langchain 1.0.4 → 1.0.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +14 -0
- package/dist/agents/ReactAgent.cjs +15 -17
- package/dist/agents/ReactAgent.cjs.map +1 -1
- package/dist/agents/ReactAgent.d.cts +3 -3
- package/dist/agents/ReactAgent.d.cts.map +1 -1
- package/dist/agents/ReactAgent.d.ts +3 -3
- package/dist/agents/ReactAgent.d.ts.map +1 -1
- package/dist/agents/ReactAgent.js +15 -17
- package/dist/agents/ReactAgent.js.map +1 -1
- package/dist/agents/middleware/contextEditing.cjs +302 -33
- package/dist/agents/middleware/contextEditing.cjs.map +1 -1
- package/dist/agents/middleware/contextEditing.d.cts +125 -41
- package/dist/agents/middleware/contextEditing.d.cts.map +1 -1
- package/dist/agents/middleware/contextEditing.d.ts +125 -41
- package/dist/agents/middleware/contextEditing.d.ts.map +1 -1
- package/dist/agents/middleware/contextEditing.js +302 -33
- package/dist/agents/middleware/contextEditing.js.map +1 -1
- package/dist/agents/middleware/dynamicSystemPrompt.d.cts.map +1 -1
- package/dist/agents/middleware/dynamicSystemPrompt.d.ts.map +1 -1
- package/dist/agents/middleware/hitl.d.cts.map +1 -1
- package/dist/agents/middleware/hitl.d.ts.map +1 -1
- package/dist/agents/middleware/index.cjs +2 -0
- package/dist/agents/middleware/index.js +2 -0
- package/dist/agents/middleware/llmToolSelector.d.cts +4 -4
- package/dist/agents/middleware/llmToolSelector.d.cts.map +1 -1
- package/dist/agents/middleware/modelCallLimit.cjs +6 -2
- package/dist/agents/middleware/modelCallLimit.cjs.map +1 -1
- package/dist/agents/middleware/modelCallLimit.d.cts +8 -8
- package/dist/agents/middleware/modelCallLimit.d.cts.map +1 -1
- package/dist/agents/middleware/modelCallLimit.d.ts +8 -8
- package/dist/agents/middleware/modelCallLimit.d.ts.map +1 -1
- package/dist/agents/middleware/modelCallLimit.js +6 -2
- package/dist/agents/middleware/modelCallLimit.js.map +1 -1
- package/dist/agents/middleware/modelFallback.cjs +2 -2
- package/dist/agents/middleware/modelFallback.cjs.map +1 -1
- package/dist/agents/middleware/modelFallback.d.cts +2 -2
- package/dist/agents/middleware/modelFallback.d.cts.map +1 -1
- package/dist/agents/middleware/modelFallback.d.ts +2 -2
- package/dist/agents/middleware/modelFallback.d.ts.map +1 -1
- package/dist/agents/middleware/modelFallback.js +2 -2
- package/dist/agents/middleware/modelFallback.js.map +1 -1
- package/dist/agents/middleware/pii.cjs +445 -0
- package/dist/agents/middleware/pii.cjs.map +1 -0
- package/dist/agents/middleware/pii.d.cts +216 -0
- package/dist/agents/middleware/pii.d.cts.map +1 -0
- package/dist/agents/middleware/pii.d.ts +216 -0
- package/dist/agents/middleware/pii.d.ts.map +1 -0
- package/dist/agents/middleware/pii.js +436 -0
- package/dist/agents/middleware/pii.js.map +1 -0
- package/dist/agents/middleware/piiRedaction.cjs +2 -1
- package/dist/agents/middleware/piiRedaction.cjs.map +1 -1
- package/dist/agents/middleware/piiRedaction.d.cts +4 -1
- package/dist/agents/middleware/piiRedaction.d.cts.map +1 -1
- package/dist/agents/middleware/piiRedaction.d.ts +4 -1
- package/dist/agents/middleware/piiRedaction.d.ts.map +1 -1
- package/dist/agents/middleware/piiRedaction.js +2 -1
- package/dist/agents/middleware/piiRedaction.js.map +1 -1
- package/dist/agents/middleware/promptCaching.d.cts.map +1 -1
- package/dist/agents/middleware/promptCaching.d.ts.map +1 -1
- package/dist/agents/middleware/summarization.cjs +15 -24
- package/dist/agents/middleware/summarization.cjs.map +1 -1
- package/dist/agents/middleware/summarization.d.cts +72 -9
- package/dist/agents/middleware/summarization.d.cts.map +1 -1
- package/dist/agents/middleware/summarization.d.ts +65 -2
- package/dist/agents/middleware/summarization.d.ts.map +1 -1
- package/dist/agents/middleware/summarization.js +13 -25
- package/dist/agents/middleware/summarization.js.map +1 -1
- package/dist/agents/middleware/todoListMiddleware.d.cts.map +1 -1
- package/dist/agents/middleware/todoListMiddleware.d.ts.map +1 -1
- package/dist/agents/middleware/toolCallLimit.d.cts.map +1 -1
- package/dist/agents/middleware/toolCallLimit.d.ts.map +1 -1
- package/dist/agents/middleware/toolEmulator.cjs +118 -0
- package/dist/agents/middleware/toolEmulator.cjs.map +1 -0
- package/dist/agents/middleware/toolEmulator.d.cts +76 -0
- package/dist/agents/middleware/toolEmulator.d.cts.map +1 -0
- package/dist/agents/middleware/toolEmulator.d.ts +76 -0
- package/dist/agents/middleware/toolEmulator.d.ts.map +1 -0
- package/dist/agents/middleware/toolEmulator.js +117 -0
- package/dist/agents/middleware/toolEmulator.js.map +1 -0
- package/dist/agents/middleware/types.d.cts.map +1 -1
- package/dist/agents/middleware/types.d.ts.map +1 -1
- package/dist/agents/middleware/utils.cjs +4 -0
- package/dist/agents/middleware/utils.cjs.map +1 -1
- package/dist/agents/middleware/utils.d.cts.map +1 -1
- package/dist/agents/middleware/utils.d.ts.map +1 -1
- package/dist/agents/middleware/utils.js +4 -0
- package/dist/agents/middleware/utils.js.map +1 -1
- package/dist/agents/nodes/AgentNode.cjs +1 -1
- package/dist/agents/nodes/AgentNode.cjs.map +1 -1
- package/dist/agents/nodes/AgentNode.js +1 -1
- package/dist/agents/nodes/AgentNode.js.map +1 -1
- package/dist/agents/runtime.d.cts +5 -5
- package/dist/agents/runtime.d.cts.map +1 -1
- package/dist/agents/runtime.d.ts +5 -5
- package/dist/agents/runtime.d.ts.map +1 -1
- package/dist/index.cjs +22 -0
- package/dist/index.d.cts +5 -3
- package/dist/index.d.ts +5 -3
- package/dist/index.js +13 -1
- package/package.json +9 -8
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"piiRedaction.d.cts","names":["z","InferInteropZodInput","createMiddleware","contextSchema","ZodString","RegExp","ZodTypeDef","ZodType","ZodRecord","ZodOptional","ZodTypeAny","Record","ZodObject","PIIRedactionMiddlewareConfig","piiRedactionMiddleware","ReturnType"],"sources":["../../../src/agents/middleware/piiRedaction.d.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport type { InferInteropZodInput } from \"@langchain/core/utils/types\";\nimport { createMiddleware } from \"../middleware.js\";\n/**\n * Configuration schema for the Input Guardrails middleware\n */\ndeclare const contextSchema: z.ZodObject<{\n /**\n * A record of PII detection rules to apply\n * @default DEFAULT_PII_RULES (with enabled rules only)\n */\n rules: z.ZodOptional<z.ZodRecord<z.ZodString, z.ZodType<RegExp, z.ZodTypeDef, RegExp>>>;\n}, \"strip\", z.ZodTypeAny, {\n rules?: Record<string, RegExp> | undefined;\n}, {\n rules?: Record<string, RegExp> | undefined;\n}>;\nexport type PIIRedactionMiddlewareConfig = InferInteropZodInput<typeof contextSchema>;\n/**\n * Creates a middleware that detects and redacts personally identifiable information (PII)\n * from messages before they are sent to model providers, and restores original values\n * in model responses for tool execution.\n *\n * ## Mechanism\n *\n * The middleware intercepts agent execution at two points:\n *\n * ### Request Phase (`wrapModelCall`)\n * - Applies regex-based pattern matching to all message content (HumanMessage, ToolMessage, SystemMessage, AIMessage)\n * - Processes both message text and AIMessage tool call arguments\n * - Each matched pattern generates:\n * - Unique identifier: `generateRedactionId()` → `\"abc123\"`\n * - Redaction marker: `[REDACTED_{RULE_NAME}_{ID}]` → `\"[REDACTED_SSN_abc123]\"`\n * - Redaction map entry: `{ \"abc123\": \"123-45-6789\" }`\n * - Returns modified request with redacted message content\n *\n * ### Response Phase (`afterModel`)\n * - Scans AIMessage responses for redaction markers matching pattern: `/\\[REDACTED_[A-Z_]+_(\\w+)\\]/g`\n * - Replaces markers with original values from redaction map\n * - Handles both standard responses and structured output (via tool calls or JSON content)\n * - For structured output, restores values in both the tool call arguments and the `structuredResponse` state field\n * - Returns new message instances via RemoveMessage/AIMessage to update state\n *\n * ## Data Flow\n *\n * ```\n * User Input: \"My SSN is 123-45-6789\"\n * ↓ [beforeModel]\n * Model Request: \"My SSN is [REDACTED_SSN_abc123]\"\n * ↓ [model invocation]\n * Model Response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * ↓ [afterModel]\n * Tool Execution: tool({ \"ssn\": \"123-45-6789\" })\n * ```\n *\n * ## Limitations\n *\n * This middleware provides model provider isolation only. PII may still be present in:\n * - LangGraph state checkpoints (memory, databases)\n * - Network traffic between client and application server\n * - Application logs and trace data\n * - Tool execution arguments and responses\n * - Final agent output\n *\n * For comprehensive PII protection, implement additional controls at the application,\n * network, and storage layers.\n *\n * @param options - Configuration options\n * @param options.rules - Record of detection rules mapping rule names to regex patterns.\n * Rule names are normalized to uppercase and used in redaction markers.\n * Patterns must use the global flag (`/pattern/g`) to match all occurrences.\n *\n * @returns Middleware instance for use with `createAgent`\n *\n * @example Basic usage with custom rules\n * ```typescript\n * import { piiRedactionMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n * import { tool } from \"@langchain/core/tools\";\n * import { z } from \"zod/v3\";\n *\n * const PII_RULES = {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * phone: /\\b\\d{3}[-.]?\\d{3}[-.]?\\d{4}\\b/g,\n * };\n *\n * const lookupUser = tool(async ({ ssn }) => {\n * // Receives original value: \"123-45-6789\"\n * return { name: \"John Doe\", account: \"active\" };\n * }, {\n * name: \"lookup_user\",\n * description: \"Look up user by SSN\",\n * schema: z.object({ ssn: z.string() })\n * });\n *\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [lookupUser],\n * middleware: [piiRedactionMiddleware({ rules: PII_RULES })]\n * });\n *\n * const result = await agent.invoke({\n * messages: [new HumanMessage(\"Look up SSN 123-45-6789\")]\n * });\n * // Model request: \"Look up SSN [REDACTED_SSN_abc123]\"\n * // Model response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * // Tool receives: { \"ssn\": \"123-45-6789\" }\n * ```\n *\n * @example Runtime rule configuration via context\n * ```typescript\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [someTool],\n * middleware: [piiRedactionMiddleware()]\n * });\n *\n * // Configure rules at runtime via middleware context\n * const result = await agent.invoke(\n * { messages: [new HumanMessage(\"...\")] },\n * {\n * configurable: {\n * PIIRedactionMiddleware: {\n * rules: {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * }\n * }\n * }\n * }\n * );\n * ```\n *\n * @example Custom rule patterns\n * ```typescript\n * const customRules = {\n * employee_id: /EMP-\\d{6}/g,\n * api_key: /sk-[a-zA-Z0-9]{32}/g,\n * credit_card: /\\b\\d{4}[- ]?\\d{4}[- ]?\\d{4}[- ]?\\d{4}\\b/g,\n * };\n *\n * const middleware = piiRedactionMiddleware({ rules: customRules });\n * // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]\n * ```\n *\n * @
|
|
1
|
+
{"version":3,"file":"piiRedaction.d.cts","names":["z","InferInteropZodInput","createMiddleware","contextSchema","ZodString","RegExp","ZodTypeDef","ZodType","ZodRecord","ZodOptional","ZodTypeAny","Record","ZodObject","PIIRedactionMiddlewareConfig","piiRedactionMiddleware","ReturnType"],"sources":["../../../src/agents/middleware/piiRedaction.d.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport type { InferInteropZodInput } from \"@langchain/core/utils/types\";\nimport { createMiddleware } from \"../middleware.js\";\n/**\n * Configuration schema for the Input Guardrails middleware\n */\ndeclare const contextSchema: z.ZodObject<{\n /**\n * A record of PII detection rules to apply\n * @default DEFAULT_PII_RULES (with enabled rules only)\n */\n rules: z.ZodOptional<z.ZodRecord<z.ZodString, z.ZodType<RegExp, z.ZodTypeDef, RegExp>>>;\n}, \"strip\", z.ZodTypeAny, {\n rules?: Record<string, RegExp> | undefined;\n}, {\n rules?: Record<string, RegExp> | undefined;\n}>;\n/**\n * @deprecated\n */\nexport type PIIRedactionMiddlewareConfig = InferInteropZodInput<typeof contextSchema>;\n/**\n * Creates a middleware that detects and redacts personally identifiable information (PII)\n * from messages before they are sent to model providers, and restores original values\n * in model responses for tool execution.\n *\n * ## Mechanism\n *\n * The middleware intercepts agent execution at two points:\n *\n * ### Request Phase (`wrapModelCall`)\n * - Applies regex-based pattern matching to all message content (HumanMessage, ToolMessage, SystemMessage, AIMessage)\n * - Processes both message text and AIMessage tool call arguments\n * - Each matched pattern generates:\n * - Unique identifier: `generateRedactionId()` → `\"abc123\"`\n * - Redaction marker: `[REDACTED_{RULE_NAME}_{ID}]` → `\"[REDACTED_SSN_abc123]\"`\n * - Redaction map entry: `{ \"abc123\": \"123-45-6789\" }`\n * - Returns modified request with redacted message content\n *\n * ### Response Phase (`afterModel`)\n * - Scans AIMessage responses for redaction markers matching pattern: `/\\[REDACTED_[A-Z_]+_(\\w+)\\]/g`\n * - Replaces markers with original values from redaction map\n * - Handles both standard responses and structured output (via tool calls or JSON content)\n * - For structured output, restores values in both the tool call arguments and the `structuredResponse` state field\n * - Returns new message instances via RemoveMessage/AIMessage to update state\n *\n * ## Data Flow\n *\n * ```\n * User Input: \"My SSN is 123-45-6789\"\n * ↓ [beforeModel]\n * Model Request: \"My SSN is [REDACTED_SSN_abc123]\"\n * ↓ [model invocation]\n * Model Response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * ↓ [afterModel]\n * Tool Execution: tool({ \"ssn\": \"123-45-6789\" })\n * ```\n *\n * ## Limitations\n *\n * This middleware provides model provider isolation only. PII may still be present in:\n * - LangGraph state checkpoints (memory, databases)\n * - Network traffic between client and application server\n * - Application logs and trace data\n * - Tool execution arguments and responses\n * - Final agent output\n *\n * For comprehensive PII protection, implement additional controls at the application,\n * network, and storage layers.\n *\n * @param options - Configuration options\n * @param options.rules - Record of detection rules mapping rule names to regex patterns.\n * Rule names are normalized to uppercase and used in redaction markers.\n * Patterns must use the global flag (`/pattern/g`) to match all occurrences.\n *\n * @returns Middleware instance for use with `createAgent`\n *\n * @example Basic usage with custom rules\n * ```typescript\n * import { piiRedactionMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n * import { tool } from \"@langchain/core/tools\";\n * import { z } from \"zod/v3\";\n *\n * const PII_RULES = {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * phone: /\\b\\d{3}[-.]?\\d{3}[-.]?\\d{4}\\b/g,\n * };\n *\n * const lookupUser = tool(async ({ ssn }) => {\n * // Receives original value: \"123-45-6789\"\n * return { name: \"John Doe\", account: \"active\" };\n * }, {\n * name: \"lookup_user\",\n * description: \"Look up user by SSN\",\n * schema: z.object({ ssn: z.string() })\n * });\n *\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [lookupUser],\n * middleware: [piiRedactionMiddleware({ rules: PII_RULES })]\n * });\n *\n * const result = await agent.invoke({\n * messages: [new HumanMessage(\"Look up SSN 123-45-6789\")]\n * });\n * // Model request: \"Look up SSN [REDACTED_SSN_abc123]\"\n * // Model response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * // Tool receives: { \"ssn\": \"123-45-6789\" }\n * ```\n *\n * @example Runtime rule configuration via context\n * ```typescript\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [someTool],\n * middleware: [piiRedactionMiddleware()]\n * });\n *\n * // Configure rules at runtime via middleware context\n * const result = await agent.invoke(\n * { messages: [new HumanMessage(\"...\")] },\n * {\n * configurable: {\n * PIIRedactionMiddleware: {\n * rules: {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * }\n * }\n * }\n * }\n * );\n * ```\n *\n * @example Custom rule patterns\n * ```typescript\n * const customRules = {\n * employee_id: /EMP-\\d{6}/g,\n * api_key: /sk-[a-zA-Z0-9]{32}/g,\n * credit_card: /\\b\\d{4}[- ]?\\d{4}[- ]?\\d{4}[- ]?\\d{4}\\b/g,\n * };\n *\n * const middleware = piiRedactionMiddleware({ rules: customRules });\n * // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]\n * ```\n *\n * @deprecated\n */\nexport declare function piiRedactionMiddleware(options?: PIIRedactionMiddlewareConfig): ReturnType<typeof createMiddleware>;\nexport {};\n"],"mappings":";;;;;;;;AAEoD;cAItCG,aAUZ,EAV2BH,CAAAA,CAAEY,SAU7B,CAAA;EAAA;;;;EALsF,KAApCL,EAAzCP,CAAAA,CAAES,WAAuCF,CAA3BP,CAAAA,CAAEQ,SAAyBD,CAAfP,CAAAA,CAAEI,SAAaG,EAAFP,CAAAA,CAAEO,OAAAA,CAAQF,MAARE,EAAgBP,CAAAA,CAAEM,UAAlBC,EAA8BF,MAA9BE,CAAAA,CAAAA,CAAAA;CAAO,EAAA,OAAhCC,EACfR,CAAAA,CAAEU,UADaF,EAAAA;EAAS,KAAvBC,CAAAA,EAEDE,MAFCF,CAAAA,MAAAA,EAEcJ,MAFdI,CAAAA,GAAAA,SAAAA;CAAW,EAAA;EACA,KACGJ,CAAAA,EAEfM,MAFeN,CAAAA,MAAAA,EAEAA,MAFAA,CAAAA,GAAAA,SAAAA;CAAM,CAAA;;;;AAPO,KAc5BQ,4BAAAA,GAA+BZ,oBAdH,CAAA,OAc+BE,aAd/B,CAAA;AAcxC;;;;AAA+D;AAmI/D;;;;;AAAkG;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAA1EW,sBAAAA,WAAiCD,+BAA+BE,kBAAkBb"}
|
|
@@ -18,6 +18,9 @@ declare const contextSchema: z.ZodObject<{
|
|
|
18
18
|
}, {
|
|
19
19
|
rules?: Record<string, RegExp> | undefined;
|
|
20
20
|
}>;
|
|
21
|
+
/**
|
|
22
|
+
* @deprecated
|
|
23
|
+
*/
|
|
21
24
|
type PIIRedactionMiddlewareConfig = InferInteropZodInput<typeof contextSchema>;
|
|
22
25
|
/**
|
|
23
26
|
* Creates a middleware that detects and redacts personally identifiable information (PII)
|
|
@@ -147,7 +150,7 @@ type PIIRedactionMiddlewareConfig = InferInteropZodInput<typeof contextSchema>;
|
|
|
147
150
|
* // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]
|
|
148
151
|
* ```
|
|
149
152
|
*
|
|
150
|
-
* @
|
|
153
|
+
* @deprecated
|
|
151
154
|
*/
|
|
152
155
|
declare function piiRedactionMiddleware(options?: PIIRedactionMiddlewareConfig): ReturnType<typeof createMiddleware>;
|
|
153
156
|
//#endregion
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"piiRedaction.d.ts","names":["z","InferInteropZodInput","createMiddleware","contextSchema","ZodString","RegExp","ZodTypeDef","ZodType","ZodRecord","ZodOptional","ZodTypeAny","Record","ZodObject","PIIRedactionMiddlewareConfig","piiRedactionMiddleware","ReturnType"],"sources":["../../../src/agents/middleware/piiRedaction.d.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport type { InferInteropZodInput } from \"@langchain/core/utils/types\";\nimport { createMiddleware } from \"../middleware.js\";\n/**\n * Configuration schema for the Input Guardrails middleware\n */\ndeclare const contextSchema: z.ZodObject<{\n /**\n * A record of PII detection rules to apply\n * @default DEFAULT_PII_RULES (with enabled rules only)\n */\n rules: z.ZodOptional<z.ZodRecord<z.ZodString, z.ZodType<RegExp, z.ZodTypeDef, RegExp>>>;\n}, \"strip\", z.ZodTypeAny, {\n rules?: Record<string, RegExp> | undefined;\n}, {\n rules?: Record<string, RegExp> | undefined;\n}>;\nexport type PIIRedactionMiddlewareConfig = InferInteropZodInput<typeof contextSchema>;\n/**\n * Creates a middleware that detects and redacts personally identifiable information (PII)\n * from messages before they are sent to model providers, and restores original values\n * in model responses for tool execution.\n *\n * ## Mechanism\n *\n * The middleware intercepts agent execution at two points:\n *\n * ### Request Phase (`wrapModelCall`)\n * - Applies regex-based pattern matching to all message content (HumanMessage, ToolMessage, SystemMessage, AIMessage)\n * - Processes both message text and AIMessage tool call arguments\n * - Each matched pattern generates:\n * - Unique identifier: `generateRedactionId()` → `\"abc123\"`\n * - Redaction marker: `[REDACTED_{RULE_NAME}_{ID}]` → `\"[REDACTED_SSN_abc123]\"`\n * - Redaction map entry: `{ \"abc123\": \"123-45-6789\" }`\n * - Returns modified request with redacted message content\n *\n * ### Response Phase (`afterModel`)\n * - Scans AIMessage responses for redaction markers matching pattern: `/\\[REDACTED_[A-Z_]+_(\\w+)\\]/g`\n * - Replaces markers with original values from redaction map\n * - Handles both standard responses and structured output (via tool calls or JSON content)\n * - For structured output, restores values in both the tool call arguments and the `structuredResponse` state field\n * - Returns new message instances via RemoveMessage/AIMessage to update state\n *\n * ## Data Flow\n *\n * ```\n * User Input: \"My SSN is 123-45-6789\"\n * ↓ [beforeModel]\n * Model Request: \"My SSN is [REDACTED_SSN_abc123]\"\n * ↓ [model invocation]\n * Model Response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * ↓ [afterModel]\n * Tool Execution: tool({ \"ssn\": \"123-45-6789\" })\n * ```\n *\n * ## Limitations\n *\n * This middleware provides model provider isolation only. PII may still be present in:\n * - LangGraph state checkpoints (memory, databases)\n * - Network traffic between client and application server\n * - Application logs and trace data\n * - Tool execution arguments and responses\n * - Final agent output\n *\n * For comprehensive PII protection, implement additional controls at the application,\n * network, and storage layers.\n *\n * @param options - Configuration options\n * @param options.rules - Record of detection rules mapping rule names to regex patterns.\n * Rule names are normalized to uppercase and used in redaction markers.\n * Patterns must use the global flag (`/pattern/g`) to match all occurrences.\n *\n * @returns Middleware instance for use with `createAgent`\n *\n * @example Basic usage with custom rules\n * ```typescript\n * import { piiRedactionMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n * import { tool } from \"@langchain/core/tools\";\n * import { z } from \"zod/v3\";\n *\n * const PII_RULES = {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * phone: /\\b\\d{3}[-.]?\\d{3}[-.]?\\d{4}\\b/g,\n * };\n *\n * const lookupUser = tool(async ({ ssn }) => {\n * // Receives original value: \"123-45-6789\"\n * return { name: \"John Doe\", account: \"active\" };\n * }, {\n * name: \"lookup_user\",\n * description: \"Look up user by SSN\",\n * schema: z.object({ ssn: z.string() })\n * });\n *\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [lookupUser],\n * middleware: [piiRedactionMiddleware({ rules: PII_RULES })]\n * });\n *\n * const result = await agent.invoke({\n * messages: [new HumanMessage(\"Look up SSN 123-45-6789\")]\n * });\n * // Model request: \"Look up SSN [REDACTED_SSN_abc123]\"\n * // Model response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * // Tool receives: { \"ssn\": \"123-45-6789\" }\n * ```\n *\n * @example Runtime rule configuration via context\n * ```typescript\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [someTool],\n * middleware: [piiRedactionMiddleware()]\n * });\n *\n * // Configure rules at runtime via middleware context\n * const result = await agent.invoke(\n * { messages: [new HumanMessage(\"...\")] },\n * {\n * configurable: {\n * PIIRedactionMiddleware: {\n * rules: {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * }\n * }\n * }\n * }\n * );\n * ```\n *\n * @example Custom rule patterns\n * ```typescript\n * const customRules = {\n * employee_id: /EMP-\\d{6}/g,\n * api_key: /sk-[a-zA-Z0-9]{32}/g,\n * credit_card: /\\b\\d{4}[- ]?\\d{4}[- ]?\\d{4}[- ]?\\d{4}\\b/g,\n * };\n *\n * const middleware = piiRedactionMiddleware({ rules: customRules });\n * // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]\n * ```\n *\n * @
|
|
1
|
+
{"version":3,"file":"piiRedaction.d.ts","names":["z","InferInteropZodInput","createMiddleware","contextSchema","ZodString","RegExp","ZodTypeDef","ZodType","ZodRecord","ZodOptional","ZodTypeAny","Record","ZodObject","PIIRedactionMiddlewareConfig","piiRedactionMiddleware","ReturnType"],"sources":["../../../src/agents/middleware/piiRedaction.d.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport type { InferInteropZodInput } from \"@langchain/core/utils/types\";\nimport { createMiddleware } from \"../middleware.js\";\n/**\n * Configuration schema for the Input Guardrails middleware\n */\ndeclare const contextSchema: z.ZodObject<{\n /**\n * A record of PII detection rules to apply\n * @default DEFAULT_PII_RULES (with enabled rules only)\n */\n rules: z.ZodOptional<z.ZodRecord<z.ZodString, z.ZodType<RegExp, z.ZodTypeDef, RegExp>>>;\n}, \"strip\", z.ZodTypeAny, {\n rules?: Record<string, RegExp> | undefined;\n}, {\n rules?: Record<string, RegExp> | undefined;\n}>;\n/**\n * @deprecated\n */\nexport type PIIRedactionMiddlewareConfig = InferInteropZodInput<typeof contextSchema>;\n/**\n * Creates a middleware that detects and redacts personally identifiable information (PII)\n * from messages before they are sent to model providers, and restores original values\n * in model responses for tool execution.\n *\n * ## Mechanism\n *\n * The middleware intercepts agent execution at two points:\n *\n * ### Request Phase (`wrapModelCall`)\n * - Applies regex-based pattern matching to all message content (HumanMessage, ToolMessage, SystemMessage, AIMessage)\n * - Processes both message text and AIMessage tool call arguments\n * - Each matched pattern generates:\n * - Unique identifier: `generateRedactionId()` → `\"abc123\"`\n * - Redaction marker: `[REDACTED_{RULE_NAME}_{ID}]` → `\"[REDACTED_SSN_abc123]\"`\n * - Redaction map entry: `{ \"abc123\": \"123-45-6789\" }`\n * - Returns modified request with redacted message content\n *\n * ### Response Phase (`afterModel`)\n * - Scans AIMessage responses for redaction markers matching pattern: `/\\[REDACTED_[A-Z_]+_(\\w+)\\]/g`\n * - Replaces markers with original values from redaction map\n * - Handles both standard responses and structured output (via tool calls or JSON content)\n * - For structured output, restores values in both the tool call arguments and the `structuredResponse` state field\n * - Returns new message instances via RemoveMessage/AIMessage to update state\n *\n * ## Data Flow\n *\n * ```\n * User Input: \"My SSN is 123-45-6789\"\n * ↓ [beforeModel]\n * Model Request: \"My SSN is [REDACTED_SSN_abc123]\"\n * ↓ [model invocation]\n * Model Response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * ↓ [afterModel]\n * Tool Execution: tool({ \"ssn\": \"123-45-6789\" })\n * ```\n *\n * ## Limitations\n *\n * This middleware provides model provider isolation only. PII may still be present in:\n * - LangGraph state checkpoints (memory, databases)\n * - Network traffic between client and application server\n * - Application logs and trace data\n * - Tool execution arguments and responses\n * - Final agent output\n *\n * For comprehensive PII protection, implement additional controls at the application,\n * network, and storage layers.\n *\n * @param options - Configuration options\n * @param options.rules - Record of detection rules mapping rule names to regex patterns.\n * Rule names are normalized to uppercase and used in redaction markers.\n * Patterns must use the global flag (`/pattern/g`) to match all occurrences.\n *\n * @returns Middleware instance for use with `createAgent`\n *\n * @example Basic usage with custom rules\n * ```typescript\n * import { piiRedactionMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n * import { tool } from \"@langchain/core/tools\";\n * import { z } from \"zod/v3\";\n *\n * const PII_RULES = {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * phone: /\\b\\d{3}[-.]?\\d{3}[-.]?\\d{4}\\b/g,\n * };\n *\n * const lookupUser = tool(async ({ ssn }) => {\n * // Receives original value: \"123-45-6789\"\n * return { name: \"John Doe\", account: \"active\" };\n * }, {\n * name: \"lookup_user\",\n * description: \"Look up user by SSN\",\n * schema: z.object({ ssn: z.string() })\n * });\n *\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [lookupUser],\n * middleware: [piiRedactionMiddleware({ rules: PII_RULES })]\n * });\n *\n * const result = await agent.invoke({\n * messages: [new HumanMessage(\"Look up SSN 123-45-6789\")]\n * });\n * // Model request: \"Look up SSN [REDACTED_SSN_abc123]\"\n * // Model response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * // Tool receives: { \"ssn\": \"123-45-6789\" }\n * ```\n *\n * @example Runtime rule configuration via context\n * ```typescript\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [someTool],\n * middleware: [piiRedactionMiddleware()]\n * });\n *\n * // Configure rules at runtime via middleware context\n * const result = await agent.invoke(\n * { messages: [new HumanMessage(\"...\")] },\n * {\n * configurable: {\n * PIIRedactionMiddleware: {\n * rules: {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * }\n * }\n * }\n * }\n * );\n * ```\n *\n * @example Custom rule patterns\n * ```typescript\n * const customRules = {\n * employee_id: /EMP-\\d{6}/g,\n * api_key: /sk-[a-zA-Z0-9]{32}/g,\n * credit_card: /\\b\\d{4}[- ]?\\d{4}[- ]?\\d{4}[- ]?\\d{4}\\b/g,\n * };\n *\n * const middleware = piiRedactionMiddleware({ rules: customRules });\n * // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]\n * ```\n *\n * @deprecated\n */\nexport declare function piiRedactionMiddleware(options?: PIIRedactionMiddlewareConfig): ReturnType<typeof createMiddleware>;\nexport {};\n"],"mappings":";;;;;;;;AAEoD;cAItCG,aAUZ,EAV2BH,CAAAA,CAAEY,SAU7B,CAAA;EAAA;;;;EALsF,KAApCL,EAAzCP,CAAAA,CAAES,WAAuCF,CAA3BP,CAAAA,CAAEQ,SAAyBD,CAAfP,CAAAA,CAAEI,SAAaG,EAAFP,CAAAA,CAAEO,OAAAA,CAAQF,MAARE,EAAgBP,CAAAA,CAAEM,UAAlBC,EAA8BF,MAA9BE,CAAAA,CAAAA,CAAAA;CAAO,EAAA,OAAhCC,EACfR,CAAAA,CAAEU,UADaF,EAAAA;EAAS,KAAvBC,CAAAA,EAEDE,MAFCF,CAAAA,MAAAA,EAEcJ,MAFdI,CAAAA,GAAAA,SAAAA;CAAW,EAAA;EACA,KACGJ,CAAAA,EAEfM,MAFeN,CAAAA,MAAAA,EAEAA,MAFAA,CAAAA,GAAAA,SAAAA;CAAM,CAAA;;;;AAPO,KAc5BQ,4BAAAA,GAA+BZ,oBAdH,CAAA,OAc+BE,aAd/B,CAAA;AAcxC;;;;AAA+D;AAmI/D;;;;;AAAkG;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAA1EW,sBAAAA,WAAiCD,+BAA+BE,kBAAkBb"}
|
|
@@ -253,10 +253,11 @@ function restoreMessage(message, redactionMap) {
|
|
|
253
253
|
* // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]
|
|
254
254
|
* ```
|
|
255
255
|
*
|
|
256
|
-
* @
|
|
256
|
+
* @deprecated
|
|
257
257
|
*/
|
|
258
258
|
function piiRedactionMiddleware(options = {}) {
|
|
259
259
|
const redactionMap = {};
|
|
260
|
+
console.warn("DEPRECATED: piiRedactionMiddleware is deprecated. Please use piiMiddleware instead, go to https://docs.langchain.com/oss/javascript/langchain/middleware/built-in#pii-detection for more information.");
|
|
260
261
|
return createMiddleware({
|
|
261
262
|
name: "PIIRedactionMiddleware",
|
|
262
263
|
contextSchema,
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"piiRedaction.js","names":["text: string","rules: Record<string, RegExp>","redactionMap: RedactionMap","message: BaseMessage","config: ProcessHumanMessageConfig","options: PIIRedactionMiddlewareConfig","structuredResponse: Record<string, unknown> | undefined","structuredResponse"],"sources":["../../../src/agents/middleware/piiRedaction.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport {\n BaseMessage,\n AIMessage,\n HumanMessage,\n ToolMessage,\n RemoveMessage,\n SystemMessage,\n} from \"@langchain/core/messages\";\nimport type { InferInteropZodInput } from \"@langchain/core/utils/types\";\n\nimport { createMiddleware } from \"../middleware.js\";\n\n/**\n * Type for the redaction map that stores original values by ID\n */\ntype RedactionMap = Record<string, string>;\n\n/**\n * Configuration schema for the Input Guardrails middleware\n */\nconst contextSchema = z.object({\n /**\n * A record of PII detection rules to apply\n * @default DEFAULT_PII_RULES (with enabled rules only)\n */\n rules: z\n .record(\n z.string(),\n z.instanceof(RegExp).describe(\"Regular expression pattern to match PII\")\n )\n .optional(),\n});\n\nexport type PIIRedactionMiddlewareConfig = InferInteropZodInput<\n typeof contextSchema\n>;\n\n/**\n * Generate a unique ID for a redaction\n */\nfunction generateRedactionId(): string {\n return Math.random().toString(36).substring(2, 11);\n}\n\n/**\n * Apply PII detection rules to text with ID tracking\n */\nfunction applyPIIRules(\n text: string,\n rules: Record<string, RegExp>,\n redactionMap: RedactionMap\n): string {\n let processedText = text;\n\n for (const [name, pattern] of Object.entries(rules)) {\n const replacement = name.toUpperCase().replace(/[^a-zA-Z0-9_-]/g, \"\");\n processedText = processedText.replace(pattern, (match) => {\n const id = generateRedactionId();\n redactionMap[id] = match;\n // Create a trackable replacement like [REDACTED_SSN_abc123]\n return `[REDACTED_${replacement}_${id}]`;\n });\n }\n\n return processedText;\n}\n\ninterface ProcessHumanMessageConfig {\n rules: Record<string, RegExp>;\n redactionMap: RedactionMap;\n}\n\n/**\n * Process a single human message for PII detection and redaction\n */\nasync function processMessage(\n message: BaseMessage,\n config: ProcessHumanMessageConfig\n): Promise<BaseMessage> {\n /**\n * handle basic message types\n */\n if (\n HumanMessage.isInstance(message) ||\n ToolMessage.isInstance(message) ||\n SystemMessage.isInstance(message)\n ) {\n const content = message.content as string;\n const processedContent = await applyPIIRules(\n content,\n config.rules,\n config.redactionMap\n );\n\n if (processedContent !== content) {\n const MessageConstructor = Object.getPrototypeOf(message).constructor;\n return new MessageConstructor({\n ...message,\n content: processedContent,\n });\n }\n\n return message;\n }\n\n /**\n * Handle AI messages\n */\n if (AIMessage.isInstance(message)) {\n const content =\n typeof message.content === \"string\"\n ? message.content\n : JSON.stringify(message.content);\n const toolCalls = JSON.stringify(message.tool_calls);\n const processedContent = await applyPIIRules(\n content,\n config.rules,\n config.redactionMap\n );\n const processedToolCalls = await applyPIIRules(\n toolCalls,\n config.rules,\n config.redactionMap\n );\n\n if (processedContent !== content || processedToolCalls !== toolCalls) {\n return new AIMessage({\n ...message,\n content:\n typeof message.content === \"string\"\n ? processedContent\n : JSON.parse(processedContent),\n tool_calls: JSON.parse(processedToolCalls),\n });\n }\n\n return message;\n }\n\n throw new Error(`Unsupported message type: ${message.type}`);\n}\n\n/**\n * Restore original values from redacted text using the redaction map\n */\nfunction restoreRedactedValues(\n text: string,\n redactionMap: RedactionMap\n): string {\n let restoredText = text;\n\n // Pattern to match redacted values like [REDACTED_SSN_abc123]\n const redactionPattern = /\\[REDACTED_[A-Z_]+_(\\w+)\\]/g;\n\n restoredText = restoredText.replace(redactionPattern, (match, id) => {\n if (redactionMap[id]) {\n return redactionMap[id];\n }\n return match; // Keep original if no mapping found\n });\n\n return restoredText;\n}\n\n/**\n * Restore redacted values in a message (creates a new message object)\n */\nfunction restoreMessage(\n message: BaseMessage,\n redactionMap: RedactionMap\n): { message: BaseMessage; changed: boolean } {\n /**\n * handle basic message types\n */\n if (\n HumanMessage.isInstance(message) ||\n ToolMessage.isInstance(message) ||\n SystemMessage.isInstance(message)\n ) {\n const content = message.content as string;\n const restoredContent = restoreRedactedValues(content, redactionMap);\n if (restoredContent !== content) {\n const MessageConstructor = Object.getPrototypeOf(message).constructor;\n const newMessage = new MessageConstructor({\n ...message,\n content: restoredContent,\n });\n return { message: newMessage, changed: true };\n }\n return { message, changed: false };\n }\n\n /**\n * handle AI messages\n */\n if (AIMessage.isInstance(message)) {\n const content =\n typeof message.content === \"string\"\n ? message.content\n : JSON.stringify(message.content);\n const toolCalls = JSON.stringify(message.tool_calls);\n const processedContent = restoreRedactedValues(content, redactionMap);\n const processedToolCalls = restoreRedactedValues(toolCalls, redactionMap);\n if (processedContent !== content || processedToolCalls !== toolCalls) {\n return {\n message: new AIMessage({\n ...message,\n content:\n typeof message.content === \"string\"\n ? processedContent\n : JSON.parse(processedContent),\n tool_calls: JSON.parse(processedToolCalls),\n }),\n changed: true,\n };\n }\n\n return { message, changed: false };\n }\n\n throw new Error(`Unsupported message type: ${message.type}`);\n}\n\n/**\n * Creates a middleware that detects and redacts personally identifiable information (PII)\n * from messages before they are sent to model providers, and restores original values\n * in model responses for tool execution.\n *\n * ## Mechanism\n *\n * The middleware intercepts agent execution at two points:\n *\n * ### Request Phase (`wrapModelCall`)\n * - Applies regex-based pattern matching to all message content (HumanMessage, ToolMessage, SystemMessage, AIMessage)\n * - Processes both message text and AIMessage tool call arguments\n * - Each matched pattern generates:\n * - Unique identifier: `generateRedactionId()` → `\"abc123\"`\n * - Redaction marker: `[REDACTED_{RULE_NAME}_{ID}]` → `\"[REDACTED_SSN_abc123]\"`\n * - Redaction map entry: `{ \"abc123\": \"123-45-6789\" }`\n * - Returns modified request with redacted message content\n *\n * ### Response Phase (`afterModel`)\n * - Scans AIMessage responses for redaction markers matching pattern: `/\\[REDACTED_[A-Z_]+_(\\w+)\\]/g`\n * - Replaces markers with original values from redaction map\n * - Handles both standard responses and structured output (via tool calls or JSON content)\n * - For structured output, restores values in both the tool call arguments and the `structuredResponse` state field\n * - Returns new message instances via RemoveMessage/AIMessage to update state\n *\n * ## Data Flow\n *\n * ```\n * User Input: \"My SSN is 123-45-6789\"\n * ↓ [beforeModel]\n * Model Request: \"My SSN is [REDACTED_SSN_abc123]\"\n * ↓ [model invocation]\n * Model Response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * ↓ [afterModel]\n * Tool Execution: tool({ \"ssn\": \"123-45-6789\" })\n * ```\n *\n * ## Limitations\n *\n * This middleware provides model provider isolation only. PII may still be present in:\n * - LangGraph state checkpoints (memory, databases)\n * - Network traffic between client and application server\n * - Application logs and trace data\n * - Tool execution arguments and responses\n * - Final agent output\n *\n * For comprehensive PII protection, implement additional controls at the application,\n * network, and storage layers.\n *\n * @param options - Configuration options\n * @param options.rules - Record of detection rules mapping rule names to regex patterns.\n * Rule names are normalized to uppercase and used in redaction markers.\n * Patterns must use the global flag (`/pattern/g`) to match all occurrences.\n *\n * @returns Middleware instance for use with `createAgent`\n *\n * @example Basic usage with custom rules\n * ```typescript\n * import { piiRedactionMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n * import { tool } from \"@langchain/core/tools\";\n * import { z } from \"zod/v3\";\n *\n * const PII_RULES = {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * phone: /\\b\\d{3}[-.]?\\d{3}[-.]?\\d{4}\\b/g,\n * };\n *\n * const lookupUser = tool(async ({ ssn }) => {\n * // Receives original value: \"123-45-6789\"\n * return { name: \"John Doe\", account: \"active\" };\n * }, {\n * name: \"lookup_user\",\n * description: \"Look up user by SSN\",\n * schema: z.object({ ssn: z.string() })\n * });\n *\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [lookupUser],\n * middleware: [piiRedactionMiddleware({ rules: PII_RULES })]\n * });\n *\n * const result = await agent.invoke({\n * messages: [new HumanMessage(\"Look up SSN 123-45-6789\")]\n * });\n * // Model request: \"Look up SSN [REDACTED_SSN_abc123]\"\n * // Model response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * // Tool receives: { \"ssn\": \"123-45-6789\" }\n * ```\n *\n * @example Runtime rule configuration via context\n * ```typescript\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [someTool],\n * middleware: [piiRedactionMiddleware()]\n * });\n *\n * // Configure rules at runtime via middleware context\n * const result = await agent.invoke(\n * { messages: [new HumanMessage(\"...\")] },\n * {\n * configurable: {\n * PIIRedactionMiddleware: {\n * rules: {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * }\n * }\n * }\n * }\n * );\n * ```\n *\n * @example Custom rule patterns\n * ```typescript\n * const customRules = {\n * employee_id: /EMP-\\d{6}/g,\n * api_key: /sk-[a-zA-Z0-9]{32}/g,\n * credit_card: /\\b\\d{4}[- ]?\\d{4}[- ]?\\d{4}[- ]?\\d{4}\\b/g,\n * };\n *\n * const middleware = piiRedactionMiddleware({ rules: customRules });\n * // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]\n * ```\n *\n * @public\n */\nexport function piiRedactionMiddleware(\n options: PIIRedactionMiddlewareConfig = {}\n): ReturnType<typeof createMiddleware> {\n const redactionMap: RedactionMap = {};\n\n return createMiddleware({\n name: \"PIIRedactionMiddleware\",\n contextSchema,\n wrapModelCall: async (request, handler) => {\n /**\n * Merge options with context, following bigTool.ts pattern\n */\n const rules = request.runtime.context.rules ?? options.rules ?? {};\n\n /**\n * If no rules are provided, skip processing\n */\n if (Object.keys(rules).length === 0) {\n return handler(request);\n }\n\n const processedMessages = await Promise.all(\n request.state.messages.map((message: BaseMessage) =>\n processMessage(message, {\n rules,\n redactionMap,\n })\n )\n );\n\n return handler({\n ...request,\n messages: processedMessages,\n });\n },\n afterModel: async (state) => {\n /**\n * If no redactions were made, skip processing\n */\n if (Object.keys(redactionMap).length === 0) {\n return;\n }\n\n const lastMessage = state.messages.at(-1);\n if (!AIMessage.isInstance(lastMessage)) {\n return;\n }\n\n /**\n * In cases where we do structured output via tool calls, we also have to look at the second last message\n * as we add a custom last message to the messages array.\n */\n const secondLastMessage = state.messages.at(-2);\n\n const { message: restoredLastMessage, changed } = restoreMessage(\n lastMessage,\n redactionMap\n );\n\n if (!changed) {\n return;\n }\n\n /**\n * Identify if the last message is a structured response and restore the values if so\n */\n let structuredResponse: Record<string, unknown> | undefined;\n if (\n AIMessage.isInstance(lastMessage) &&\n lastMessage?.tool_calls?.length === 0 &&\n typeof lastMessage.content === \"string\" &&\n lastMessage.content.startsWith(\"{\") &&\n lastMessage.content.endsWith(\"}\")\n ) {\n try {\n structuredResponse = JSON.parse(\n restoreRedactedValues(lastMessage.content, redactionMap)\n );\n } catch {\n // ignore\n }\n }\n\n /**\n * Check if the second last message is a structured response tool call\n */\n const isStructuredResponseToolCall =\n AIMessage.isInstance(secondLastMessage) &&\n secondLastMessage?.tool_calls?.length !== 0 &&\n secondLastMessage?.tool_calls?.some((call) =>\n call.name.startsWith(\"extract-\")\n );\n if (isStructuredResponseToolCall) {\n const {\n message: restoredSecondLastMessage,\n changed: changedSecondLastMessage,\n } = restoreMessage(secondLastMessage, redactionMap);\n const structuredResponseRedacted = secondLastMessage.tool_calls?.find(\n (call) => call.name.startsWith(\"extract-\")\n )?.args;\n const structuredResponse = structuredResponseRedacted\n ? JSON.parse(\n restoreRedactedValues(\n JSON.stringify(structuredResponseRedacted),\n redactionMap\n )\n )\n : undefined;\n if (changed || changedSecondLastMessage) {\n return {\n ...state,\n ...(structuredResponse ? { structuredResponse } : {}),\n messages: [\n new RemoveMessage({ id: secondLastMessage.id as string }),\n new RemoveMessage({ id: lastMessage.id as string }),\n restoredSecondLastMessage,\n restoredLastMessage,\n ],\n };\n }\n }\n\n return {\n ...state,\n ...(structuredResponse ? { structuredResponse } : {}),\n messages: [\n new RemoveMessage({ id: lastMessage.id as string }),\n restoredLastMessage,\n ],\n };\n },\n });\n}\n"],"mappings":";;;;;;;;AAqBA,MAAM,gBAAgB,EAAE,OAAO,EAK7B,OAAO,EACJ,OACC,EAAE,QAAQ,EACV,EAAE,WAAW,OAAO,CAAC,SAAS,0CAA0C,CACzE,CACA,UAAU,CACd,EAAC;;;;AASF,SAAS,sBAA8B;AACrC,QAAO,KAAK,QAAQ,CAAC,SAAS,GAAG,CAAC,UAAU,GAAG,GAAG;AACnD;;;;AAKD,SAAS,cACPA,MACAC,OACAC,cACQ;CACR,IAAI,gBAAgB;AAEpB,MAAK,MAAM,CAAC,MAAM,QAAQ,IAAI,OAAO,QAAQ,MAAM,EAAE;EACnD,MAAM,cAAc,KAAK,aAAa,CAAC,QAAQ,mBAAmB,GAAG;EACrE,gBAAgB,cAAc,QAAQ,SAAS,CAAC,UAAU;GACxD,MAAM,KAAK,qBAAqB;GAChC,aAAa,MAAM;AAEnB,UAAO,CAAC,UAAU,EAAE,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC;EACzC,EAAC;CACH;AAED,QAAO;AACR;;;;AAUD,eAAe,eACbC,SACAC,QACsB;;;;AAItB,KACE,aAAa,WAAW,QAAQ,IAChC,YAAY,WAAW,QAAQ,IAC/B,cAAc,WAAW,QAAQ,EACjC;EACA,MAAM,UAAU,QAAQ;EACxB,MAAM,mBAAmB,MAAM,cAC7B,SACA,OAAO,OACP,OAAO,aACR;AAED,MAAI,qBAAqB,SAAS;GAChC,MAAM,qBAAqB,OAAO,eAAe,QAAQ,CAAC;AAC1D,UAAO,IAAI,mBAAmB;IAC5B,GAAG;IACH,SAAS;GACV;EACF;AAED,SAAO;CACR;;;;AAKD,KAAI,UAAU,WAAW,QAAQ,EAAE;EACjC,MAAM,UACJ,OAAO,QAAQ,YAAY,WACvB,QAAQ,UACR,KAAK,UAAU,QAAQ,QAAQ;EACrC,MAAM,YAAY,KAAK,UAAU,QAAQ,WAAW;EACpD,MAAM,mBAAmB,MAAM,cAC7B,SACA,OAAO,OACP,OAAO,aACR;EACD,MAAM,qBAAqB,MAAM,cAC/B,WACA,OAAO,OACP,OAAO,aACR;AAED,MAAI,qBAAqB,WAAW,uBAAuB,UACzD,QAAO,IAAI,UAAU;GACnB,GAAG;GACH,SACE,OAAO,QAAQ,YAAY,WACvB,mBACA,KAAK,MAAM,iBAAiB;GAClC,YAAY,KAAK,MAAM,mBAAmB;EAC3C;AAGH,SAAO;CACR;AAED,OAAM,IAAI,MAAM,CAAC,0BAA0B,EAAE,QAAQ,MAAM;AAC5D;;;;AAKD,SAAS,sBACPJ,MACAE,cACQ;CACR,IAAI,eAAe;CAGnB,MAAM,mBAAmB;CAEzB,eAAe,aAAa,QAAQ,kBAAkB,CAAC,OAAO,OAAO;AACnE,MAAI,aAAa,IACf,QAAO,aAAa;AAEtB,SAAO;CACR,EAAC;AAEF,QAAO;AACR;;;;AAKD,SAAS,eACPC,SACAD,cAC4C;;;;AAI5C,KACE,aAAa,WAAW,QAAQ,IAChC,YAAY,WAAW,QAAQ,IAC/B,cAAc,WAAW,QAAQ,EACjC;EACA,MAAM,UAAU,QAAQ;EACxB,MAAM,kBAAkB,sBAAsB,SAAS,aAAa;AACpE,MAAI,oBAAoB,SAAS;GAC/B,MAAM,qBAAqB,OAAO,eAAe,QAAQ,CAAC;GAC1D,MAAM,aAAa,IAAI,mBAAmB;IACxC,GAAG;IACH,SAAS;GACV;AACD,UAAO;IAAE,SAAS;IAAY,SAAS;GAAM;EAC9C;AACD,SAAO;GAAE;GAAS,SAAS;EAAO;CACnC;;;;AAKD,KAAI,UAAU,WAAW,QAAQ,EAAE;EACjC,MAAM,UACJ,OAAO,QAAQ,YAAY,WACvB,QAAQ,UACR,KAAK,UAAU,QAAQ,QAAQ;EACrC,MAAM,YAAY,KAAK,UAAU,QAAQ,WAAW;EACpD,MAAM,mBAAmB,sBAAsB,SAAS,aAAa;EACrE,MAAM,qBAAqB,sBAAsB,WAAW,aAAa;AACzE,MAAI,qBAAqB,WAAW,uBAAuB,UACzD,QAAO;GACL,SAAS,IAAI,UAAU;IACrB,GAAG;IACH,SACE,OAAO,QAAQ,YAAY,WACvB,mBACA,KAAK,MAAM,iBAAiB;IAClC,YAAY,KAAK,MAAM,mBAAmB;GAC3C;GACD,SAAS;EACV;AAGH,SAAO;GAAE;GAAS,SAAS;EAAO;CACnC;AAED,OAAM,IAAI,MAAM,CAAC,0BAA0B,EAAE,QAAQ,MAAM;AAC5D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAoID,SAAgB,uBACdG,UAAwC,CAAE,GACL;CACrC,MAAMH,eAA6B,CAAE;AAErC,QAAO,iBAAiB;EACtB,MAAM;EACN;EACA,eAAe,OAAO,SAAS,YAAY;;;;GAIzC,MAAM,QAAQ,QAAQ,QAAQ,QAAQ,SAAS,QAAQ,SAAS,CAAE;;;;AAKlE,OAAI,OAAO,KAAK,MAAM,CAAC,WAAW,EAChC,QAAO,QAAQ,QAAQ;GAGzB,MAAM,oBAAoB,MAAM,QAAQ,IACtC,QAAQ,MAAM,SAAS,IAAI,CAACC,YAC1B,eAAe,SAAS;IACtB;IACA;GACD,EAAC,CACH,CACF;AAED,UAAO,QAAQ;IACb,GAAG;IACH,UAAU;GACX,EAAC;EACH;EACD,YAAY,OAAO,UAAU;;;;AAI3B,OAAI,OAAO,KAAK,aAAa,CAAC,WAAW,EACvC;GAGF,MAAM,cAAc,MAAM,SAAS,GAAG,GAAG;AACzC,OAAI,CAAC,UAAU,WAAW,YAAY,CACpC;;;;;GAOF,MAAM,oBAAoB,MAAM,SAAS,GAAG,GAAG;GAE/C,MAAM,EAAE,SAAS,qBAAqB,SAAS,GAAG,eAChD,aACA,aACD;AAED,OAAI,CAAC,QACH;;;;GAMF,IAAIG;AACJ,OACE,UAAU,WAAW,YAAY,IACjC,aAAa,YAAY,WAAW,KACpC,OAAO,YAAY,YAAY,YAC/B,YAAY,QAAQ,WAAW,IAAI,IACnC,YAAY,QAAQ,SAAS,IAAI,CAEjC,KAAI;IACF,qBAAqB,KAAK,MACxB,sBAAsB,YAAY,SAAS,aAAa,CACzD;GACF,QAAO,CAEP;;;;GAMH,MAAM,+BACJ,UAAU,WAAW,kBAAkB,IACvC,mBAAmB,YAAY,WAAW,KAC1C,mBAAmB,YAAY,KAAK,CAAC,SACnC,KAAK,KAAK,WAAW,WAAW,CACjC;AACH,OAAI,8BAA8B;IAChC,MAAM,EACJ,SAAS,2BACT,SAAS,0BACV,GAAG,eAAe,mBAAmB,aAAa;IACnD,MAAM,6BAA6B,kBAAkB,YAAY,KAC/D,CAAC,SAAS,KAAK,KAAK,WAAW,WAAW,CAC3C,EAAE;IACH,MAAMC,uBAAqB,6BACvB,KAAK,MACH,sBACE,KAAK,UAAU,2BAA2B,EAC1C,aACD,CACF,GACD;AACJ,QAAI,WAAW,yBACb,QAAO;KACL,GAAG;KACH,GAAIA,uBAAqB,EAAE,yCAAoB,IAAG,CAAE;KACpD,UAAU;MACR,IAAI,cAAc,EAAE,IAAI,kBAAkB,GAAc;MACxD,IAAI,cAAc,EAAE,IAAI,YAAY,GAAc;MAClD;MACA;KACD;IACF;GAEJ;AAED,UAAO;IACL,GAAG;IACH,GAAI,qBAAqB,EAAE,mBAAoB,IAAG,CAAE;IACpD,UAAU,CACR,IAAI,cAAc,EAAE,IAAI,YAAY,GAAc,IAClD,mBACD;GACF;EACF;CACF,EAAC;AACH"}
|
|
1
|
+
{"version":3,"file":"piiRedaction.js","names":["text: string","rules: Record<string, RegExp>","redactionMap: RedactionMap","message: BaseMessage","config: ProcessHumanMessageConfig","options: PIIRedactionMiddlewareConfig","structuredResponse: Record<string, unknown> | undefined","structuredResponse"],"sources":["../../../src/agents/middleware/piiRedaction.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport {\n BaseMessage,\n AIMessage,\n HumanMessage,\n ToolMessage,\n RemoveMessage,\n SystemMessage,\n} from \"@langchain/core/messages\";\nimport type { InferInteropZodInput } from \"@langchain/core/utils/types\";\n\nimport { createMiddleware } from \"../middleware.js\";\n\n/**\n * Type for the redaction map that stores original values by ID\n */\ntype RedactionMap = Record<string, string>;\n\n/**\n * Configuration schema for the Input Guardrails middleware\n */\nconst contextSchema = z.object({\n /**\n * A record of PII detection rules to apply\n * @default DEFAULT_PII_RULES (with enabled rules only)\n */\n rules: z\n .record(\n z.string(),\n z.instanceof(RegExp).describe(\"Regular expression pattern to match PII\")\n )\n .optional(),\n});\n\n/**\n * @deprecated\n */\nexport type PIIRedactionMiddlewareConfig = InferInteropZodInput<\n typeof contextSchema\n>;\n\n/**\n * Generate a unique ID for a redaction\n */\nfunction generateRedactionId(): string {\n return Math.random().toString(36).substring(2, 11);\n}\n\n/**\n * Apply PII detection rules to text with ID tracking\n */\nfunction applyPIIRules(\n text: string,\n rules: Record<string, RegExp>,\n redactionMap: RedactionMap\n): string {\n let processedText = text;\n\n for (const [name, pattern] of Object.entries(rules)) {\n const replacement = name.toUpperCase().replace(/[^a-zA-Z0-9_-]/g, \"\");\n processedText = processedText.replace(pattern, (match) => {\n const id = generateRedactionId();\n redactionMap[id] = match;\n // Create a trackable replacement like [REDACTED_SSN_abc123]\n return `[REDACTED_${replacement}_${id}]`;\n });\n }\n\n return processedText;\n}\n\ninterface ProcessHumanMessageConfig {\n rules: Record<string, RegExp>;\n redactionMap: RedactionMap;\n}\n\n/**\n * Process a single human message for PII detection and redaction\n */\nasync function processMessage(\n message: BaseMessage,\n config: ProcessHumanMessageConfig\n): Promise<BaseMessage> {\n /**\n * handle basic message types\n */\n if (\n HumanMessage.isInstance(message) ||\n ToolMessage.isInstance(message) ||\n SystemMessage.isInstance(message)\n ) {\n const content = message.content as string;\n const processedContent = await applyPIIRules(\n content,\n config.rules,\n config.redactionMap\n );\n\n if (processedContent !== content) {\n const MessageConstructor = Object.getPrototypeOf(message).constructor;\n return new MessageConstructor({\n ...message,\n content: processedContent,\n });\n }\n\n return message;\n }\n\n /**\n * Handle AI messages\n */\n if (AIMessage.isInstance(message)) {\n const content =\n typeof message.content === \"string\"\n ? message.content\n : JSON.stringify(message.content);\n const toolCalls = JSON.stringify(message.tool_calls);\n const processedContent = await applyPIIRules(\n content,\n config.rules,\n config.redactionMap\n );\n const processedToolCalls = await applyPIIRules(\n toolCalls,\n config.rules,\n config.redactionMap\n );\n\n if (processedContent !== content || processedToolCalls !== toolCalls) {\n return new AIMessage({\n ...message,\n content:\n typeof message.content === \"string\"\n ? processedContent\n : JSON.parse(processedContent),\n tool_calls: JSON.parse(processedToolCalls),\n });\n }\n\n return message;\n }\n\n throw new Error(`Unsupported message type: ${message.type}`);\n}\n\n/**\n * Restore original values from redacted text using the redaction map\n */\nfunction restoreRedactedValues(\n text: string,\n redactionMap: RedactionMap\n): string {\n let restoredText = text;\n\n // Pattern to match redacted values like [REDACTED_SSN_abc123]\n const redactionPattern = /\\[REDACTED_[A-Z_]+_(\\w+)\\]/g;\n\n restoredText = restoredText.replace(redactionPattern, (match, id) => {\n if (redactionMap[id]) {\n return redactionMap[id];\n }\n return match; // Keep original if no mapping found\n });\n\n return restoredText;\n}\n\n/**\n * Restore redacted values in a message (creates a new message object)\n */\nfunction restoreMessage(\n message: BaseMessage,\n redactionMap: RedactionMap\n): { message: BaseMessage; changed: boolean } {\n /**\n * handle basic message types\n */\n if (\n HumanMessage.isInstance(message) ||\n ToolMessage.isInstance(message) ||\n SystemMessage.isInstance(message)\n ) {\n const content = message.content as string;\n const restoredContent = restoreRedactedValues(content, redactionMap);\n if (restoredContent !== content) {\n const MessageConstructor = Object.getPrototypeOf(message).constructor;\n const newMessage = new MessageConstructor({\n ...message,\n content: restoredContent,\n });\n return { message: newMessage, changed: true };\n }\n return { message, changed: false };\n }\n\n /**\n * handle AI messages\n */\n if (AIMessage.isInstance(message)) {\n const content =\n typeof message.content === \"string\"\n ? message.content\n : JSON.stringify(message.content);\n const toolCalls = JSON.stringify(message.tool_calls);\n const processedContent = restoreRedactedValues(content, redactionMap);\n const processedToolCalls = restoreRedactedValues(toolCalls, redactionMap);\n if (processedContent !== content || processedToolCalls !== toolCalls) {\n return {\n message: new AIMessage({\n ...message,\n content:\n typeof message.content === \"string\"\n ? processedContent\n : JSON.parse(processedContent),\n tool_calls: JSON.parse(processedToolCalls),\n }),\n changed: true,\n };\n }\n\n return { message, changed: false };\n }\n\n throw new Error(`Unsupported message type: ${message.type}`);\n}\n\n/**\n * Creates a middleware that detects and redacts personally identifiable information (PII)\n * from messages before they are sent to model providers, and restores original values\n * in model responses for tool execution.\n *\n * ## Mechanism\n *\n * The middleware intercepts agent execution at two points:\n *\n * ### Request Phase (`wrapModelCall`)\n * - Applies regex-based pattern matching to all message content (HumanMessage, ToolMessage, SystemMessage, AIMessage)\n * - Processes both message text and AIMessage tool call arguments\n * - Each matched pattern generates:\n * - Unique identifier: `generateRedactionId()` → `\"abc123\"`\n * - Redaction marker: `[REDACTED_{RULE_NAME}_{ID}]` → `\"[REDACTED_SSN_abc123]\"`\n * - Redaction map entry: `{ \"abc123\": \"123-45-6789\" }`\n * - Returns modified request with redacted message content\n *\n * ### Response Phase (`afterModel`)\n * - Scans AIMessage responses for redaction markers matching pattern: `/\\[REDACTED_[A-Z_]+_(\\w+)\\]/g`\n * - Replaces markers with original values from redaction map\n * - Handles both standard responses and structured output (via tool calls or JSON content)\n * - For structured output, restores values in both the tool call arguments and the `structuredResponse` state field\n * - Returns new message instances via RemoveMessage/AIMessage to update state\n *\n * ## Data Flow\n *\n * ```\n * User Input: \"My SSN is 123-45-6789\"\n * ↓ [beforeModel]\n * Model Request: \"My SSN is [REDACTED_SSN_abc123]\"\n * ↓ [model invocation]\n * Model Response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * ↓ [afterModel]\n * Tool Execution: tool({ \"ssn\": \"123-45-6789\" })\n * ```\n *\n * ## Limitations\n *\n * This middleware provides model provider isolation only. PII may still be present in:\n * - LangGraph state checkpoints (memory, databases)\n * - Network traffic between client and application server\n * - Application logs and trace data\n * - Tool execution arguments and responses\n * - Final agent output\n *\n * For comprehensive PII protection, implement additional controls at the application,\n * network, and storage layers.\n *\n * @param options - Configuration options\n * @param options.rules - Record of detection rules mapping rule names to regex patterns.\n * Rule names are normalized to uppercase and used in redaction markers.\n * Patterns must use the global flag (`/pattern/g`) to match all occurrences.\n *\n * @returns Middleware instance for use with `createAgent`\n *\n * @example Basic usage with custom rules\n * ```typescript\n * import { piiRedactionMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n * import { tool } from \"@langchain/core/tools\";\n * import { z } from \"zod/v3\";\n *\n * const PII_RULES = {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * phone: /\\b\\d{3}[-.]?\\d{3}[-.]?\\d{4}\\b/g,\n * };\n *\n * const lookupUser = tool(async ({ ssn }) => {\n * // Receives original value: \"123-45-6789\"\n * return { name: \"John Doe\", account: \"active\" };\n * }, {\n * name: \"lookup_user\",\n * description: \"Look up user by SSN\",\n * schema: z.object({ ssn: z.string() })\n * });\n *\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [lookupUser],\n * middleware: [piiRedactionMiddleware({ rules: PII_RULES })]\n * });\n *\n * const result = await agent.invoke({\n * messages: [new HumanMessage(\"Look up SSN 123-45-6789\")]\n * });\n * // Model request: \"Look up SSN [REDACTED_SSN_abc123]\"\n * // Model response: tool_call({ \"ssn\": \"[REDACTED_SSN_abc123]\" })\n * // Tool receives: { \"ssn\": \"123-45-6789\" }\n * ```\n *\n * @example Runtime rule configuration via context\n * ```typescript\n * const agent = createAgent({\n * model: new ChatOpenAI({ model: \"gpt-4\" }),\n * tools: [someTool],\n * middleware: [piiRedactionMiddleware()]\n * });\n *\n * // Configure rules at runtime via middleware context\n * const result = await agent.invoke(\n * { messages: [new HumanMessage(\"...\")] },\n * {\n * configurable: {\n * PIIRedactionMiddleware: {\n * rules: {\n * ssn: /\\b\\d{3}-?\\d{2}-?\\d{4}\\b/g,\n * email: /\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}\\b/g,\n * }\n * }\n * }\n * }\n * );\n * ```\n *\n * @example Custom rule patterns\n * ```typescript\n * const customRules = {\n * employee_id: /EMP-\\d{6}/g,\n * api_key: /sk-[a-zA-Z0-9]{32}/g,\n * credit_card: /\\b\\d{4}[- ]?\\d{4}[- ]?\\d{4}[- ]?\\d{4}\\b/g,\n * };\n *\n * const middleware = piiRedactionMiddleware({ rules: customRules });\n * // Generates markers like: [REDACTED_EMPLOYEE_ID_xyz789]\n * ```\n *\n * @deprecated\n */\nexport function piiRedactionMiddleware(\n options: PIIRedactionMiddlewareConfig = {}\n): ReturnType<typeof createMiddleware> {\n const redactionMap: RedactionMap = {};\n\n console.warn(\n \"DEPRECATED: piiRedactionMiddleware is deprecated. Please use piiMiddleware instead, go to https://docs.langchain.com/oss/javascript/langchain/middleware/built-in#pii-detection for more information.\"\n );\n\n return createMiddleware({\n name: \"PIIRedactionMiddleware\",\n contextSchema,\n wrapModelCall: async (request, handler) => {\n /**\n * Merge options with context, following bigTool.ts pattern\n */\n const rules = request.runtime.context.rules ?? options.rules ?? {};\n\n /**\n * If no rules are provided, skip processing\n */\n if (Object.keys(rules).length === 0) {\n return handler(request);\n }\n\n const processedMessages = await Promise.all(\n request.state.messages.map((message: BaseMessage) =>\n processMessage(message, {\n rules,\n redactionMap,\n })\n )\n );\n\n return handler({\n ...request,\n messages: processedMessages,\n });\n },\n afterModel: async (state) => {\n /**\n * If no redactions were made, skip processing\n */\n if (Object.keys(redactionMap).length === 0) {\n return;\n }\n\n const lastMessage = state.messages.at(-1);\n if (!AIMessage.isInstance(lastMessage)) {\n return;\n }\n\n /**\n * In cases where we do structured output via tool calls, we also have to look at the second last message\n * as we add a custom last message to the messages array.\n */\n const secondLastMessage = state.messages.at(-2);\n\n const { message: restoredLastMessage, changed } = restoreMessage(\n lastMessage,\n redactionMap\n );\n\n if (!changed) {\n return;\n }\n\n /**\n * Identify if the last message is a structured response and restore the values if so\n */\n let structuredResponse: Record<string, unknown> | undefined;\n if (\n AIMessage.isInstance(lastMessage) &&\n lastMessage?.tool_calls?.length === 0 &&\n typeof lastMessage.content === \"string\" &&\n lastMessage.content.startsWith(\"{\") &&\n lastMessage.content.endsWith(\"}\")\n ) {\n try {\n structuredResponse = JSON.parse(\n restoreRedactedValues(lastMessage.content, redactionMap)\n );\n } catch {\n // ignore\n }\n }\n\n /**\n * Check if the second last message is a structured response tool call\n */\n const isStructuredResponseToolCall =\n AIMessage.isInstance(secondLastMessage) &&\n secondLastMessage?.tool_calls?.length !== 0 &&\n secondLastMessage?.tool_calls?.some((call) =>\n call.name.startsWith(\"extract-\")\n );\n if (isStructuredResponseToolCall) {\n const {\n message: restoredSecondLastMessage,\n changed: changedSecondLastMessage,\n } = restoreMessage(secondLastMessage, redactionMap);\n const structuredResponseRedacted = secondLastMessage.tool_calls?.find(\n (call) => call.name.startsWith(\"extract-\")\n )?.args;\n const structuredResponse = structuredResponseRedacted\n ? JSON.parse(\n restoreRedactedValues(\n JSON.stringify(structuredResponseRedacted),\n redactionMap\n )\n )\n : undefined;\n if (changed || changedSecondLastMessage) {\n return {\n ...state,\n ...(structuredResponse ? { structuredResponse } : {}),\n messages: [\n new RemoveMessage({ id: secondLastMessage.id as string }),\n new RemoveMessage({ id: lastMessage.id as string }),\n restoredSecondLastMessage,\n restoredLastMessage,\n ],\n };\n }\n }\n\n return {\n ...state,\n ...(structuredResponse ? { structuredResponse } : {}),\n messages: [\n new RemoveMessage({ id: lastMessage.id as string }),\n restoredLastMessage,\n ],\n };\n },\n });\n}\n"],"mappings":";;;;;;;;AAqBA,MAAM,gBAAgB,EAAE,OAAO,EAK7B,OAAO,EACJ,OACC,EAAE,QAAQ,EACV,EAAE,WAAW,OAAO,CAAC,SAAS,0CAA0C,CACzE,CACA,UAAU,CACd,EAAC;;;;AAYF,SAAS,sBAA8B;AACrC,QAAO,KAAK,QAAQ,CAAC,SAAS,GAAG,CAAC,UAAU,GAAG,GAAG;AACnD;;;;AAKD,SAAS,cACPA,MACAC,OACAC,cACQ;CACR,IAAI,gBAAgB;AAEpB,MAAK,MAAM,CAAC,MAAM,QAAQ,IAAI,OAAO,QAAQ,MAAM,EAAE;EACnD,MAAM,cAAc,KAAK,aAAa,CAAC,QAAQ,mBAAmB,GAAG;EACrE,gBAAgB,cAAc,QAAQ,SAAS,CAAC,UAAU;GACxD,MAAM,KAAK,qBAAqB;GAChC,aAAa,MAAM;AAEnB,UAAO,CAAC,UAAU,EAAE,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC;EACzC,EAAC;CACH;AAED,QAAO;AACR;;;;AAUD,eAAe,eACbC,SACAC,QACsB;;;;AAItB,KACE,aAAa,WAAW,QAAQ,IAChC,YAAY,WAAW,QAAQ,IAC/B,cAAc,WAAW,QAAQ,EACjC;EACA,MAAM,UAAU,QAAQ;EACxB,MAAM,mBAAmB,MAAM,cAC7B,SACA,OAAO,OACP,OAAO,aACR;AAED,MAAI,qBAAqB,SAAS;GAChC,MAAM,qBAAqB,OAAO,eAAe,QAAQ,CAAC;AAC1D,UAAO,IAAI,mBAAmB;IAC5B,GAAG;IACH,SAAS;GACV;EACF;AAED,SAAO;CACR;;;;AAKD,KAAI,UAAU,WAAW,QAAQ,EAAE;EACjC,MAAM,UACJ,OAAO,QAAQ,YAAY,WACvB,QAAQ,UACR,KAAK,UAAU,QAAQ,QAAQ;EACrC,MAAM,YAAY,KAAK,UAAU,QAAQ,WAAW;EACpD,MAAM,mBAAmB,MAAM,cAC7B,SACA,OAAO,OACP,OAAO,aACR;EACD,MAAM,qBAAqB,MAAM,cAC/B,WACA,OAAO,OACP,OAAO,aACR;AAED,MAAI,qBAAqB,WAAW,uBAAuB,UACzD,QAAO,IAAI,UAAU;GACnB,GAAG;GACH,SACE,OAAO,QAAQ,YAAY,WACvB,mBACA,KAAK,MAAM,iBAAiB;GAClC,YAAY,KAAK,MAAM,mBAAmB;EAC3C;AAGH,SAAO;CACR;AAED,OAAM,IAAI,MAAM,CAAC,0BAA0B,EAAE,QAAQ,MAAM;AAC5D;;;;AAKD,SAAS,sBACPJ,MACAE,cACQ;CACR,IAAI,eAAe;CAGnB,MAAM,mBAAmB;CAEzB,eAAe,aAAa,QAAQ,kBAAkB,CAAC,OAAO,OAAO;AACnE,MAAI,aAAa,IACf,QAAO,aAAa;AAEtB,SAAO;CACR,EAAC;AAEF,QAAO;AACR;;;;AAKD,SAAS,eACPC,SACAD,cAC4C;;;;AAI5C,KACE,aAAa,WAAW,QAAQ,IAChC,YAAY,WAAW,QAAQ,IAC/B,cAAc,WAAW,QAAQ,EACjC;EACA,MAAM,UAAU,QAAQ;EACxB,MAAM,kBAAkB,sBAAsB,SAAS,aAAa;AACpE,MAAI,oBAAoB,SAAS;GAC/B,MAAM,qBAAqB,OAAO,eAAe,QAAQ,CAAC;GAC1D,MAAM,aAAa,IAAI,mBAAmB;IACxC,GAAG;IACH,SAAS;GACV;AACD,UAAO;IAAE,SAAS;IAAY,SAAS;GAAM;EAC9C;AACD,SAAO;GAAE;GAAS,SAAS;EAAO;CACnC;;;;AAKD,KAAI,UAAU,WAAW,QAAQ,EAAE;EACjC,MAAM,UACJ,OAAO,QAAQ,YAAY,WACvB,QAAQ,UACR,KAAK,UAAU,QAAQ,QAAQ;EACrC,MAAM,YAAY,KAAK,UAAU,QAAQ,WAAW;EACpD,MAAM,mBAAmB,sBAAsB,SAAS,aAAa;EACrE,MAAM,qBAAqB,sBAAsB,WAAW,aAAa;AACzE,MAAI,qBAAqB,WAAW,uBAAuB,UACzD,QAAO;GACL,SAAS,IAAI,UAAU;IACrB,GAAG;IACH,SACE,OAAO,QAAQ,YAAY,WACvB,mBACA,KAAK,MAAM,iBAAiB;IAClC,YAAY,KAAK,MAAM,mBAAmB;GAC3C;GACD,SAAS;EACV;AAGH,SAAO;GAAE;GAAS,SAAS;EAAO;CACnC;AAED,OAAM,IAAI,MAAM,CAAC,0BAA0B,EAAE,QAAQ,MAAM;AAC5D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAoID,SAAgB,uBACdG,UAAwC,CAAE,GACL;CACrC,MAAMH,eAA6B,CAAE;CAErC,QAAQ,KACN,wMACD;AAED,QAAO,iBAAiB;EACtB,MAAM;EACN;EACA,eAAe,OAAO,SAAS,YAAY;;;;GAIzC,MAAM,QAAQ,QAAQ,QAAQ,QAAQ,SAAS,QAAQ,SAAS,CAAE;;;;AAKlE,OAAI,OAAO,KAAK,MAAM,CAAC,WAAW,EAChC,QAAO,QAAQ,QAAQ;GAGzB,MAAM,oBAAoB,MAAM,QAAQ,IACtC,QAAQ,MAAM,SAAS,IAAI,CAACC,YAC1B,eAAe,SAAS;IACtB;IACA;GACD,EAAC,CACH,CACF;AAED,UAAO,QAAQ;IACb,GAAG;IACH,UAAU;GACX,EAAC;EACH;EACD,YAAY,OAAO,UAAU;;;;AAI3B,OAAI,OAAO,KAAK,aAAa,CAAC,WAAW,EACvC;GAGF,MAAM,cAAc,MAAM,SAAS,GAAG,GAAG;AACzC,OAAI,CAAC,UAAU,WAAW,YAAY,CACpC;;;;;GAOF,MAAM,oBAAoB,MAAM,SAAS,GAAG,GAAG;GAE/C,MAAM,EAAE,SAAS,qBAAqB,SAAS,GAAG,eAChD,aACA,aACD;AAED,OAAI,CAAC,QACH;;;;GAMF,IAAIG;AACJ,OACE,UAAU,WAAW,YAAY,IACjC,aAAa,YAAY,WAAW,KACpC,OAAO,YAAY,YAAY,YAC/B,YAAY,QAAQ,WAAW,IAAI,IACnC,YAAY,QAAQ,SAAS,IAAI,CAEjC,KAAI;IACF,qBAAqB,KAAK,MACxB,sBAAsB,YAAY,SAAS,aAAa,CACzD;GACF,QAAO,CAEP;;;;GAMH,MAAM,+BACJ,UAAU,WAAW,kBAAkB,IACvC,mBAAmB,YAAY,WAAW,KAC1C,mBAAmB,YAAY,KAAK,CAAC,SACnC,KAAK,KAAK,WAAW,WAAW,CACjC;AACH,OAAI,8BAA8B;IAChC,MAAM,EACJ,SAAS,2BACT,SAAS,0BACV,GAAG,eAAe,mBAAmB,aAAa;IACnD,MAAM,6BAA6B,kBAAkB,YAAY,KAC/D,CAAC,SAAS,KAAK,KAAK,WAAW,WAAW,CAC3C,EAAE;IACH,MAAMC,uBAAqB,6BACvB,KAAK,MACH,sBACE,KAAK,UAAU,2BAA2B,EAC1C,aACD,CACF,GACD;AACJ,QAAI,WAAW,yBACb,QAAO;KACL,GAAG;KACH,GAAIA,uBAAqB,EAAE,yCAAoB,IAAG,CAAE;KACpD,UAAU;MACR,IAAI,cAAc,EAAE,IAAI,kBAAkB,GAAc;MACxD,IAAI,cAAc,EAAE,IAAI,YAAY,GAAc;MAClD;MACA;KACD;IACF;GAEJ;AAED,UAAO;IACL,GAAG;IACH,GAAI,qBAAqB,EAAE,mBAAoB,IAAG,CAAE;IACpD,UAAU,CACR,IAAI,cAAc,EAAE,IAAI,YAAY,GAAc,IAClD,mBACD;GACF;EACF;CACF,EAAC;AACH"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"promptCaching.d.cts","names":["z","InferInteropZodInput","contextSchema","ZodBoolean","ZodOptional","ZodEnum","ZodNumber","ZodTypeAny","ZodObject","PromptCachingMiddlewareConfig","Partial","anthropicPromptCachingMiddleware","
|
|
1
|
+
{"version":3,"file":"promptCaching.d.cts","names":["z","InferInteropZodInput","contextSchema","ZodBoolean","ZodOptional","ZodEnum","ZodNumber","ZodTypeAny","ZodObject","PromptCachingMiddlewareConfig","Partial","anthropicPromptCachingMiddleware","__types_js9","AgentMiddleware"],"sources":["../../../src/agents/middleware/promptCaching.d.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport { InferInteropZodInput } from \"@langchain/core/utils/types\";\ndeclare const contextSchema: z.ZodObject<{\n /**\n * Whether to enable prompt caching.\n * @default true\n */\n enableCaching: z.ZodOptional<z.ZodBoolean>;\n /**\n * The time-to-live for the cached prompt.\n * @default \"5m\"\n */\n ttl: z.ZodOptional<z.ZodEnum<[\"5m\", \"1h\"]>>;\n /**\n * The minimum number of messages required before caching is applied.\n * @default 3\n */\n minMessagesToCache: z.ZodOptional<z.ZodNumber>;\n /**\n * The behavior to take when an unsupported model is used.\n * - \"ignore\" will ignore the unsupported model and continue without caching.\n * - \"warn\" will warn the user and continue without caching.\n * - \"raise\" will raise an error and stop the agent.\n * @default \"warn\"\n */\n unsupportedModelBehavior: z.ZodOptional<z.ZodEnum<[\"ignore\", \"warn\", \"raise\"]>>;\n}, \"strip\", z.ZodTypeAny, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}>;\nexport type PromptCachingMiddlewareConfig = Partial<InferInteropZodInput<typeof contextSchema>>;\n/**\n * Creates a prompt caching middleware for Anthropic models to optimize API usage.\n *\n * This middleware automatically adds cache control headers to the last messages when using Anthropic models,\n * enabling their prompt caching feature. This can significantly reduce costs for applications with repetitive\n * prompts, long system messages, or extensive conversation histories.\n *\n * ## How It Works\n *\n * The middleware intercepts model requests and adds cache control metadata that tells Anthropic's\n * API to cache processed prompt prefixes. On subsequent requests with matching prefixes, the\n * cached representations are reused, skipping redundant token processing.\n *\n * ## Benefits\n *\n * - **Cost Reduction**: Avoid reprocessing the same tokens repeatedly (up to 90% savings on cached portions)\n * - **Lower Latency**: Cached prompts are processed faster as embeddings are pre-computed\n * - **Better Scalability**: Reduced computational load enables handling more requests\n * - **Consistent Performance**: Stable response times for repetitive queries\n *\n * @param middlewareOptions - Configuration options for the caching behavior\n * @param middlewareOptions.enableCaching - Whether to enable prompt caching (default: `true`)\n * @param middlewareOptions.ttl - Cache time-to-live: `\"5m\"` for 5 minutes or `\"1h\"` for 1 hour (default: `\"5m\"`)\n * @param middlewareOptions.minMessagesToCache - Minimum number of messages required before caching is applied (default: `3`)\n * @param middlewareOptions.unsupportedModelBehavior - The behavior to take when an unsupported model is used (default: `\"warn\"`)\n *\n * @returns A middleware instance that can be passed to `createAgent`\n *\n * @throws {Error} If used with non-Anthropic models\n *\n * @example\n * Basic usage with default settings\n * ```typescript\n * import { createAgent } from \"langchain\";\n * import { anthropicPromptCachingMiddleware } from \"langchain\";\n *\n * const agent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * middleware: [\n * anthropicPromptCachingMiddleware()\n * ]\n * });\n * ```\n *\n * @example\n * Custom configuration for longer conversations\n * ```typescript\n * const cachingMiddleware = anthropicPromptCachingMiddleware({\n * ttl: \"1h\", // Cache for 1 hour instead of default 5 minutes\n * minMessagesToCache: 5 // Only cache after 5 messages\n * });\n *\n * const agent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * systemPrompt: \"You are a helpful assistant with deep knowledge of...\", // Long system prompt\n * middleware: [cachingMiddleware]\n * });\n * ```\n *\n * @example\n * Conditional caching based on runtime context\n * ```typescript\n * const agent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * middleware: [\n * anthropicPromptCachingMiddleware({\n * enableCaching: true,\n * ttl: \"5m\"\n * })\n * ]\n * });\n *\n * // Disable caching for specific requests\n * await agent.invoke(\n * { messages: [new HumanMessage(\"Process this without caching\")] },\n * {\n * configurable: {\n * middleware_context: { enableCaching: false }\n * }\n * }\n * );\n * ```\n *\n * @example\n * Optimal setup for customer support chatbot\n * ```typescript\n * const supportAgent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * systemPrompt: `You are a customer support agent for ACME Corp.\n *\n * Company policies:\n * - Always be polite and professional\n * - Refer to knowledge base for product information\n * - Escalate billing issues to human agents\n * ... (extensive policies and guidelines)\n * `,\n * tools: [searchKnowledgeBase, createTicket, checkOrderStatus],\n * middleware: [\n * anthropicPromptCachingMiddleware({\n * ttl: \"1h\", // Long TTL for stable system prompt\n * minMessagesToCache: 1 // Cache immediately due to large system prompt\n * })\n * ]\n * });\n * ```\n *\n * @remarks\n * - **Anthropic Only**: This middleware only works with Anthropic models and will throw an error if used with other providers\n * - **Automatic Application**: Caching is applied automatically when message count exceeds `minMessagesToCache`\n * - **Cache Scope**: Caches are isolated per API key and cannot be shared across different keys\n * - **TTL Options**: Only supports \"5m\" (5 minutes) and \"1h\" (1 hour) as TTL values per Anthropic's API\n * - **Best Use Cases**: Long system prompts, multi-turn conversations, repetitive queries, RAG applications\n * - **Cost Impact**: Cached tokens are billed at 10% of the base input token price, cache writes are billed at 25% of the base\n *\n * @see {@link createAgent} for agent creation\n * @see {@link https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching} Anthropic's prompt caching documentation\n * @public\n */\nexport declare function anthropicPromptCachingMiddleware(middlewareOptions?: PromptCachingMiddlewareConfig): import(\"./types.js\").AgentMiddleware<undefined, z.ZodObject<{\n /**\n * Whether to enable prompt caching.\n * @default true\n */\n enableCaching: z.ZodOptional<z.ZodBoolean>;\n /**\n * The time-to-live for the cached prompt.\n * @default \"5m\"\n */\n ttl: z.ZodOptional<z.ZodEnum<[\"5m\", \"1h\"]>>;\n /**\n * The minimum number of messages required before caching is applied.\n * @default 3\n */\n minMessagesToCache: z.ZodOptional<z.ZodNumber>;\n /**\n * The behavior to take when an unsupported model is used.\n * - \"ignore\" will ignore the unsupported model and continue without caching.\n * - \"warn\" will warn the user and continue without caching.\n * - \"raise\" will raise an error and stop the agent.\n * @default \"warn\"\n */\n unsupportedModelBehavior: z.ZodOptional<z.ZodEnum<[\"ignore\", \"warn\", \"raise\"]>>;\n}, \"strip\", z.ZodTypeAny, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}>, any>;\nexport {};\n"],"mappings":";;;;;cAEcE,eAAeF,CAAAA,CAAEQ;;;AADoC;;EAmCjE,aA7BiCL,EAAhBH,CAAAA,CAAEI,WAAcD,CAAFH,CAAAA,CAAEG,UAAAA,CAAAA;EAAU;;;;EAUI,GAAzBH,EALfA,CAAAA,CAAEI,WAKeA,CALHJ,CAAAA,CAAEK,OAKCD,CAAAA,CAAAA,IAAAA,EAAAA,IAAAA,CAAAA,CAAAA,CAAAA;EAAW;;;;EAfG,kBAAA,EAehBJ,CAAAA,CAAEI,WAfc,CAeFJ,CAAAA,CAAEM,SAfA,CAAA;EAmC5BG;;;;;AAAuC;AAuHnD;EAAwD,wBAAA,EAnI1BT,CAAAA,CAAEI,WAmIwB,CAnIZJ,CAAAA,CAAEK,OAmIU,CAAA,CAAA,QAAA,EAAA,MAAA,EAAA,OAAA,CAAA,CAAA,CAAA;CAAA,EAAA,OAAqBI,EAlIjET,CAAAA,CAAEO,UAkI+DE,EAAAA;EAA6B,aAKvEN,CAAAA,EAAAA,OAAAA,GAAAA,SAAAA;EAAU,GAA1BH,CAAAA,EAAEI,IAAAA,GAAAA,IAAAA,GAAAA,SAAAA;EAAW,kBAKPC,CAAAA,EAAAA,MAAAA,GAAAA,SAAAA;EAAO,wBAArBD,CAAAA,EAAAA,QAAAA,GAAAA,OAAAA,GAAAA,MAAAA,GAAAA,SAAAA;CAAW,EAAA;EAK2B,aAAvBA,CAAAA,EAAAA,OAAAA,GAAAA,SAAAA;EAAW,GAQOJ,CAAAA,EAAEK,IAAAA,GAAAA,IAAAA,GAAAA,SAAAA;EAAO,kBAArBD,CAAAA,EAAAA,MAAAA,GAAAA,SAAAA;EAAW,wBAC7BG,CAAAA,EAAAA,QAAAA,GAAAA,OAAAA,GAAAA,MAAAA,GAAAA,SAAAA;CAAU,CAAA;AAxBgJ,KAvH5JE,6BAAAA,GAAgCC,OAuH4H,CAvHpHT,oBAuHoH,CAAA,OAvHxFC,aAuHwF,CAAA,CAAA;AAAvB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAAzHS,gCAAAA,qBAAqDF,gCAA2F,2BAAXT,CAAAA,CAAEQ;;;;;iBAK5IR,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEG;;;;;OAK1BH,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEK;;;;;sBAKDL,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEM;;;;;;;;4BAQVN,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEK;YAClCL,CAAAA,CAAEO"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"promptCaching.d.ts","names":["z","InferInteropZodInput","contextSchema","ZodBoolean","ZodOptional","ZodEnum","ZodNumber","ZodTypeAny","ZodObject","PromptCachingMiddlewareConfig","Partial","anthropicPromptCachingMiddleware","
|
|
1
|
+
{"version":3,"file":"promptCaching.d.ts","names":["z","InferInteropZodInput","contextSchema","ZodBoolean","ZodOptional","ZodEnum","ZodNumber","ZodTypeAny","ZodObject","PromptCachingMiddlewareConfig","Partial","anthropicPromptCachingMiddleware","__types_js4","AgentMiddleware"],"sources":["../../../src/agents/middleware/promptCaching.d.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport { InferInteropZodInput } from \"@langchain/core/utils/types\";\ndeclare const contextSchema: z.ZodObject<{\n /**\n * Whether to enable prompt caching.\n * @default true\n */\n enableCaching: z.ZodOptional<z.ZodBoolean>;\n /**\n * The time-to-live for the cached prompt.\n * @default \"5m\"\n */\n ttl: z.ZodOptional<z.ZodEnum<[\"5m\", \"1h\"]>>;\n /**\n * The minimum number of messages required before caching is applied.\n * @default 3\n */\n minMessagesToCache: z.ZodOptional<z.ZodNumber>;\n /**\n * The behavior to take when an unsupported model is used.\n * - \"ignore\" will ignore the unsupported model and continue without caching.\n * - \"warn\" will warn the user and continue without caching.\n * - \"raise\" will raise an error and stop the agent.\n * @default \"warn\"\n */\n unsupportedModelBehavior: z.ZodOptional<z.ZodEnum<[\"ignore\", \"warn\", \"raise\"]>>;\n}, \"strip\", z.ZodTypeAny, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}>;\nexport type PromptCachingMiddlewareConfig = Partial<InferInteropZodInput<typeof contextSchema>>;\n/**\n * Creates a prompt caching middleware for Anthropic models to optimize API usage.\n *\n * This middleware automatically adds cache control headers to the last messages when using Anthropic models,\n * enabling their prompt caching feature. This can significantly reduce costs for applications with repetitive\n * prompts, long system messages, or extensive conversation histories.\n *\n * ## How It Works\n *\n * The middleware intercepts model requests and adds cache control metadata that tells Anthropic's\n * API to cache processed prompt prefixes. On subsequent requests with matching prefixes, the\n * cached representations are reused, skipping redundant token processing.\n *\n * ## Benefits\n *\n * - **Cost Reduction**: Avoid reprocessing the same tokens repeatedly (up to 90% savings on cached portions)\n * - **Lower Latency**: Cached prompts are processed faster as embeddings are pre-computed\n * - **Better Scalability**: Reduced computational load enables handling more requests\n * - **Consistent Performance**: Stable response times for repetitive queries\n *\n * @param middlewareOptions - Configuration options for the caching behavior\n * @param middlewareOptions.enableCaching - Whether to enable prompt caching (default: `true`)\n * @param middlewareOptions.ttl - Cache time-to-live: `\"5m\"` for 5 minutes or `\"1h\"` for 1 hour (default: `\"5m\"`)\n * @param middlewareOptions.minMessagesToCache - Minimum number of messages required before caching is applied (default: `3`)\n * @param middlewareOptions.unsupportedModelBehavior - The behavior to take when an unsupported model is used (default: `\"warn\"`)\n *\n * @returns A middleware instance that can be passed to `createAgent`\n *\n * @throws {Error} If used with non-Anthropic models\n *\n * @example\n * Basic usage with default settings\n * ```typescript\n * import { createAgent } from \"langchain\";\n * import { anthropicPromptCachingMiddleware } from \"langchain\";\n *\n * const agent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * middleware: [\n * anthropicPromptCachingMiddleware()\n * ]\n * });\n * ```\n *\n * @example\n * Custom configuration for longer conversations\n * ```typescript\n * const cachingMiddleware = anthropicPromptCachingMiddleware({\n * ttl: \"1h\", // Cache for 1 hour instead of default 5 minutes\n * minMessagesToCache: 5 // Only cache after 5 messages\n * });\n *\n * const agent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * systemPrompt: \"You are a helpful assistant with deep knowledge of...\", // Long system prompt\n * middleware: [cachingMiddleware]\n * });\n * ```\n *\n * @example\n * Conditional caching based on runtime context\n * ```typescript\n * const agent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * middleware: [\n * anthropicPromptCachingMiddleware({\n * enableCaching: true,\n * ttl: \"5m\"\n * })\n * ]\n * });\n *\n * // Disable caching for specific requests\n * await agent.invoke(\n * { messages: [new HumanMessage(\"Process this without caching\")] },\n * {\n * configurable: {\n * middleware_context: { enableCaching: false }\n * }\n * }\n * );\n * ```\n *\n * @example\n * Optimal setup for customer support chatbot\n * ```typescript\n * const supportAgent = createAgent({\n * model: \"anthropic:claude-3-5-sonnet\",\n * systemPrompt: `You are a customer support agent for ACME Corp.\n *\n * Company policies:\n * - Always be polite and professional\n * - Refer to knowledge base for product information\n * - Escalate billing issues to human agents\n * ... (extensive policies and guidelines)\n * `,\n * tools: [searchKnowledgeBase, createTicket, checkOrderStatus],\n * middleware: [\n * anthropicPromptCachingMiddleware({\n * ttl: \"1h\", // Long TTL for stable system prompt\n * minMessagesToCache: 1 // Cache immediately due to large system prompt\n * })\n * ]\n * });\n * ```\n *\n * @remarks\n * - **Anthropic Only**: This middleware only works with Anthropic models and will throw an error if used with other providers\n * - **Automatic Application**: Caching is applied automatically when message count exceeds `minMessagesToCache`\n * - **Cache Scope**: Caches are isolated per API key and cannot be shared across different keys\n * - **TTL Options**: Only supports \"5m\" (5 minutes) and \"1h\" (1 hour) as TTL values per Anthropic's API\n * - **Best Use Cases**: Long system prompts, multi-turn conversations, repetitive queries, RAG applications\n * - **Cost Impact**: Cached tokens are billed at 10% of the base input token price, cache writes are billed at 25% of the base\n *\n * @see {@link createAgent} for agent creation\n * @see {@link https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching} Anthropic's prompt caching documentation\n * @public\n */\nexport declare function anthropicPromptCachingMiddleware(middlewareOptions?: PromptCachingMiddlewareConfig): import(\"./types.js\").AgentMiddleware<undefined, z.ZodObject<{\n /**\n * Whether to enable prompt caching.\n * @default true\n */\n enableCaching: z.ZodOptional<z.ZodBoolean>;\n /**\n * The time-to-live for the cached prompt.\n * @default \"5m\"\n */\n ttl: z.ZodOptional<z.ZodEnum<[\"5m\", \"1h\"]>>;\n /**\n * The minimum number of messages required before caching is applied.\n * @default 3\n */\n minMessagesToCache: z.ZodOptional<z.ZodNumber>;\n /**\n * The behavior to take when an unsupported model is used.\n * - \"ignore\" will ignore the unsupported model and continue without caching.\n * - \"warn\" will warn the user and continue without caching.\n * - \"raise\" will raise an error and stop the agent.\n * @default \"warn\"\n */\n unsupportedModelBehavior: z.ZodOptional<z.ZodEnum<[\"ignore\", \"warn\", \"raise\"]>>;\n}, \"strip\", z.ZodTypeAny, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}, {\n enableCaching?: boolean | undefined;\n ttl?: \"1h\" | \"5m\" | undefined;\n minMessagesToCache?: number | undefined;\n unsupportedModelBehavior?: \"ignore\" | \"raise\" | \"warn\" | undefined;\n}>, any>;\nexport {};\n"],"mappings":";;;;;cAEcE,eAAeF,CAAAA,CAAEQ;;;AADoC;;EAmCjE,aA7BiCL,EAAhBH,CAAAA,CAAEI,WAAcD,CAAFH,CAAAA,CAAEG,UAAAA,CAAAA;EAAU;;;;EAUI,GAAzBH,EALfA,CAAAA,CAAEI,WAKeA,CALHJ,CAAAA,CAAEK,OAKCD,CAAAA,CAAAA,IAAAA,EAAAA,IAAAA,CAAAA,CAAAA,CAAAA;EAAW;;;;EAfG,kBAAA,EAehBJ,CAAAA,CAAEI,WAfc,CAeFJ,CAAAA,CAAEM,SAfA,CAAA;EAmC5BG;;;;;AAAuC;AAuHnD;EAAwD,wBAAA,EAnI1BT,CAAAA,CAAEI,WAmIwB,CAnIZJ,CAAAA,CAAEK,OAmIU,CAAA,CAAA,QAAA,EAAA,MAAA,EAAA,OAAA,CAAA,CAAA,CAAA;CAAA,EAAA,OAAqBI,EAlIjET,CAAAA,CAAEO,UAkI+DE,EAAAA;EAA6B,aAKvEN,CAAAA,EAAAA,OAAAA,GAAAA,SAAAA;EAAU,GAA1BH,CAAAA,EAAEI,IAAAA,GAAAA,IAAAA,GAAAA,SAAAA;EAAW,kBAKPC,CAAAA,EAAAA,MAAAA,GAAAA,SAAAA;EAAO,wBAArBD,CAAAA,EAAAA,QAAAA,GAAAA,OAAAA,GAAAA,MAAAA,GAAAA,SAAAA;CAAW,EAAA;EAK2B,aAAvBA,CAAAA,EAAAA,OAAAA,GAAAA,SAAAA;EAAW,GAQOJ,CAAAA,EAAEK,IAAAA,GAAAA,IAAAA,GAAAA,SAAAA;EAAO,kBAArBD,CAAAA,EAAAA,MAAAA,GAAAA,SAAAA;EAAW,wBAC7BG,CAAAA,EAAAA,QAAAA,GAAAA,OAAAA,GAAAA,MAAAA,GAAAA,SAAAA;CAAU,CAAA;AAxBgJ,KAvH5JE,6BAAAA,GAAgCC,OAuH4H,CAvHpHT,oBAuHoH,CAAA,OAvHxFC,aAuHwF,CAAA,CAAA;AAAvB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAAzHS,gCAAAA,qBAAqDF,gCAA2F,2BAAXT,CAAAA,CAAEQ;;;;;iBAK5IR,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEG;;;;;OAK1BH,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEK;;;;;sBAKDL,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEM;;;;;;;;4BAQVN,CAAAA,CAAEI,YAAYJ,CAAAA,CAAEK;YAClCL,CAAAA,CAAEO"}
|
|
@@ -57,9 +57,9 @@ const contextSizeSchema = zod_v3.z.object({
|
|
|
57
57
|
return count >= 1;
|
|
58
58
|
}, { message: "At least one of fraction, tokens, or messages must be provided" });
|
|
59
59
|
const keepSchema = zod_v3.z.object({
|
|
60
|
-
fraction: zod_v3.z.number().
|
|
61
|
-
tokens: zod_v3.z.number().
|
|
62
|
-
messages: zod_v3.z.number().int("Messages must be an integer").
|
|
60
|
+
fraction: zod_v3.z.number().min(0, "Messages must be non-negative").max(1, "Fraction must be less than or equal to 1").optional(),
|
|
61
|
+
tokens: zod_v3.z.number().min(0, "Tokens must be greater than or equal to 0").optional(),
|
|
62
|
+
messages: zod_v3.z.number().int("Messages must be an integer").min(0, "Messages must be non-negative").optional()
|
|
63
63
|
}).refine((data) => {
|
|
64
64
|
const count = [
|
|
65
65
|
data.fraction,
|
|
@@ -82,22 +82,10 @@ const contextSchema = zod_v3.z.object({
|
|
|
82
82
|
/**
|
|
83
83
|
* Get max input tokens from model profile or fallback to model name lookup
|
|
84
84
|
*/
|
|
85
|
-
function getProfileLimits(
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
*/
|
|
90
|
-
const modelWithProfile = model;
|
|
91
|
-
if (modelWithProfile.profile && typeof modelWithProfile.profile.max_input_tokens === "number") return modelWithProfile.profile.max_input_tokens;
|
|
92
|
-
} catch {}
|
|
93
|
-
/**
|
|
94
|
-
* Fallback: try to get model name and use getModelContextSize
|
|
95
|
-
*/
|
|
96
|
-
try {
|
|
97
|
-
const modelWithName = model;
|
|
98
|
-
const modelName = modelWithName.model || modelWithName.modelName;
|
|
99
|
-
if (typeof modelName === "string") return (0, __langchain_core_language_models_base.getModelContextSize)(modelName);
|
|
100
|
-
} catch {}
|
|
85
|
+
function getProfileLimits(input) {
|
|
86
|
+
if ("profile" in input && typeof input.profile === "object" && input.profile && "maxInputTokens" in input.profile && (typeof input.profile.maxInputTokens === "number" || input.profile.maxInputTokens == null)) return input.profile.maxInputTokens ?? void 0;
|
|
87
|
+
if ("model" in input && typeof input.model === "string") return (0, __langchain_core_language_models_base.getModelContextSize)(input.model);
|
|
88
|
+
if ("modelName" in input && typeof input.modelName === "string") return (0, __langchain_core_language_models_base.getModelContextSize)(input.modelName);
|
|
101
89
|
return void 0;
|
|
102
90
|
}
|
|
103
91
|
/**
|
|
@@ -175,8 +163,8 @@ function summarizationMiddleware(options) {
|
|
|
175
163
|
/**
|
|
176
164
|
* Merge context with user options
|
|
177
165
|
*/
|
|
178
|
-
const resolvedTrigger = runtime.context
|
|
179
|
-
const resolvedKeep = runtime.context
|
|
166
|
+
const resolvedTrigger = runtime.context?.trigger !== void 0 ? runtime.context.trigger : trigger;
|
|
167
|
+
const resolvedKeep = runtime.context?.keep !== void 0 ? runtime.context.keep : keep ?? { messages: DEFAULT_MESSAGES_TO_KEEP };
|
|
180
168
|
const validatedKeep = keepSchema.parse(resolvedKeep);
|
|
181
169
|
/**
|
|
182
170
|
* Validate trigger conditions
|
|
@@ -199,13 +187,13 @@ function summarizationMiddleware(options) {
|
|
|
199
187
|
const requiresProfile = triggerConditions.some((c) => "fraction" in c) || "fraction" in validatedKeep;
|
|
200
188
|
const model = typeof userOptions.model === "string" ? await require_chat_models_universal.initChatModel(userOptions.model) : userOptions.model;
|
|
201
189
|
if (requiresProfile && !getProfileLimits(model)) throw new Error("Model profile information is required to use fractional token limits. Use absolute token counts instead.");
|
|
202
|
-
const summaryPrompt = runtime.context
|
|
203
|
-
const trimTokensToSummarize = runtime.context
|
|
190
|
+
const summaryPrompt = runtime.context?.summaryPrompt === DEFAULT_SUMMARY_PROMPT ? userOptions.summaryPrompt ?? DEFAULT_SUMMARY_PROMPT : runtime.context?.summaryPrompt ?? userOptions.summaryPrompt ?? DEFAULT_SUMMARY_PROMPT;
|
|
191
|
+
const trimTokensToSummarize = runtime.context?.trimTokensToSummarize !== void 0 ? runtime.context.trimTokensToSummarize : userOptions.trimTokensToSummarize ?? DEFAULT_TRIM_TOKEN_LIMIT;
|
|
204
192
|
/**
|
|
205
193
|
* Ensure all messages have IDs
|
|
206
194
|
*/
|
|
207
195
|
ensureMessageIds(state.messages);
|
|
208
|
-
const tokenCounter = runtime.context
|
|
196
|
+
const tokenCounter = runtime.context?.tokenCounter !== void 0 ? runtime.context.tokenCounter : userOptions.tokenCounter ?? require_utils$1.countTokensApproximately;
|
|
209
197
|
const totalTokens = await tokenCounter(state.messages);
|
|
210
198
|
const doSummarize = await shouldSummarize(state.messages, totalTokens, triggerConditions, model);
|
|
211
199
|
if (!doSummarize) return;
|
|
@@ -467,5 +455,8 @@ async function trimMessagesForSummary(messages, tokenCounter, trimTokensToSummar
|
|
|
467
455
|
}
|
|
468
456
|
|
|
469
457
|
//#endregion
|
|
458
|
+
exports.contextSizeSchema = contextSizeSchema;
|
|
459
|
+
exports.getProfileLimits = getProfileLimits;
|
|
460
|
+
exports.keepSchema = keepSchema;
|
|
470
461
|
exports.summarizationMiddleware = summarizationMiddleware;
|
|
471
462
|
//# sourceMappingURL=summarization.cjs.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"summarization.cjs","names":["z","model: BaseLanguageModel","options: SummarizationMiddlewareConfig","z4","createMiddleware","trigger: ContextSize | ContextSize[] | undefined","keep: ContextSize","triggerConditions: ContextSize[]","initChatModel","countTokensApproximately","HumanMessage","RemoveMessage","REMOVE_ALL_MESSAGES","messages: BaseMessage[]","SystemMessage","systemPrompt: SystemMessage | undefined","conversationMessages: BaseMessage[]","cutoffIndex: number","totalTokens: number","tokenCounter: TokenCounter","targetTokenCount: number","messagesToKeep: number","AIMessage","hasToolCalls","aiMessage: AIMessage","aiMessageIndex: number","toolCallIds: Set<string>","ToolMessage","messagesToSummarize: BaseMessage[]","summaryPrompt: string","trimTokensToSummarize: number | undefined"],"sources":["../../../src/agents/middleware/summarization.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport { z as z4 } from \"zod/v4\";\nimport { v4 as uuid } from \"uuid\";\nimport {\n BaseMessage,\n AIMessage,\n SystemMessage,\n ToolMessage,\n RemoveMessage,\n trimMessages,\n HumanMessage,\n} from \"@langchain/core/messages\";\nimport {\n BaseLanguageModel,\n getModelContextSize,\n} from \"@langchain/core/language_models/base\";\nimport {\n interopSafeParse,\n InferInteropZodInput,\n InferInteropZodOutput,\n} from \"@langchain/core/utils/types\";\nimport { REMOVE_ALL_MESSAGES } from \"@langchain/langgraph\";\nimport { createMiddleware } from \"../middleware.js\";\nimport { countTokensApproximately } from \"./utils.js\";\nimport { hasToolCalls } from \"../utils.js\";\nimport { initChatModel } from \"../../chat_models/universal.js\";\n\nexport const DEFAULT_SUMMARY_PROMPT = `<role>\nContext Extraction Assistant\n</role>\n\n<primary_objective>\nYour sole objective in this task is to extract the highest quality/most relevant context from the conversation history below.\n</primary_objective>\n\n<objective_information>\nYou're nearing the total number of input tokens you can accept, so you must extract the highest quality/most relevant pieces of information from your conversation history.\nThis context will then overwrite the conversation history presented below. Because of this, ensure the context you extract is only the most important information to your overall goal.\n</objective_information>\n\n<instructions>\nThe conversation history below will be replaced with the context you extract in this step. Because of this, you must do your very best to extract and record all of the most important context from the conversation history.\nYou want to ensure that you don't repeat any actions you've already completed, so the context you extract from the conversation history should be focused on the most important information to your overall goal.\n</instructions>\n\nThe user will message you with the full message history you'll be extracting context from, to then replace. Carefully read over it all, and think deeply about what information is most important to your overall goal that should be saved:\n\nWith all of this in mind, please carefully read over the entire conversation history, and extract the most important and relevant context to replace it so that you can free up space in the conversation history.\nRespond ONLY with the extracted context. Do not include any additional information, or text before or after the extracted context.\n\n<messages>\nMessages to summarize:\n{messages}\n</messages>`;\n\nconst DEFAULT_MESSAGES_TO_KEEP = 20;\nconst DEFAULT_TRIM_TOKEN_LIMIT = 4000;\nconst DEFAULT_FALLBACK_MESSAGE_COUNT = 15;\nconst SEARCH_RANGE_FOR_TOOL_PAIRS = 5;\n\nconst tokenCounterSchema = z\n .function()\n .args(z.array(z.custom<BaseMessage>()))\n .returns(z.union([z.number(), z.promise(z.number())]));\nexport type TokenCounter = (\n messages: BaseMessage[]\n) => number | Promise<number>;\n\nconst contextSizeSchema = z\n .object({\n /**\n * Fraction of the model's context size to use as the trigger\n */\n fraction: z\n .number()\n .gt(0, \"Fraction must be greater than 0\")\n .max(1, \"Fraction must be less than or equal to 1\")\n .optional(),\n /**\n * Number of tokens to use as the trigger\n */\n tokens: z.number().positive(\"Tokens must be greater than 0\").optional(),\n /**\n * Number of messages to use as the trigger\n */\n messages: z\n .number()\n .int(\"Messages must be an integer\")\n .positive(\"Messages must be greater than 0\")\n .optional(),\n })\n .refine(\n (data) => {\n const count = [data.fraction, data.tokens, data.messages].filter(\n (v) => v !== undefined\n ).length;\n return count >= 1;\n },\n {\n message: \"At least one of fraction, tokens, or messages must be provided\",\n }\n );\nexport type ContextSize = z.infer<typeof contextSizeSchema>;\n\nconst keepSchema = z\n .object({\n /**\n * Fraction of the model's context size to keep\n */\n fraction: z\n .number()\n .gt(0, \"Fraction must be greater than 0\")\n .max(1, \"Fraction must be less than or equal to 1\")\n .optional(),\n /**\n * Number of tokens to keep\n */\n tokens: z.number().positive(\"Tokens must be greater than 0\").optional(),\n messages: z\n .number()\n .int(\"Messages must be an integer\")\n .positive(\"Messages must be greater than 0\")\n .optional(),\n })\n .refine(\n (data) => {\n const count = [data.fraction, data.tokens, data.messages].filter(\n (v) => v !== undefined\n ).length;\n return count === 1;\n },\n {\n message: \"Exactly one of fraction, tokens, or messages must be provided\",\n }\n );\n\nconst contextSchema = z.object({\n /**\n * Model to use for summarization\n */\n model: z.custom<string | BaseLanguageModel>(),\n /**\n * Trigger conditions for summarization.\n * Can be a single condition object (all properties must be met) or an array of conditions (any condition must be met).\n *\n * @example\n * ```ts\n * // Single condition: trigger if tokens >= 5000 AND messages >= 3\n * trigger: { tokens: 5000, messages: 3 }\n *\n * // Multiple conditions: trigger if (tokens >= 5000 AND messages >= 3) OR (tokens >= 3000 AND messages >= 6)\n * trigger: [\n * { tokens: 5000, messages: 3 },\n * { tokens: 3000, messages: 6 }\n * ]\n * ```\n */\n trigger: z.union([contextSizeSchema, z.array(contextSizeSchema)]).optional(),\n /**\n * Keep conditions for summarization\n */\n keep: keepSchema.optional(),\n /**\n * Token counter function to use for summarization\n */\n tokenCounter: tokenCounterSchema.optional(),\n /**\n * Summary prompt to use for summarization\n * @default {@link DEFAULT_SUMMARY_PROMPT}\n */\n summaryPrompt: z.string().default(DEFAULT_SUMMARY_PROMPT),\n /**\n * Number of tokens to trim to before summarizing\n */\n trimTokensToSummarize: z.number().optional(),\n /**\n * Prefix to add to the summary\n */\n summaryPrefix: z.string().optional(),\n /**\n * @deprecated Use `trigger: { tokens: value }` instead.\n */\n maxTokensBeforeSummary: z.number().optional(),\n /**\n * @deprecated Use `keep: { messages: value }` instead.\n */\n messagesToKeep: z.number().optional(),\n});\n\nexport type SummarizationMiddlewareConfig = InferInteropZodInput<\n typeof contextSchema\n>;\n\n/**\n * Get max input tokens from model profile or fallback to model name lookup\n */\nfunction getProfileLimits(model: BaseLanguageModel): number | undefined {\n try {\n /**\n * Try to access profile property (for future compatibility with model-profiles)\n */\n const modelWithProfile = model as BaseLanguageModel & {\n profile?: { max_input_tokens?: number };\n };\n if (\n modelWithProfile.profile &&\n typeof modelWithProfile.profile.max_input_tokens === \"number\"\n ) {\n return modelWithProfile.profile.max_input_tokens;\n }\n } catch {\n /**\n * Profile not available, continue to fallback\n */\n }\n\n /**\n * Fallback: try to get model name and use getModelContextSize\n */\n try {\n const modelWithName = model as BaseLanguageModel & {\n model?: string;\n modelName?: string;\n };\n const modelName = modelWithName.model || modelWithName.modelName;\n if (typeof modelName === \"string\") {\n return getModelContextSize(modelName);\n }\n } catch {\n /**\n * Model name not available\n */\n }\n\n return undefined;\n}\n\n/**\n * Summarization middleware that automatically summarizes conversation history when token limits are approached.\n *\n * This middleware monitors message token counts and automatically summarizes older\n * messages when a threshold is reached, preserving recent messages and maintaining\n * context continuity by ensuring AI/Tool message pairs remain together.\n *\n * @param options Configuration options for the summarization middleware\n * @returns A middleware instance\n *\n * @example\n * ```ts\n * import { summarizationMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n *\n * // Single condition: trigger if tokens >= 4000 AND messages >= 10\n * const agent1 = createAgent({\n * llm: model,\n * tools: [getWeather],\n * middleware: [\n * summarizationMiddleware({\n * model: new ChatOpenAI({ model: \"gpt-4o\" }),\n * trigger: { tokens: 4000, messages: 10 },\n * keep: { messages: 20 },\n * })\n * ],\n * });\n *\n * // Multiple conditions: trigger if (tokens >= 5000 AND messages >= 3) OR (tokens >= 3000 AND messages >= 6)\n * const agent2 = createAgent({\n * llm: model,\n * tools: [getWeather],\n * middleware: [\n * summarizationMiddleware({\n * model: new ChatOpenAI({ model: \"gpt-4o\" }),\n * trigger: [\n * { tokens: 5000, messages: 3 },\n * { tokens: 3000, messages: 6 },\n * ],\n * keep: { messages: 20 },\n * })\n * ],\n * });\n *\n * ```\n */\nexport function summarizationMiddleware(\n options: SummarizationMiddlewareConfig\n) {\n /**\n * Parse user options to get their explicit values\n */\n const { data: userOptions, error } = interopSafeParse(contextSchema, options);\n if (error) {\n throw new Error(\n `Invalid summarization middleware options: ${z4.prettifyError(error)}`\n );\n }\n\n return createMiddleware({\n name: \"SummarizationMiddleware\",\n contextSchema: contextSchema.extend({\n /**\n * `model` should be required when initializing the middleware,\n * but can be omitted within context when invoking the middleware.\n */\n model: z.custom<BaseLanguageModel>().optional(),\n }),\n beforeModel: async (state, runtime) => {\n let trigger: ContextSize | ContextSize[] | undefined =\n userOptions.trigger;\n let keep: ContextSize = userOptions.keep as InferInteropZodOutput<\n typeof keepSchema\n >;\n\n /**\n * Handle deprecated parameters\n */\n if (userOptions.maxTokensBeforeSummary !== undefined) {\n console.warn(\n \"maxTokensBeforeSummary is deprecated. Use `trigger: { tokens: value }` instead.\"\n );\n if (trigger === undefined) {\n trigger = { tokens: userOptions.maxTokensBeforeSummary };\n }\n }\n\n /**\n * Handle deprecated parameters\n */\n if (userOptions.messagesToKeep !== undefined) {\n console.warn(\n \"messagesToKeep is deprecated. Use `keep: { messages: value }` instead.\"\n );\n if (\n !keep ||\n (keep &&\n \"messages\" in keep &&\n keep.messages === DEFAULT_MESSAGES_TO_KEEP)\n ) {\n keep = { messages: userOptions.messagesToKeep };\n }\n }\n\n /**\n * Merge context with user options\n */\n const resolvedTrigger =\n runtime.context.trigger !== undefined\n ? runtime.context.trigger\n : trigger;\n const resolvedKeep =\n runtime.context.keep !== undefined\n ? runtime.context.keep\n : keep ?? { messages: DEFAULT_MESSAGES_TO_KEEP };\n\n const validatedKeep = keepSchema.parse(resolvedKeep);\n\n /**\n * Validate trigger conditions\n */\n let triggerConditions: ContextSize[] = [];\n if (resolvedTrigger === undefined) {\n triggerConditions = [];\n } else if (Array.isArray(resolvedTrigger)) {\n /**\n * It's an array of ContextSize objects\n */\n triggerConditions = (resolvedTrigger as ContextSize[]).map((t) =>\n contextSizeSchema.parse(t)\n );\n } else {\n /**\n * Single ContextSize object - all properties must be satisfied (AND logic)\n */\n triggerConditions = [contextSizeSchema.parse(resolvedTrigger)];\n }\n\n /**\n * Check if profile is required\n */\n const requiresProfile =\n triggerConditions.some((c) => \"fraction\" in c) ||\n \"fraction\" in validatedKeep;\n\n const model =\n typeof userOptions.model === \"string\"\n ? await initChatModel(userOptions.model)\n : userOptions.model;\n\n if (requiresProfile && !getProfileLimits(model)) {\n throw new Error(\n \"Model profile information is required to use fractional token limits. \" +\n \"Use absolute token counts instead.\"\n );\n }\n\n const summaryPrompt =\n runtime.context.summaryPrompt === DEFAULT_SUMMARY_PROMPT\n ? userOptions.summaryPrompt ?? DEFAULT_SUMMARY_PROMPT\n : runtime.context.summaryPrompt ??\n userOptions.summaryPrompt ??\n DEFAULT_SUMMARY_PROMPT;\n const trimTokensToSummarize =\n runtime.context.trimTokensToSummarize !== undefined\n ? runtime.context.trimTokensToSummarize\n : userOptions.trimTokensToSummarize ?? DEFAULT_TRIM_TOKEN_LIMIT;\n\n /**\n * Ensure all messages have IDs\n */\n ensureMessageIds(state.messages);\n\n const tokenCounter =\n runtime.context.tokenCounter !== undefined\n ? runtime.context.tokenCounter\n : userOptions.tokenCounter ?? countTokensApproximately;\n const totalTokens = await tokenCounter(state.messages);\n const doSummarize = await shouldSummarize(\n state.messages,\n totalTokens,\n triggerConditions,\n model\n );\n\n if (!doSummarize) {\n return;\n }\n\n const { systemPrompt, conversationMessages } = splitSystemMessage(\n state.messages\n );\n const cutoffIndex = await determineCutoffIndex(\n conversationMessages,\n validatedKeep,\n tokenCounter,\n model\n );\n\n if (cutoffIndex <= 0) {\n return;\n }\n\n const { messagesToSummarize, preservedMessages } = partitionMessages(\n systemPrompt,\n conversationMessages,\n cutoffIndex\n );\n\n const summary = await createSummary(\n messagesToSummarize,\n model,\n summaryPrompt,\n tokenCounter,\n trimTokensToSummarize\n );\n\n const summaryMessage = new HumanMessage({\n content: `Here is a summary of the conversation to date:\\n\\n${summary}`,\n id: uuid(),\n });\n\n return {\n messages: [\n new RemoveMessage({ id: REMOVE_ALL_MESSAGES }),\n summaryMessage,\n ...preservedMessages,\n ],\n };\n },\n });\n}\n\n/**\n * Ensure all messages have unique IDs\n */\nfunction ensureMessageIds(messages: BaseMessage[]): void {\n for (const msg of messages) {\n if (!msg.id) {\n msg.id = uuid();\n }\n }\n}\n\n/**\n * Separate system message from conversation messages\n */\nfunction splitSystemMessage(messages: BaseMessage[]): {\n systemPrompt?: SystemMessage;\n conversationMessages: BaseMessage[];\n} {\n if (messages.length > 0 && SystemMessage.isInstance(messages[0])) {\n return {\n systemPrompt: messages[0] as SystemMessage,\n conversationMessages: messages.slice(1),\n };\n }\n return {\n conversationMessages: messages,\n };\n}\n\n/**\n * Partition messages into those to summarize and those to preserve\n */\nfunction partitionMessages(\n systemPrompt: SystemMessage | undefined,\n conversationMessages: BaseMessage[],\n cutoffIndex: number\n): { messagesToSummarize: BaseMessage[]; preservedMessages: BaseMessage[] } {\n const messagesToSummarize = conversationMessages.slice(0, cutoffIndex);\n const preservedMessages = conversationMessages.slice(cutoffIndex);\n\n // Include system message in messages to summarize to capture previous summaries\n if (systemPrompt) {\n messagesToSummarize.unshift(systemPrompt);\n }\n\n return { messagesToSummarize, preservedMessages };\n}\n\n/**\n * Determine whether summarization should run for the current token usage\n *\n * @param messages - Current messages in the conversation\n * @param totalTokens - Total token count for all messages\n * @param triggerConditions - Array of trigger conditions. Returns true if ANY condition is satisfied (OR logic).\n * Within each condition, ALL specified properties must be satisfied (AND logic).\n * @param model - The language model being used\n * @returns true if summarization should be triggered\n */\nasync function shouldSummarize(\n messages: BaseMessage[],\n totalTokens: number,\n triggerConditions: ContextSize[],\n model: BaseLanguageModel\n): Promise<boolean> {\n if (triggerConditions.length === 0) {\n return false;\n }\n\n /**\n * Check each condition (OR logic between conditions)\n */\n for (const trigger of triggerConditions) {\n /**\n * Within a single condition, all specified properties must be satisfied (AND logic)\n */\n let conditionMet = true;\n let hasAnyProperty = false;\n\n if (trigger.messages !== undefined) {\n hasAnyProperty = true;\n if (messages.length < trigger.messages) {\n conditionMet = false;\n }\n }\n\n if (trigger.tokens !== undefined) {\n hasAnyProperty = true;\n if (totalTokens < trigger.tokens) {\n conditionMet = false;\n }\n }\n\n if (trigger.fraction !== undefined) {\n hasAnyProperty = true;\n const maxInputTokens = getProfileLimits(model);\n if (typeof maxInputTokens === \"number\") {\n const threshold = Math.floor(maxInputTokens * trigger.fraction);\n if (totalTokens < threshold) {\n conditionMet = false;\n }\n } else {\n /**\n * If fraction is specified but we can't get model limits, skip this condition\n */\n conditionMet = false;\n }\n }\n\n /**\n * If condition has at least one property and all properties are satisfied, trigger summarization\n */\n if (hasAnyProperty && conditionMet) {\n return true;\n }\n }\n\n return false;\n}\n\n/**\n * Determine cutoff index respecting retention configuration\n */\nasync function determineCutoffIndex(\n messages: BaseMessage[],\n keep: ContextSize,\n tokenCounter: TokenCounter,\n model: BaseLanguageModel\n): Promise<number> {\n if (\"tokens\" in keep || \"fraction\" in keep) {\n const tokenBasedCutoff = await findTokenBasedCutoff(\n messages,\n keep,\n tokenCounter,\n model\n );\n if (typeof tokenBasedCutoff === \"number\") {\n return tokenBasedCutoff;\n }\n /**\n * Fallback to message count if token-based fails\n */\n return findSafeCutoff(messages, DEFAULT_MESSAGES_TO_KEEP);\n }\n /**\n * find cutoff index based on message count\n */\n return findSafeCutoff(messages, keep.messages ?? DEFAULT_MESSAGES_TO_KEEP);\n}\n\n/**\n * Find cutoff index based on target token retention\n */\nasync function findTokenBasedCutoff(\n messages: BaseMessage[],\n keep: ContextSize,\n tokenCounter: TokenCounter,\n model: BaseLanguageModel\n): Promise<number | undefined> {\n if (messages.length === 0) {\n return 0;\n }\n\n let targetTokenCount: number;\n\n if (\"fraction\" in keep && keep.fraction !== undefined) {\n const maxInputTokens = getProfileLimits(model);\n if (typeof maxInputTokens !== \"number\") {\n return;\n }\n targetTokenCount = Math.floor(maxInputTokens * keep.fraction);\n } else if (\"tokens\" in keep && keep.tokens !== undefined) {\n targetTokenCount = Math.floor(keep.tokens);\n } else {\n return;\n }\n\n if (targetTokenCount <= 0) {\n targetTokenCount = 1;\n }\n\n const totalTokens = await tokenCounter(messages);\n if (totalTokens <= targetTokenCount) {\n return 0;\n }\n\n /**\n * Use binary search to identify the earliest message index that keeps the\n * suffix within the token budget.\n */\n let left = 0;\n let right = messages.length;\n let cutoffCandidate = messages.length;\n const maxIterations = Math.floor(Math.log2(messages.length)) + 1;\n\n for (let i = 0; i < maxIterations; i++) {\n if (left >= right) {\n break;\n }\n\n const mid = Math.floor((left + right) / 2);\n const suffixTokens = await tokenCounter(messages.slice(mid));\n if (suffixTokens <= targetTokenCount) {\n cutoffCandidate = mid;\n right = mid;\n } else {\n left = mid + 1;\n }\n }\n\n if (cutoffCandidate === messages.length) {\n cutoffCandidate = left;\n }\n\n if (cutoffCandidate >= messages.length) {\n if (messages.length === 1) {\n return 0;\n }\n cutoffCandidate = messages.length - 1;\n }\n\n /**\n * Find safe cutoff point that preserves tool pairs\n */\n for (let i = cutoffCandidate; i >= 0; i--) {\n if (isSafeCutoffPoint(messages, i)) {\n return i;\n }\n }\n\n return 0;\n}\n\n/**\n * Find safe cutoff point that preserves AI/Tool message pairs\n */\nfunction findSafeCutoff(\n messages: BaseMessage[],\n messagesToKeep: number\n): number {\n if (messages.length <= messagesToKeep) {\n return 0;\n }\n\n const targetCutoff = messages.length - messagesToKeep;\n\n for (let i = targetCutoff; i >= 0; i--) {\n if (isSafeCutoffPoint(messages, i)) {\n return i;\n }\n }\n\n return 0;\n}\n\n/**\n * Check if cutting at index would separate AI/Tool message pairs\n */\nfunction isSafeCutoffPoint(\n messages: BaseMessage[],\n cutoffIndex: number\n): boolean {\n if (cutoffIndex >= messages.length) {\n return true;\n }\n\n /**\n * Prevent preserved messages from starting with AI message containing tool calls\n */\n if (\n cutoffIndex < messages.length &&\n AIMessage.isInstance(messages[cutoffIndex]) &&\n hasToolCalls(messages[cutoffIndex])\n ) {\n return false;\n }\n\n const searchStart = Math.max(0, cutoffIndex - SEARCH_RANGE_FOR_TOOL_PAIRS);\n const searchEnd = Math.min(\n messages.length,\n cutoffIndex + SEARCH_RANGE_FOR_TOOL_PAIRS\n );\n\n for (let i = searchStart; i < searchEnd; i++) {\n if (!hasToolCalls(messages[i])) {\n continue;\n }\n\n const toolCallIds = extractToolCallIds(messages[i] as AIMessage);\n if (cutoffSeparatesToolPair(messages, i, cutoffIndex, toolCallIds)) {\n return false;\n }\n }\n\n return true;\n}\n\n/**\n * Extract tool call IDs from an AI message\n */\nfunction extractToolCallIds(aiMessage: AIMessage): Set<string> {\n const toolCallIds = new Set<string>();\n if (aiMessage.tool_calls) {\n for (const toolCall of aiMessage.tool_calls) {\n const id =\n typeof toolCall === \"object\" && \"id\" in toolCall ? toolCall.id : null;\n if (id) {\n toolCallIds.add(id);\n }\n }\n }\n return toolCallIds;\n}\n\n/**\n * Check if cutoff separates an AI message from its corresponding tool messages\n */\nfunction cutoffSeparatesToolPair(\n messages: BaseMessage[],\n aiMessageIndex: number,\n cutoffIndex: number,\n toolCallIds: Set<string>\n): boolean {\n for (let j = aiMessageIndex + 1; j < messages.length; j++) {\n const message = messages[j];\n if (\n ToolMessage.isInstance(message) &&\n toolCallIds.has(message.tool_call_id)\n ) {\n const aiBeforeCutoff = aiMessageIndex < cutoffIndex;\n const toolBeforeCutoff = j < cutoffIndex;\n if (aiBeforeCutoff !== toolBeforeCutoff) {\n return true;\n }\n }\n }\n return false;\n}\n\n/**\n * Generate summary for the given messages\n */\nasync function createSummary(\n messagesToSummarize: BaseMessage[],\n model: BaseLanguageModel,\n summaryPrompt: string,\n tokenCounter: TokenCounter,\n trimTokensToSummarize: number | undefined\n): Promise<string> {\n if (!messagesToSummarize.length) {\n return \"No previous conversation history.\";\n }\n\n const trimmedMessages = await trimMessagesForSummary(\n messagesToSummarize,\n tokenCounter,\n trimTokensToSummarize\n );\n\n if (!trimmedMessages.length) {\n return \"Previous conversation was too long to summarize.\";\n }\n\n try {\n const formattedPrompt = summaryPrompt.replace(\n \"{messages}\",\n JSON.stringify(trimmedMessages, null, 2)\n );\n const response = await model.invoke(formattedPrompt);\n const content = response.content;\n /**\n * Handle both string content and MessageContent array\n */\n if (typeof content === \"string\") {\n return content.trim();\n } else if (Array.isArray(content)) {\n /**\n * Extract text from MessageContent array\n */\n const textContent = content\n .map((item) => {\n if (typeof item === \"string\") return item;\n if (typeof item === \"object\" && item !== null && \"text\" in item) {\n return (item as { text: string }).text;\n }\n return \"\";\n })\n .join(\"\");\n return textContent.trim();\n }\n return \"Error generating summary: Invalid response format\";\n } catch (e) {\n return `Error generating summary: ${e}`;\n }\n}\n\n/**\n * Trim messages to fit within summary generation limits\n */\nasync function trimMessagesForSummary(\n messages: BaseMessage[],\n tokenCounter: TokenCounter,\n trimTokensToSummarize: number | undefined\n): Promise<BaseMessage[]> {\n if (trimTokensToSummarize === undefined) {\n return messages;\n }\n\n try {\n return await trimMessages(messages, {\n maxTokens: trimTokensToSummarize,\n tokenCounter: async (msgs) => tokenCounter(msgs),\n strategy: \"last\",\n allowPartial: true,\n includeSystem: true,\n });\n } catch {\n /**\n * Fallback to last N messages if trimming fails\n */\n return messages.slice(-DEFAULT_FALLBACK_MESSAGE_COUNT);\n }\n}\n"],"mappings":";;;;;;;;;;;;;;AA2BA,MAAa,yBAAyB,CAAC;;;;;;;;;;;;;;;;;;;;;;;;;;WA0B5B,CAAC;AAEZ,MAAM,2BAA2B;AACjC,MAAM,2BAA2B;AACjC,MAAM,iCAAiC;AACvC,MAAM,8BAA8B;AAEpC,MAAM,qBAAqBA,SACxB,UAAU,CACV,KAAKA,SAAE,MAAMA,SAAE,QAAqB,CAAC,CAAC,CACtC,QAAQA,SAAE,MAAM,CAACA,SAAE,QAAQ,EAAEA,SAAE,QAAQA,SAAE,QAAQ,CAAC,AAAC,EAAC,CAAC;AAKxD,MAAM,oBAAoBA,SACvB,OAAO;CAIN,UAAUA,SACP,QAAQ,CACR,GAAG,GAAG,kCAAkC,CACxC,IAAI,GAAG,2CAA2C,CAClD,UAAU;CAIb,QAAQA,SAAE,QAAQ,CAAC,SAAS,gCAAgC,CAAC,UAAU;CAIvE,UAAUA,SACP,QAAQ,CACR,IAAI,8BAA8B,CAClC,SAAS,kCAAkC,CAC3C,UAAU;AACd,EAAC,CACD,OACC,CAAC,SAAS;CACR,MAAM,QAAQ;EAAC,KAAK;EAAU,KAAK;EAAQ,KAAK;CAAS,EAAC,OACxD,CAAC,MAAM,MAAM,OACd,CAAC;AACF,QAAO,SAAS;AACjB,GACD,EACE,SAAS,iEACV,EACF;AAGH,MAAM,aAAaA,SAChB,OAAO;CAIN,UAAUA,SACP,QAAQ,CACR,GAAG,GAAG,kCAAkC,CACxC,IAAI,GAAG,2CAA2C,CAClD,UAAU;CAIb,QAAQA,SAAE,QAAQ,CAAC,SAAS,gCAAgC,CAAC,UAAU;CACvE,UAAUA,SACP,QAAQ,CACR,IAAI,8BAA8B,CAClC,SAAS,kCAAkC,CAC3C,UAAU;AACd,EAAC,CACD,OACC,CAAC,SAAS;CACR,MAAM,QAAQ;EAAC,KAAK;EAAU,KAAK;EAAQ,KAAK;CAAS,EAAC,OACxD,CAAC,MAAM,MAAM,OACd,CAAC;AACF,QAAO,UAAU;AAClB,GACD,EACE,SAAS,gEACV,EACF;AAEH,MAAM,gBAAgBA,SAAE,OAAO;CAI7B,OAAOA,SAAE,QAAoC;CAiB7C,SAASA,SAAE,MAAM,CAAC,mBAAmBA,SAAE,MAAM,kBAAkB,AAAC,EAAC,CAAC,UAAU;CAI5E,MAAM,WAAW,UAAU;CAI3B,cAAc,mBAAmB,UAAU;CAK3C,eAAeA,SAAE,QAAQ,CAAC,QAAQ,uBAAuB;CAIzD,uBAAuBA,SAAE,QAAQ,CAAC,UAAU;CAI5C,eAAeA,SAAE,QAAQ,CAAC,UAAU;CAIpC,wBAAwBA,SAAE,QAAQ,CAAC,UAAU;CAI7C,gBAAgBA,SAAE,QAAQ,CAAC,UAAU;AACtC,EAAC;;;;AASF,SAAS,iBAAiBC,OAA8C;AACtE,KAAI;;;;EAIF,MAAM,mBAAmB;AAGzB,MACE,iBAAiB,WACjB,OAAO,iBAAiB,QAAQ,qBAAqB,SAErD,QAAO,iBAAiB,QAAQ;CAEnC,QAAO,CAIP;;;;AAKD,KAAI;EACF,MAAM,gBAAgB;EAItB,MAAM,YAAY,cAAc,SAAS,cAAc;AACvD,MAAI,OAAO,cAAc,SACvB,uEAA2B,UAAU;CAExC,QAAO,CAIP;AAED,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAgDD,SAAgB,wBACdC,SACA;;;;CAIA,MAAM,EAAE,MAAM,aAAa,OAAO,sDAAoB,eAAe,QAAQ;AAC7E,KAAI,MACF,OAAM,IAAI,MACR,CAAC,0CAA0C,EAAEC,SAAG,cAAc,MAAM,EAAE;AAI1E,QAAOC,oCAAiB;EACtB,MAAM;EACN,eAAe,cAAc,OAAO,EAKlC,OAAOJ,SAAE,QAA2B,CAAC,UAAU,CAChD,EAAC;EACF,aAAa,OAAO,OAAO,YAAY;GACrC,IAAIK,UACF,YAAY;GACd,IAAIC,OAAoB,YAAY;;;;AAOpC,OAAI,YAAY,2BAA2B,QAAW;IACpD,QAAQ,KACN,kFACD;AACD,QAAI,YAAY,QACd,UAAU,EAAE,QAAQ,YAAY,uBAAwB;GAE3D;;;;AAKD,OAAI,YAAY,mBAAmB,QAAW;IAC5C,QAAQ,KACN,yEACD;AACD,QACE,CAAC,QACA,QACC,cAAc,QACd,KAAK,aAAa,0BAEpB,OAAO,EAAE,UAAU,YAAY,eAAgB;GAElD;;;;GAKD,MAAM,kBACJ,QAAQ,QAAQ,YAAY,SACxB,QAAQ,QAAQ,UAChB;GACN,MAAM,eACJ,QAAQ,QAAQ,SAAS,SACrB,QAAQ,QAAQ,OAChB,QAAQ,EAAE,UAAU,yBAA0B;GAEpD,MAAM,gBAAgB,WAAW,MAAM,aAAa;;;;GAKpD,IAAIC,oBAAmC,CAAE;AACzC,OAAI,oBAAoB,QACtB,oBAAoB,CAAE;YACb,MAAM,QAAQ,gBAAgB;;;;GAIvC,oBAAqB,gBAAkC,IAAI,CAAC,MAC1D,kBAAkB,MAAM,EAAE,CAC3B;;;;;GAKD,oBAAoB,CAAC,kBAAkB,MAAM,gBAAgB,AAAC;;;;GAMhE,MAAM,kBACJ,kBAAkB,KAAK,CAAC,MAAM,cAAc,EAAE,IAC9C,cAAc;GAEhB,MAAM,QACJ,OAAO,YAAY,UAAU,WACzB,MAAMC,4CAAc,YAAY,MAAM,GACtC,YAAY;AAElB,OAAI,mBAAmB,CAAC,iBAAiB,MAAM,CAC7C,OAAM,IAAI,MACR;GAKJ,MAAM,gBACJ,QAAQ,QAAQ,kBAAkB,yBAC9B,YAAY,iBAAiB,yBAC7B,QAAQ,QAAQ,iBAChB,YAAY,iBACZ;GACN,MAAM,wBACJ,QAAQ,QAAQ,0BAA0B,SACtC,QAAQ,QAAQ,wBAChB,YAAY,yBAAyB;;;;GAK3C,iBAAiB,MAAM,SAAS;GAEhC,MAAM,eACJ,QAAQ,QAAQ,iBAAiB,SAC7B,QAAQ,QAAQ,eAChB,YAAY,gBAAgBC;GAClC,MAAM,cAAc,MAAM,aAAa,MAAM,SAAS;GACtD,MAAM,cAAc,MAAM,gBACxB,MAAM,UACN,aACA,mBACA,MACD;AAED,OAAI,CAAC,YACH;GAGF,MAAM,EAAE,cAAc,sBAAsB,GAAG,mBAC7C,MAAM,SACP;GACD,MAAM,cAAc,MAAM,qBACxB,sBACA,eACA,cACA,MACD;AAED,OAAI,eAAe,EACjB;GAGF,MAAM,EAAE,qBAAqB,mBAAmB,GAAG,kBACjD,cACA,sBACA,YACD;GAED,MAAM,UAAU,MAAM,cACpB,qBACA,OACA,eACA,cACA,sBACD;GAED,MAAM,iBAAiB,IAAIC,uCAAa;IACtC,SAAS,CAAC,kDAAkD,EAAE,SAAS;IACvE,kBAAU;GACX;AAED,UAAO,EACL,UAAU;IACR,IAAIC,wCAAc,EAAE,IAAIC,0CAAqB;IAC7C;IACA,GAAG;GACJ,EACF;EACF;CACF,EAAC;AACH;;;;AAKD,SAAS,iBAAiBC,UAA+B;AACvD,MAAK,MAAM,OAAO,SAChB,KAAI,CAAC,IAAI,IACP,IAAI,mBAAW;AAGpB;;;;AAKD,SAAS,mBAAmBA,UAG1B;AACA,KAAI,SAAS,SAAS,KAAKC,wCAAc,WAAW,SAAS,GAAG,CAC9D,QAAO;EACL,cAAc,SAAS;EACvB,sBAAsB,SAAS,MAAM,EAAE;CACxC;AAEH,QAAO,EACL,sBAAsB,SACvB;AACF;;;;AAKD,SAAS,kBACPC,cACAC,sBACAC,aAC0E;CAC1E,MAAM,sBAAsB,qBAAqB,MAAM,GAAG,YAAY;CACtE,MAAM,oBAAoB,qBAAqB,MAAM,YAAY;AAGjE,KAAI,cACF,oBAAoB,QAAQ,aAAa;AAG3C,QAAO;EAAE;EAAqB;CAAmB;AAClD;;;;;;;;;;;AAYD,eAAe,gBACbJ,UACAK,aACAX,mBACAN,OACkB;AAClB,KAAI,kBAAkB,WAAW,EAC/B,QAAO;;;;AAMT,MAAK,MAAM,WAAW,mBAAmB;;;;EAIvC,IAAI,eAAe;EACnB,IAAI,iBAAiB;AAErB,MAAI,QAAQ,aAAa,QAAW;GAClC,iBAAiB;AACjB,OAAI,SAAS,SAAS,QAAQ,UAC5B,eAAe;EAElB;AAED,MAAI,QAAQ,WAAW,QAAW;GAChC,iBAAiB;AACjB,OAAI,cAAc,QAAQ,QACxB,eAAe;EAElB;AAED,MAAI,QAAQ,aAAa,QAAW;GAClC,iBAAiB;GACjB,MAAM,iBAAiB,iBAAiB,MAAM;AAC9C,OAAI,OAAO,mBAAmB,UAAU;IACtC,MAAM,YAAY,KAAK,MAAM,iBAAiB,QAAQ,SAAS;AAC/D,QAAI,cAAc,WAChB,eAAe;GAElB;;;;GAIC,eAAe;EAElB;;;;AAKD,MAAI,kBAAkB,aACpB,QAAO;CAEV;AAED,QAAO;AACR;;;;AAKD,eAAe,qBACbY,UACAP,MACAa,cACAlB,OACiB;AACjB,KAAI,YAAY,QAAQ,cAAc,MAAM;EAC1C,MAAM,mBAAmB,MAAM,qBAC7B,UACA,MACA,cACA,MACD;AACD,MAAI,OAAO,qBAAqB,SAC9B,QAAO;;;;AAKT,SAAO,eAAe,UAAU,yBAAyB;CAC1D;;;;AAID,QAAO,eAAe,UAAU,KAAK,YAAY,yBAAyB;AAC3E;;;;AAKD,eAAe,qBACbY,UACAP,MACAa,cACAlB,OAC6B;AAC7B,KAAI,SAAS,WAAW,EACtB,QAAO;CAGT,IAAImB;AAEJ,KAAI,cAAc,QAAQ,KAAK,aAAa,QAAW;EACrD,MAAM,iBAAiB,iBAAiB,MAAM;AAC9C,MAAI,OAAO,mBAAmB,SAC5B;EAEF,mBAAmB,KAAK,MAAM,iBAAiB,KAAK,SAAS;CAC9D,WAAU,YAAY,QAAQ,KAAK,WAAW,QAC7C,mBAAmB,KAAK,MAAM,KAAK,OAAO;KAE1C;AAGF,KAAI,oBAAoB,GACtB,mBAAmB;CAGrB,MAAM,cAAc,MAAM,aAAa,SAAS;AAChD,KAAI,eAAe,iBACjB,QAAO;;;;;CAOT,IAAI,OAAO;CACX,IAAI,QAAQ,SAAS;CACrB,IAAI,kBAAkB,SAAS;CAC/B,MAAM,gBAAgB,KAAK,MAAM,KAAK,KAAK,SAAS,OAAO,CAAC,GAAG;AAE/D,MAAK,IAAI,IAAI,GAAG,IAAI,eAAe,KAAK;AACtC,MAAI,QAAQ,MACV;EAGF,MAAM,MAAM,KAAK,OAAO,OAAO,SAAS,EAAE;EAC1C,MAAM,eAAe,MAAM,aAAa,SAAS,MAAM,IAAI,CAAC;AAC5D,MAAI,gBAAgB,kBAAkB;GACpC,kBAAkB;GAClB,QAAQ;EACT,OACC,OAAO,MAAM;CAEhB;AAED,KAAI,oBAAoB,SAAS,QAC/B,kBAAkB;AAGpB,KAAI,mBAAmB,SAAS,QAAQ;AACtC,MAAI,SAAS,WAAW,EACtB,QAAO;EAET,kBAAkB,SAAS,SAAS;CACrC;;;;AAKD,MAAK,IAAI,IAAI,iBAAiB,KAAK,GAAG,IACpC,KAAI,kBAAkB,UAAU,EAAE,CAChC,QAAO;AAIX,QAAO;AACR;;;;AAKD,SAAS,eACPP,UACAQ,gBACQ;AACR,KAAI,SAAS,UAAU,eACrB,QAAO;CAGT,MAAM,eAAe,SAAS,SAAS;AAEvC,MAAK,IAAI,IAAI,cAAc,KAAK,GAAG,IACjC,KAAI,kBAAkB,UAAU,EAAE,CAChC,QAAO;AAIX,QAAO;AACR;;;;AAKD,SAAS,kBACPR,UACAI,aACS;AACT,KAAI,eAAe,SAAS,OAC1B,QAAO;;;;AAMT,KACE,cAAc,SAAS,UACvBK,oCAAU,WAAW,SAAS,aAAa,IAC3CC,2BAAa,SAAS,aAAa,CAEnC,QAAO;CAGT,MAAM,cAAc,KAAK,IAAI,GAAG,cAAc,4BAA4B;CAC1E,MAAM,YAAY,KAAK,IACrB,SAAS,QACT,cAAc,4BACf;AAED,MAAK,IAAI,IAAI,aAAa,IAAI,WAAW,KAAK;AAC5C,MAAI,CAACA,2BAAa,SAAS,GAAG,CAC5B;EAGF,MAAM,cAAc,mBAAmB,SAAS,GAAgB;AAChE,MAAI,wBAAwB,UAAU,GAAG,aAAa,YAAY,CAChE,QAAO;CAEV;AAED,QAAO;AACR;;;;AAKD,SAAS,mBAAmBC,WAAmC;CAC7D,MAAM,8BAAc,IAAI;AACxB,KAAI,UAAU,WACZ,MAAK,MAAM,YAAY,UAAU,YAAY;EAC3C,MAAM,KACJ,OAAO,aAAa,YAAY,QAAQ,WAAW,SAAS,KAAK;AACnE,MAAI,IACF,YAAY,IAAI,GAAG;CAEtB;AAEH,QAAO;AACR;;;;AAKD,SAAS,wBACPX,UACAY,gBACAR,aACAS,aACS;AACT,MAAK,IAAI,IAAI,iBAAiB,GAAG,IAAI,SAAS,QAAQ,KAAK;EACzD,MAAM,UAAU,SAAS;AACzB,MACEC,sCAAY,WAAW,QAAQ,IAC/B,YAAY,IAAI,QAAQ,aAAa,EACrC;GACA,MAAM,iBAAiB,iBAAiB;GACxC,MAAM,mBAAmB,IAAI;AAC7B,OAAI,mBAAmB,iBACrB,QAAO;EAEV;CACF;AACD,QAAO;AACR;;;;AAKD,eAAe,cACbC,qBACA3B,OACA4B,eACAV,cACAW,uBACiB;AACjB,KAAI,CAAC,oBAAoB,OACvB,QAAO;CAGT,MAAM,kBAAkB,MAAM,uBAC5B,qBACA,cACA,sBACD;AAED,KAAI,CAAC,gBAAgB,OACnB,QAAO;AAGT,KAAI;EACF,MAAM,kBAAkB,cAAc,QACpC,cACA,KAAK,UAAU,iBAAiB,MAAM,EAAE,CACzC;EACD,MAAM,WAAW,MAAM,MAAM,OAAO,gBAAgB;EACpD,MAAM,UAAU,SAAS;;;;AAIzB,MAAI,OAAO,YAAY,SACrB,QAAO,QAAQ,MAAM;WACZ,MAAM,QAAQ,QAAQ,EAAE;;;;GAIjC,MAAM,cAAc,QACjB,IAAI,CAAC,SAAS;AACb,QAAI,OAAO,SAAS,SAAU,QAAO;AACrC,QAAI,OAAO,SAAS,YAAY,SAAS,QAAQ,UAAU,KACzD,QAAQ,KAA0B;AAEpC,WAAO;GACR,EAAC,CACD,KAAK,GAAG;AACX,UAAO,YAAY,MAAM;EAC1B;AACD,SAAO;CACR,SAAQ,GAAG;AACV,SAAO,CAAC,0BAA0B,EAAE,GAAG;CACxC;AACF;;;;AAKD,eAAe,uBACbjB,UACAM,cACAW,uBACwB;AACxB,KAAI,0BAA0B,OAC5B,QAAO;AAGT,KAAI;AACF,SAAO,kDAAmB,UAAU;GAClC,WAAW;GACX,cAAc,OAAO,SAAS,aAAa,KAAK;GAChD,UAAU;GACV,cAAc;GACd,eAAe;EAChB,EAAC;CACH,QAAO;;;;AAIN,SAAO,SAAS,MAAM,CAAC,+BAA+B;CACvD;AACF"}
|
|
1
|
+
{"version":3,"file":"summarization.cjs","names":["z","input: BaseLanguageModel","options: SummarizationMiddlewareConfig","z4","createMiddleware","trigger: ContextSize | ContextSize[] | undefined","keep: ContextSize","triggerConditions: ContextSize[]","initChatModel","countTokensApproximately","HumanMessage","RemoveMessage","REMOVE_ALL_MESSAGES","messages: BaseMessage[]","SystemMessage","systemPrompt: SystemMessage | undefined","conversationMessages: BaseMessage[]","cutoffIndex: number","totalTokens: number","model: BaseLanguageModel","tokenCounter: TokenCounter","targetTokenCount: number","messagesToKeep: number","AIMessage","hasToolCalls","aiMessage: AIMessage","aiMessageIndex: number","toolCallIds: Set<string>","ToolMessage","messagesToSummarize: BaseMessage[]","summaryPrompt: string","trimTokensToSummarize: number | undefined"],"sources":["../../../src/agents/middleware/summarization.ts"],"sourcesContent":["import { z } from \"zod/v3\";\nimport { z as z4 } from \"zod/v4\";\nimport { v4 as uuid } from \"uuid\";\nimport {\n BaseMessage,\n AIMessage,\n SystemMessage,\n ToolMessage,\n RemoveMessage,\n trimMessages,\n HumanMessage,\n} from \"@langchain/core/messages\";\nimport {\n BaseLanguageModel,\n getModelContextSize,\n} from \"@langchain/core/language_models/base\";\nimport {\n interopSafeParse,\n InferInteropZodInput,\n InferInteropZodOutput,\n} from \"@langchain/core/utils/types\";\nimport { REMOVE_ALL_MESSAGES } from \"@langchain/langgraph\";\nimport { createMiddleware } from \"../middleware.js\";\nimport { countTokensApproximately } from \"./utils.js\";\nimport { hasToolCalls } from \"../utils.js\";\nimport { initChatModel } from \"../../chat_models/universal.js\";\n\nexport const DEFAULT_SUMMARY_PROMPT = `<role>\nContext Extraction Assistant\n</role>\n\n<primary_objective>\nYour sole objective in this task is to extract the highest quality/most relevant context from the conversation history below.\n</primary_objective>\n\n<objective_information>\nYou're nearing the total number of input tokens you can accept, so you must extract the highest quality/most relevant pieces of information from your conversation history.\nThis context will then overwrite the conversation history presented below. Because of this, ensure the context you extract is only the most important information to your overall goal.\n</objective_information>\n\n<instructions>\nThe conversation history below will be replaced with the context you extract in this step. Because of this, you must do your very best to extract and record all of the most important context from the conversation history.\nYou want to ensure that you don't repeat any actions you've already completed, so the context you extract from the conversation history should be focused on the most important information to your overall goal.\n</instructions>\n\nThe user will message you with the full message history you'll be extracting context from, to then replace. Carefully read over it all, and think deeply about what information is most important to your overall goal that should be saved:\n\nWith all of this in mind, please carefully read over the entire conversation history, and extract the most important and relevant context to replace it so that you can free up space in the conversation history.\nRespond ONLY with the extracted context. Do not include any additional information, or text before or after the extracted context.\n\n<messages>\nMessages to summarize:\n{messages}\n</messages>`;\n\nconst DEFAULT_MESSAGES_TO_KEEP = 20;\nconst DEFAULT_TRIM_TOKEN_LIMIT = 4000;\nconst DEFAULT_FALLBACK_MESSAGE_COUNT = 15;\nconst SEARCH_RANGE_FOR_TOOL_PAIRS = 5;\n\nconst tokenCounterSchema = z\n .function()\n .args(z.array(z.custom<BaseMessage>()))\n .returns(z.union([z.number(), z.promise(z.number())]));\nexport type TokenCounter = (\n messages: BaseMessage[]\n) => number | Promise<number>;\n\nexport const contextSizeSchema = z\n .object({\n /**\n * Fraction of the model's context size to use as the trigger\n */\n fraction: z\n .number()\n .gt(0, \"Fraction must be greater than 0\")\n .max(1, \"Fraction must be less than or equal to 1\")\n .optional(),\n /**\n * Number of tokens to use as the trigger\n */\n tokens: z.number().positive(\"Tokens must be greater than 0\").optional(),\n /**\n * Number of messages to use as the trigger\n */\n messages: z\n .number()\n .int(\"Messages must be an integer\")\n .positive(\"Messages must be greater than 0\")\n .optional(),\n })\n .refine(\n (data) => {\n const count = [data.fraction, data.tokens, data.messages].filter(\n (v) => v !== undefined\n ).length;\n return count >= 1;\n },\n {\n message: \"At least one of fraction, tokens, or messages must be provided\",\n }\n );\nexport type ContextSize = z.infer<typeof contextSizeSchema>;\n\nexport const keepSchema = z\n .object({\n /**\n * Fraction of the model's context size to keep\n */\n fraction: z\n .number()\n .min(0, \"Messages must be non-negative\")\n .max(1, \"Fraction must be less than or equal to 1\")\n .optional(),\n /**\n * Number of tokens to keep\n */\n tokens: z\n .number()\n .min(0, \"Tokens must be greater than or equal to 0\")\n .optional(),\n messages: z\n .number()\n .int(\"Messages must be an integer\")\n .min(0, \"Messages must be non-negative\")\n .optional(),\n })\n .refine(\n (data) => {\n const count = [data.fraction, data.tokens, data.messages].filter(\n (v) => v !== undefined\n ).length;\n return count === 1;\n },\n {\n message: \"Exactly one of fraction, tokens, or messages must be provided\",\n }\n );\nexport type KeepSize = z.infer<typeof keepSchema>;\n\nconst contextSchema = z.object({\n /**\n * Model to use for summarization\n */\n model: z.custom<string | BaseLanguageModel>(),\n /**\n * Trigger conditions for summarization.\n * Can be a single condition object (all properties must be met) or an array of conditions (any condition must be met).\n *\n * @example\n * ```ts\n * // Single condition: trigger if tokens >= 5000 AND messages >= 3\n * trigger: { tokens: 5000, messages: 3 }\n *\n * // Multiple conditions: trigger if (tokens >= 5000 AND messages >= 3) OR (tokens >= 3000 AND messages >= 6)\n * trigger: [\n * { tokens: 5000, messages: 3 },\n * { tokens: 3000, messages: 6 }\n * ]\n * ```\n */\n trigger: z.union([contextSizeSchema, z.array(contextSizeSchema)]).optional(),\n /**\n * Keep conditions for summarization\n */\n keep: keepSchema.optional(),\n /**\n * Token counter function to use for summarization\n */\n tokenCounter: tokenCounterSchema.optional(),\n /**\n * Summary prompt to use for summarization\n * @default {@link DEFAULT_SUMMARY_PROMPT}\n */\n summaryPrompt: z.string().default(DEFAULT_SUMMARY_PROMPT),\n /**\n * Number of tokens to trim to before summarizing\n */\n trimTokensToSummarize: z.number().optional(),\n /**\n * Prefix to add to the summary\n */\n summaryPrefix: z.string().optional(),\n /**\n * @deprecated Use `trigger: { tokens: value }` instead.\n */\n maxTokensBeforeSummary: z.number().optional(),\n /**\n * @deprecated Use `keep: { messages: value }` instead.\n */\n messagesToKeep: z.number().optional(),\n});\n\nexport type SummarizationMiddlewareConfig = InferInteropZodInput<\n typeof contextSchema\n>;\n\n/**\n * Get max input tokens from model profile or fallback to model name lookup\n */\nexport function getProfileLimits(input: BaseLanguageModel): number | undefined {\n // Access maxInputTokens on the model profile directly if available\n if (\n \"profile\" in input &&\n typeof input.profile === \"object\" &&\n input.profile &&\n \"maxInputTokens\" in input.profile &&\n (typeof input.profile.maxInputTokens === \"number\" ||\n input.profile.maxInputTokens == null)\n ) {\n return input.profile.maxInputTokens ?? undefined;\n }\n\n // Fallback to using model name if available\n if (\"model\" in input && typeof input.model === \"string\") {\n return getModelContextSize(input.model);\n }\n if (\"modelName\" in input && typeof input.modelName === \"string\") {\n return getModelContextSize(input.modelName);\n }\n\n return undefined;\n}\n\n/**\n * Summarization middleware that automatically summarizes conversation history when token limits are approached.\n *\n * This middleware monitors message token counts and automatically summarizes older\n * messages when a threshold is reached, preserving recent messages and maintaining\n * context continuity by ensuring AI/Tool message pairs remain together.\n *\n * @param options Configuration options for the summarization middleware\n * @returns A middleware instance\n *\n * @example\n * ```ts\n * import { summarizationMiddleware } from \"langchain\";\n * import { createAgent } from \"langchain\";\n *\n * // Single condition: trigger if tokens >= 4000 AND messages >= 10\n * const agent1 = createAgent({\n * llm: model,\n * tools: [getWeather],\n * middleware: [\n * summarizationMiddleware({\n * model: new ChatOpenAI({ model: \"gpt-4o\" }),\n * trigger: { tokens: 4000, messages: 10 },\n * keep: { messages: 20 },\n * })\n * ],\n * });\n *\n * // Multiple conditions: trigger if (tokens >= 5000 AND messages >= 3) OR (tokens >= 3000 AND messages >= 6)\n * const agent2 = createAgent({\n * llm: model,\n * tools: [getWeather],\n * middleware: [\n * summarizationMiddleware({\n * model: new ChatOpenAI({ model: \"gpt-4o\" }),\n * trigger: [\n * { tokens: 5000, messages: 3 },\n * { tokens: 3000, messages: 6 },\n * ],\n * keep: { messages: 20 },\n * })\n * ],\n * });\n *\n * ```\n */\nexport function summarizationMiddleware(\n options: SummarizationMiddlewareConfig\n) {\n /**\n * Parse user options to get their explicit values\n */\n const { data: userOptions, error } = interopSafeParse(contextSchema, options);\n if (error) {\n throw new Error(\n `Invalid summarization middleware options: ${z4.prettifyError(error)}`\n );\n }\n\n return createMiddleware({\n name: \"SummarizationMiddleware\",\n contextSchema: contextSchema.extend({\n /**\n * `model` should be required when initializing the middleware,\n * but can be omitted within context when invoking the middleware.\n */\n model: z.custom<BaseLanguageModel>().optional(),\n }),\n beforeModel: async (state, runtime) => {\n let trigger: ContextSize | ContextSize[] | undefined =\n userOptions.trigger;\n let keep: ContextSize = userOptions.keep as InferInteropZodOutput<\n typeof keepSchema\n >;\n\n /**\n * Handle deprecated parameters\n */\n if (userOptions.maxTokensBeforeSummary !== undefined) {\n console.warn(\n \"maxTokensBeforeSummary is deprecated. Use `trigger: { tokens: value }` instead.\"\n );\n if (trigger === undefined) {\n trigger = { tokens: userOptions.maxTokensBeforeSummary };\n }\n }\n\n /**\n * Handle deprecated parameters\n */\n if (userOptions.messagesToKeep !== undefined) {\n console.warn(\n \"messagesToKeep is deprecated. Use `keep: { messages: value }` instead.\"\n );\n if (\n !keep ||\n (keep &&\n \"messages\" in keep &&\n keep.messages === DEFAULT_MESSAGES_TO_KEEP)\n ) {\n keep = { messages: userOptions.messagesToKeep };\n }\n }\n\n /**\n * Merge context with user options\n */\n const resolvedTrigger =\n runtime.context?.trigger !== undefined\n ? runtime.context.trigger\n : trigger;\n const resolvedKeep =\n runtime.context?.keep !== undefined\n ? runtime.context.keep\n : keep ?? { messages: DEFAULT_MESSAGES_TO_KEEP };\n\n const validatedKeep = keepSchema.parse(resolvedKeep);\n\n /**\n * Validate trigger conditions\n */\n let triggerConditions: ContextSize[] = [];\n if (resolvedTrigger === undefined) {\n triggerConditions = [];\n } else if (Array.isArray(resolvedTrigger)) {\n /**\n * It's an array of ContextSize objects\n */\n triggerConditions = (resolvedTrigger as ContextSize[]).map((t) =>\n contextSizeSchema.parse(t)\n );\n } else {\n /**\n * Single ContextSize object - all properties must be satisfied (AND logic)\n */\n triggerConditions = [contextSizeSchema.parse(resolvedTrigger)];\n }\n\n /**\n * Check if profile is required\n */\n const requiresProfile =\n triggerConditions.some((c) => \"fraction\" in c) ||\n \"fraction\" in validatedKeep;\n\n const model =\n typeof userOptions.model === \"string\"\n ? await initChatModel(userOptions.model)\n : userOptions.model;\n\n if (requiresProfile && !getProfileLimits(model)) {\n throw new Error(\n \"Model profile information is required to use fractional token limits. \" +\n \"Use absolute token counts instead.\"\n );\n }\n\n const summaryPrompt =\n runtime.context?.summaryPrompt === DEFAULT_SUMMARY_PROMPT\n ? userOptions.summaryPrompt ?? DEFAULT_SUMMARY_PROMPT\n : runtime.context?.summaryPrompt ??\n userOptions.summaryPrompt ??\n DEFAULT_SUMMARY_PROMPT;\n const trimTokensToSummarize =\n runtime.context?.trimTokensToSummarize !== undefined\n ? runtime.context.trimTokensToSummarize\n : userOptions.trimTokensToSummarize ?? DEFAULT_TRIM_TOKEN_LIMIT;\n\n /**\n * Ensure all messages have IDs\n */\n ensureMessageIds(state.messages);\n\n const tokenCounter =\n runtime.context?.tokenCounter !== undefined\n ? runtime.context.tokenCounter\n : userOptions.tokenCounter ?? countTokensApproximately;\n const totalTokens = await tokenCounter(state.messages);\n const doSummarize = await shouldSummarize(\n state.messages,\n totalTokens,\n triggerConditions,\n model\n );\n\n if (!doSummarize) {\n return;\n }\n\n const { systemPrompt, conversationMessages } = splitSystemMessage(\n state.messages\n );\n const cutoffIndex = await determineCutoffIndex(\n conversationMessages,\n validatedKeep,\n tokenCounter,\n model\n );\n\n if (cutoffIndex <= 0) {\n return;\n }\n\n const { messagesToSummarize, preservedMessages } = partitionMessages(\n systemPrompt,\n conversationMessages,\n cutoffIndex\n );\n\n const summary = await createSummary(\n messagesToSummarize,\n model,\n summaryPrompt,\n tokenCounter,\n trimTokensToSummarize\n );\n\n const summaryMessage = new HumanMessage({\n content: `Here is a summary of the conversation to date:\\n\\n${summary}`,\n id: uuid(),\n });\n\n return {\n messages: [\n new RemoveMessage({ id: REMOVE_ALL_MESSAGES }),\n summaryMessage,\n ...preservedMessages,\n ],\n };\n },\n });\n}\n\n/**\n * Ensure all messages have unique IDs\n */\nfunction ensureMessageIds(messages: BaseMessage[]): void {\n for (const msg of messages) {\n if (!msg.id) {\n msg.id = uuid();\n }\n }\n}\n\n/**\n * Separate system message from conversation messages\n */\nfunction splitSystemMessage(messages: BaseMessage[]): {\n systemPrompt?: SystemMessage;\n conversationMessages: BaseMessage[];\n} {\n if (messages.length > 0 && SystemMessage.isInstance(messages[0])) {\n return {\n systemPrompt: messages[0] as SystemMessage,\n conversationMessages: messages.slice(1),\n };\n }\n return {\n conversationMessages: messages,\n };\n}\n\n/**\n * Partition messages into those to summarize and those to preserve\n */\nfunction partitionMessages(\n systemPrompt: SystemMessage | undefined,\n conversationMessages: BaseMessage[],\n cutoffIndex: number\n): { messagesToSummarize: BaseMessage[]; preservedMessages: BaseMessage[] } {\n const messagesToSummarize = conversationMessages.slice(0, cutoffIndex);\n const preservedMessages = conversationMessages.slice(cutoffIndex);\n\n // Include system message in messages to summarize to capture previous summaries\n if (systemPrompt) {\n messagesToSummarize.unshift(systemPrompt);\n }\n\n return { messagesToSummarize, preservedMessages };\n}\n\n/**\n * Determine whether summarization should run for the current token usage\n *\n * @param messages - Current messages in the conversation\n * @param totalTokens - Total token count for all messages\n * @param triggerConditions - Array of trigger conditions. Returns true if ANY condition is satisfied (OR logic).\n * Within each condition, ALL specified properties must be satisfied (AND logic).\n * @param model - The language model being used\n * @returns true if summarization should be triggered\n */\nasync function shouldSummarize(\n messages: BaseMessage[],\n totalTokens: number,\n triggerConditions: ContextSize[],\n model: BaseLanguageModel\n): Promise<boolean> {\n if (triggerConditions.length === 0) {\n return false;\n }\n\n /**\n * Check each condition (OR logic between conditions)\n */\n for (const trigger of triggerConditions) {\n /**\n * Within a single condition, all specified properties must be satisfied (AND logic)\n */\n let conditionMet = true;\n let hasAnyProperty = false;\n\n if (trigger.messages !== undefined) {\n hasAnyProperty = true;\n if (messages.length < trigger.messages) {\n conditionMet = false;\n }\n }\n\n if (trigger.tokens !== undefined) {\n hasAnyProperty = true;\n if (totalTokens < trigger.tokens) {\n conditionMet = false;\n }\n }\n\n if (trigger.fraction !== undefined) {\n hasAnyProperty = true;\n const maxInputTokens = getProfileLimits(model);\n if (typeof maxInputTokens === \"number\") {\n const threshold = Math.floor(maxInputTokens * trigger.fraction);\n if (totalTokens < threshold) {\n conditionMet = false;\n }\n } else {\n /**\n * If fraction is specified but we can't get model limits, skip this condition\n */\n conditionMet = false;\n }\n }\n\n /**\n * If condition has at least one property and all properties are satisfied, trigger summarization\n */\n if (hasAnyProperty && conditionMet) {\n return true;\n }\n }\n\n return false;\n}\n\n/**\n * Determine cutoff index respecting retention configuration\n */\nasync function determineCutoffIndex(\n messages: BaseMessage[],\n keep: ContextSize,\n tokenCounter: TokenCounter,\n model: BaseLanguageModel\n): Promise<number> {\n if (\"tokens\" in keep || \"fraction\" in keep) {\n const tokenBasedCutoff = await findTokenBasedCutoff(\n messages,\n keep,\n tokenCounter,\n model\n );\n if (typeof tokenBasedCutoff === \"number\") {\n return tokenBasedCutoff;\n }\n /**\n * Fallback to message count if token-based fails\n */\n return findSafeCutoff(messages, DEFAULT_MESSAGES_TO_KEEP);\n }\n /**\n * find cutoff index based on message count\n */\n return findSafeCutoff(messages, keep.messages ?? DEFAULT_MESSAGES_TO_KEEP);\n}\n\n/**\n * Find cutoff index based on target token retention\n */\nasync function findTokenBasedCutoff(\n messages: BaseMessage[],\n keep: ContextSize,\n tokenCounter: TokenCounter,\n model: BaseLanguageModel\n): Promise<number | undefined> {\n if (messages.length === 0) {\n return 0;\n }\n\n let targetTokenCount: number;\n\n if (\"fraction\" in keep && keep.fraction !== undefined) {\n const maxInputTokens = getProfileLimits(model);\n if (typeof maxInputTokens !== \"number\") {\n return;\n }\n targetTokenCount = Math.floor(maxInputTokens * keep.fraction);\n } else if (\"tokens\" in keep && keep.tokens !== undefined) {\n targetTokenCount = Math.floor(keep.tokens);\n } else {\n return;\n }\n\n if (targetTokenCount <= 0) {\n targetTokenCount = 1;\n }\n\n const totalTokens = await tokenCounter(messages);\n if (totalTokens <= targetTokenCount) {\n return 0;\n }\n\n /**\n * Use binary search to identify the earliest message index that keeps the\n * suffix within the token budget.\n */\n let left = 0;\n let right = messages.length;\n let cutoffCandidate = messages.length;\n const maxIterations = Math.floor(Math.log2(messages.length)) + 1;\n\n for (let i = 0; i < maxIterations; i++) {\n if (left >= right) {\n break;\n }\n\n const mid = Math.floor((left + right) / 2);\n const suffixTokens = await tokenCounter(messages.slice(mid));\n if (suffixTokens <= targetTokenCount) {\n cutoffCandidate = mid;\n right = mid;\n } else {\n left = mid + 1;\n }\n }\n\n if (cutoffCandidate === messages.length) {\n cutoffCandidate = left;\n }\n\n if (cutoffCandidate >= messages.length) {\n if (messages.length === 1) {\n return 0;\n }\n cutoffCandidate = messages.length - 1;\n }\n\n /**\n * Find safe cutoff point that preserves tool pairs\n */\n for (let i = cutoffCandidate; i >= 0; i--) {\n if (isSafeCutoffPoint(messages, i)) {\n return i;\n }\n }\n\n return 0;\n}\n\n/**\n * Find safe cutoff point that preserves AI/Tool message pairs\n */\nfunction findSafeCutoff(\n messages: BaseMessage[],\n messagesToKeep: number\n): number {\n if (messages.length <= messagesToKeep) {\n return 0;\n }\n\n const targetCutoff = messages.length - messagesToKeep;\n\n for (let i = targetCutoff; i >= 0; i--) {\n if (isSafeCutoffPoint(messages, i)) {\n return i;\n }\n }\n\n return 0;\n}\n\n/**\n * Check if cutting at index would separate AI/Tool message pairs\n */\nfunction isSafeCutoffPoint(\n messages: BaseMessage[],\n cutoffIndex: number\n): boolean {\n if (cutoffIndex >= messages.length) {\n return true;\n }\n\n /**\n * Prevent preserved messages from starting with AI message containing tool calls\n */\n if (\n cutoffIndex < messages.length &&\n AIMessage.isInstance(messages[cutoffIndex]) &&\n hasToolCalls(messages[cutoffIndex])\n ) {\n return false;\n }\n\n const searchStart = Math.max(0, cutoffIndex - SEARCH_RANGE_FOR_TOOL_PAIRS);\n const searchEnd = Math.min(\n messages.length,\n cutoffIndex + SEARCH_RANGE_FOR_TOOL_PAIRS\n );\n\n for (let i = searchStart; i < searchEnd; i++) {\n if (!hasToolCalls(messages[i])) {\n continue;\n }\n\n const toolCallIds = extractToolCallIds(messages[i] as AIMessage);\n if (cutoffSeparatesToolPair(messages, i, cutoffIndex, toolCallIds)) {\n return false;\n }\n }\n\n return true;\n}\n\n/**\n * Extract tool call IDs from an AI message\n */\nfunction extractToolCallIds(aiMessage: AIMessage): Set<string> {\n const toolCallIds = new Set<string>();\n if (aiMessage.tool_calls) {\n for (const toolCall of aiMessage.tool_calls) {\n const id =\n typeof toolCall === \"object\" && \"id\" in toolCall ? toolCall.id : null;\n if (id) {\n toolCallIds.add(id);\n }\n }\n }\n return toolCallIds;\n}\n\n/**\n * Check if cutoff separates an AI message from its corresponding tool messages\n */\nfunction cutoffSeparatesToolPair(\n messages: BaseMessage[],\n aiMessageIndex: number,\n cutoffIndex: number,\n toolCallIds: Set<string>\n): boolean {\n for (let j = aiMessageIndex + 1; j < messages.length; j++) {\n const message = messages[j];\n if (\n ToolMessage.isInstance(message) &&\n toolCallIds.has(message.tool_call_id)\n ) {\n const aiBeforeCutoff = aiMessageIndex < cutoffIndex;\n const toolBeforeCutoff = j < cutoffIndex;\n if (aiBeforeCutoff !== toolBeforeCutoff) {\n return true;\n }\n }\n }\n return false;\n}\n\n/**\n * Generate summary for the given messages\n */\nasync function createSummary(\n messagesToSummarize: BaseMessage[],\n model: BaseLanguageModel,\n summaryPrompt: string,\n tokenCounter: TokenCounter,\n trimTokensToSummarize: number | undefined\n): Promise<string> {\n if (!messagesToSummarize.length) {\n return \"No previous conversation history.\";\n }\n\n const trimmedMessages = await trimMessagesForSummary(\n messagesToSummarize,\n tokenCounter,\n trimTokensToSummarize\n );\n\n if (!trimmedMessages.length) {\n return \"Previous conversation was too long to summarize.\";\n }\n\n try {\n const formattedPrompt = summaryPrompt.replace(\n \"{messages}\",\n JSON.stringify(trimmedMessages, null, 2)\n );\n const response = await model.invoke(formattedPrompt);\n const content = response.content;\n /**\n * Handle both string content and MessageContent array\n */\n if (typeof content === \"string\") {\n return content.trim();\n } else if (Array.isArray(content)) {\n /**\n * Extract text from MessageContent array\n */\n const textContent = content\n .map((item) => {\n if (typeof item === \"string\") return item;\n if (typeof item === \"object\" && item !== null && \"text\" in item) {\n return (item as { text: string }).text;\n }\n return \"\";\n })\n .join(\"\");\n return textContent.trim();\n }\n return \"Error generating summary: Invalid response format\";\n } catch (e) {\n return `Error generating summary: ${e}`;\n }\n}\n\n/**\n * Trim messages to fit within summary generation limits\n */\nasync function trimMessagesForSummary(\n messages: BaseMessage[],\n tokenCounter: TokenCounter,\n trimTokensToSummarize: number | undefined\n): Promise<BaseMessage[]> {\n if (trimTokensToSummarize === undefined) {\n return messages;\n }\n\n try {\n return await trimMessages(messages, {\n maxTokens: trimTokensToSummarize,\n tokenCounter: async (msgs) => tokenCounter(msgs),\n strategy: \"last\",\n allowPartial: true,\n includeSystem: true,\n });\n } catch {\n /**\n * Fallback to last N messages if trimming fails\n */\n return messages.slice(-DEFAULT_FALLBACK_MESSAGE_COUNT);\n }\n}\n"],"mappings":";;;;;;;;;;;;;;AA2BA,MAAa,yBAAyB,CAAC;;;;;;;;;;;;;;;;;;;;;;;;;;WA0B5B,CAAC;AAEZ,MAAM,2BAA2B;AACjC,MAAM,2BAA2B;AACjC,MAAM,iCAAiC;AACvC,MAAM,8BAA8B;AAEpC,MAAM,qBAAqBA,SACxB,UAAU,CACV,KAAKA,SAAE,MAAMA,SAAE,QAAqB,CAAC,CAAC,CACtC,QAAQA,SAAE,MAAM,CAACA,SAAE,QAAQ,EAAEA,SAAE,QAAQA,SAAE,QAAQ,CAAC,AAAC,EAAC,CAAC;AAKxD,MAAa,oBAAoBA,SAC9B,OAAO;CAIN,UAAUA,SACP,QAAQ,CACR,GAAG,GAAG,kCAAkC,CACxC,IAAI,GAAG,2CAA2C,CAClD,UAAU;CAIb,QAAQA,SAAE,QAAQ,CAAC,SAAS,gCAAgC,CAAC,UAAU;CAIvE,UAAUA,SACP,QAAQ,CACR,IAAI,8BAA8B,CAClC,SAAS,kCAAkC,CAC3C,UAAU;AACd,EAAC,CACD,OACC,CAAC,SAAS;CACR,MAAM,QAAQ;EAAC,KAAK;EAAU,KAAK;EAAQ,KAAK;CAAS,EAAC,OACxD,CAAC,MAAM,MAAM,OACd,CAAC;AACF,QAAO,SAAS;AACjB,GACD,EACE,SAAS,iEACV,EACF;AAGH,MAAa,aAAaA,SACvB,OAAO;CAIN,UAAUA,SACP,QAAQ,CACR,IAAI,GAAG,gCAAgC,CACvC,IAAI,GAAG,2CAA2C,CAClD,UAAU;CAIb,QAAQA,SACL,QAAQ,CACR,IAAI,GAAG,4CAA4C,CACnD,UAAU;CACb,UAAUA,SACP,QAAQ,CACR,IAAI,8BAA8B,CAClC,IAAI,GAAG,gCAAgC,CACvC,UAAU;AACd,EAAC,CACD,OACC,CAAC,SAAS;CACR,MAAM,QAAQ;EAAC,KAAK;EAAU,KAAK;EAAQ,KAAK;CAAS,EAAC,OACxD,CAAC,MAAM,MAAM,OACd,CAAC;AACF,QAAO,UAAU;AAClB,GACD,EACE,SAAS,gEACV,EACF;AAGH,MAAM,gBAAgBA,SAAE,OAAO;CAI7B,OAAOA,SAAE,QAAoC;CAiB7C,SAASA,SAAE,MAAM,CAAC,mBAAmBA,SAAE,MAAM,kBAAkB,AAAC,EAAC,CAAC,UAAU;CAI5E,MAAM,WAAW,UAAU;CAI3B,cAAc,mBAAmB,UAAU;CAK3C,eAAeA,SAAE,QAAQ,CAAC,QAAQ,uBAAuB;CAIzD,uBAAuBA,SAAE,QAAQ,CAAC,UAAU;CAI5C,eAAeA,SAAE,QAAQ,CAAC,UAAU;CAIpC,wBAAwBA,SAAE,QAAQ,CAAC,UAAU;CAI7C,gBAAgBA,SAAE,QAAQ,CAAC,UAAU;AACtC,EAAC;;;;AASF,SAAgB,iBAAiBC,OAA8C;AAE7E,KACE,aAAa,SACb,OAAO,MAAM,YAAY,YACzB,MAAM,WACN,oBAAoB,MAAM,YACzB,OAAO,MAAM,QAAQ,mBAAmB,YACvC,MAAM,QAAQ,kBAAkB,MAElC,QAAO,MAAM,QAAQ,kBAAkB;AAIzC,KAAI,WAAW,SAAS,OAAO,MAAM,UAAU,SAC7C,uEAA2B,MAAM,MAAM;AAEzC,KAAI,eAAe,SAAS,OAAO,MAAM,cAAc,SACrD,uEAA2B,MAAM,UAAU;AAG7C,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAgDD,SAAgB,wBACdC,SACA;;;;CAIA,MAAM,EAAE,MAAM,aAAa,OAAO,sDAAoB,eAAe,QAAQ;AAC7E,KAAI,MACF,OAAM,IAAI,MACR,CAAC,0CAA0C,EAAEC,SAAG,cAAc,MAAM,EAAE;AAI1E,QAAOC,oCAAiB;EACtB,MAAM;EACN,eAAe,cAAc,OAAO,EAKlC,OAAOJ,SAAE,QAA2B,CAAC,UAAU,CAChD,EAAC;EACF,aAAa,OAAO,OAAO,YAAY;GACrC,IAAIK,UACF,YAAY;GACd,IAAIC,OAAoB,YAAY;;;;AAOpC,OAAI,YAAY,2BAA2B,QAAW;IACpD,QAAQ,KACN,kFACD;AACD,QAAI,YAAY,QACd,UAAU,EAAE,QAAQ,YAAY,uBAAwB;GAE3D;;;;AAKD,OAAI,YAAY,mBAAmB,QAAW;IAC5C,QAAQ,KACN,yEACD;AACD,QACE,CAAC,QACA,QACC,cAAc,QACd,KAAK,aAAa,0BAEpB,OAAO,EAAE,UAAU,YAAY,eAAgB;GAElD;;;;GAKD,MAAM,kBACJ,QAAQ,SAAS,YAAY,SACzB,QAAQ,QAAQ,UAChB;GACN,MAAM,eACJ,QAAQ,SAAS,SAAS,SACtB,QAAQ,QAAQ,OAChB,QAAQ,EAAE,UAAU,yBAA0B;GAEpD,MAAM,gBAAgB,WAAW,MAAM,aAAa;;;;GAKpD,IAAIC,oBAAmC,CAAE;AACzC,OAAI,oBAAoB,QACtB,oBAAoB,CAAE;YACb,MAAM,QAAQ,gBAAgB;;;;GAIvC,oBAAqB,gBAAkC,IAAI,CAAC,MAC1D,kBAAkB,MAAM,EAAE,CAC3B;;;;;GAKD,oBAAoB,CAAC,kBAAkB,MAAM,gBAAgB,AAAC;;;;GAMhE,MAAM,kBACJ,kBAAkB,KAAK,CAAC,MAAM,cAAc,EAAE,IAC9C,cAAc;GAEhB,MAAM,QACJ,OAAO,YAAY,UAAU,WACzB,MAAMC,4CAAc,YAAY,MAAM,GACtC,YAAY;AAElB,OAAI,mBAAmB,CAAC,iBAAiB,MAAM,CAC7C,OAAM,IAAI,MACR;GAKJ,MAAM,gBACJ,QAAQ,SAAS,kBAAkB,yBAC/B,YAAY,iBAAiB,yBAC7B,QAAQ,SAAS,iBACjB,YAAY,iBACZ;GACN,MAAM,wBACJ,QAAQ,SAAS,0BAA0B,SACvC,QAAQ,QAAQ,wBAChB,YAAY,yBAAyB;;;;GAK3C,iBAAiB,MAAM,SAAS;GAEhC,MAAM,eACJ,QAAQ,SAAS,iBAAiB,SAC9B,QAAQ,QAAQ,eAChB,YAAY,gBAAgBC;GAClC,MAAM,cAAc,MAAM,aAAa,MAAM,SAAS;GACtD,MAAM,cAAc,MAAM,gBACxB,MAAM,UACN,aACA,mBACA,MACD;AAED,OAAI,CAAC,YACH;GAGF,MAAM,EAAE,cAAc,sBAAsB,GAAG,mBAC7C,MAAM,SACP;GACD,MAAM,cAAc,MAAM,qBACxB,sBACA,eACA,cACA,MACD;AAED,OAAI,eAAe,EACjB;GAGF,MAAM,EAAE,qBAAqB,mBAAmB,GAAG,kBACjD,cACA,sBACA,YACD;GAED,MAAM,UAAU,MAAM,cACpB,qBACA,OACA,eACA,cACA,sBACD;GAED,MAAM,iBAAiB,IAAIC,uCAAa;IACtC,SAAS,CAAC,kDAAkD,EAAE,SAAS;IACvE,kBAAU;GACX;AAED,UAAO,EACL,UAAU;IACR,IAAIC,wCAAc,EAAE,IAAIC,0CAAqB;IAC7C;IACA,GAAG;GACJ,EACF;EACF;CACF,EAAC;AACH;;;;AAKD,SAAS,iBAAiBC,UAA+B;AACvD,MAAK,MAAM,OAAO,SAChB,KAAI,CAAC,IAAI,IACP,IAAI,mBAAW;AAGpB;;;;AAKD,SAAS,mBAAmBA,UAG1B;AACA,KAAI,SAAS,SAAS,KAAKC,wCAAc,WAAW,SAAS,GAAG,CAC9D,QAAO;EACL,cAAc,SAAS;EACvB,sBAAsB,SAAS,MAAM,EAAE;CACxC;AAEH,QAAO,EACL,sBAAsB,SACvB;AACF;;;;AAKD,SAAS,kBACPC,cACAC,sBACAC,aAC0E;CAC1E,MAAM,sBAAsB,qBAAqB,MAAM,GAAG,YAAY;CACtE,MAAM,oBAAoB,qBAAqB,MAAM,YAAY;AAGjE,KAAI,cACF,oBAAoB,QAAQ,aAAa;AAG3C,QAAO;EAAE;EAAqB;CAAmB;AAClD;;;;;;;;;;;AAYD,eAAe,gBACbJ,UACAK,aACAX,mBACAY,OACkB;AAClB,KAAI,kBAAkB,WAAW,EAC/B,QAAO;;;;AAMT,MAAK,MAAM,WAAW,mBAAmB;;;;EAIvC,IAAI,eAAe;EACnB,IAAI,iBAAiB;AAErB,MAAI,QAAQ,aAAa,QAAW;GAClC,iBAAiB;AACjB,OAAI,SAAS,SAAS,QAAQ,UAC5B,eAAe;EAElB;AAED,MAAI,QAAQ,WAAW,QAAW;GAChC,iBAAiB;AACjB,OAAI,cAAc,QAAQ,QACxB,eAAe;EAElB;AAED,MAAI,QAAQ,aAAa,QAAW;GAClC,iBAAiB;GACjB,MAAM,iBAAiB,iBAAiB,MAAM;AAC9C,OAAI,OAAO,mBAAmB,UAAU;IACtC,MAAM,YAAY,KAAK,MAAM,iBAAiB,QAAQ,SAAS;AAC/D,QAAI,cAAc,WAChB,eAAe;GAElB;;;;GAIC,eAAe;EAElB;;;;AAKD,MAAI,kBAAkB,aACpB,QAAO;CAEV;AAED,QAAO;AACR;;;;AAKD,eAAe,qBACbN,UACAP,MACAc,cACAD,OACiB;AACjB,KAAI,YAAY,QAAQ,cAAc,MAAM;EAC1C,MAAM,mBAAmB,MAAM,qBAC7B,UACA,MACA,cACA,MACD;AACD,MAAI,OAAO,qBAAqB,SAC9B,QAAO;;;;AAKT,SAAO,eAAe,UAAU,yBAAyB;CAC1D;;;;AAID,QAAO,eAAe,UAAU,KAAK,YAAY,yBAAyB;AAC3E;;;;AAKD,eAAe,qBACbN,UACAP,MACAc,cACAD,OAC6B;AAC7B,KAAI,SAAS,WAAW,EACtB,QAAO;CAGT,IAAIE;AAEJ,KAAI,cAAc,QAAQ,KAAK,aAAa,QAAW;EACrD,MAAM,iBAAiB,iBAAiB,MAAM;AAC9C,MAAI,OAAO,mBAAmB,SAC5B;EAEF,mBAAmB,KAAK,MAAM,iBAAiB,KAAK,SAAS;CAC9D,WAAU,YAAY,QAAQ,KAAK,WAAW,QAC7C,mBAAmB,KAAK,MAAM,KAAK,OAAO;KAE1C;AAGF,KAAI,oBAAoB,GACtB,mBAAmB;CAGrB,MAAM,cAAc,MAAM,aAAa,SAAS;AAChD,KAAI,eAAe,iBACjB,QAAO;;;;;CAOT,IAAI,OAAO;CACX,IAAI,QAAQ,SAAS;CACrB,IAAI,kBAAkB,SAAS;CAC/B,MAAM,gBAAgB,KAAK,MAAM,KAAK,KAAK,SAAS,OAAO,CAAC,GAAG;AAE/D,MAAK,IAAI,IAAI,GAAG,IAAI,eAAe,KAAK;AACtC,MAAI,QAAQ,MACV;EAGF,MAAM,MAAM,KAAK,OAAO,OAAO,SAAS,EAAE;EAC1C,MAAM,eAAe,MAAM,aAAa,SAAS,MAAM,IAAI,CAAC;AAC5D,MAAI,gBAAgB,kBAAkB;GACpC,kBAAkB;GAClB,QAAQ;EACT,OACC,OAAO,MAAM;CAEhB;AAED,KAAI,oBAAoB,SAAS,QAC/B,kBAAkB;AAGpB,KAAI,mBAAmB,SAAS,QAAQ;AACtC,MAAI,SAAS,WAAW,EACtB,QAAO;EAET,kBAAkB,SAAS,SAAS;CACrC;;;;AAKD,MAAK,IAAI,IAAI,iBAAiB,KAAK,GAAG,IACpC,KAAI,kBAAkB,UAAU,EAAE,CAChC,QAAO;AAIX,QAAO;AACR;;;;AAKD,SAAS,eACPR,UACAS,gBACQ;AACR,KAAI,SAAS,UAAU,eACrB,QAAO;CAGT,MAAM,eAAe,SAAS,SAAS;AAEvC,MAAK,IAAI,IAAI,cAAc,KAAK,GAAG,IACjC,KAAI,kBAAkB,UAAU,EAAE,CAChC,QAAO;AAIX,QAAO;AACR;;;;AAKD,SAAS,kBACPT,UACAI,aACS;AACT,KAAI,eAAe,SAAS,OAC1B,QAAO;;;;AAMT,KACE,cAAc,SAAS,UACvBM,oCAAU,WAAW,SAAS,aAAa,IAC3CC,2BAAa,SAAS,aAAa,CAEnC,QAAO;CAGT,MAAM,cAAc,KAAK,IAAI,GAAG,cAAc,4BAA4B;CAC1E,MAAM,YAAY,KAAK,IACrB,SAAS,QACT,cAAc,4BACf;AAED,MAAK,IAAI,IAAI,aAAa,IAAI,WAAW,KAAK;AAC5C,MAAI,CAACA,2BAAa,SAAS,GAAG,CAC5B;EAGF,MAAM,cAAc,mBAAmB,SAAS,GAAgB;AAChE,MAAI,wBAAwB,UAAU,GAAG,aAAa,YAAY,CAChE,QAAO;CAEV;AAED,QAAO;AACR;;;;AAKD,SAAS,mBAAmBC,WAAmC;CAC7D,MAAM,8BAAc,IAAI;AACxB,KAAI,UAAU,WACZ,MAAK,MAAM,YAAY,UAAU,YAAY;EAC3C,MAAM,KACJ,OAAO,aAAa,YAAY,QAAQ,WAAW,SAAS,KAAK;AACnE,MAAI,IACF,YAAY,IAAI,GAAG;CAEtB;AAEH,QAAO;AACR;;;;AAKD,SAAS,wBACPZ,UACAa,gBACAT,aACAU,aACS;AACT,MAAK,IAAI,IAAI,iBAAiB,GAAG,IAAI,SAAS,QAAQ,KAAK;EACzD,MAAM,UAAU,SAAS;AACzB,MACEC,sCAAY,WAAW,QAAQ,IAC/B,YAAY,IAAI,QAAQ,aAAa,EACrC;GACA,MAAM,iBAAiB,iBAAiB;GACxC,MAAM,mBAAmB,IAAI;AAC7B,OAAI,mBAAmB,iBACrB,QAAO;EAEV;CACF;AACD,QAAO;AACR;;;;AAKD,eAAe,cACbC,qBACAV,OACAW,eACAV,cACAW,uBACiB;AACjB,KAAI,CAAC,oBAAoB,OACvB,QAAO;CAGT,MAAM,kBAAkB,MAAM,uBAC5B,qBACA,cACA,sBACD;AAED,KAAI,CAAC,gBAAgB,OACnB,QAAO;AAGT,KAAI;EACF,MAAM,kBAAkB,cAAc,QACpC,cACA,KAAK,UAAU,iBAAiB,MAAM,EAAE,CACzC;EACD,MAAM,WAAW,MAAM,MAAM,OAAO,gBAAgB;EACpD,MAAM,UAAU,SAAS;;;;AAIzB,MAAI,OAAO,YAAY,SACrB,QAAO,QAAQ,MAAM;WACZ,MAAM,QAAQ,QAAQ,EAAE;;;;GAIjC,MAAM,cAAc,QACjB,IAAI,CAAC,SAAS;AACb,QAAI,OAAO,SAAS,SAAU,QAAO;AACrC,QAAI,OAAO,SAAS,YAAY,SAAS,QAAQ,UAAU,KACzD,QAAQ,KAA0B;AAEpC,WAAO;GACR,EAAC,CACD,KAAK,GAAG;AACX,UAAO,YAAY,MAAM;EAC1B;AACD,SAAO;CACR,SAAQ,GAAG;AACV,SAAO,CAAC,0BAA0B,EAAE,GAAG;CACxC;AACF;;;;AAKD,eAAe,uBACblB,UACAO,cACAW,uBACwB;AACxB,KAAI,0BAA0B,OAC5B,QAAO;AAGT,KAAI;AACF,SAAO,kDAAmB,UAAU;GAClC,WAAW;GACX,cAAc,OAAO,SAAS,aAAa,KAAK;GAChD,UAAU;GACV,cAAc;GACd,eAAe;EAChB,EAAC;CACH,QAAO;;;;AAIN,SAAO,SAAS,MAAM,CAAC,+BAA+B;CACvD;AACF"}
|