgent({
200
+ * model: "anthropic:claude-3-5-sonnet",
201
+ * systemPrompt: new SystemMessage({
202
+ * content: [
203
+ * {
204
+ * type: "text",
205
+ * text: "You are a helpful assistant.",
206
+ * },
207
+ * {
208
+ * type: "text",
209
+ * text: "Today's date is 2024-06-01.",
210
+ * cache_control: { type: "ephemeral" },
211
+ * },
212
+ * ],
213
+ * }),
214
+ * // ...
215
+ * });
216
+ * ```
217
+ *
218
+ * @example Using SystemMessage (simple)
219
+ * ```ts
220
+ * import { SystemMessage } from "@langchain/core/messages";
221
+ *
222
+ * const agent = createAgent({
223
+ * model: "anthropic:claude-3-5-sonnet",
224
+ * systemPrompt: new SystemMessage("You are a helpful assistant."),
225
+ * // ...
226
+ * });
227
+ * ```
162
228
  */
163
- systemPrompt?: string;
229
+ systemPrompt?: string | SystemMessage;
164
230
  /**
165
231
  * An optional schema for the agent state. It allows you to define custom state properties that persist
166
232
  * across agent invocations and can be accessed in hooks, middleware, and throughout the agent's execution.
@@ -1,7 +1,7 @@
1
1
  import { JsonSchemaFormat, ProviderStrategy, ResponseFormat, ResponseFormatUndefined, ToolStrategy, TypedToolStrategy } from "./responses.js";
2
2
  import { JumpToTarget } from "./constants.js";
3
3
  import { AgentMiddleware, AnyAnnotationRoot, InferSchemaInput } from "./middleware/types.js";
4
- import { BaseMessage } from "@langchain/core/messages";
4
+ import { BaseMessage, SystemMessage } from "@langchain/core/messages";
5
5
  import { ClientTool, ServerTool } from "@langchain/core/tools";
6
6
  import { END, START, StateGraph } from "@langchain/langgraph";
7
7
  import { InteropZodObject, InteropZodType } from "@langchain/core/utils/types";
@@ -159,8 +159,74 @@ type CreateAgentParams<StructuredResponseType extends Record<string, any> = Reco
159
159
  tools?: (ServerTool | ClientTool)[];
160
160
  /**
161
161
  * An optional system message for the model.
162
+ *
163
+ * **Use a `string`** for simple, static system prompts. This is the most common use case
164
+ * and works well with template literals for dynamic content. When a string is provided,
165
+ * it's converted to a single text block internally.
166
+ *
167
+ * **Use a `SystemMessage`** when you need advanced features that require structured content:
168
+ * - **Anthropic cache control**: Use `SystemMessage` with array content to enable per-block
169
+ * cache control settings (e.g., `cache_control: { type: "ephemeral" }`). This allows you
170
+ * to have different cache settings for different parts of your system prompt.
171
+ * - **Multiple content blocks**: When you need multiple text blocks with different metadata
172
+ * or formatting requirements.
173
+ * - **Integration with existing code**: When working with code that already produces
174
+ * `SystemMessage` instances.
175
+ *
176
+ * @example Using a string (recommended for most cases)
177
+ * ```ts
178
+ * const agent = createAgent({
179
+ * model: "anthropic:claude-3-5-sonnet",
180
+ * systemPrompt: "You are a helpful assistant.",
181
+ * // ...
182
+ * });
183
+ * ```
184
+ *
185
+ * @example Using a string with template literals
186
+ * ```ts
187
+ * const userRole = "premium";
188
+ * const agent = createAgent({
189
+ * model: "anthropic:claude-3-5-sonnet",
190
+ * systemPrompt: `You are a helpful assistant for ${userRole} users.`,
191
+ * // ...
192
+ * });
193
+ * ```
194
+ *
195
+ * @example Using SystemMessage with cache control (Anthropic)
196
+ * ```ts
197
+ * import { SystemMessage } from "@langchain/core/messages";
198
+ *
199
+ * const agent = createAgent({
200
+ * model: "anthropic:claude-3-5-sonnet",
201
+ * systemPrompt: new SystemMessage({
202
+ * content: [
203
+ * {
204
+ * type: "text",
205
+ * text: "You are a helpful assistant.",
206
+ * },
207
+ * {
208
+ * type: "text",
209
+ * text: "Today's date is 2024-06-01.",
210
+ * cache_control: { type: "ephemeral" },
211
+ * },
212
+ * ],
213
+ * }),
214
+ * // ...
215
+ * });
216
+ * ```
217
+ *
218
+ * @example Using SystemMessage (simple)
219
+ * ```ts
220
+ * import { SystemMessage } from "@langchain/core/messages";
221
+ *
222
+ * const agent = createAgent({
223
+ * model: "anthropic:claude-3-5-sonnet",
224
+ * systemPrompt: new SystemMessage("You are a helpful assistant."),
225
+ * // ...
226
+ * });
227
+ * ```
162
228
  */
163
- systemPrompt?: string;
229
+ systemPrompt?: string | SystemMessage;
164
230
  /**
165
231
  * An optional schema for the agent state. It allows you to define custom state properties that persist
166
232
  * across agent invocations and can be accessed in hooks, middleware, and throughout the agent's execution.
@@ -1,7 +1,6 @@
1
1
  const require_rolldown_runtime = require('../_virtual/rolldown_runtime.cjs');
2
2
  const require_model = require('./model.cjs');
3
3
  const require_errors = require('./errors.cjs');
4
- const require_constants = require('./constants.cjs');
5
4
  const __langchain_core_messages = require_rolldown_runtime.__toESM(require("@langchain/core/messages"));
6
5
  const __langchain_core_runnables = require_rolldown_runtime.__toESM(require("@langchain/core/runnables"));
7
6
  const __langchain_langgraph = require_rolldown_runtime.__toESM(require("@langchain/langgraph"));
@@ -203,16 +202,20 @@ function validateLLMHasNoBoundTools(llm) {
203
202
  function hasToolCalls(message) {
204
203
  return Boolean(__langchain_core_messages.AIMessage.isInstance(message) && message.tool_calls && message.tool_calls.length > 0);
205
204
  }
206
- function getPromptRunnable(prompt) {
207
- let promptRunnable;
208
- if (prompt == null) promptRunnable = __langchain_core_runnables.RunnableLambda.from((state) => state.messages).withConfig({ runName: require_constants.PROMPT_RUNNABLE_NAME });
209
- else if (typeof prompt === "string") {
210
- const systemMessage = new __langchain_core_messages.SystemMessage(prompt);
211
- promptRunnable = __langchain_core_runnables.RunnableLambda.from((state) => {
212
- return [systemMessage, ...state.messages ?? []];
213
- }).withConfig({ runName: require_constants.PROMPT_RUNNABLE_NAME });
214
- } else throw new Error(`Got unexpected type for 'prompt': ${typeof prompt}`);
215
- return promptRunnable;
205
+ /**
206
+ * Normalizes a system prompt to a SystemMessage object.
207
+ * If it's already a SystemMessage, returns it as-is.
208
+ * If it's a string, converts it to a SystemMessage.
209
+ * If it's undefined, creates an empty system message so it is easier to append to it later.
210
+ */
211
+ function normalizeSystemPrompt(systemPrompt) {
212
+ if (systemPrompt == null) return new __langchain_core_messages.SystemMessage("");
213
+ if (__langchain_core_messages.SystemMessage.isInstance(systemPrompt)) return systemPrompt;
214
+ if (typeof systemPrompt === "string") return new __langchain_core_messages.SystemMessage({ content: [{
215
+ type: "text",
216
+ text: systemPrompt
217
+ }] });
218
+ throw new Error(`Invalid systemPrompt type: expected string or SystemMessage, got ${typeof systemPrompt}`);
216
219
  }
217
220
  /**
218
221
  * Helper function to bind tools to a language model.
@@ -339,9 +342,9 @@ function wrapToolCall(middleware) {
339
342
  exports._addInlineAgentName = _addInlineAgentName;
340
343
  exports._removeInlineAgentName = _removeInlineAgentName;
341
344
  exports.bindTools = bindTools;
342
- exports.getPromptRunnable = getPromptRunnable;
343
345
  exports.hasToolCalls = hasToolCalls;
344
346
  exports.isClientTool = isClientTool;
347
+ exports.normalizeSystemPrompt = normalizeSystemPrompt;
345
348
  exports.validateLLMHasNoBoundTools = validateLLMHasNoBoundTools;
346
349
  exports.wrapToolCall = wrapToolCall;
347
350
  //# sourceMappingURL=utils.cjs.map
@@ -1 +1 @@
1
- {"version":3,"file":"utils.cjs","names":["message: T","AIMessage","AIMessageChunk","updatedContent: MessageContent","updatedName: string | undefined","tool: ClientTool | ServerTool","Runnable","llm: LanguageModelLike","isBaseChatModel","toolClasses: (ClientTool | ServerTool)[]","options: Partial<BaseChatModelCallOptions>","RunnableBinding","RunnableSequence","step: RunnableLike","isConfigurableModel","MultipleToolsBoundError","message?: BaseMessage","prompt?: Prompt","promptRunnable: Runnable","RunnableLambda","state: typeof MessagesAnnotation.State","PROMPT_RUNNABLE_NAME","SystemMessage","model","nextSteps: unknown[]","handlers: WrapToolCallHook[]","outer: WrapToolCallHook","inner: WrapToolCallHook","innerHandler: ToolCallHandler","middleware: readonly AgentMiddleware<InteropZodObject | undefined>[]","wrappedHandler: WrapToolCallHook","ToolMessage"],"sources":["../../src/agents/utils.ts"],"sourcesContent":["import {\n AIMessage,\n AIMessageChunk,\n BaseMessage,\n BaseMessageLike,\n SystemMessage,\n MessageContent,\n ToolMessage,\n} from \"@langchain/core/messages\";\nimport { MessagesAnnotation, isCommand } from \"@langchain/langgraph\";\nimport {\n type InteropZodObject,\n interopParse,\n} from \"@langchain/core/utils/types\";\nimport {\n BaseChatModel,\n type BaseChatModelCallOptions,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n LanguageModelLike,\n BaseLanguageModelInput,\n} from \"@langchain/core/language_models/base\";\nimport {\n Runnable,\n RunnableLike,\n RunnableConfig,\n RunnableLambda,\n RunnableSequence,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\nimport type { ClientTool, ServerTool } from \"@langchain/core/tools\";\n\nimport { isBaseChatModel, isConfigurableModel } from \"./model.js\";\nimport { MultipleToolsBoundError } from \"./errors.js\";\nimport { PROMPT_RUNNABLE_NAME } from \"./constants.js\";\nimport type { AgentBuiltInState } from \"./runtime.js\";\nimport type {\n ToolCallHandler,\n AgentMiddleware,\n ToolCallRequest,\n WrapToolCallHook,\n} from \"./middleware/types.js\";\n\nconst NAME_PATTERN = /<name>(.*?)<\\/name>/s;\nconst CONTENT_PATTERN = /<content>(.*?)<\\/content>/s;\n\nexport type AgentNameMode = \"inline\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param message - Message to add agent name formatting to\n * @returns Message with agent name formatting\n *\n * @internal\n */\nexport function _addInlineAgentName<T extends BaseMessageLike>(\n message: T\n): T | AIMessage {\n if (!AIMessage.isInstance(message) || AIMessageChunk.isInstance(message)) {\n return message;\n }\n\n if (!message.name) {\n return message;\n }\n\n const { name } = message;\n\n if (typeof message.content === \"string\") {\n return new AIMessage({\n ...message.lc_kwargs,\n content: `<name>${name}</name><content>${message.content}</content>`,\n name: undefined,\n });\n }\n\n const updatedContent = [];\n let textBlockCount = 0;\n\n for (const contentBlock of message.content) {\n if (typeof contentBlock === \"string\") {\n textBlockCount += 1;\n updatedContent.push(\n `<name>${name}</name><content>${contentBlock}</content>`\n );\n } else if (\n typeof contentBlock === \"object\" &&\n \"type\" in contentBlock &&\n contentBlock.type === \"text\"\n ) {\n textBlockCount += 1;\n updatedContent.push({\n ...contentBlock,\n text: `<name>${name}</name><content>${contentBlock.text}</content>`,\n });\n } else {\n updatedContent.push(contentBlock);\n }\n }\n\n if (!textBlockCount) {\n updatedContent.unshift({\n type: \"text\",\n text: `<name>${name}</name><content></content>`,\n });\n }\n return new AIMessage({\n ...message.lc_kwargs,\n content: updatedContent as MessageContent,\n name: undefined,\n });\n}\n\n/**\n * Remove explicit name and content XML tags from the AI message content.\n *\n * Examples:\n *\n * @example\n * ```typescript\n * removeInlineAgentName(new AIMessage({ content: \"<name>assistant</name><content>Hello</content>\", name: \"assistant\" }))\n * // AIMessage with content: \"Hello\"\n *\n * removeInlineAgentName(new AIMessage({ content: [{type: \"text\", text: \"<name>assistant</name><content>Hello</content>\"}], name: \"assistant\" }))\n * // AIMessage with content: [{type: \"text\", text: \"Hello\"}]\n * ```\n *\n * @internal\n */\nexport function _removeInlineAgentName<T extends BaseMessage>(message: T): T {\n if (!AIMessage.isInstance(message) || !message.content) {\n return message;\n }\n\n let updatedContent: MessageContent = [];\n let updatedName: string | undefined;\n\n if (Array.isArray(message.content)) {\n updatedContent = message.content\n .filter((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n // don't include empty content blocks that were added because there was no text block to modify\n if (nameMatch && (!contentMatch || contentMatch[1] === \"\")) {\n // capture name from text block\n updatedName = nameMatch[1];\n return false;\n }\n return true;\n }\n return true;\n })\n .map((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return block;\n }\n\n // capture name from text block\n updatedName = nameMatch[1];\n\n return {\n ...block,\n text: contentMatch[1],\n };\n }\n return block;\n });\n } else {\n const content = message.content as string;\n const nameMatch = content.match(NAME_PATTERN);\n const contentMatch = content.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return message;\n }\n\n updatedName = nameMatch[1];\n updatedContent = contentMatch[1];\n }\n\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: updatedContent,\n name: updatedName,\n }) as T;\n}\n\nexport function isClientTool(\n tool: ClientTool | ServerTool\n): tool is ClientTool {\n return Runnable.isRunnable(tool);\n}\n\n/**\n * Helper function to check if a language model has a bindTools method.\n * @param llm - The language model to check if it has a bindTools method.\n * @returns True if the language model has a bindTools method, false otherwise.\n */\nfunction _isChatModelWithBindTools(\n llm: LanguageModelLike\n): llm is BaseChatModel & Required<Pick<BaseChatModel, \"bindTools\">> {\n if (!isBaseChatModel(llm)) return false;\n return \"bindTools\" in llm && typeof llm.bindTools === \"function\";\n}\n\n/**\n * Helper function to bind tools to a language model.\n * @param llm - The language model to bind tools to.\n * @param toolClasses - The tools to bind to the language model.\n * @param options - The options to pass to the language model.\n * @returns The language model with the tools bound to it.\n */\nconst _simpleBindTools = (\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n) => {\n if (_isChatModelWithBindTools(llm)) {\n return llm.bindTools(toolClasses, options);\n }\n\n if (\n RunnableBinding.isRunnableBinding(llm) &&\n _isChatModelWithBindTools(llm.bound)\n ) {\n const newBound = llm.bound.bindTools(toolClasses, options);\n\n if (RunnableBinding.isRunnableBinding(newBound)) {\n return new RunnableBinding({\n bound: newBound.bound,\n config: { ...llm.config, ...newBound.config },\n kwargs: { ...llm.kwargs, ...newBound.kwargs },\n configFactories: newBound.configFactories ?? llm.configFactories,\n });\n }\n\n return new RunnableBinding({\n bound: newBound,\n config: llm.config,\n kwargs: llm.kwargs,\n configFactories: llm.configFactories,\n });\n }\n\n return null;\n};\n\n/**\n * Check if the LLM already has bound tools and throw if it does.\n *\n * @param llm - The LLM to check.\n * @returns void\n */\nexport function validateLLMHasNoBoundTools(llm: LanguageModelLike): void {\n /**\n * If llm is a function, we can't validate until runtime, so skip\n */\n if (typeof llm === \"function\") {\n return;\n }\n\n let model = llm;\n\n /**\n * If model is a RunnableSequence, find a RunnableBinding in its steps\n */\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find((step: RunnableLike) =>\n RunnableBinding.isRunnableBinding(step)\n ) || model;\n }\n\n /**\n * If model is configurable, get the underlying model\n */\n if (isConfigurableModel(model)) {\n /**\n * Can't validate async model retrieval in constructor\n */\n return;\n }\n\n /**\n * Check if model is a RunnableBinding with bound tools\n */\n if (RunnableBinding.isRunnableBinding(model)) {\n const hasToolsInKwargs =\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools) &&\n model.kwargs.tools.length > 0;\n\n const hasToolsInConfig =\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools) &&\n model.config.tools.length > 0;\n\n if (hasToolsInKwargs || hasToolsInConfig) {\n throw new MultipleToolsBoundError();\n }\n }\n\n /**\n * Also check if model has tools property directly (e.g., FakeToolCallingModel)\n */\n if (\n \"tools\" in model &&\n model.tools !== undefined &&\n Array.isArray(model.tools) &&\n model.tools.length > 0\n ) {\n throw new MultipleToolsBoundError();\n }\n}\n\n/**\n * Check if the last message in the messages array has tool calls.\n *\n * @param messages - The messages to check.\n * @returns True if the last message has tool calls, false otherwise.\n */\nexport function hasToolCalls(message?: BaseMessage): boolean {\n return Boolean(\n AIMessage.isInstance(message) &&\n message.tool_calls &&\n message.tool_calls.length > 0\n );\n}\n\ntype Prompt = string | SystemMessage;\n\nexport function getPromptRunnable(prompt?: Prompt): Runnable {\n let promptRunnable: Runnable;\n\n if (prompt == null) {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => state.messages\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"string\") {\n const systemMessage = new SystemMessage(prompt);\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => {\n return [systemMessage, ...(state.messages ?? [])];\n }\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else {\n throw new Error(`Got unexpected type for 'prompt': ${typeof prompt}`);\n }\n\n return promptRunnable;\n}\n\n/**\n * Helper function to bind tools to a language model.\n * @param llm - The language model to bind tools to.\n * @param toolClasses - The tools to bind to the language model.\n * @param options - The options to pass to the language model.\n * @returns The language model with the tools bound to it.\n */\nexport async function bindTools(\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n): Promise<\n | RunnableSequence<unknown, unknown>\n | RunnableBinding<unknown, unknown, RunnableConfig<Record<string, unknown>>>\n | Runnable<BaseLanguageModelInput, AIMessageChunk, BaseChatModelCallOptions>\n> {\n const model = _simpleBindTools(llm, toolClasses, options);\n if (model) return model;\n\n if (isConfigurableModel(llm)) {\n const model = _simpleBindTools(await llm._model(), toolClasses, options);\n if (model) return model;\n }\n\n if (RunnableSequence.isRunnableSequence(llm)) {\n const modelStep = llm.steps.findIndex(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n );\n\n if (modelStep >= 0) {\n const model = _simpleBindTools(\n llm.steps[modelStep],\n toolClasses,\n options\n );\n if (model) {\n const nextSteps: unknown[] = llm.steps.slice();\n nextSteps.splice(modelStep, 1, model);\n\n return RunnableSequence.from(\n nextSteps as [RunnableLike, ...RunnableLike[], RunnableLike]\n );\n }\n }\n }\n\n throw new Error(`llm ${llm} must define bindTools method.`);\n}\n\n/**\n * Compose multiple wrapToolCall handlers into a single middleware stack.\n *\n * Composes handlers so the first in the list becomes the outermost layer.\n * Each handler receives a handler callback to execute inner layers.\n *\n * @param handlers - List of handlers. First handler wraps all others.\n * @returns Composed handler, or undefined if handlers array is empty.\n *\n * @example\n * ```typescript\n * // handlers=[auth, retry] means: auth wraps retry\n * // Flow: auth calls retry, retry calls base handler\n * const auth: ToolCallWrapper = async (request, handler) => {\n * try {\n * return await handler(request);\n * } catch (error) {\n * if (error.message === \"Unauthorized\") {\n * await refreshToken();\n * return await handler(request);\n * }\n * throw error;\n * }\n * };\n *\n * const retry: ToolCallWrapper = async (request, handler) => {\n * for (let attempt = 0; attempt < 3; attempt++) {\n * try {\n * return await handler(request);\n * } catch (error) {\n * if (attempt === 2) throw error;\n * }\n * }\n * throw new Error(\"Unreachable\");\n * };\n *\n * const composedHandler = chainToolCallHandlers([auth, retry]);\n * ```\n */\nfunction chainToolCallHandlers(\n handlers: WrapToolCallHook[]\n): WrapToolCallHook | undefined {\n if (handlers.length === 0) {\n return undefined;\n }\n\n if (handlers.length === 1) {\n return handlers[0];\n }\n\n // Compose two handlers where outer wraps inner\n function composeTwo(\n outer: WrapToolCallHook,\n inner: WrapToolCallHook\n ): WrapToolCallHook {\n return async (request, handler) => {\n // Create a wrapper that calls inner with the base handler\n const innerHandler: ToolCallHandler = async () =>\n inner(request, async () => handler(request));\n\n // Call outer with the wrapped inner as its handler\n return outer(request, innerHandler);\n };\n }\n\n // Compose right-to-left: outer(inner(innermost(handler)))\n let result = handlers[handlers.length - 1];\n for (let i = handlers.length - 2; i >= 0; i--) {\n result = composeTwo(handlers[i], result);\n }\n\n return result;\n}\n\n/**\n * Wrapping `wrapToolCall` invocation so we can inject middleware name into\n * the error message.\n *\n * @param middleware list of middleware passed to the agent\n * @param state state of the agent\n * @returns single wrap function\n */\nexport function wrapToolCall(\n middleware: readonly AgentMiddleware<InteropZodObject | undefined>[]\n) {\n const middlewareWithWrapToolCall = middleware.filter((m) => m.wrapToolCall);\n\n if (middlewareWithWrapToolCall.length === 0) {\n return;\n }\n\n return chainToolCallHandlers(\n middlewareWithWrapToolCall.map((m) => {\n const originalHandler = m.wrapToolCall!;\n /**\n * Wrap with error handling and validation\n */\n const wrappedHandler: WrapToolCallHook = async (request, handler) => {\n try {\n const result = await originalHandler(\n {\n ...request,\n /**\n * override state with the state from the specific middleware\n */\n state: {\n messages: request.state.messages,\n ...(m.stateSchema\n ? interopParse(m.stateSchema, { ...request.state })\n : {}),\n },\n } as ToolCallRequest<AgentBuiltInState, unknown>,\n handler\n );\n\n /**\n * Validate return type\n */\n if (!ToolMessage.isInstance(result) && !isCommand(result)) {\n throw new Error(\n `Invalid response from \"wrapToolCall\" in middleware \"${m.name}\": ` +\n `expected ToolMessage or Command, got ${typeof result}`\n );\n }\n\n return result;\n } catch (error) {\n /**\n * Add middleware context to error if not already added\n */\n if (\n // eslint-disable-next-line no-instanceof/no-instanceof\n error instanceof Error &&\n !error.message.includes(`middleware \"${m.name}\"`)\n ) {\n error.message = `Error in middleware \"${m.name}\": ${error.message}`;\n }\n throw error;\n }\n };\n return wrappedHandler;\n })\n );\n}\n"],"mappings":";;;;;;;;;;AA2CA,MAAM,eAAe;AACrB,MAAM,kBAAkB;;;;;;;;;;;;;;;AAkBxB,SAAgB,oBACdA,SACe;AACf,KAAI,CAACC,oCAAU,WAAW,QAAQ,IAAIC,yCAAe,WAAW,QAAQ,CACtE,QAAO;AAGT,KAAI,CAAC,QAAQ,KACX,QAAO;CAGT,MAAM,EAAE,MAAM,GAAG;AAEjB,KAAI,OAAO,QAAQ,YAAY,SAC7B,QAAO,IAAID,oCAAU;EACnB,GAAG,QAAQ;EACX,SAAS,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,QAAQ,QAAQ,UAAU,CAAC;EACpE,MAAM;CACP;CAGH,MAAM,iBAAiB,CAAE;CACzB,IAAI,iBAAiB;AAErB,MAAK,MAAM,gBAAgB,QAAQ,QACjC,KAAI,OAAO,iBAAiB,UAAU;EACpC,kBAAkB;EAClB,eAAe,KACb,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,UAAU,CAAC,CACzD;CACF,WACC,OAAO,iBAAiB,YACxB,UAAU,gBACV,aAAa,SAAS,QACtB;EACA,kBAAkB;EAClB,eAAe,KAAK;GAClB,GAAG;GACH,MAAM,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,KAAK,UAAU,CAAC;EACpE,EAAC;CACH,OACC,eAAe,KAAK,aAAa;AAIrC,KAAI,CAAC,gBACH,eAAe,QAAQ;EACrB,MAAM;EACN,MAAM,CAAC,MAAM,EAAE,KAAK,0BAA0B,CAAC;CAChD,EAAC;AAEJ,QAAO,IAAIA,oCAAU;EACnB,GAAG,QAAQ;EACX,SAAS;EACT,MAAM;CACP;AACF;;;;;;;;;;;;;;;;;AAkBD,SAAgB,uBAA8CD,SAAe;AAC3E,KAAI,CAACC,oCAAU,WAAW,QAAQ,IAAI,CAAC,QAAQ,QAC7C,QAAO;CAGT,IAAIE,iBAAiC,CAAE;CACvC,IAAIC;AAEJ,KAAI,MAAM,QAAQ,QAAQ,QAAQ,EAChC,iBAAiB,QAAQ,QACtB,OAAO,CAAC,UAAU;AACjB,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,cAAc,CAAC,gBAAgB,aAAa,OAAO,KAAK;IAE1D,cAAc,UAAU;AACxB,WAAO;GACR;AACD,UAAO;EACR;AACD,SAAO;CACR,EAAC,CACD,IAAI,CAAC,UAAU;AACd,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,CAAC,aAAa,CAAC,aACjB,QAAO;GAIT,cAAc,UAAU;AAExB,UAAO;IACL,GAAG;IACH,MAAM,aAAa;GACpB;EACF;AACD,SAAO;CACR,EAAC;MACC;EACL,MAAM,UAAU,QAAQ;EACxB,MAAM,YAAY,QAAQ,MAAM,aAAa;EAC7C,MAAM,eAAe,QAAQ,MAAM,gBAAgB;AAEnD,MAAI,CAAC,aAAa,CAAC,aACjB,QAAO;EAGT,cAAc,UAAU;EACxB,iBAAiB,aAAa;CAC/B;AAED,QAAO,IAAIH,oCAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS;EACT,MAAM;CACP;AACF;AAED,SAAgB,aACdI,MACoB;AACpB,QAAOC,oCAAS,WAAW,KAAK;AACjC;;;;;;AAOD,SAAS,0BACPC,KACmE;AACnE,KAAI,CAACC,8BAAgB,IAAI,CAAE,QAAO;AAClC,QAAO,eAAe,OAAO,OAAO,IAAI,cAAc;AACvD;;;;;;;;AASD,MAAM,mBAAmB,CACvBD,KACAE,aACAC,UAA6C,CAAE,MAC5C;AACH,KAAI,0BAA0B,IAAI,CAChC,QAAO,IAAI,UAAU,aAAa,QAAQ;AAG5C,KACEC,2CAAgB,kBAAkB,IAAI,IACtC,0BAA0B,IAAI,MAAM,EACpC;EACA,MAAM,WAAW,IAAI,MAAM,UAAU,aAAa,QAAQ;AAE1D,MAAIA,2CAAgB,kBAAkB,SAAS,CAC7C,QAAO,IAAIA,2CAAgB;GACzB,OAAO,SAAS;GAChB,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,iBAAiB,SAAS,mBAAmB,IAAI;EAClD;AAGH,SAAO,IAAIA,2CAAgB;GACzB,OAAO;GACP,QAAQ,IAAI;GACZ,QAAQ,IAAI;GACZ,iBAAiB,IAAI;EACtB;CACF;AAED,QAAO;AACR;;;;;;;AAQD,SAAgB,2BAA2BJ,KAA8B;;;;AAIvE,KAAI,OAAO,QAAQ,WACjB;CAGF,IAAI,QAAQ;;;;AAKZ,KAAIK,4CAAiB,mBAAmB,MAAM,EAC5C,QACE,MAAM,MAAM,KAAK,CAACC,SAChBF,2CAAgB,kBAAkB,KAAK,CACxC,IAAI;;;;AAMT,KAAIG,kCAAoB,MAAM;;;;AAI5B;;;;AAMF,KAAIH,2CAAgB,kBAAkB,MAAM,EAAE;EAC5C,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;EAE9B,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;AAE9B,MAAI,oBAAoB,iBACtB,OAAM,IAAII;CAEb;;;;AAKD,KACE,WAAW,SACX,MAAM,UAAU,UAChB,MAAM,QAAQ,MAAM,MAAM,IAC1B,MAAM,MAAM,SAAS,EAErB,OAAM,IAAIA;AAEb;;;;;;;AAQD,SAAgB,aAAaC,SAAgC;AAC3D,QAAO,QACLf,oCAAU,WAAW,QAAQ,IAC3B,QAAQ,cACR,QAAQ,WAAW,SAAS,EAC/B;AACF;AAID,SAAgB,kBAAkBgB,QAA2B;CAC3D,IAAIC;AAEJ,KAAI,UAAU,MACZ,iBAAiBC,0CAAe,KAC9B,CAACC,UAA2C,MAAM,SACnD,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;UACtC,OAAO,WAAW,UAAU;EACrC,MAAM,gBAAgB,IAAIC,wCAAc;EACxC,iBAAiBH,0CAAe,KAC9B,CAACC,UAA2C;AAC1C,UAAO,CAAC,eAAe,GAAI,MAAM,YAAY,CAAE,CAAE;EAClD,EACF,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;CAChD,MACC,OAAM,IAAI,MAAM,CAAC,kCAAkC,EAAE,OAAO,QAAQ;AAGtE,QAAO;AACR;;;;;;;;AASD,eAAsB,UACpBd,KACAE,aACAC,UAA6C,CAAE,GAK/C;CACA,MAAM,QAAQ,iBAAiB,KAAK,aAAa,QAAQ;AACzD,KAAI,MAAO,QAAO;AAElB,KAAII,kCAAoB,IAAI,EAAE;EAC5B,MAAMS,UAAQ,iBAAiB,MAAM,IAAI,QAAQ,EAAE,aAAa,QAAQ;AACxE,MAAIA,QAAO,QAAOA;CACnB;AAED,KAAIX,4CAAiB,mBAAmB,IAAI,EAAE;EAC5C,MAAM,YAAY,IAAI,MAAM,UAC1B,CAAC,SACCD,2CAAgB,kBAAkB,KAAK,IACvCH,8BAAgB,KAAK,IACrBM,kCAAoB,KAAK,CAC5B;AAED,MAAI,aAAa,GAAG;GAClB,MAAMS,UAAQ,iBACZ,IAAI,MAAM,YACV,aACA,QACD;AACD,OAAIA,SAAO;IACT,MAAMC,YAAuB,IAAI,MAAM,OAAO;IAC9C,UAAU,OAAO,WAAW,GAAGD,QAAM;AAErC,WAAOX,4CAAiB,KACtB,UACD;GACF;EACF;CACF;AAED,OAAM,IAAI,MAAM,CAAC,IAAI,EAAE,IAAI,8BAA8B,CAAC;AAC3D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAyCD,SAAS,sBACPa,UAC8B;AAC9B,KAAI,SAAS,WAAW,EACtB,QAAO;AAGT,KAAI,SAAS,WAAW,EACtB,QAAO,SAAS;CAIlB,SAAS,WACPC,OACAC,OACkB;AAClB,SAAO,OAAO,SAAS,YAAY;GAEjC,MAAMC,eAAgC,YACpC,MAAM,SAAS,YAAY,QAAQ,QAAQ,CAAC;AAG9C,UAAO,MAAM,SAAS,aAAa;EACpC;CACF;CAGD,IAAI,SAAS,SAAS,SAAS,SAAS;AACxC,MAAK,IAAI,IAAI,SAAS,SAAS,GAAG,KAAK,GAAG,KACxC,SAAS,WAAW,SAAS,IAAI,OAAO;AAG1C,QAAO;AACR;;;;;;;;;AAUD,SAAgB,aACdC,YACA;CACA,MAAM,6BAA6B,WAAW,OAAO,CAAC,MAAM,EAAE,aAAa;AAE3E,KAAI,2BAA2B,WAAW,EACxC;AAGF,QAAO,sBACL,2BAA2B,IAAI,CAAC,MAAM;EACpC,MAAM,kBAAkB,EAAE;;;;EAI1B,MAAMC,iBAAmC,OAAO,SAAS,YAAY;AACnE,OAAI;IACF,MAAM,SAAS,MAAM,gBACnB;KACE,GAAG;KAIH,OAAO;MACL,UAAU,QAAQ,MAAM;MACxB,GAAI,EAAE,6DACW,EAAE,aAAa,EAAE,GAAG,QAAQ,MAAO,EAAC,GACjD,CAAE;KACP;IACF,GACD,QACD;;;;AAKD,QAAI,CAACC,sCAAY,WAAW,OAAO,IAAI,sCAAW,OAAO,CACvD,OAAM,IAAI,MACR,CAAC,oDAAoD,EAAE,EAAE,KAAK,wCAAG,EACvB,OAAO,QAAQ;AAI7D,WAAO;GACR,SAAQ,OAAO;;;;AAId,QAEE,iBAAiB,SACjB,CAAC,MAAM,QAAQ,SAAS,CAAC,YAAY,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,EAEjD,MAAM,UAAU,CAAC,qBAAqB,EAAE,EAAE,KAAK,GAAG,EAAE,MAAM,SAAS;AAErE,UAAM;GACP;EACF;AACD,SAAO;CACR,EAAC,CACH;AACF"}
1
+ {"version":3,"file":"utils.cjs","names":["message: T","AIMessage","AIMessageChunk","updatedContent: MessageContent","updatedName: string | undefined","tool: ClientTool | ServerTool","Runnable","llm: LanguageModelLike","isBaseChatModel","toolClasses: (ClientTool | ServerTool)[]","options: Partial<BaseChatModelCallOptions>","RunnableBinding","RunnableSequence","step: RunnableLike","isConfigurableModel","MultipleToolsBoundError","message?: BaseMessage","systemPrompt?: string | SystemMessage","SystemMessage","model","nextSteps: unknown[]","handlers: WrapToolCallHook[]","outer: WrapToolCallHook","inner: WrapToolCallHook","innerHandler: ToolCallHandler","middleware: readonly AgentMiddleware<InteropZodObject | undefined>[]","wrappedHandler: WrapToolCallHook","ToolMessage"],"sources":["../../src/agents/utils.ts"],"sourcesContent":["import {\n AIMessage,\n AIMessageChunk,\n BaseMessage,\n BaseMessageLike,\n SystemMessage,\n MessageContent,\n ToolMessage,\n} from \"@langchain/core/messages\";\nimport { isCommand } from \"@langchain/langgraph\";\nimport {\n type InteropZodObject,\n interopParse,\n} from \"@langchain/core/utils/types\";\nimport {\n BaseChatModel,\n type BaseChatModelCallOptions,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n LanguageModelLike,\n BaseLanguageModelInput,\n} from \"@langchain/core/language_models/base\";\nimport {\n Runnable,\n RunnableLike,\n RunnableConfig,\n RunnableSequence,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\nimport type { ClientTool, ServerTool } from \"@langchain/core/tools\";\n\nimport { isBaseChatModel, isConfigurableModel } from \"./model.js\";\nimport { MultipleToolsBoundError } from \"./errors.js\";\nimport type { AgentBuiltInState } from \"./runtime.js\";\nimport type {\n ToolCallHandler,\n AgentMiddleware,\n ToolCallRequest,\n WrapToolCallHook,\n} from \"./middleware/types.js\";\n\nconst NAME_PATTERN = /<name>(.*?)<\\/name>/s;\nconst CONTENT_PATTERN = /<content>(.*?)<\\/content>/s;\n\nexport type AgentNameMode = \"inline\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param message - Message to add agent name formatting to\n * @returns Message with agent name formatting\n *\n * @internal\n */\nexport function _addInlineAgentName<T extends BaseMessageLike>(\n message: T\n): T | AIMessage {\n if (!AIMessage.isInstance(message) || AIMessageChunk.isInstance(message)) {\n return message;\n }\n\n if (!message.name) {\n return message;\n }\n\n const { name } = message;\n\n if (typeof message.content === \"string\") {\n return new AIMessage({\n ...message.lc_kwargs,\n content: `<name>${name}</name><content>${message.content}</content>`,\n name: undefined,\n });\n }\n\n const updatedContent = [];\n let textBlockCount = 0;\n\n for (const contentBlock of message.content) {\n if (typeof contentBlock === \"string\") {\n textBlockCount += 1;\n updatedContent.push(\n `<name>${name}</name><content>${contentBlock}</content>`\n );\n } else if (\n typeof contentBlock === \"object\" &&\n \"type\" in contentBlock &&\n contentBlock.type === \"text\"\n ) {\n textBlockCount += 1;\n updatedContent.push({\n ...contentBlock,\n text: `<name>${name}</name><content>${contentBlock.text}</content>`,\n });\n } else {\n updatedContent.push(contentBlock);\n }\n }\n\n if (!textBlockCount) {\n updatedContent.unshift({\n type: \"text\",\n text: `<name>${name}</name><content></content>`,\n });\n }\n return new AIMessage({\n ...message.lc_kwargs,\n content: updatedContent as MessageContent,\n name: undefined,\n });\n}\n\n/**\n * Remove explicit name and content XML tags from the AI message content.\n *\n * Examples:\n *\n * @example\n * ```typescript\n * removeInlineAgentName(new AIMessage({ content: \"<name>assistant</name><content>Hello</content>\", name: \"assistant\" }))\n * // AIMessage with content: \"Hello\"\n *\n * removeInlineAgentName(new AIMessage({ content: [{type: \"text\", text: \"<name>assistant</name><content>Hello</content>\"}], name: \"assistant\" }))\n * // AIMessage with content: [{type: \"text\", text: \"Hello\"}]\n * ```\n *\n * @internal\n */\nexport function _removeInlineAgentName<T extends BaseMessage>(message: T): T {\n if (!AIMessage.isInstance(message) || !message.content) {\n return message;\n }\n\n let updatedContent: MessageContent = [];\n let updatedName: string | undefined;\n\n if (Array.isArray(message.content)) {\n updatedContent = message.content\n .filter((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n // don't include empty content blocks that were added because there was no text block to modify\n if (nameMatch && (!contentMatch || contentMatch[1] === \"\")) {\n // capture name from text block\n updatedName = nameMatch[1];\n return false;\n }\n return true;\n }\n return true;\n })\n .map((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return block;\n }\n\n // capture name from text block\n updatedName = nameMatch[1];\n\n return {\n ...block,\n text: contentMatch[1],\n };\n }\n return block;\n });\n } else {\n const content = message.content as string;\n const nameMatch = content.match(NAME_PATTERN);\n const contentMatch = content.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return message;\n }\n\n updatedName = nameMatch[1];\n updatedContent = contentMatch[1];\n }\n\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: updatedContent,\n name: updatedName,\n }) as T;\n}\n\nexport function isClientTool(\n tool: ClientTool | ServerTool\n): tool is ClientTool {\n return Runnable.isRunnable(tool);\n}\n\n/**\n * Helper function to check if a language model has a bindTools method.\n * @param llm - The language model to check if it has a bindTools method.\n * @returns True if the language model has a bindTools method, false otherwise.\n */\nfunction _isChatModelWithBindTools(\n llm: LanguageModelLike\n): llm is BaseChatModel & Required<Pick<BaseChatModel, \"bindTools\">> {\n if (!isBaseChatModel(llm)) return false;\n return \"bindTools\" in llm && typeof llm.bindTools === \"function\";\n}\n\n/**\n * Helper function to bind tools to a language model.\n * @param llm - The language model to bind tools to.\n * @param toolClasses - The tools to bind to the language model.\n * @param options - The options to pass to the language model.\n * @returns The language model with the tools bound to it.\n */\nconst _simpleBindTools = (\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n) => {\n if (_isChatModelWithBindTools(llm)) {\n return llm.bindTools(toolClasses, options);\n }\n\n if (\n RunnableBinding.isRunnableBinding(llm) &&\n _isChatModelWithBindTools(llm.bound)\n ) {\n const newBound = llm.bound.bindTools(toolClasses, options);\n\n if (RunnableBinding.isRunnableBinding(newBound)) {\n return new RunnableBinding({\n bound: newBound.bound,\n config: { ...llm.config, ...newBound.config },\n kwargs: { ...llm.kwargs, ...newBound.kwargs },\n configFactories: newBound.configFactories ?? llm.configFactories,\n });\n }\n\n return new RunnableBinding({\n bound: newBound,\n config: llm.config,\n kwargs: llm.kwargs,\n configFactories: llm.configFactories,\n });\n }\n\n return null;\n};\n\n/**\n * Check if the LLM already has bound tools and throw if it does.\n *\n * @param llm - The LLM to check.\n * @returns void\n */\nexport function validateLLMHasNoBoundTools(llm: LanguageModelLike): void {\n /**\n * If llm is a function, we can't validate until runtime, so skip\n */\n if (typeof llm === \"function\") {\n return;\n }\n\n let model = llm;\n\n /**\n * If model is a RunnableSequence, find a RunnableBinding in its steps\n */\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find((step: RunnableLike) =>\n RunnableBinding.isRunnableBinding(step)\n ) || model;\n }\n\n /**\n * If model is configurable, get the underlying model\n */\n if (isConfigurableModel(model)) {\n /**\n * Can't validate async model retrieval in constructor\n */\n return;\n }\n\n /**\n * Check if model is a RunnableBinding with bound tools\n */\n if (RunnableBinding.isRunnableBinding(model)) {\n const hasToolsInKwargs =\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools) &&\n model.kwargs.tools.length > 0;\n\n const hasToolsInConfig =\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools) &&\n model.config.tools.length > 0;\n\n if (hasToolsInKwargs || hasToolsInConfig) {\n throw new MultipleToolsBoundError();\n }\n }\n\n /**\n * Also check if model has tools property directly (e.g., FakeToolCallingModel)\n */\n if (\n \"tools\" in model &&\n model.tools !== undefined &&\n Array.isArray(model.tools) &&\n model.tools.length > 0\n ) {\n throw new MultipleToolsBoundError();\n }\n}\n\n/**\n * Check if the last message in the messages array has tool calls.\n *\n * @param messages - The messages to check.\n * @returns True if the last message has tool calls, false otherwise.\n */\nexport function hasToolCalls(message?: BaseMessage): boolean {\n return Boolean(\n AIMessage.isInstance(message) &&\n message.tool_calls &&\n message.tool_calls.length > 0\n );\n}\n\n/**\n * Normalizes a system prompt to a SystemMessage object.\n * If it's already a SystemMessage, returns it as-is.\n * If it's a string, converts it to a SystemMessage.\n * If it's undefined, creates an empty system message so it is easier to append to it later.\n */\nexport function normalizeSystemPrompt(\n systemPrompt?: string | SystemMessage\n): SystemMessage {\n if (systemPrompt == null) {\n return new SystemMessage(\"\");\n }\n if (SystemMessage.isInstance(systemPrompt)) {\n return systemPrompt;\n }\n if (typeof systemPrompt === \"string\") {\n return new SystemMessage({\n content: [{ type: \"text\", text: systemPrompt }],\n });\n }\n throw new Error(\n `Invalid systemPrompt type: expected string or SystemMessage, got ${typeof systemPrompt}`\n );\n}\n\n/**\n * Helper function to bind tools to a language model.\n * @param llm - The language model to bind tools to.\n * @param toolClasses - The tools to bind to the language model.\n * @param options - The options to pass to the language model.\n * @returns The language model with the tools bound to it.\n */\nexport async function bindTools(\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n): Promise<\n | RunnableSequence<unknown, unknown>\n | RunnableBinding<unknown, unknown, RunnableConfig<Record<string, unknown>>>\n | Runnable<BaseLanguageModelInput, AIMessageChunk, BaseChatModelCallOptions>\n> {\n const model = _simpleBindTools(llm, toolClasses, options);\n if (model) return model;\n\n if (isConfigurableModel(llm)) {\n const model = _simpleBindTools(await llm._model(), toolClasses, options);\n if (model) return model;\n }\n\n if (RunnableSequence.isRunnableSequence(llm)) {\n const modelStep = llm.steps.findIndex(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n );\n\n if (modelStep >= 0) {\n const model = _simpleBindTools(\n llm.steps[modelStep],\n toolClasses,\n options\n );\n if (model) {\n const nextSteps: unknown[] = llm.steps.slice();\n nextSteps.splice(modelStep, 1, model);\n\n return RunnableSequence.from(\n nextSteps as [RunnableLike, ...RunnableLike[], RunnableLike]\n );\n }\n }\n }\n\n throw new Error(`llm ${llm} must define bindTools method.`);\n}\n\n/**\n * Compose multiple wrapToolCall handlers into a single middleware stack.\n *\n * Composes handlers so the first in the list becomes the outermost layer.\n * Each handler receives a handler callback to execute inner layers.\n *\n * @param handlers - List of handlers. First handler wraps all others.\n * @returns Composed handler, or undefined if handlers array is empty.\n *\n * @example\n * ```typescript\n * // handlers=[auth, retry] means: auth wraps retry\n * // Flow: auth calls retry, retry calls base handler\n * const auth: ToolCallWrapper = async (request, handler) => {\n * try {\n * return await handler(request);\n * } catch (error) {\n * if (error.message === \"Unauthorized\") {\n * await refreshToken();\n * return await handler(request);\n * }\n * throw error;\n * }\n * };\n *\n * const retry: ToolCallWrapper = async (request, handler) => {\n * for (let attempt = 0; attempt < 3; attempt++) {\n * try {\n * return await handler(request);\n * } catch (error) {\n * if (attempt === 2) throw error;\n * }\n * }\n * throw new Error(\"Unreachable\");\n * };\n *\n * const composedHandler = chainToolCallHandlers([auth, retry]);\n * ```\n */\nfunction chainToolCallHandlers(\n handlers: WrapToolCallHook[]\n): WrapToolCallHook | undefined {\n if (handlers.length === 0) {\n return undefined;\n }\n\n if (handlers.length === 1) {\n return handlers[0];\n }\n\n // Compose two handlers where outer wraps inner\n function composeTwo(\n outer: WrapToolCallHook,\n inner: WrapToolCallHook\n ): WrapToolCallHook {\n return async (request, handler) => {\n // Create a wrapper that calls inner with the base handler\n const innerHandler: ToolCallHandler = async () =>\n inner(request, async () => handler(request));\n\n // Call outer with the wrapped inner as its handler\n return outer(request, innerHandler);\n };\n }\n\n // Compose right-to-left: outer(inner(innermost(handler)))\n let result = handlers[handlers.length - 1];\n for (let i = handlers.length - 2; i >= 0; i--) {\n result = composeTwo(handlers[i], result);\n }\n\n return result;\n}\n\n/**\n * Wrapping `wrapToolCall` invocation so we can inject middleware name into\n * the error message.\n *\n * @param middleware list of middleware passed to the agent\n * @param state state of the agent\n * @returns single wrap function\n */\nexport function wrapToolCall(\n middleware: readonly AgentMiddleware<InteropZodObject | undefined>[]\n) {\n const middlewareWithWrapToolCall = middleware.filter((m) => m.wrapToolCall);\n\n if (middlewareWithWrapToolCall.length === 0) {\n return;\n }\n\n return chainToolCallHandlers(\n middlewareWithWrapToolCall.map((m) => {\n const originalHandler = m.wrapToolCall!;\n /**\n * Wrap with error handling and validation\n */\n const wrappedHandler: WrapToolCallHook = async (request, handler) => {\n try {\n const result = await originalHandler(\n {\n ...request,\n /**\n * override state with the state from the specific middleware\n */\n state: {\n messages: request.state.messages,\n ...(m.stateSchema\n ? interopParse(m.stateSchema, { ...request.state })\n : {}),\n },\n } as ToolCallRequest<AgentBuiltInState, unknown>,\n handler\n );\n\n /**\n * Validate return type\n */\n if (!ToolMessage.isInstance(result) && !isCommand(result)) {\n throw new Error(\n `Invalid response from \"wrapToolCall\" in middleware \"${m.name}\": ` +\n `expected ToolMessage or Command, got ${typeof result}`\n );\n }\n\n return result;\n } catch (error) {\n /**\n * Add middleware context to error if not already added\n */\n if (\n // eslint-disable-next-line no-instanceof/no-instanceof\n error instanceof Error &&\n !error.message.includes(`middleware \"${m.name}\"`)\n ) {\n error.message = `Error in middleware \"${m.name}\": ${error.message}`;\n }\n throw error;\n }\n };\n return wrappedHandler;\n })\n );\n}\n"],"mappings":";;;;;;;;;AAyCA,MAAM,eAAe;AACrB,MAAM,kBAAkB;;;;;;;;;;;;;;;AAkBxB,SAAgB,oBACdA,SACe;AACf,KAAI,CAACC,oCAAU,WAAW,QAAQ,IAAIC,yCAAe,WAAW,QAAQ,CACtE,QAAO;AAGT,KAAI,CAAC,QAAQ,KACX,QAAO;CAGT,MAAM,EAAE,MAAM,GAAG;AAEjB,KAAI,OAAO,QAAQ,YAAY,SAC7B,QAAO,IAAID,oCAAU;EACnB,GAAG,QAAQ;EACX,SAAS,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,QAAQ,QAAQ,UAAU,CAAC;EACpE,MAAM;CACP;CAGH,MAAM,iBAAiB,CAAE;CACzB,IAAI,iBAAiB;AAErB,MAAK,MAAM,gBAAgB,QAAQ,QACjC,KAAI,OAAO,iBAAiB,UAAU;EACpC,kBAAkB;EAClB,eAAe,KACb,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,UAAU,CAAC,CACzD;CACF,WACC,OAAO,iBAAiB,YACxB,UAAU,gBACV,aAAa,SAAS,QACtB;EACA,kBAAkB;EAClB,eAAe,KAAK;GAClB,GAAG;GACH,MAAM,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,KAAK,UAAU,CAAC;EACpE,EAAC;CACH,OACC,eAAe,KAAK,aAAa;AAIrC,KAAI,CAAC,gBACH,eAAe,QAAQ;EACrB,MAAM;EACN,MAAM,CAAC,MAAM,EAAE,KAAK,0BAA0B,CAAC;CAChD,EAAC;AAEJ,QAAO,IAAIA,oCAAU;EACnB,GAAG,QAAQ;EACX,SAAS;EACT,MAAM;CACP;AACF;;;;;;;;;;;;;;;;;AAkBD,SAAgB,uBAA8CD,SAAe;AAC3E,KAAI,CAACC,oCAAU,WAAW,QAAQ,IAAI,CAAC,QAAQ,QAC7C,QAAO;CAGT,IAAIE,iBAAiC,CAAE;CACvC,IAAIC;AAEJ,KAAI,MAAM,QAAQ,QAAQ,QAAQ,EAChC,iBAAiB,QAAQ,QACtB,OAAO,CAAC,UAAU;AACjB,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,cAAc,CAAC,gBAAgB,aAAa,OAAO,KAAK;IAE1D,cAAc,UAAU;AACxB,WAAO;GACR;AACD,UAAO;EACR;AACD,SAAO;CACR,EAAC,CACD,IAAI,CAAC,UAAU;AACd,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,CAAC,aAAa,CAAC,aACjB,QAAO;GAIT,cAAc,UAAU;AAExB,UAAO;IACL,GAAG;IACH,MAAM,aAAa;GACpB;EACF;AACD,SAAO;CACR,EAAC;MACC;EACL,MAAM,UAAU,QAAQ;EACxB,MAAM,YAAY,QAAQ,MAAM,aAAa;EAC7C,MAAM,eAAe,QAAQ,MAAM,gBAAgB;AAEnD,MAAI,CAAC,aAAa,CAAC,aACjB,QAAO;EAGT,cAAc,UAAU;EACxB,iBAAiB,aAAa;CAC/B;AAED,QAAO,IAAIH,oCAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS;EACT,MAAM;CACP;AACF;AAED,SAAgB,aACdI,MACoB;AACpB,QAAOC,oCAAS,WAAW,KAAK;AACjC;;;;;;AAOD,SAAS,0BACPC,KACmE;AACnE,KAAI,CAACC,8BAAgB,IAAI,CAAE,QAAO;AAClC,QAAO,eAAe,OAAO,OAAO,IAAI,cAAc;AACvD;;;;;;;;AASD,MAAM,mBAAmB,CACvBD,KACAE,aACAC,UAA6C,CAAE,MAC5C;AACH,KAAI,0BAA0B,IAAI,CAChC,QAAO,IAAI,UAAU,aAAa,QAAQ;AAG5C,KACEC,2CAAgB,kBAAkB,IAAI,IACtC,0BAA0B,IAAI,MAAM,EACpC;EACA,MAAM,WAAW,IAAI,MAAM,UAAU,aAAa,QAAQ;AAE1D,MAAIA,2CAAgB,kBAAkB,SAAS,CAC7C,QAAO,IAAIA,2CAAgB;GACzB,OAAO,SAAS;GAChB,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,iBAAiB,SAAS,mBAAmB,IAAI;EAClD;AAGH,SAAO,IAAIA,2CAAgB;GACzB,OAAO;GACP,QAAQ,IAAI;GACZ,QAAQ,IAAI;GACZ,iBAAiB,IAAI;EACtB;CACF;AAED,QAAO;AACR;;;;;;;AAQD,SAAgB,2BAA2BJ,KAA8B;;;;AAIvE,KAAI,OAAO,QAAQ,WACjB;CAGF,IAAI,QAAQ;;;;AAKZ,KAAIK,4CAAiB,mBAAmB,MAAM,EAC5C,QACE,MAAM,MAAM,KAAK,CAACC,SAChBF,2CAAgB,kBAAkB,KAAK,CACxC,IAAI;;;;AAMT,KAAIG,kCAAoB,MAAM;;;;AAI5B;;;;AAMF,KAAIH,2CAAgB,kBAAkB,MAAM,EAAE;EAC5C,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;EAE9B,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;AAE9B,MAAI,oBAAoB,iBACtB,OAAM,IAAII;CAEb;;;;AAKD,KACE,WAAW,SACX,MAAM,UAAU,UAChB,MAAM,QAAQ,MAAM,MAAM,IAC1B,MAAM,MAAM,SAAS,EAErB,OAAM,IAAIA;AAEb;;;;;;;AAQD,SAAgB,aAAaC,SAAgC;AAC3D,QAAO,QACLf,oCAAU,WAAW,QAAQ,IAC3B,QAAQ,cACR,QAAQ,WAAW,SAAS,EAC/B;AACF;;;;;;;AAQD,SAAgB,sBACdgB,cACe;AACf,KAAI,gBAAgB,KAClB,QAAO,IAAIC,wCAAc;AAE3B,KAAIA,wCAAc,WAAW,aAAa,CACxC,QAAO;AAET,KAAI,OAAO,iBAAiB,SAC1B,QAAO,IAAIA,wCAAc,EACvB,SAAS,CAAC;EAAE,MAAM;EAAQ,MAAM;CAAc,CAAC,EAChD;AAEH,OAAM,IAAI,MACR,CAAC,iEAAiE,EAAE,OAAO,cAAc;AAE5F;;;;;;;;AASD,eAAsB,UACpBX,KACAE,aACAC,UAA6C,CAAE,GAK/C;CACA,MAAM,QAAQ,iBAAiB,KAAK,aAAa,QAAQ;AACzD,KAAI,MAAO,QAAO;AAElB,KAAII,kCAAoB,IAAI,EAAE;EAC5B,MAAMK,UAAQ,iBAAiB,MAAM,IAAI,QAAQ,EAAE,aAAa,QAAQ;AACxE,MAAIA,QAAO,QAAOA;CACnB;AAED,KAAIP,4CAAiB,mBAAmB,IAAI,EAAE;EAC5C,MAAM,YAAY,IAAI,MAAM,UAC1B,CAAC,SACCD,2CAAgB,kBAAkB,KAAK,IACvCH,8BAAgB,KAAK,IACrBM,kCAAoB,KAAK,CAC5B;AAED,MAAI,aAAa,GAAG;GAClB,MAAMK,UAAQ,iBACZ,IAAI,MAAM,YACV,aACA,QACD;AACD,OAAIA,SAAO;IACT,MAAMC,YAAuB,IAAI,MAAM,OAAO;IAC9C,UAAU,OAAO,WAAW,GAAGD,QAAM;AAErC,WAAOP,4CAAiB,KACtB,UACD;GACF;EACF;CACF;AAED,OAAM,IAAI,MAAM,CAAC,IAAI,EAAE,IAAI,8BAA8B,CAAC;AAC3D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAyCD,SAAS,sBACPS,UAC8B;AAC9B,KAAI,SAAS,WAAW,EACtB,QAAO;AAGT,KAAI,SAAS,WAAW,EACtB,QAAO,SAAS;CAIlB,SAAS,WACPC,OACAC,OACkB;AAClB,SAAO,OAAO,SAAS,YAAY;GAEjC,MAAMC,eAAgC,YACpC,MAAM,SAAS,YAAY,QAAQ,QAAQ,CAAC;AAG9C,UAAO,MAAM,SAAS,aAAa;EACpC;CACF;CAGD,IAAI,SAAS,SAAS,SAAS,SAAS;AACxC,MAAK,IAAI,IAAI,SAAS,SAAS,GAAG,KAAK,GAAG,KACxC,SAAS,WAAW,SAAS,IAAI,OAAO;AAG1C,QAAO;AACR;;;;;;;;;AAUD,SAAgB,aACdC,YACA;CACA,MAAM,6BAA6B,WAAW,OAAO,CAAC,MAAM,EAAE,aAAa;AAE3E,KAAI,2BAA2B,WAAW,EACxC;AAGF,QAAO,sBACL,2BAA2B,IAAI,CAAC,MAAM;EACpC,MAAM,kBAAkB,EAAE;;;;EAI1B,MAAMC,iBAAmC,OAAO,SAAS,YAAY;AACnE,OAAI;IACF,MAAM,SAAS,MAAM,gBACnB;KACE,GAAG;KAIH,OAAO;MACL,UAAU,QAAQ,MAAM;MACxB,GAAI,EAAE,6DACW,EAAE,aAAa,EAAE,GAAG,QAAQ,MAAO,EAAC,GACjD,CAAE;KACP;IACF,GACD,QACD;;;;AAKD,QAAI,CAACC,sCAAY,WAAW,OAAO,IAAI,sCAAW,OAAO,CACvD,OAAM,IAAI,MACR,CAAC,oDAAoD,EAAE,EAAE,KAAK,wCAAG,EACvB,OAAO,QAAQ;AAI7D,WAAO;GACR,SAAQ,OAAO;;;;AAId,QAEE,iBAAiB,SACjB,CAAC,MAAM,QAAQ,SAAS,CAAC,YAAY,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,EAEjD,MAAM,UAAU,CAAC,qBAAqB,EAAE,EAAE,KAAK,GAAG,EAAE,MAAM,SAAS;AAErE,UAAM;GACP;EACF;AACD,SAAO;CACR,EAAC,CACH;AACF"}
@@ -1,8 +1,7 @@
1
1
  import { isBaseChatModel, isConfigurableModel } from "./model.js";
2
2
  import { MultipleToolsBoundError } from "./errors.js";
3
- import { PROMPT_RUNNABLE_NAME } from "./constants.js";
4
3
  import { AIMessage, AIMessageChunk, SystemMessage, ToolMessage } from "@langchain/core/messages";
5
- import { Runnable, RunnableBinding, RunnableLambda, RunnableSequence } from "@langchain/core/runnables";
4
+ import { Runnable, RunnableBinding, RunnableSequence } from "@langchain/core/runnables";
6
5
  import { isCommand } from "@langchain/langgraph";
7
6
  import { interopParse } from "@langchain/core/utils/types";
8
7
 
@@ -202,16 +201,20 @@ function validateLLMHasNoBoundTools(llm) {
202
201
  function hasToolCalls(message) {
203
202
  return Boolean(AIMessage.isInstance(message) && message.tool_calls && message.tool_calls.length > 0);
204
203
  }
205
- function getPromptRunnable(prompt) {
206
- let promptRunnable;
207
- if (prompt == null) promptRunnable = RunnableLambda.from((state) => state.messages).withConfig({ runName: PROMPT_RUNNABLE_NAME });
208
- else if (typeof prompt === "string") {
209
- const systemMessage = new SystemMessage(prompt);
210
- promptRunnable = RunnableLambda.from((state) => {
211
- return [systemMessage, ...state.messages ?? []];
212
- }).withConfig({ runName: PROMPT_RUNNABLE_NAME });
213
- } else throw new Error(`Got unexpected type for 'prompt': ${typeof prompt}`);
214
- return promptRunnable;
204
+ /**
205
+ * Normalizes a system prompt to a SystemMessage object.
206
+ * If it's already a SystemMessage, returns it as-is.
207
+ * If it's a string, converts it to a SystemMessage.
208
+ * If it's undefined, creates an empty system message so it is easier to append to it later.
209
+ */
210
+ function normalizeSystemPrompt(systemPrompt) {
211
+ if (systemPrompt == null) return new SystemMessage("");
212
+ if (SystemMessage.isInstance(systemPrompt)) return systemPrompt;
213
+ if (typeof systemPrompt === "string") return new SystemMessage({ content: [{
214
+ type: "text",
215
+ text: systemPrompt
216
+ }] });
217
+ throw new Error(`Invalid systemPrompt type: expected string or SystemMessage, got ${typeof systemPrompt}`);
215
218
  }
216
219
  /**
217
220
  * Helper function to bind tools to a language model.
@@ -335,5 +338,5 @@ function wrapToolCall(middleware) {
335
338
  }
336
339
 
337
340
  //#endregion
338
- export { _addInlineAgentName, _removeInlineAgentName, bindTools, getPromptRunnable, hasToolCalls, isClientTool, validateLLMHasNoBoundTools, wrapToolCall };
341
+ export { _addInlineAgentName, _removeInlineAgentName, bindTools, hasToolCalls, isClientTool, normalizeSystemPrompt, validateLLMHasNoBoundTools, wrapToolCall };
339
342
  //# sourceMappingURL=utils.js.map