langchain 1.0.0-alpha.3 → 1.0.0-alpha.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. package/dist/agents/ReactAgent.cjs +1 -1
  2. package/dist/agents/ReactAgent.cjs.map +1 -1
  3. package/dist/agents/ReactAgent.d.cts +3 -3
  4. package/dist/agents/ReactAgent.d.cts.map +1 -1
  5. package/dist/agents/ReactAgent.d.ts +3 -3
  6. package/dist/agents/ReactAgent.d.ts.map +1 -1
  7. package/dist/agents/ReactAgent.js +2 -2
  8. package/dist/agents/ReactAgent.js.map +1 -1
  9. package/dist/agents/annotation.cjs +2 -2
  10. package/dist/agents/annotation.cjs.map +1 -1
  11. package/dist/agents/annotation.d.cts +3 -3
  12. package/dist/agents/annotation.d.cts.map +1 -1
  13. package/dist/agents/annotation.d.ts +3 -3
  14. package/dist/agents/annotation.d.ts.map +1 -1
  15. package/dist/agents/annotation.js +2 -2
  16. package/dist/agents/annotation.js.map +1 -1
  17. package/dist/agents/errors.cjs +1 -1
  18. package/dist/agents/errors.cjs.map +1 -1
  19. package/dist/agents/errors.js +1 -1
  20. package/dist/agents/errors.js.map +1 -1
  21. package/dist/agents/index.cjs +2 -2
  22. package/dist/agents/index.cjs.map +1 -1
  23. package/dist/agents/index.d.cts +15 -15
  24. package/dist/agents/index.d.cts.map +1 -1
  25. package/dist/agents/index.d.ts +15 -15
  26. package/dist/agents/index.d.ts.map +1 -1
  27. package/dist/agents/index.js +2 -2
  28. package/dist/agents/index.js.map +1 -1
  29. package/dist/agents/nodes/AgentNode.cjs.map +1 -1
  30. package/dist/agents/nodes/AgentNode.js.map +1 -1
  31. package/dist/agents/nodes/ToolNode.cjs +1 -1
  32. package/dist/agents/nodes/ToolNode.cjs.map +1 -1
  33. package/dist/agents/nodes/ToolNode.d.cts +1 -1
  34. package/dist/agents/nodes/ToolNode.d.cts.map +1 -1
  35. package/dist/agents/nodes/ToolNode.d.ts +1 -1
  36. package/dist/agents/nodes/ToolNode.d.ts.map +1 -1
  37. package/dist/agents/nodes/ToolNode.js +1 -1
  38. package/dist/agents/nodes/ToolNode.js.map +1 -1
  39. package/dist/agents/responses.cjs +1 -1
  40. package/dist/agents/responses.cjs.map +1 -1
  41. package/dist/agents/responses.d.cts +1 -1
  42. package/dist/agents/responses.d.cts.map +1 -1
  43. package/dist/agents/responses.d.ts +1 -1
  44. package/dist/agents/responses.d.ts.map +1 -1
  45. package/dist/agents/responses.js +1 -1
  46. package/dist/agents/responses.js.map +1 -1
  47. package/dist/agents/types.d.cts +8 -8
  48. package/dist/agents/types.d.cts.map +1 -1
  49. package/dist/agents/types.d.ts +8 -8
  50. package/dist/agents/types.d.ts.map +1 -1
  51. package/dist/agents/utils.cjs +1 -1
  52. package/dist/agents/utils.cjs.map +1 -1
  53. package/dist/agents/utils.js +1 -1
  54. package/dist/agents/utils.js.map +1 -1
  55. package/dist/agents/withAgentName.cjs +1 -1
  56. package/dist/agents/withAgentName.cjs.map +1 -1
  57. package/dist/agents/withAgentName.js +1 -1
  58. package/dist/agents/withAgentName.js.map +1 -1
  59. package/dist/evaluation/agents/trajectory.d.ts.map +1 -1
  60. package/dist/evaluation/comparison/pairwise.d.cts.map +1 -1
  61. package/dist/evaluation/comparison/pairwise.d.ts.map +1 -1
  62. package/dist/evaluation/criteria/criteria.d.cts.map +1 -1
  63. package/dist/evaluation/criteria/criteria.d.ts.map +1 -1
  64. package/dist/index.cjs +2 -2
  65. package/dist/index.cjs.map +1 -1
  66. package/dist/index.d.cts +2 -2
  67. package/dist/index.d.ts +2 -2
  68. package/dist/index.js +3 -3
  69. package/dist/index.js.map +1 -1
  70. package/package.json +5 -5
@@ -1 +1 @@
1
- {"version":3,"file":"utils.cjs","names":["message: T","AIMessage","updatedContent: MessageContent","updatedName: string | undefined","tool: ClientTool | ServerTool","Runnable","model: LanguageModelLike","model: unknown","llm: LanguageModelLike","prompt?: Prompt","promptRunnable: Runnable","RunnableLambda","state: typeof MessagesAnnotation.State","PROMPT_RUNNABLE_NAME","SystemMessage","toolClasses: (ClientTool | ServerTool)[]","options: Partial<BaseChatModelCallOptions>","RunnableBinding","model","RunnableSequence","nextSteps: unknown[]","step: RunnableLike","MultipleToolsBoundError","messages: BaseMessage[]"],"sources":["../../src/agents/utils.ts"],"sourcesContent":["/* eslint-disable no-instanceof/no-instanceof */\nimport {\n AIMessage,\n BaseMessage,\n BaseMessageLike,\n MessageContent,\n SystemMessage,\n AIMessageChunk,\n isAIMessage,\n isAIMessageChunk,\n isBaseMessage,\n isBaseMessageChunk,\n} from \"@langchain/core/messages\";\nimport { MessagesAnnotation } from \"@langchain/langgraph\";\nimport {\n BaseChatModel,\n type BindToolsInput,\n type BaseChatModelCallOptions,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n LanguageModelLike,\n BaseLanguageModelInput,\n} from \"@langchain/core/language_models/base\";\nimport {\n Runnable,\n RunnableLike,\n RunnableConfig,\n RunnableLambda,\n RunnableSequence,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\n\nimport { MultipleToolsBoundError } from \"./errors.js\";\nimport { PROMPT_RUNNABLE_NAME } from \"./constants.js\";\nimport {\n ServerTool,\n ClientTool,\n ConfigurableModelInterface,\n Prompt,\n} from \"./types.js\";\n\nconst NAME_PATTERN = /<name>(.*?)<\\/name>/s;\nconst CONTENT_PATTERN = /<content>(.*?)<\\/content>/s;\n\nexport type AgentNameMode = \"inline\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createReactAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param message - Message to add agent name formatting to\n * @returns Message with agent name formatting\n *\n * @internal\n */\nexport function _addInlineAgentName<T extends BaseMessageLike>(\n message: T\n): T | AIMessage {\n const isAI =\n isBaseMessage(message) &&\n (isAIMessage(message) ||\n (isBaseMessageChunk(message) && isAIMessageChunk(message)));\n\n if (!isAI || !message.name) {\n return message;\n }\n\n const { name } = message;\n\n if (typeof message.content === \"string\") {\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: `<name>${name}</name><content>${message.content}</content>`,\n name: undefined,\n });\n }\n\n const updatedContent = [];\n let textBlockCount = 0;\n\n for (const contentBlock of message.content) {\n if (typeof contentBlock === \"string\") {\n textBlockCount += 1;\n updatedContent.push(\n `<name>${name}</name><content>${contentBlock}</content>`\n );\n } else if (\n typeof contentBlock === \"object\" &&\n \"type\" in contentBlock &&\n contentBlock.type === \"text\"\n ) {\n textBlockCount += 1;\n updatedContent.push({\n ...contentBlock,\n text: `<name>${name}</name><content>${contentBlock.text}</content>`,\n });\n } else {\n updatedContent.push(contentBlock);\n }\n }\n\n if (!textBlockCount) {\n updatedContent.unshift({\n type: \"text\",\n text: `<name>${name}</name><content></content>`,\n });\n }\n return new AIMessage({\n ...message.lc_kwargs,\n content: updatedContent as MessageContent,\n name: undefined,\n });\n}\n\n/**\n * Remove explicit name and content XML tags from the AI message content.\n *\n * Examples:\n *\n * @example\n * ```typescript\n * removeInlineAgentName(new AIMessage({ content: \"<name>assistant</name><content>Hello</content>\", name: \"assistant\" }))\n * // AIMessage with content: \"Hello\"\n *\n * removeInlineAgentName(new AIMessage({ content: [{type: \"text\", text: \"<name>assistant</name><content>Hello</content>\"}], name: \"assistant\" }))\n * // AIMessage with content: [{type: \"text\", text: \"Hello\"}]\n * ```\n *\n * @internal\n */\nexport function _removeInlineAgentName<T extends BaseMessage>(message: T): T {\n if (!isAIMessage(message) || !message.content) {\n return message;\n }\n\n let updatedContent: MessageContent = [];\n let updatedName: string | undefined;\n\n if (Array.isArray(message.content)) {\n updatedContent = message.content\n .filter((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n // don't include empty content blocks that were added because there was no text block to modify\n if (nameMatch && (!contentMatch || contentMatch[1] === \"\")) {\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n return false;\n }\n return true;\n }\n return true;\n })\n .map((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return block;\n }\n\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n\n return {\n ...block,\n text: contentMatch[1],\n };\n }\n return block;\n });\n } else {\n const content = message.content as string;\n const nameMatch = content.match(NAME_PATTERN);\n const contentMatch = content.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return message;\n }\n\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n // eslint-disable-next-line prefer-destructuring\n updatedContent = contentMatch[1];\n }\n\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: updatedContent,\n name: updatedName,\n }) as T;\n}\n\nexport function isClientTool(\n tool: ClientTool | ServerTool\n): tool is ClientTool {\n return Runnable.isRunnable(tool);\n}\n\nexport function isBaseChatModel(\n model: LanguageModelLike\n): model is BaseChatModel {\n return (\n \"invoke\" in model &&\n typeof model.invoke === \"function\" &&\n \"_modelType\" in model\n );\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport function isConfigurableModel(\n model: unknown\n): model is ConfigurableModelInterface {\n return (\n typeof model === \"object\" &&\n model != null &&\n \"_queuedMethodOperations\" in model &&\n \"_model\" in model &&\n typeof model._model === \"function\"\n );\n}\n\nfunction _isChatModelWithBindTools(\n llm: LanguageModelLike\n): llm is BaseChatModel & Required<Pick<BaseChatModel, \"bindTools\">> {\n if (!isBaseChatModel(llm)) return false;\n return \"bindTools\" in llm && typeof llm.bindTools === \"function\";\n}\n\nexport function getPromptRunnable(prompt?: Prompt): Runnable {\n let promptRunnable: Runnable;\n\n if (prompt == null) {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => state.messages\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"string\") {\n const systemMessage = new SystemMessage(prompt);\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => {\n return [systemMessage, ...(state.messages ?? [])];\n }\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (isBaseMessage(prompt) && prompt._getType() === \"system\") {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => [prompt, ...state.messages]\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"function\") {\n promptRunnable = RunnableLambda.from(prompt).withConfig({\n runName: PROMPT_RUNNABLE_NAME,\n });\n } else if (Runnable.isRunnable(prompt)) {\n promptRunnable = prompt;\n } else {\n throw new Error(`Got unexpected type for 'prompt': ${typeof prompt}`);\n }\n\n return promptRunnable;\n}\n\nexport async function shouldBindTools(\n llm: LanguageModelLike,\n tools: (ClientTool | ServerTool)[]\n): Promise<boolean> {\n // If model is a RunnableSequence, find a RunnableBinding or BaseChatModel in its steps\n let model = llm;\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n ) || model;\n }\n\n if (isConfigurableModel(model)) {\n model = await model._model();\n }\n\n // If not a RunnableBinding, we should bind tools\n if (!RunnableBinding.isRunnableBinding(model)) {\n return true;\n }\n\n let boundTools = (() => {\n // check if model.kwargs contain the tools key\n if (\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools)\n ) {\n return (model.kwargs.tools ?? null) as BindToolsInput[] | null;\n }\n\n // Some models can bind the tools via `withConfig()` instead of `bind()`\n if (\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools)\n ) {\n return (model.config.tools ?? null) as BindToolsInput[] | null;\n }\n\n return null;\n })();\n\n // google-style\n if (\n boundTools != null &&\n boundTools.length === 1 &&\n \"functionDeclarations\" in boundTools[0]\n ) {\n boundTools = boundTools[0].functionDeclarations;\n }\n\n // If no tools in kwargs, we should bind tools\n if (boundTools == null) return true;\n\n // Check if tools count matches\n if (tools.length !== boundTools.length) {\n throw new Error(\n \"Number of tools in the model.bindTools() and tools passed to createReactAgent must match\"\n );\n }\n\n const toolNames = new Set<string>(\n tools.flatMap((tool) => (isClientTool(tool) ? tool.name : []))\n );\n\n const boundToolNames = new Set<string>();\n\n for (const boundTool of boundTools) {\n let boundToolName: string | undefined;\n\n // OpenAI-style tool\n if (\"type\" in boundTool && boundTool.type === \"function\") {\n boundToolName = boundTool.function.name;\n }\n // Anthropic or Google-style tool\n else if (\"name\" in boundTool) {\n boundToolName = boundTool.name;\n }\n // Bedrock-style tool\n else if (\"toolSpec\" in boundTool && \"name\" in boundTool.toolSpec) {\n boundToolName = boundTool.toolSpec.name;\n }\n // unknown tool type so we'll ignore it\n else {\n continue;\n }\n\n if (boundToolName) {\n boundToolNames.add(boundToolName);\n }\n }\n\n const missingTools = [...toolNames].filter((x) => !boundToolNames.has(x));\n if (missingTools.length > 0) {\n throw new Error(\n `Missing tools '${missingTools}' in the model.bindTools().` +\n `Tools in the model.bindTools() must match the tools passed to createReactAgent.`\n );\n }\n\n return false;\n}\n\nconst _simpleBindTools = (\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n) => {\n if (_isChatModelWithBindTools(llm)) {\n return llm.bindTools(toolClasses, options);\n }\n\n if (\n RunnableBinding.isRunnableBinding(llm) &&\n _isChatModelWithBindTools(llm.bound)\n ) {\n const newBound = llm.bound.bindTools(toolClasses, options);\n\n if (RunnableBinding.isRunnableBinding(newBound)) {\n return new RunnableBinding({\n bound: newBound.bound,\n config: { ...llm.config, ...newBound.config },\n kwargs: { ...llm.kwargs, ...newBound.kwargs },\n configFactories: newBound.configFactories ?? llm.configFactories,\n });\n }\n\n return new RunnableBinding({\n bound: newBound,\n config: llm.config,\n kwargs: llm.kwargs,\n configFactories: llm.configFactories,\n });\n }\n\n return null;\n};\n\nexport async function bindTools(\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n): Promise<\n | RunnableSequence<any, any>\n | RunnableBinding<any, any, RunnableConfig<Record<string, any>>>\n | Runnable<BaseLanguageModelInput, AIMessageChunk, BaseChatModelCallOptions>\n> {\n const model = _simpleBindTools(llm, toolClasses, options);\n if (model) return model;\n\n if (isConfigurableModel(llm)) {\n const model = _simpleBindTools(await llm._model(), toolClasses, options);\n if (model) return model;\n }\n\n if (RunnableSequence.isRunnableSequence(llm)) {\n const modelStep = llm.steps.findIndex(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n );\n\n if (modelStep >= 0) {\n const model = _simpleBindTools(\n llm.steps[modelStep],\n toolClasses,\n options\n );\n if (model) {\n const nextSteps: unknown[] = llm.steps.slice();\n nextSteps.splice(modelStep, 1, model);\n\n return RunnableSequence.from(\n nextSteps as [RunnableLike, ...RunnableLike[], RunnableLike]\n );\n }\n }\n }\n\n throw new Error(`llm ${llm} must define bindTools method.`);\n}\n\n/**\n * Check if the LLM already has bound tools and throw if it does.\n *\n * @param llm - The LLM to check.\n * @returns void\n */\nexport function validateLLMHasNoBoundTools(llm: LanguageModelLike): void {\n /**\n * If llm is a function, we can't validate until runtime, so skip\n */\n if (typeof llm === \"function\") {\n return;\n }\n\n let model = llm;\n\n /**\n * If model is a RunnableSequence, find a RunnableBinding in its steps\n */\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find((step: RunnableLike) =>\n RunnableBinding.isRunnableBinding(step)\n ) || model;\n }\n\n /**\n * If model is configurable, get the underlying model\n */\n if (isConfigurableModel(model)) {\n /**\n * Can't validate async model retrieval in constructor\n */\n return;\n }\n\n /**\n * Check if model is a RunnableBinding with bound tools\n */\n if (RunnableBinding.isRunnableBinding(model)) {\n const hasToolsInKwargs =\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools) &&\n model.kwargs.tools.length > 0;\n\n const hasToolsInConfig =\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools) &&\n model.config.tools.length > 0;\n\n if (hasToolsInKwargs || hasToolsInConfig) {\n throw new MultipleToolsBoundError();\n }\n }\n\n /**\n * Also check if model has tools property directly (e.g., FakeToolCallingModel)\n */\n if (\n \"tools\" in model &&\n model.tools !== undefined &&\n Array.isArray(model.tools) &&\n model.tools.length > 0\n ) {\n throw new MultipleToolsBoundError();\n }\n}\n\n/**\n * Check if the last message in the messages array has tool calls.\n *\n * @param messages - The messages to check.\n * @returns True if the last message has tool calls, false otherwise.\n */\nexport function hasToolCalls(messages: BaseMessage[]): boolean {\n const lastMessage = messages.at(-1);\n return Boolean(\n lastMessage instanceof AIMessage &&\n lastMessage.tool_calls &&\n lastMessage.tool_calls.length > 0\n );\n}\n\n/**\n * Check if the model name supports structured output\n * @param modelName - The name of the model\n * @returns True if the model supports structured output, false otherwise\n */\nexport function hasSupportForStructuredOutput(modelName?: string): boolean {\n return (\n modelName?.startsWith(\"gpt-4\") || modelName?.startsWith(\"gpt-5\") || false\n );\n}\n\nconst CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT = [\n \"ChatOpenAI\",\n \"FakeToolCallingModel\",\n];\n\n/**\n * Identifies the models that support JSON schema output\n * @param model - The model to check\n * @returns True if the model supports JSON schema output, false otherwise\n */\nexport function hasSupportForJsonSchemaOutput(\n model: LanguageModelLike\n): boolean {\n if (!isBaseChatModel(model)) {\n return false;\n }\n\n const chatModelClass = model.getName();\n if (\n CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT.includes(chatModelClass) &&\n ((chatModelClass === \"ChatOpenAI\" &&\n /**\n * OpenAI models\n */\n \"model\" in model &&\n typeof model.model === \"string\" &&\n model.model.startsWith(\"gpt-4\")) ||\n /**\n * for testing purposes only\n */\n (chatModelClass === \"FakeToolCallingModel\" &&\n \"structuredResponse\" in model))\n ) {\n return true;\n }\n\n return false;\n}\n"],"mappings":";;;;;;;AAyCA,MAAM,eAAe;AACrB,MAAM,kBAAkB;;;;;;;;;;;;;;;AAkBxB,SAAgB,oBACdA,SACe;CACf,MAAM,oDACU,QAAQ,gDACT,QAAQ,sDACC,QAAQ,oDAAqB,QAAQ;AAE7D,KAAI,CAAC,QAAQ,CAAC,QAAQ,KACpB,QAAO;CAGT,MAAM,EAAE,MAAM,GAAG;AAEjB,KAAI,OAAO,QAAQ,YAAY,SAC7B,QAAO,IAAIC,oCAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,QAAQ,QAAQ,UAAU,CAAC;EACpE,MAAM;CACP;CAGH,MAAM,iBAAiB,CAAE;CACzB,IAAI,iBAAiB;AAErB,MAAK,MAAM,gBAAgB,QAAQ,QACjC,KAAI,OAAO,iBAAiB,UAAU;EACpC,kBAAkB;EAClB,eAAe,KACb,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,UAAU,CAAC,CACzD;CACF,WACC,OAAO,iBAAiB,YACxB,UAAU,gBACV,aAAa,SAAS,QACtB;EACA,kBAAkB;EAClB,eAAe,KAAK;GAClB,GAAG;GACH,MAAM,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,KAAK,UAAU,CAAC;EACpE,EAAC;CACH,OACC,eAAe,KAAK,aAAa;AAIrC,KAAI,CAAC,gBACH,eAAe,QAAQ;EACrB,MAAM;EACN,MAAM,CAAC,MAAM,EAAE,KAAK,0BAA0B,CAAC;CAChD,EAAC;AAEJ,QAAO,IAAIA,oCAAU;EACnB,GAAG,QAAQ;EACX,SAAS;EACT,MAAM;CACP;AACF;;;;;;;;;;;;;;;;;AAkBD,SAAgB,uBAA8CD,SAAe;AAC3E,KAAI,4CAAa,QAAQ,IAAI,CAAC,QAAQ,QACpC,QAAO;CAGT,IAAIE,iBAAiC,CAAE;CACvC,IAAIC;AAEJ,KAAI,MAAM,QAAQ,QAAQ,QAAQ,EAChC,iBAAiB,QAAQ,QACtB,OAAO,CAAC,UAAU;AACjB,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,cAAc,CAAC,gBAAgB,aAAa,OAAO,KAAK;IAG1D,cAAc,UAAU;AACxB,WAAO;GACR;AACD,UAAO;EACR;AACD,SAAO;CACR,EAAC,CACD,IAAI,CAAC,UAAU;AACd,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,CAAC,aAAa,CAAC,aACjB,QAAO;GAKT,cAAc,UAAU;AAExB,UAAO;IACL,GAAG;IACH,MAAM,aAAa;GACpB;EACF;AACD,SAAO;CACR,EAAC;MACC;EACL,MAAM,UAAU,QAAQ;EACxB,MAAM,YAAY,QAAQ,MAAM,aAAa;EAC7C,MAAM,eAAe,QAAQ,MAAM,gBAAgB;AAEnD,MAAI,CAAC,aAAa,CAAC,aACjB,QAAO;EAIT,cAAc,UAAU;EAExB,iBAAiB,aAAa;CAC/B;AAED,QAAO,IAAIF,oCAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS;EACT,MAAM;CACP;AACF;AAED,SAAgB,aACdG,MACoB;AACpB,QAAOC,oCAAS,WAAW,KAAK;AACjC;AAED,SAAgB,gBACdC,OACwB;AACxB,QACE,YAAY,SACZ,OAAO,MAAM,WAAW,cACxB,gBAAgB;AAEnB;AAGD,SAAgB,oBACdC,OACqC;AACrC,QACE,OAAO,UAAU,YACjB,SAAS,QACT,6BAA6B,SAC7B,YAAY,SACZ,OAAO,MAAM,WAAW;AAE3B;AAED,SAAS,0BACPC,KACmE;AACnE,KAAI,CAAC,gBAAgB,IAAI,CAAE,QAAO;AAClC,QAAO,eAAe,OAAO,OAAO,IAAI,cAAc;AACvD;AAED,SAAgB,kBAAkBC,QAA2B;CAC3D,IAAIC;AAEJ,KAAI,UAAU,MACZ,iBAAiBC,0CAAe,KAC9B,CAACC,UAA2C,MAAM,SACnD,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;UACtC,OAAO,WAAW,UAAU;EACrC,MAAM,gBAAgB,IAAIC,wCAAc;EACxC,iBAAiBH,0CAAe,KAC9B,CAACC,UAA2C;AAC1C,UAAO,CAAC,eAAe,GAAI,MAAM,YAAY,CAAE,CAAE;EAClD,EACF,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;CAChD,wDAAwB,OAAO,IAAI,OAAO,UAAU,KAAK,UACxD,iBAAiBF,0CAAe,KAC9B,CAACC,UAA2C,CAAC,QAAQ,GAAG,MAAM,QAAS,EACxE,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;UACtC,OAAO,WAAW,YAC3B,iBAAiBF,0CAAe,KAAK,OAAO,CAAC,WAAW,EACtD,SAASE,uCACV,EAAC;UACOR,oCAAS,WAAW,OAAO,EACpC,iBAAiB;KAEjB,OAAM,IAAI,MAAM,CAAC,kCAAkC,EAAE,OAAO,QAAQ;AAGtE,QAAO;AACR;AAgHD,MAAM,mBAAmB,CACvBG,KACAO,aACAC,UAA6C,CAAE,MAC5C;AACH,KAAI,0BAA0B,IAAI,CAChC,QAAO,IAAI,UAAU,aAAa,QAAQ;AAG5C,KACEC,2CAAgB,kBAAkB,IAAI,IACtC,0BAA0B,IAAI,MAAM,EACpC;EACA,MAAM,WAAW,IAAI,MAAM,UAAU,aAAa,QAAQ;AAE1D,MAAIA,2CAAgB,kBAAkB,SAAS,CAC7C,QAAO,IAAIA,2CAAgB;GACzB,OAAO,SAAS;GAChB,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,iBAAiB,SAAS,mBAAmB,IAAI;EAClD;AAGH,SAAO,IAAIA,2CAAgB;GACzB,OAAO;GACP,QAAQ,IAAI;GACZ,QAAQ,IAAI;GACZ,iBAAiB,IAAI;EACtB;CACF;AAED,QAAO;AACR;AAED,eAAsB,UACpBT,KACAO,aACAC,UAA6C,CAAE,GAK/C;CACA,MAAM,QAAQ,iBAAiB,KAAK,aAAa,QAAQ;AACzD,KAAI,MAAO,QAAO;AAElB,KAAI,oBAAoB,IAAI,EAAE;EAC5B,MAAME,UAAQ,iBAAiB,MAAM,IAAI,QAAQ,EAAE,aAAa,QAAQ;AACxE,MAAIA,QAAO,QAAOA;CACnB;AAED,KAAIC,4CAAiB,mBAAmB,IAAI,EAAE;EAC5C,MAAM,YAAY,IAAI,MAAM,UAC1B,CAAC,SACCF,2CAAgB,kBAAkB,KAAK,IACvC,gBAAgB,KAAK,IACrB,oBAAoB,KAAK,CAC5B;AAED,MAAI,aAAa,GAAG;GAClB,MAAMC,UAAQ,iBACZ,IAAI,MAAM,YACV,aACA,QACD;AACD,OAAIA,SAAO;IACT,MAAME,YAAuB,IAAI,MAAM,OAAO;IAC9C,UAAU,OAAO,WAAW,GAAGF,QAAM;AAErC,WAAOC,4CAAiB,KACtB,UACD;GACF;EACF;CACF;AAED,OAAM,IAAI,MAAM,CAAC,IAAI,EAAE,IAAI,8BAA8B,CAAC;AAC3D;;;;;;;AAQD,SAAgB,2BAA2BX,KAA8B;;;;AAIvE,KAAI,OAAO,QAAQ,WACjB;CAGF,IAAI,QAAQ;;;;AAKZ,KAAIW,4CAAiB,mBAAmB,MAAM,EAC5C,QACE,MAAM,MAAM,KAAK,CAACE,SAChBJ,2CAAgB,kBAAkB,KAAK,CACxC,IAAI;;;;AAMT,KAAI,oBAAoB,MAAM;;;;AAI5B;;;;AAMF,KAAIA,2CAAgB,kBAAkB,MAAM,EAAE;EAC5C,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;EAE9B,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;AAE9B,MAAI,oBAAoB,iBACtB,OAAM,IAAIK;CAEb;;;;AAKD,KACE,WAAW,SACX,MAAM,UAAU,UAChB,MAAM,QAAQ,MAAM,MAAM,IAC1B,MAAM,MAAM,SAAS,EAErB,OAAM,IAAIA;AAEb;;;;;;;AAQD,SAAgB,aAAaC,UAAkC;CAC7D,MAAM,cAAc,SAAS,GAAG,GAAG;AACnC,QAAO,QACL,uBAAuBtB,uCACrB,YAAY,cACZ,YAAY,WAAW,SAAS,EACnC;AACF;AAaD,MAAM,8CAA8C,CAClD,cACA,sBACD;;;;;;AAOD,SAAgB,8BACdK,OACS;AACT,KAAI,CAAC,gBAAgB,MAAM,CACzB,QAAO;CAGT,MAAM,iBAAiB,MAAM,SAAS;AACtC,KACE,4CAA4C,SAAS,eAAe,KAClE,mBAAmB,gBAInB,WAAW,SACX,OAAO,MAAM,UAAU,YACvB,MAAM,MAAM,WAAW,QAAQ,IAI9B,mBAAmB,0BAClB,wBAAwB,OAE5B,QAAO;AAGT,QAAO;AACR"}
1
+ {"version":3,"file":"utils.cjs","names":["message: T","AIMessage","updatedContent: MessageContent","updatedName: string | undefined","tool: ClientTool | ServerTool","Runnable","model: LanguageModelLike","model: unknown","llm: LanguageModelLike","prompt?: Prompt","promptRunnable: Runnable","RunnableLambda","state: typeof MessagesAnnotation.State","PROMPT_RUNNABLE_NAME","SystemMessage","toolClasses: (ClientTool | ServerTool)[]","options: Partial<BaseChatModelCallOptions>","RunnableBinding","model","RunnableSequence","nextSteps: unknown[]","step: RunnableLike","MultipleToolsBoundError","messages: BaseMessage[]"],"sources":["../../src/agents/utils.ts"],"sourcesContent":["/* eslint-disable no-instanceof/no-instanceof */\nimport {\n AIMessage,\n BaseMessage,\n BaseMessageLike,\n MessageContent,\n SystemMessage,\n AIMessageChunk,\n isAIMessage,\n isAIMessageChunk,\n isBaseMessage,\n isBaseMessageChunk,\n} from \"@langchain/core/messages\";\nimport { MessagesAnnotation } from \"@langchain/langgraph\";\nimport {\n BaseChatModel,\n type BindToolsInput,\n type BaseChatModelCallOptions,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n LanguageModelLike,\n BaseLanguageModelInput,\n} from \"@langchain/core/language_models/base\";\nimport {\n Runnable,\n RunnableLike,\n RunnableConfig,\n RunnableLambda,\n RunnableSequence,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\n\nimport { MultipleToolsBoundError } from \"./errors.js\";\nimport { PROMPT_RUNNABLE_NAME } from \"./constants.js\";\nimport {\n ServerTool,\n ClientTool,\n ConfigurableModelInterface,\n Prompt,\n} from \"./types.js\";\n\nconst NAME_PATTERN = /<name>(.*?)<\\/name>/s;\nconst CONTENT_PATTERN = /<content>(.*?)<\\/content>/s;\n\nexport type AgentNameMode = \"inline\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param message - Message to add agent name formatting to\n * @returns Message with agent name formatting\n *\n * @internal\n */\nexport function _addInlineAgentName<T extends BaseMessageLike>(\n message: T\n): T | AIMessage {\n const isAI =\n isBaseMessage(message) &&\n (isAIMessage(message) ||\n (isBaseMessageChunk(message) && isAIMessageChunk(message)));\n\n if (!isAI || !message.name) {\n return message;\n }\n\n const { name } = message;\n\n if (typeof message.content === \"string\") {\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: `<name>${name}</name><content>${message.content}</content>`,\n name: undefined,\n });\n }\n\n const updatedContent = [];\n let textBlockCount = 0;\n\n for (const contentBlock of message.content) {\n if (typeof contentBlock === \"string\") {\n textBlockCount += 1;\n updatedContent.push(\n `<name>${name}</name><content>${contentBlock}</content>`\n );\n } else if (\n typeof contentBlock === \"object\" &&\n \"type\" in contentBlock &&\n contentBlock.type === \"text\"\n ) {\n textBlockCount += 1;\n updatedContent.push({\n ...contentBlock,\n text: `<name>${name}</name><content>${contentBlock.text}</content>`,\n });\n } else {\n updatedContent.push(contentBlock);\n }\n }\n\n if (!textBlockCount) {\n updatedContent.unshift({\n type: \"text\",\n text: `<name>${name}</name><content></content>`,\n });\n }\n return new AIMessage({\n ...message.lc_kwargs,\n content: updatedContent as MessageContent,\n name: undefined,\n });\n}\n\n/**\n * Remove explicit name and content XML tags from the AI message content.\n *\n * Examples:\n *\n * @example\n * ```typescript\n * removeInlineAgentName(new AIMessage({ content: \"<name>assistant</name><content>Hello</content>\", name: \"assistant\" }))\n * // AIMessage with content: \"Hello\"\n *\n * removeInlineAgentName(new AIMessage({ content: [{type: \"text\", text: \"<name>assistant</name><content>Hello</content>\"}], name: \"assistant\" }))\n * // AIMessage with content: [{type: \"text\", text: \"Hello\"}]\n * ```\n *\n * @internal\n */\nexport function _removeInlineAgentName<T extends BaseMessage>(message: T): T {\n if (!isAIMessage(message) || !message.content) {\n return message;\n }\n\n let updatedContent: MessageContent = [];\n let updatedName: string | undefined;\n\n if (Array.isArray(message.content)) {\n updatedContent = message.content\n .filter((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n // don't include empty content blocks that were added because there was no text block to modify\n if (nameMatch && (!contentMatch || contentMatch[1] === \"\")) {\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n return false;\n }\n return true;\n }\n return true;\n })\n .map((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return block;\n }\n\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n\n return {\n ...block,\n text: contentMatch[1],\n };\n }\n return block;\n });\n } else {\n const content = message.content as string;\n const nameMatch = content.match(NAME_PATTERN);\n const contentMatch = content.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return message;\n }\n\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n // eslint-disable-next-line prefer-destructuring\n updatedContent = contentMatch[1];\n }\n\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: updatedContent,\n name: updatedName,\n }) as T;\n}\n\nexport function isClientTool(\n tool: ClientTool | ServerTool\n): tool is ClientTool {\n return Runnable.isRunnable(tool);\n}\n\nexport function isBaseChatModel(\n model: LanguageModelLike\n): model is BaseChatModel {\n return (\n \"invoke\" in model &&\n typeof model.invoke === \"function\" &&\n \"_modelType\" in model\n );\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport function isConfigurableModel(\n model: unknown\n): model is ConfigurableModelInterface {\n return (\n typeof model === \"object\" &&\n model != null &&\n \"_queuedMethodOperations\" in model &&\n \"_model\" in model &&\n typeof model._model === \"function\"\n );\n}\n\nfunction _isChatModelWithBindTools(\n llm: LanguageModelLike\n): llm is BaseChatModel & Required<Pick<BaseChatModel, \"bindTools\">> {\n if (!isBaseChatModel(llm)) return false;\n return \"bindTools\" in llm && typeof llm.bindTools === \"function\";\n}\n\nexport function getPromptRunnable(prompt?: Prompt): Runnable {\n let promptRunnable: Runnable;\n\n if (prompt == null) {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => state.messages\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"string\") {\n const systemMessage = new SystemMessage(prompt);\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => {\n return [systemMessage, ...(state.messages ?? [])];\n }\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (isBaseMessage(prompt) && prompt._getType() === \"system\") {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => [prompt, ...state.messages]\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"function\") {\n promptRunnable = RunnableLambda.from(prompt).withConfig({\n runName: PROMPT_RUNNABLE_NAME,\n });\n } else if (Runnable.isRunnable(prompt)) {\n promptRunnable = prompt;\n } else {\n throw new Error(`Got unexpected type for 'prompt': ${typeof prompt}`);\n }\n\n return promptRunnable;\n}\n\nexport async function shouldBindTools(\n llm: LanguageModelLike,\n tools: (ClientTool | ServerTool)[]\n): Promise<boolean> {\n // If model is a RunnableSequence, find a RunnableBinding or BaseChatModel in its steps\n let model = llm;\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n ) || model;\n }\n\n if (isConfigurableModel(model)) {\n model = await model._model();\n }\n\n // If not a RunnableBinding, we should bind tools\n if (!RunnableBinding.isRunnableBinding(model)) {\n return true;\n }\n\n let boundTools = (() => {\n // check if model.kwargs contain the tools key\n if (\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools)\n ) {\n return (model.kwargs.tools ?? null) as BindToolsInput[] | null;\n }\n\n // Some models can bind the tools via `withConfig()` instead of `bind()`\n if (\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools)\n ) {\n return (model.config.tools ?? null) as BindToolsInput[] | null;\n }\n\n return null;\n })();\n\n // google-style\n if (\n boundTools != null &&\n boundTools.length === 1 &&\n \"functionDeclarations\" in boundTools[0]\n ) {\n boundTools = boundTools[0].functionDeclarations;\n }\n\n // If no tools in kwargs, we should bind tools\n if (boundTools == null) return true;\n\n // Check if tools count matches\n if (tools.length !== boundTools.length) {\n throw new Error(\n \"Number of tools in the model.bindTools() and tools passed to createAgent must match\"\n );\n }\n\n const toolNames = new Set<string>(\n tools.flatMap((tool) => (isClientTool(tool) ? tool.name : []))\n );\n\n const boundToolNames = new Set<string>();\n\n for (const boundTool of boundTools) {\n let boundToolName: string | undefined;\n\n // OpenAI-style tool\n if (\"type\" in boundTool && boundTool.type === \"function\") {\n boundToolName = boundTool.function.name;\n }\n // Anthropic or Google-style tool\n else if (\"name\" in boundTool) {\n boundToolName = boundTool.name;\n }\n // Bedrock-style tool\n else if (\"toolSpec\" in boundTool && \"name\" in boundTool.toolSpec) {\n boundToolName = boundTool.toolSpec.name;\n }\n // unknown tool type so we'll ignore it\n else {\n continue;\n }\n\n if (boundToolName) {\n boundToolNames.add(boundToolName);\n }\n }\n\n const missingTools = [...toolNames].filter((x) => !boundToolNames.has(x));\n if (missingTools.length > 0) {\n throw new Error(\n `Missing tools '${missingTools}' in the model.bindTools().` +\n `Tools in the model.bindTools() must match the tools passed to createAgent.`\n );\n }\n\n return false;\n}\n\nconst _simpleBindTools = (\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n) => {\n if (_isChatModelWithBindTools(llm)) {\n return llm.bindTools(toolClasses, options);\n }\n\n if (\n RunnableBinding.isRunnableBinding(llm) &&\n _isChatModelWithBindTools(llm.bound)\n ) {\n const newBound = llm.bound.bindTools(toolClasses, options);\n\n if (RunnableBinding.isRunnableBinding(newBound)) {\n return new RunnableBinding({\n bound: newBound.bound,\n config: { ...llm.config, ...newBound.config },\n kwargs: { ...llm.kwargs, ...newBound.kwargs },\n configFactories: newBound.configFactories ?? llm.configFactories,\n });\n }\n\n return new RunnableBinding({\n bound: newBound,\n config: llm.config,\n kwargs: llm.kwargs,\n configFactories: llm.configFactories,\n });\n }\n\n return null;\n};\n\nexport async function bindTools(\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n): Promise<\n | RunnableSequence<any, any>\n | RunnableBinding<any, any, RunnableConfig<Record<string, any>>>\n | Runnable<BaseLanguageModelInput, AIMessageChunk, BaseChatModelCallOptions>\n> {\n const model = _simpleBindTools(llm, toolClasses, options);\n if (model) return model;\n\n if (isConfigurableModel(llm)) {\n const model = _simpleBindTools(await llm._model(), toolClasses, options);\n if (model) return model;\n }\n\n if (RunnableSequence.isRunnableSequence(llm)) {\n const modelStep = llm.steps.findIndex(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n );\n\n if (modelStep >= 0) {\n const model = _simpleBindTools(\n llm.steps[modelStep],\n toolClasses,\n options\n );\n if (model) {\n const nextSteps: unknown[] = llm.steps.slice();\n nextSteps.splice(modelStep, 1, model);\n\n return RunnableSequence.from(\n nextSteps as [RunnableLike, ...RunnableLike[], RunnableLike]\n );\n }\n }\n }\n\n throw new Error(`llm ${llm} must define bindTools method.`);\n}\n\n/**\n * Check if the LLM already has bound tools and throw if it does.\n *\n * @param llm - The LLM to check.\n * @returns void\n */\nexport function validateLLMHasNoBoundTools(llm: LanguageModelLike): void {\n /**\n * If llm is a function, we can't validate until runtime, so skip\n */\n if (typeof llm === \"function\") {\n return;\n }\n\n let model = llm;\n\n /**\n * If model is a RunnableSequence, find a RunnableBinding in its steps\n */\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find((step: RunnableLike) =>\n RunnableBinding.isRunnableBinding(step)\n ) || model;\n }\n\n /**\n * If model is configurable, get the underlying model\n */\n if (isConfigurableModel(model)) {\n /**\n * Can't validate async model retrieval in constructor\n */\n return;\n }\n\n /**\n * Check if model is a RunnableBinding with bound tools\n */\n if (RunnableBinding.isRunnableBinding(model)) {\n const hasToolsInKwargs =\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools) &&\n model.kwargs.tools.length > 0;\n\n const hasToolsInConfig =\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools) &&\n model.config.tools.length > 0;\n\n if (hasToolsInKwargs || hasToolsInConfig) {\n throw new MultipleToolsBoundError();\n }\n }\n\n /**\n * Also check if model has tools property directly (e.g., FakeToolCallingModel)\n */\n if (\n \"tools\" in model &&\n model.tools !== undefined &&\n Array.isArray(model.tools) &&\n model.tools.length > 0\n ) {\n throw new MultipleToolsBoundError();\n }\n}\n\n/**\n * Check if the last message in the messages array has tool calls.\n *\n * @param messages - The messages to check.\n * @returns True if the last message has tool calls, false otherwise.\n */\nexport function hasToolCalls(messages: BaseMessage[]): boolean {\n const lastMessage = messages.at(-1);\n return Boolean(\n lastMessage instanceof AIMessage &&\n lastMessage.tool_calls &&\n lastMessage.tool_calls.length > 0\n );\n}\n\n/**\n * Check if the model name supports structured output\n * @param modelName - The name of the model\n * @returns True if the model supports structured output, false otherwise\n */\nexport function hasSupportForStructuredOutput(modelName?: string): boolean {\n return (\n modelName?.startsWith(\"gpt-4\") || modelName?.startsWith(\"gpt-5\") || false\n );\n}\n\nconst CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT = [\n \"ChatOpenAI\",\n \"FakeToolCallingModel\",\n];\n\n/**\n * Identifies the models that support JSON schema output\n * @param model - The model to check\n * @returns True if the model supports JSON schema output, false otherwise\n */\nexport function hasSupportForJsonSchemaOutput(\n model: LanguageModelLike\n): boolean {\n if (!isBaseChatModel(model)) {\n return false;\n }\n\n const chatModelClass = model.getName();\n if (\n CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT.includes(chatModelClass) &&\n ((chatModelClass === \"ChatOpenAI\" &&\n /**\n * OpenAI models\n */\n \"model\" in model &&\n typeof model.model === \"string\" &&\n model.model.startsWith(\"gpt-4\")) ||\n /**\n * for testing purposes only\n */\n (chatModelClass === \"FakeToolCallingModel\" &&\n \"structuredResponse\" in model))\n ) {\n return true;\n }\n\n return false;\n}\n"],"mappings":";;;;;;;AAyCA,MAAM,eAAe;AACrB,MAAM,kBAAkB;;;;;;;;;;;;;;;AAkBxB,SAAgB,oBACdA,SACe;CACf,MAAM,oDACU,QAAQ,gDACT,QAAQ,sDACC,QAAQ,oDAAqB,QAAQ;AAE7D,KAAI,CAAC,QAAQ,CAAC,QAAQ,KACpB,QAAO;CAGT,MAAM,EAAE,MAAM,GAAG;AAEjB,KAAI,OAAO,QAAQ,YAAY,SAC7B,QAAO,IAAIC,oCAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,QAAQ,QAAQ,UAAU,CAAC;EACpE,MAAM;CACP;CAGH,MAAM,iBAAiB,CAAE;CACzB,IAAI,iBAAiB;AAErB,MAAK,MAAM,gBAAgB,QAAQ,QACjC,KAAI,OAAO,iBAAiB,UAAU;EACpC,kBAAkB;EAClB,eAAe,KACb,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,UAAU,CAAC,CACzD;CACF,WACC,OAAO,iBAAiB,YACxB,UAAU,gBACV,aAAa,SAAS,QACtB;EACA,kBAAkB;EAClB,eAAe,KAAK;GAClB,GAAG;GACH,MAAM,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,KAAK,UAAU,CAAC;EACpE,EAAC;CACH,OACC,eAAe,KAAK,aAAa;AAIrC,KAAI,CAAC,gBACH,eAAe,QAAQ;EACrB,MAAM;EACN,MAAM,CAAC,MAAM,EAAE,KAAK,0BAA0B,CAAC;CAChD,EAAC;AAEJ,QAAO,IAAIA,oCAAU;EACnB,GAAG,QAAQ;EACX,SAAS;EACT,MAAM;CACP;AACF;;;;;;;;;;;;;;;;;AAkBD,SAAgB,uBAA8CD,SAAe;AAC3E,KAAI,4CAAa,QAAQ,IAAI,CAAC,QAAQ,QACpC,QAAO;CAGT,IAAIE,iBAAiC,CAAE;CACvC,IAAIC;AAEJ,KAAI,MAAM,QAAQ,QAAQ,QAAQ,EAChC,iBAAiB,QAAQ,QACtB,OAAO,CAAC,UAAU;AACjB,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,cAAc,CAAC,gBAAgB,aAAa,OAAO,KAAK;IAG1D,cAAc,UAAU;AACxB,WAAO;GACR;AACD,UAAO;EACR;AACD,SAAO;CACR,EAAC,CACD,IAAI,CAAC,UAAU;AACd,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,CAAC,aAAa,CAAC,aACjB,QAAO;GAKT,cAAc,UAAU;AAExB,UAAO;IACL,GAAG;IACH,MAAM,aAAa;GACpB;EACF;AACD,SAAO;CACR,EAAC;MACC;EACL,MAAM,UAAU,QAAQ;EACxB,MAAM,YAAY,QAAQ,MAAM,aAAa;EAC7C,MAAM,eAAe,QAAQ,MAAM,gBAAgB;AAEnD,MAAI,CAAC,aAAa,CAAC,aACjB,QAAO;EAIT,cAAc,UAAU;EAExB,iBAAiB,aAAa;CAC/B;AAED,QAAO,IAAIF,oCAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS;EACT,MAAM;CACP;AACF;AAED,SAAgB,aACdG,MACoB;AACpB,QAAOC,oCAAS,WAAW,KAAK;AACjC;AAED,SAAgB,gBACdC,OACwB;AACxB,QACE,YAAY,SACZ,OAAO,MAAM,WAAW,cACxB,gBAAgB;AAEnB;AAGD,SAAgB,oBACdC,OACqC;AACrC,QACE,OAAO,UAAU,YACjB,SAAS,QACT,6BAA6B,SAC7B,YAAY,SACZ,OAAO,MAAM,WAAW;AAE3B;AAED,SAAS,0BACPC,KACmE;AACnE,KAAI,CAAC,gBAAgB,IAAI,CAAE,QAAO;AAClC,QAAO,eAAe,OAAO,OAAO,IAAI,cAAc;AACvD;AAED,SAAgB,kBAAkBC,QAA2B;CAC3D,IAAIC;AAEJ,KAAI,UAAU,MACZ,iBAAiBC,0CAAe,KAC9B,CAACC,UAA2C,MAAM,SACnD,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;UACtC,OAAO,WAAW,UAAU;EACrC,MAAM,gBAAgB,IAAIC,wCAAc;EACxC,iBAAiBH,0CAAe,KAC9B,CAACC,UAA2C;AAC1C,UAAO,CAAC,eAAe,GAAI,MAAM,YAAY,CAAE,CAAE;EAClD,EACF,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;CAChD,wDAAwB,OAAO,IAAI,OAAO,UAAU,KAAK,UACxD,iBAAiBF,0CAAe,KAC9B,CAACC,UAA2C,CAAC,QAAQ,GAAG,MAAM,QAAS,EACxE,CAAC,WAAW,EAAE,SAASC,uCAAsB,EAAC;UACtC,OAAO,WAAW,YAC3B,iBAAiBF,0CAAe,KAAK,OAAO,CAAC,WAAW,EACtD,SAASE,uCACV,EAAC;UACOR,oCAAS,WAAW,OAAO,EACpC,iBAAiB;KAEjB,OAAM,IAAI,MAAM,CAAC,kCAAkC,EAAE,OAAO,QAAQ;AAGtE,QAAO;AACR;AAgHD,MAAM,mBAAmB,CACvBG,KACAO,aACAC,UAA6C,CAAE,MAC5C;AACH,KAAI,0BAA0B,IAAI,CAChC,QAAO,IAAI,UAAU,aAAa,QAAQ;AAG5C,KACEC,2CAAgB,kBAAkB,IAAI,IACtC,0BAA0B,IAAI,MAAM,EACpC;EACA,MAAM,WAAW,IAAI,MAAM,UAAU,aAAa,QAAQ;AAE1D,MAAIA,2CAAgB,kBAAkB,SAAS,CAC7C,QAAO,IAAIA,2CAAgB;GACzB,OAAO,SAAS;GAChB,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,iBAAiB,SAAS,mBAAmB,IAAI;EAClD;AAGH,SAAO,IAAIA,2CAAgB;GACzB,OAAO;GACP,QAAQ,IAAI;GACZ,QAAQ,IAAI;GACZ,iBAAiB,IAAI;EACtB;CACF;AAED,QAAO;AACR;AAED,eAAsB,UACpBT,KACAO,aACAC,UAA6C,CAAE,GAK/C;CACA,MAAM,QAAQ,iBAAiB,KAAK,aAAa,QAAQ;AACzD,KAAI,MAAO,QAAO;AAElB,KAAI,oBAAoB,IAAI,EAAE;EAC5B,MAAME,UAAQ,iBAAiB,MAAM,IAAI,QAAQ,EAAE,aAAa,QAAQ;AACxE,MAAIA,QAAO,QAAOA;CACnB;AAED,KAAIC,4CAAiB,mBAAmB,IAAI,EAAE;EAC5C,MAAM,YAAY,IAAI,MAAM,UAC1B,CAAC,SACCF,2CAAgB,kBAAkB,KAAK,IACvC,gBAAgB,KAAK,IACrB,oBAAoB,KAAK,CAC5B;AAED,MAAI,aAAa,GAAG;GAClB,MAAMC,UAAQ,iBACZ,IAAI,MAAM,YACV,aACA,QACD;AACD,OAAIA,SAAO;IACT,MAAME,YAAuB,IAAI,MAAM,OAAO;IAC9C,UAAU,OAAO,WAAW,GAAGF,QAAM;AAErC,WAAOC,4CAAiB,KACtB,UACD;GACF;EACF;CACF;AAED,OAAM,IAAI,MAAM,CAAC,IAAI,EAAE,IAAI,8BAA8B,CAAC;AAC3D;;;;;;;AAQD,SAAgB,2BAA2BX,KAA8B;;;;AAIvE,KAAI,OAAO,QAAQ,WACjB;CAGF,IAAI,QAAQ;;;;AAKZ,KAAIW,4CAAiB,mBAAmB,MAAM,EAC5C,QACE,MAAM,MAAM,KAAK,CAACE,SAChBJ,2CAAgB,kBAAkB,KAAK,CACxC,IAAI;;;;AAMT,KAAI,oBAAoB,MAAM;;;;AAI5B;;;;AAMF,KAAIA,2CAAgB,kBAAkB,MAAM,EAAE;EAC5C,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;EAE9B,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;AAE9B,MAAI,oBAAoB,iBACtB,OAAM,IAAIK;CAEb;;;;AAKD,KACE,WAAW,SACX,MAAM,UAAU,UAChB,MAAM,QAAQ,MAAM,MAAM,IAC1B,MAAM,MAAM,SAAS,EAErB,OAAM,IAAIA;AAEb;;;;;;;AAQD,SAAgB,aAAaC,UAAkC;CAC7D,MAAM,cAAc,SAAS,GAAG,GAAG;AACnC,QAAO,QACL,uBAAuBtB,uCACrB,YAAY,cACZ,YAAY,WAAW,SAAS,EACnC;AACF;AAaD,MAAM,8CAA8C,CAClD,cACA,sBACD;;;;;;AAOD,SAAgB,8BACdK,OACS;AACT,KAAI,CAAC,gBAAgB,MAAM,CACzB,QAAO;CAGT,MAAM,iBAAiB,MAAM,SAAS;AACtC,KACE,4CAA4C,SAAS,eAAe,KAClE,mBAAmB,gBAInB,WAAW,SACX,OAAO,MAAM,UAAU,YACvB,MAAM,MAAM,WAAW,QAAQ,IAI9B,mBAAmB,0BAClB,wBAAwB,OAE5B,QAAO;AAGT,QAAO;AACR"}
@@ -12,7 +12,7 @@ const CONTENT_PATTERN = /<content>(.*?)<\/content>/s;
12
12
  * This is useful for making a message history with multiple agents more coherent.
13
13
  *
14
14
  * NOTE: agent name is consumed from the message.name field.
15
- * If you're using an agent built with createReactAgent, name is automatically set.
15
+ * If you're using an agent built with createAgent, name is automatically set.
16
16
  * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.
17
17
  *
18
18
  * @param message - Message to add agent name formatting to
@@ -1 +1 @@
1
- {"version":3,"file":"utils.js","names":["message: T","updatedContent: MessageContent","updatedName: string | undefined","tool: ClientTool | ServerTool","model: LanguageModelLike","model: unknown","llm: LanguageModelLike","prompt?: Prompt","promptRunnable: Runnable","state: typeof MessagesAnnotation.State","toolClasses: (ClientTool | ServerTool)[]","options: Partial<BaseChatModelCallOptions>","model","nextSteps: unknown[]","step: RunnableLike","messages: BaseMessage[]"],"sources":["../../src/agents/utils.ts"],"sourcesContent":["/* eslint-disable no-instanceof/no-instanceof */\nimport {\n AIMessage,\n BaseMessage,\n BaseMessageLike,\n MessageContent,\n SystemMessage,\n AIMessageChunk,\n isAIMessage,\n isAIMessageChunk,\n isBaseMessage,\n isBaseMessageChunk,\n} from \"@langchain/core/messages\";\nimport { MessagesAnnotation } from \"@langchain/langgraph\";\nimport {\n BaseChatModel,\n type BindToolsInput,\n type BaseChatModelCallOptions,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n LanguageModelLike,\n BaseLanguageModelInput,\n} from \"@langchain/core/language_models/base\";\nimport {\n Runnable,\n RunnableLike,\n RunnableConfig,\n RunnableLambda,\n RunnableSequence,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\n\nimport { MultipleToolsBoundError } from \"./errors.js\";\nimport { PROMPT_RUNNABLE_NAME } from \"./constants.js\";\nimport {\n ServerTool,\n ClientTool,\n ConfigurableModelInterface,\n Prompt,\n} from \"./types.js\";\n\nconst NAME_PATTERN = /<name>(.*?)<\\/name>/s;\nconst CONTENT_PATTERN = /<content>(.*?)<\\/content>/s;\n\nexport type AgentNameMode = \"inline\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createReactAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param message - Message to add agent name formatting to\n * @returns Message with agent name formatting\n *\n * @internal\n */\nexport function _addInlineAgentName<T extends BaseMessageLike>(\n message: T\n): T | AIMessage {\n const isAI =\n isBaseMessage(message) &&\n (isAIMessage(message) ||\n (isBaseMessageChunk(message) && isAIMessageChunk(message)));\n\n if (!isAI || !message.name) {\n return message;\n }\n\n const { name } = message;\n\n if (typeof message.content === \"string\") {\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: `<name>${name}</name><content>${message.content}</content>`,\n name: undefined,\n });\n }\n\n const updatedContent = [];\n let textBlockCount = 0;\n\n for (const contentBlock of message.content) {\n if (typeof contentBlock === \"string\") {\n textBlockCount += 1;\n updatedContent.push(\n `<name>${name}</name><content>${contentBlock}</content>`\n );\n } else if (\n typeof contentBlock === \"object\" &&\n \"type\" in contentBlock &&\n contentBlock.type === \"text\"\n ) {\n textBlockCount += 1;\n updatedContent.push({\n ...contentBlock,\n text: `<name>${name}</name><content>${contentBlock.text}</content>`,\n });\n } else {\n updatedContent.push(contentBlock);\n }\n }\n\n if (!textBlockCount) {\n updatedContent.unshift({\n type: \"text\",\n text: `<name>${name}</name><content></content>`,\n });\n }\n return new AIMessage({\n ...message.lc_kwargs,\n content: updatedContent as MessageContent,\n name: undefined,\n });\n}\n\n/**\n * Remove explicit name and content XML tags from the AI message content.\n *\n * Examples:\n *\n * @example\n * ```typescript\n * removeInlineAgentName(new AIMessage({ content: \"<name>assistant</name><content>Hello</content>\", name: \"assistant\" }))\n * // AIMessage with content: \"Hello\"\n *\n * removeInlineAgentName(new AIMessage({ content: [{type: \"text\", text: \"<name>assistant</name><content>Hello</content>\"}], name: \"assistant\" }))\n * // AIMessage with content: [{type: \"text\", text: \"Hello\"}]\n * ```\n *\n * @internal\n */\nexport function _removeInlineAgentName<T extends BaseMessage>(message: T): T {\n if (!isAIMessage(message) || !message.content) {\n return message;\n }\n\n let updatedContent: MessageContent = [];\n let updatedName: string | undefined;\n\n if (Array.isArray(message.content)) {\n updatedContent = message.content\n .filter((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n // don't include empty content blocks that were added because there was no text block to modify\n if (nameMatch && (!contentMatch || contentMatch[1] === \"\")) {\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n return false;\n }\n return true;\n }\n return true;\n })\n .map((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return block;\n }\n\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n\n return {\n ...block,\n text: contentMatch[1],\n };\n }\n return block;\n });\n } else {\n const content = message.content as string;\n const nameMatch = content.match(NAME_PATTERN);\n const contentMatch = content.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return message;\n }\n\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n // eslint-disable-next-line prefer-destructuring\n updatedContent = contentMatch[1];\n }\n\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: updatedContent,\n name: updatedName,\n }) as T;\n}\n\nexport function isClientTool(\n tool: ClientTool | ServerTool\n): tool is ClientTool {\n return Runnable.isRunnable(tool);\n}\n\nexport function isBaseChatModel(\n model: LanguageModelLike\n): model is BaseChatModel {\n return (\n \"invoke\" in model &&\n typeof model.invoke === \"function\" &&\n \"_modelType\" in model\n );\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport function isConfigurableModel(\n model: unknown\n): model is ConfigurableModelInterface {\n return (\n typeof model === \"object\" &&\n model != null &&\n \"_queuedMethodOperations\" in model &&\n \"_model\" in model &&\n typeof model._model === \"function\"\n );\n}\n\nfunction _isChatModelWithBindTools(\n llm: LanguageModelLike\n): llm is BaseChatModel & Required<Pick<BaseChatModel, \"bindTools\">> {\n if (!isBaseChatModel(llm)) return false;\n return \"bindTools\" in llm && typeof llm.bindTools === \"function\";\n}\n\nexport function getPromptRunnable(prompt?: Prompt): Runnable {\n let promptRunnable: Runnable;\n\n if (prompt == null) {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => state.messages\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"string\") {\n const systemMessage = new SystemMessage(prompt);\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => {\n return [systemMessage, ...(state.messages ?? [])];\n }\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (isBaseMessage(prompt) && prompt._getType() === \"system\") {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => [prompt, ...state.messages]\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"function\") {\n promptRunnable = RunnableLambda.from(prompt).withConfig({\n runName: PROMPT_RUNNABLE_NAME,\n });\n } else if (Runnable.isRunnable(prompt)) {\n promptRunnable = prompt;\n } else {\n throw new Error(`Got unexpected type for 'prompt': ${typeof prompt}`);\n }\n\n return promptRunnable;\n}\n\nexport async function shouldBindTools(\n llm: LanguageModelLike,\n tools: (ClientTool | ServerTool)[]\n): Promise<boolean> {\n // If model is a RunnableSequence, find a RunnableBinding or BaseChatModel in its steps\n let model = llm;\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n ) || model;\n }\n\n if (isConfigurableModel(model)) {\n model = await model._model();\n }\n\n // If not a RunnableBinding, we should bind tools\n if (!RunnableBinding.isRunnableBinding(model)) {\n return true;\n }\n\n let boundTools = (() => {\n // check if model.kwargs contain the tools key\n if (\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools)\n ) {\n return (model.kwargs.tools ?? null) as BindToolsInput[] | null;\n }\n\n // Some models can bind the tools via `withConfig()` instead of `bind()`\n if (\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools)\n ) {\n return (model.config.tools ?? null) as BindToolsInput[] | null;\n }\n\n return null;\n })();\n\n // google-style\n if (\n boundTools != null &&\n boundTools.length === 1 &&\n \"functionDeclarations\" in boundTools[0]\n ) {\n boundTools = boundTools[0].functionDeclarations;\n }\n\n // If no tools in kwargs, we should bind tools\n if (boundTools == null) return true;\n\n // Check if tools count matches\n if (tools.length !== boundTools.length) {\n throw new Error(\n \"Number of tools in the model.bindTools() and tools passed to createReactAgent must match\"\n );\n }\n\n const toolNames = new Set<string>(\n tools.flatMap((tool) => (isClientTool(tool) ? tool.name : []))\n );\n\n const boundToolNames = new Set<string>();\n\n for (const boundTool of boundTools) {\n let boundToolName: string | undefined;\n\n // OpenAI-style tool\n if (\"type\" in boundTool && boundTool.type === \"function\") {\n boundToolName = boundTool.function.name;\n }\n // Anthropic or Google-style tool\n else if (\"name\" in boundTool) {\n boundToolName = boundTool.name;\n }\n // Bedrock-style tool\n else if (\"toolSpec\" in boundTool && \"name\" in boundTool.toolSpec) {\n boundToolName = boundTool.toolSpec.name;\n }\n // unknown tool type so we'll ignore it\n else {\n continue;\n }\n\n if (boundToolName) {\n boundToolNames.add(boundToolName);\n }\n }\n\n const missingTools = [...toolNames].filter((x) => !boundToolNames.has(x));\n if (missingTools.length > 0) {\n throw new Error(\n `Missing tools '${missingTools}' in the model.bindTools().` +\n `Tools in the model.bindTools() must match the tools passed to createReactAgent.`\n );\n }\n\n return false;\n}\n\nconst _simpleBindTools = (\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n) => {\n if (_isChatModelWithBindTools(llm)) {\n return llm.bindTools(toolClasses, options);\n }\n\n if (\n RunnableBinding.isRunnableBinding(llm) &&\n _isChatModelWithBindTools(llm.bound)\n ) {\n const newBound = llm.bound.bindTools(toolClasses, options);\n\n if (RunnableBinding.isRunnableBinding(newBound)) {\n return new RunnableBinding({\n bound: newBound.bound,\n config: { ...llm.config, ...newBound.config },\n kwargs: { ...llm.kwargs, ...newBound.kwargs },\n configFactories: newBound.configFactories ?? llm.configFactories,\n });\n }\n\n return new RunnableBinding({\n bound: newBound,\n config: llm.config,\n kwargs: llm.kwargs,\n configFactories: llm.configFactories,\n });\n }\n\n return null;\n};\n\nexport async function bindTools(\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n): Promise<\n | RunnableSequence<any, any>\n | RunnableBinding<any, any, RunnableConfig<Record<string, any>>>\n | Runnable<BaseLanguageModelInput, AIMessageChunk, BaseChatModelCallOptions>\n> {\n const model = _simpleBindTools(llm, toolClasses, options);\n if (model) return model;\n\n if (isConfigurableModel(llm)) {\n const model = _simpleBindTools(await llm._model(), toolClasses, options);\n if (model) return model;\n }\n\n if (RunnableSequence.isRunnableSequence(llm)) {\n const modelStep = llm.steps.findIndex(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n );\n\n if (modelStep >= 0) {\n const model = _simpleBindTools(\n llm.steps[modelStep],\n toolClasses,\n options\n );\n if (model) {\n const nextSteps: unknown[] = llm.steps.slice();\n nextSteps.splice(modelStep, 1, model);\n\n return RunnableSequence.from(\n nextSteps as [RunnableLike, ...RunnableLike[], RunnableLike]\n );\n }\n }\n }\n\n throw new Error(`llm ${llm} must define bindTools method.`);\n}\n\n/**\n * Check if the LLM already has bound tools and throw if it does.\n *\n * @param llm - The LLM to check.\n * @returns void\n */\nexport function validateLLMHasNoBoundTools(llm: LanguageModelLike): void {\n /**\n * If llm is a function, we can't validate until runtime, so skip\n */\n if (typeof llm === \"function\") {\n return;\n }\n\n let model = llm;\n\n /**\n * If model is a RunnableSequence, find a RunnableBinding in its steps\n */\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find((step: RunnableLike) =>\n RunnableBinding.isRunnableBinding(step)\n ) || model;\n }\n\n /**\n * If model is configurable, get the underlying model\n */\n if (isConfigurableModel(model)) {\n /**\n * Can't validate async model retrieval in constructor\n */\n return;\n }\n\n /**\n * Check if model is a RunnableBinding with bound tools\n */\n if (RunnableBinding.isRunnableBinding(model)) {\n const hasToolsInKwargs =\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools) &&\n model.kwargs.tools.length > 0;\n\n const hasToolsInConfig =\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools) &&\n model.config.tools.length > 0;\n\n if (hasToolsInKwargs || hasToolsInConfig) {\n throw new MultipleToolsBoundError();\n }\n }\n\n /**\n * Also check if model has tools property directly (e.g., FakeToolCallingModel)\n */\n if (\n \"tools\" in model &&\n model.tools !== undefined &&\n Array.isArray(model.tools) &&\n model.tools.length > 0\n ) {\n throw new MultipleToolsBoundError();\n }\n}\n\n/**\n * Check if the last message in the messages array has tool calls.\n *\n * @param messages - The messages to check.\n * @returns True if the last message has tool calls, false otherwise.\n */\nexport function hasToolCalls(messages: BaseMessage[]): boolean {\n const lastMessage = messages.at(-1);\n return Boolean(\n lastMessage instanceof AIMessage &&\n lastMessage.tool_calls &&\n lastMessage.tool_calls.length > 0\n );\n}\n\n/**\n * Check if the model name supports structured output\n * @param modelName - The name of the model\n * @returns True if the model supports structured output, false otherwise\n */\nexport function hasSupportForStructuredOutput(modelName?: string): boolean {\n return (\n modelName?.startsWith(\"gpt-4\") || modelName?.startsWith(\"gpt-5\") || false\n );\n}\n\nconst CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT = [\n \"ChatOpenAI\",\n \"FakeToolCallingModel\",\n];\n\n/**\n * Identifies the models that support JSON schema output\n * @param model - The model to check\n * @returns True if the model supports JSON schema output, false otherwise\n */\nexport function hasSupportForJsonSchemaOutput(\n model: LanguageModelLike\n): boolean {\n if (!isBaseChatModel(model)) {\n return false;\n }\n\n const chatModelClass = model.getName();\n if (\n CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT.includes(chatModelClass) &&\n ((chatModelClass === \"ChatOpenAI\" &&\n /**\n * OpenAI models\n */\n \"model\" in model &&\n typeof model.model === \"string\" &&\n model.model.startsWith(\"gpt-4\")) ||\n /**\n * for testing purposes only\n */\n (chatModelClass === \"FakeToolCallingModel\" &&\n \"structuredResponse\" in model))\n ) {\n return true;\n }\n\n return false;\n}\n"],"mappings":";;;;;;AAyCA,MAAM,eAAe;AACrB,MAAM,kBAAkB;;;;;;;;;;;;;;;AAkBxB,SAAgB,oBACdA,SACe;CACf,MAAM,OACJ,cAAc,QAAQ,KACrB,YAAY,QAAQ,IAClB,mBAAmB,QAAQ,IAAI,iBAAiB,QAAQ;AAE7D,KAAI,CAAC,QAAQ,CAAC,QAAQ,KACpB,QAAO;CAGT,MAAM,EAAE,MAAM,GAAG;AAEjB,KAAI,OAAO,QAAQ,YAAY,SAC7B,QAAO,IAAI,UAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,QAAQ,QAAQ,UAAU,CAAC;EACpE,MAAM;CACP;CAGH,MAAM,iBAAiB,CAAE;CACzB,IAAI,iBAAiB;AAErB,MAAK,MAAM,gBAAgB,QAAQ,QACjC,KAAI,OAAO,iBAAiB,UAAU;EACpC,kBAAkB;EAClB,eAAe,KACb,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,UAAU,CAAC,CACzD;CACF,WACC,OAAO,iBAAiB,YACxB,UAAU,gBACV,aAAa,SAAS,QACtB;EACA,kBAAkB;EAClB,eAAe,KAAK;GAClB,GAAG;GACH,MAAM,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,KAAK,UAAU,CAAC;EACpE,EAAC;CACH,OACC,eAAe,KAAK,aAAa;AAIrC,KAAI,CAAC,gBACH,eAAe,QAAQ;EACrB,MAAM;EACN,MAAM,CAAC,MAAM,EAAE,KAAK,0BAA0B,CAAC;CAChD,EAAC;AAEJ,QAAO,IAAI,UAAU;EACnB,GAAG,QAAQ;EACX,SAAS;EACT,MAAM;CACP;AACF;;;;;;;;;;;;;;;;;AAkBD,SAAgB,uBAA8CA,SAAe;AAC3E,KAAI,CAAC,YAAY,QAAQ,IAAI,CAAC,QAAQ,QACpC,QAAO;CAGT,IAAIC,iBAAiC,CAAE;CACvC,IAAIC;AAEJ,KAAI,MAAM,QAAQ,QAAQ,QAAQ,EAChC,iBAAiB,QAAQ,QACtB,OAAO,CAAC,UAAU;AACjB,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,cAAc,CAAC,gBAAgB,aAAa,OAAO,KAAK;IAG1D,cAAc,UAAU;AACxB,WAAO;GACR;AACD,UAAO;EACR;AACD,SAAO;CACR,EAAC,CACD,IAAI,CAAC,UAAU;AACd,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,CAAC,aAAa,CAAC,aACjB,QAAO;GAKT,cAAc,UAAU;AAExB,UAAO;IACL,GAAG;IACH,MAAM,aAAa;GACpB;EACF;AACD,SAAO;CACR,EAAC;MACC;EACL,MAAM,UAAU,QAAQ;EACxB,MAAM,YAAY,QAAQ,MAAM,aAAa;EAC7C,MAAM,eAAe,QAAQ,MAAM,gBAAgB;AAEnD,MAAI,CAAC,aAAa,CAAC,aACjB,QAAO;EAIT,cAAc,UAAU;EAExB,iBAAiB,aAAa;CAC/B;AAED,QAAO,IAAI,UAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS;EACT,MAAM;CACP;AACF;AAED,SAAgB,aACdC,MACoB;AACpB,QAAO,SAAS,WAAW,KAAK;AACjC;AAED,SAAgB,gBACdC,OACwB;AACxB,QACE,YAAY,SACZ,OAAO,MAAM,WAAW,cACxB,gBAAgB;AAEnB;AAGD,SAAgB,oBACdC,OACqC;AACrC,QACE,OAAO,UAAU,YACjB,SAAS,QACT,6BAA6B,SAC7B,YAAY,SACZ,OAAO,MAAM,WAAW;AAE3B;AAED,SAAS,0BACPC,KACmE;AACnE,KAAI,CAAC,gBAAgB,IAAI,CAAE,QAAO;AAClC,QAAO,eAAe,OAAO,OAAO,IAAI,cAAc;AACvD;AAED,SAAgB,kBAAkBC,QAA2B;CAC3D,IAAIC;AAEJ,KAAI,UAAU,MACZ,iBAAiB,eAAe,KAC9B,CAACC,UAA2C,MAAM,SACnD,CAAC,WAAW,EAAE,SAAS,qBAAsB,EAAC;UACtC,OAAO,WAAW,UAAU;EACrC,MAAM,gBAAgB,IAAI,cAAc;EACxC,iBAAiB,eAAe,KAC9B,CAACA,UAA2C;AAC1C,UAAO,CAAC,eAAe,GAAI,MAAM,YAAY,CAAE,CAAE;EAClD,EACF,CAAC,WAAW,EAAE,SAAS,qBAAsB,EAAC;CAChD,WAAU,cAAc,OAAO,IAAI,OAAO,UAAU,KAAK,UACxD,iBAAiB,eAAe,KAC9B,CAACA,UAA2C,CAAC,QAAQ,GAAG,MAAM,QAAS,EACxE,CAAC,WAAW,EAAE,SAAS,qBAAsB,EAAC;UACtC,OAAO,WAAW,YAC3B,iBAAiB,eAAe,KAAK,OAAO,CAAC,WAAW,EACtD,SAAS,qBACV,EAAC;UACO,SAAS,WAAW,OAAO,EACpC,iBAAiB;KAEjB,OAAM,IAAI,MAAM,CAAC,kCAAkC,EAAE,OAAO,QAAQ;AAGtE,QAAO;AACR;AAgHD,MAAM,mBAAmB,CACvBH,KACAI,aACAC,UAA6C,CAAE,MAC5C;AACH,KAAI,0BAA0B,IAAI,CAChC,QAAO,IAAI,UAAU,aAAa,QAAQ;AAG5C,KACE,gBAAgB,kBAAkB,IAAI,IACtC,0BAA0B,IAAI,MAAM,EACpC;EACA,MAAM,WAAW,IAAI,MAAM,UAAU,aAAa,QAAQ;AAE1D,MAAI,gBAAgB,kBAAkB,SAAS,CAC7C,QAAO,IAAI,gBAAgB;GACzB,OAAO,SAAS;GAChB,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,iBAAiB,SAAS,mBAAmB,IAAI;EAClD;AAGH,SAAO,IAAI,gBAAgB;GACzB,OAAO;GACP,QAAQ,IAAI;GACZ,QAAQ,IAAI;GACZ,iBAAiB,IAAI;EACtB;CACF;AAED,QAAO;AACR;AAED,eAAsB,UACpBL,KACAI,aACAC,UAA6C,CAAE,GAK/C;CACA,MAAM,QAAQ,iBAAiB,KAAK,aAAa,QAAQ;AACzD,KAAI,MAAO,QAAO;AAElB,KAAI,oBAAoB,IAAI,EAAE;EAC5B,MAAMC,UAAQ,iBAAiB,MAAM,IAAI,QAAQ,EAAE,aAAa,QAAQ;AACxE,MAAIA,QAAO,QAAOA;CACnB;AAED,KAAI,iBAAiB,mBAAmB,IAAI,EAAE;EAC5C,MAAM,YAAY,IAAI,MAAM,UAC1B,CAAC,SACC,gBAAgB,kBAAkB,KAAK,IACvC,gBAAgB,KAAK,IACrB,oBAAoB,KAAK,CAC5B;AAED,MAAI,aAAa,GAAG;GAClB,MAAMA,UAAQ,iBACZ,IAAI,MAAM,YACV,aACA,QACD;AACD,OAAIA,SAAO;IACT,MAAMC,YAAuB,IAAI,MAAM,OAAO;IAC9C,UAAU,OAAO,WAAW,GAAGD,QAAM;AAErC,WAAO,iBAAiB,KACtB,UACD;GACF;EACF;CACF;AAED,OAAM,IAAI,MAAM,CAAC,IAAI,EAAE,IAAI,8BAA8B,CAAC;AAC3D;;;;;;;AAQD,SAAgB,2BAA2BN,KAA8B;;;;AAIvE,KAAI,OAAO,QAAQ,WACjB;CAGF,IAAI,QAAQ;;;;AAKZ,KAAI,iBAAiB,mBAAmB,MAAM,EAC5C,QACE,MAAM,MAAM,KAAK,CAACQ,SAChB,gBAAgB,kBAAkB,KAAK,CACxC,IAAI;;;;AAMT,KAAI,oBAAoB,MAAM;;;;AAI5B;;;;AAMF,KAAI,gBAAgB,kBAAkB,MAAM,EAAE;EAC5C,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;EAE9B,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;AAE9B,MAAI,oBAAoB,iBACtB,OAAM,IAAI;CAEb;;;;AAKD,KACE,WAAW,SACX,MAAM,UAAU,UAChB,MAAM,QAAQ,MAAM,MAAM,IAC1B,MAAM,MAAM,SAAS,EAErB,OAAM,IAAI;AAEb;;;;;;;AAQD,SAAgB,aAAaC,UAAkC;CAC7D,MAAM,cAAc,SAAS,GAAG,GAAG;AACnC,QAAO,QACL,uBAAuB,aACrB,YAAY,cACZ,YAAY,WAAW,SAAS,EACnC;AACF;AAaD,MAAM,8CAA8C,CAClD,cACA,sBACD;;;;;;AAOD,SAAgB,8BACdX,OACS;AACT,KAAI,CAAC,gBAAgB,MAAM,CACzB,QAAO;CAGT,MAAM,iBAAiB,MAAM,SAAS;AACtC,KACE,4CAA4C,SAAS,eAAe,KAClE,mBAAmB,gBAInB,WAAW,SACX,OAAO,MAAM,UAAU,YACvB,MAAM,MAAM,WAAW,QAAQ,IAI9B,mBAAmB,0BAClB,wBAAwB,OAE5B,QAAO;AAGT,QAAO;AACR"}
1
+ {"version":3,"file":"utils.js","names":["message: T","updatedContent: MessageContent","updatedName: string | undefined","tool: ClientTool | ServerTool","model: LanguageModelLike","model: unknown","llm: LanguageModelLike","prompt?: Prompt","promptRunnable: Runnable","state: typeof MessagesAnnotation.State","toolClasses: (ClientTool | ServerTool)[]","options: Partial<BaseChatModelCallOptions>","model","nextSteps: unknown[]","step: RunnableLike","messages: BaseMessage[]"],"sources":["../../src/agents/utils.ts"],"sourcesContent":["/* eslint-disable no-instanceof/no-instanceof */\nimport {\n AIMessage,\n BaseMessage,\n BaseMessageLike,\n MessageContent,\n SystemMessage,\n AIMessageChunk,\n isAIMessage,\n isAIMessageChunk,\n isBaseMessage,\n isBaseMessageChunk,\n} from \"@langchain/core/messages\";\nimport { MessagesAnnotation } from \"@langchain/langgraph\";\nimport {\n BaseChatModel,\n type BindToolsInput,\n type BaseChatModelCallOptions,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n LanguageModelLike,\n BaseLanguageModelInput,\n} from \"@langchain/core/language_models/base\";\nimport {\n Runnable,\n RunnableLike,\n RunnableConfig,\n RunnableLambda,\n RunnableSequence,\n RunnableBinding,\n} from \"@langchain/core/runnables\";\n\nimport { MultipleToolsBoundError } from \"./errors.js\";\nimport { PROMPT_RUNNABLE_NAME } from \"./constants.js\";\nimport {\n ServerTool,\n ClientTool,\n ConfigurableModelInterface,\n Prompt,\n} from \"./types.js\";\n\nconst NAME_PATTERN = /<name>(.*?)<\\/name>/s;\nconst CONTENT_PATTERN = /<content>(.*?)<\\/content>/s;\n\nexport type AgentNameMode = \"inline\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param message - Message to add agent name formatting to\n * @returns Message with agent name formatting\n *\n * @internal\n */\nexport function _addInlineAgentName<T extends BaseMessageLike>(\n message: T\n): T | AIMessage {\n const isAI =\n isBaseMessage(message) &&\n (isAIMessage(message) ||\n (isBaseMessageChunk(message) && isAIMessageChunk(message)));\n\n if (!isAI || !message.name) {\n return message;\n }\n\n const { name } = message;\n\n if (typeof message.content === \"string\") {\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: `<name>${name}</name><content>${message.content}</content>`,\n name: undefined,\n });\n }\n\n const updatedContent = [];\n let textBlockCount = 0;\n\n for (const contentBlock of message.content) {\n if (typeof contentBlock === \"string\") {\n textBlockCount += 1;\n updatedContent.push(\n `<name>${name}</name><content>${contentBlock}</content>`\n );\n } else if (\n typeof contentBlock === \"object\" &&\n \"type\" in contentBlock &&\n contentBlock.type === \"text\"\n ) {\n textBlockCount += 1;\n updatedContent.push({\n ...contentBlock,\n text: `<name>${name}</name><content>${contentBlock.text}</content>`,\n });\n } else {\n updatedContent.push(contentBlock);\n }\n }\n\n if (!textBlockCount) {\n updatedContent.unshift({\n type: \"text\",\n text: `<name>${name}</name><content></content>`,\n });\n }\n return new AIMessage({\n ...message.lc_kwargs,\n content: updatedContent as MessageContent,\n name: undefined,\n });\n}\n\n/**\n * Remove explicit name and content XML tags from the AI message content.\n *\n * Examples:\n *\n * @example\n * ```typescript\n * removeInlineAgentName(new AIMessage({ content: \"<name>assistant</name><content>Hello</content>\", name: \"assistant\" }))\n * // AIMessage with content: \"Hello\"\n *\n * removeInlineAgentName(new AIMessage({ content: [{type: \"text\", text: \"<name>assistant</name><content>Hello</content>\"}], name: \"assistant\" }))\n * // AIMessage with content: [{type: \"text\", text: \"Hello\"}]\n * ```\n *\n * @internal\n */\nexport function _removeInlineAgentName<T extends BaseMessage>(message: T): T {\n if (!isAIMessage(message) || !message.content) {\n return message;\n }\n\n let updatedContent: MessageContent = [];\n let updatedName: string | undefined;\n\n if (Array.isArray(message.content)) {\n updatedContent = message.content\n .filter((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n // don't include empty content blocks that were added because there was no text block to modify\n if (nameMatch && (!contentMatch || contentMatch[1] === \"\")) {\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n return false;\n }\n return true;\n }\n return true;\n })\n .map((block) => {\n if (block.type === \"text\" && typeof block.text === \"string\") {\n const nameMatch = block.text.match(NAME_PATTERN);\n const contentMatch = block.text.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return block;\n }\n\n // capture name from text block\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n\n return {\n ...block,\n text: contentMatch[1],\n };\n }\n return block;\n });\n } else {\n const content = message.content as string;\n const nameMatch = content.match(NAME_PATTERN);\n const contentMatch = content.match(CONTENT_PATTERN);\n\n if (!nameMatch || !contentMatch) {\n return message;\n }\n\n // eslint-disable-next-line prefer-destructuring\n updatedName = nameMatch[1];\n // eslint-disable-next-line prefer-destructuring\n updatedContent = contentMatch[1];\n }\n\n return new AIMessage({\n ...(Object.keys(message.lc_kwargs ?? {}).length > 0\n ? message.lc_kwargs\n : message),\n content: updatedContent,\n name: updatedName,\n }) as T;\n}\n\nexport function isClientTool(\n tool: ClientTool | ServerTool\n): tool is ClientTool {\n return Runnable.isRunnable(tool);\n}\n\nexport function isBaseChatModel(\n model: LanguageModelLike\n): model is BaseChatModel {\n return (\n \"invoke\" in model &&\n typeof model.invoke === \"function\" &&\n \"_modelType\" in model\n );\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nexport function isConfigurableModel(\n model: unknown\n): model is ConfigurableModelInterface {\n return (\n typeof model === \"object\" &&\n model != null &&\n \"_queuedMethodOperations\" in model &&\n \"_model\" in model &&\n typeof model._model === \"function\"\n );\n}\n\nfunction _isChatModelWithBindTools(\n llm: LanguageModelLike\n): llm is BaseChatModel & Required<Pick<BaseChatModel, \"bindTools\">> {\n if (!isBaseChatModel(llm)) return false;\n return \"bindTools\" in llm && typeof llm.bindTools === \"function\";\n}\n\nexport function getPromptRunnable(prompt?: Prompt): Runnable {\n let promptRunnable: Runnable;\n\n if (prompt == null) {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => state.messages\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"string\") {\n const systemMessage = new SystemMessage(prompt);\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => {\n return [systemMessage, ...(state.messages ?? [])];\n }\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (isBaseMessage(prompt) && prompt._getType() === \"system\") {\n promptRunnable = RunnableLambda.from(\n (state: typeof MessagesAnnotation.State) => [prompt, ...state.messages]\n ).withConfig({ runName: PROMPT_RUNNABLE_NAME });\n } else if (typeof prompt === \"function\") {\n promptRunnable = RunnableLambda.from(prompt).withConfig({\n runName: PROMPT_RUNNABLE_NAME,\n });\n } else if (Runnable.isRunnable(prompt)) {\n promptRunnable = prompt;\n } else {\n throw new Error(`Got unexpected type for 'prompt': ${typeof prompt}`);\n }\n\n return promptRunnable;\n}\n\nexport async function shouldBindTools(\n llm: LanguageModelLike,\n tools: (ClientTool | ServerTool)[]\n): Promise<boolean> {\n // If model is a RunnableSequence, find a RunnableBinding or BaseChatModel in its steps\n let model = llm;\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n ) || model;\n }\n\n if (isConfigurableModel(model)) {\n model = await model._model();\n }\n\n // If not a RunnableBinding, we should bind tools\n if (!RunnableBinding.isRunnableBinding(model)) {\n return true;\n }\n\n let boundTools = (() => {\n // check if model.kwargs contain the tools key\n if (\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools)\n ) {\n return (model.kwargs.tools ?? null) as BindToolsInput[] | null;\n }\n\n // Some models can bind the tools via `withConfig()` instead of `bind()`\n if (\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools)\n ) {\n return (model.config.tools ?? null) as BindToolsInput[] | null;\n }\n\n return null;\n })();\n\n // google-style\n if (\n boundTools != null &&\n boundTools.length === 1 &&\n \"functionDeclarations\" in boundTools[0]\n ) {\n boundTools = boundTools[0].functionDeclarations;\n }\n\n // If no tools in kwargs, we should bind tools\n if (boundTools == null) return true;\n\n // Check if tools count matches\n if (tools.length !== boundTools.length) {\n throw new Error(\n \"Number of tools in the model.bindTools() and tools passed to createAgent must match\"\n );\n }\n\n const toolNames = new Set<string>(\n tools.flatMap((tool) => (isClientTool(tool) ? tool.name : []))\n );\n\n const boundToolNames = new Set<string>();\n\n for (const boundTool of boundTools) {\n let boundToolName: string | undefined;\n\n // OpenAI-style tool\n if (\"type\" in boundTool && boundTool.type === \"function\") {\n boundToolName = boundTool.function.name;\n }\n // Anthropic or Google-style tool\n else if (\"name\" in boundTool) {\n boundToolName = boundTool.name;\n }\n // Bedrock-style tool\n else if (\"toolSpec\" in boundTool && \"name\" in boundTool.toolSpec) {\n boundToolName = boundTool.toolSpec.name;\n }\n // unknown tool type so we'll ignore it\n else {\n continue;\n }\n\n if (boundToolName) {\n boundToolNames.add(boundToolName);\n }\n }\n\n const missingTools = [...toolNames].filter((x) => !boundToolNames.has(x));\n if (missingTools.length > 0) {\n throw new Error(\n `Missing tools '${missingTools}' in the model.bindTools().` +\n `Tools in the model.bindTools() must match the tools passed to createAgent.`\n );\n }\n\n return false;\n}\n\nconst _simpleBindTools = (\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n) => {\n if (_isChatModelWithBindTools(llm)) {\n return llm.bindTools(toolClasses, options);\n }\n\n if (\n RunnableBinding.isRunnableBinding(llm) &&\n _isChatModelWithBindTools(llm.bound)\n ) {\n const newBound = llm.bound.bindTools(toolClasses, options);\n\n if (RunnableBinding.isRunnableBinding(newBound)) {\n return new RunnableBinding({\n bound: newBound.bound,\n config: { ...llm.config, ...newBound.config },\n kwargs: { ...llm.kwargs, ...newBound.kwargs },\n configFactories: newBound.configFactories ?? llm.configFactories,\n });\n }\n\n return new RunnableBinding({\n bound: newBound,\n config: llm.config,\n kwargs: llm.kwargs,\n configFactories: llm.configFactories,\n });\n }\n\n return null;\n};\n\nexport async function bindTools(\n llm: LanguageModelLike,\n toolClasses: (ClientTool | ServerTool)[],\n options: Partial<BaseChatModelCallOptions> = {}\n): Promise<\n | RunnableSequence<any, any>\n | RunnableBinding<any, any, RunnableConfig<Record<string, any>>>\n | Runnable<BaseLanguageModelInput, AIMessageChunk, BaseChatModelCallOptions>\n> {\n const model = _simpleBindTools(llm, toolClasses, options);\n if (model) return model;\n\n if (isConfigurableModel(llm)) {\n const model = _simpleBindTools(await llm._model(), toolClasses, options);\n if (model) return model;\n }\n\n if (RunnableSequence.isRunnableSequence(llm)) {\n const modelStep = llm.steps.findIndex(\n (step) =>\n RunnableBinding.isRunnableBinding(step) ||\n isBaseChatModel(step) ||\n isConfigurableModel(step)\n );\n\n if (modelStep >= 0) {\n const model = _simpleBindTools(\n llm.steps[modelStep],\n toolClasses,\n options\n );\n if (model) {\n const nextSteps: unknown[] = llm.steps.slice();\n nextSteps.splice(modelStep, 1, model);\n\n return RunnableSequence.from(\n nextSteps as [RunnableLike, ...RunnableLike[], RunnableLike]\n );\n }\n }\n }\n\n throw new Error(`llm ${llm} must define bindTools method.`);\n}\n\n/**\n * Check if the LLM already has bound tools and throw if it does.\n *\n * @param llm - The LLM to check.\n * @returns void\n */\nexport function validateLLMHasNoBoundTools(llm: LanguageModelLike): void {\n /**\n * If llm is a function, we can't validate until runtime, so skip\n */\n if (typeof llm === \"function\") {\n return;\n }\n\n let model = llm;\n\n /**\n * If model is a RunnableSequence, find a RunnableBinding in its steps\n */\n if (RunnableSequence.isRunnableSequence(model)) {\n model =\n model.steps.find((step: RunnableLike) =>\n RunnableBinding.isRunnableBinding(step)\n ) || model;\n }\n\n /**\n * If model is configurable, get the underlying model\n */\n if (isConfigurableModel(model)) {\n /**\n * Can't validate async model retrieval in constructor\n */\n return;\n }\n\n /**\n * Check if model is a RunnableBinding with bound tools\n */\n if (RunnableBinding.isRunnableBinding(model)) {\n const hasToolsInKwargs =\n model.kwargs != null &&\n typeof model.kwargs === \"object\" &&\n \"tools\" in model.kwargs &&\n Array.isArray(model.kwargs.tools) &&\n model.kwargs.tools.length > 0;\n\n const hasToolsInConfig =\n model.config != null &&\n typeof model.config === \"object\" &&\n \"tools\" in model.config &&\n Array.isArray(model.config.tools) &&\n model.config.tools.length > 0;\n\n if (hasToolsInKwargs || hasToolsInConfig) {\n throw new MultipleToolsBoundError();\n }\n }\n\n /**\n * Also check if model has tools property directly (e.g., FakeToolCallingModel)\n */\n if (\n \"tools\" in model &&\n model.tools !== undefined &&\n Array.isArray(model.tools) &&\n model.tools.length > 0\n ) {\n throw new MultipleToolsBoundError();\n }\n}\n\n/**\n * Check if the last message in the messages array has tool calls.\n *\n * @param messages - The messages to check.\n * @returns True if the last message has tool calls, false otherwise.\n */\nexport function hasToolCalls(messages: BaseMessage[]): boolean {\n const lastMessage = messages.at(-1);\n return Boolean(\n lastMessage instanceof AIMessage &&\n lastMessage.tool_calls &&\n lastMessage.tool_calls.length > 0\n );\n}\n\n/**\n * Check if the model name supports structured output\n * @param modelName - The name of the model\n * @returns True if the model supports structured output, false otherwise\n */\nexport function hasSupportForStructuredOutput(modelName?: string): boolean {\n return (\n modelName?.startsWith(\"gpt-4\") || modelName?.startsWith(\"gpt-5\") || false\n );\n}\n\nconst CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT = [\n \"ChatOpenAI\",\n \"FakeToolCallingModel\",\n];\n\n/**\n * Identifies the models that support JSON schema output\n * @param model - The model to check\n * @returns True if the model supports JSON schema output, false otherwise\n */\nexport function hasSupportForJsonSchemaOutput(\n model: LanguageModelLike\n): boolean {\n if (!isBaseChatModel(model)) {\n return false;\n }\n\n const chatModelClass = model.getName();\n if (\n CHAT_MODELS_THAT_SUPPORT_JSON_SCHEMA_OUTPUT.includes(chatModelClass) &&\n ((chatModelClass === \"ChatOpenAI\" &&\n /**\n * OpenAI models\n */\n \"model\" in model &&\n typeof model.model === \"string\" &&\n model.model.startsWith(\"gpt-4\")) ||\n /**\n * for testing purposes only\n */\n (chatModelClass === \"FakeToolCallingModel\" &&\n \"structuredResponse\" in model))\n ) {\n return true;\n }\n\n return false;\n}\n"],"mappings":";;;;;;AAyCA,MAAM,eAAe;AACrB,MAAM,kBAAkB;;;;;;;;;;;;;;;AAkBxB,SAAgB,oBACdA,SACe;CACf,MAAM,OACJ,cAAc,QAAQ,KACrB,YAAY,QAAQ,IAClB,mBAAmB,QAAQ,IAAI,iBAAiB,QAAQ;AAE7D,KAAI,CAAC,QAAQ,CAAC,QAAQ,KACpB,QAAO;CAGT,MAAM,EAAE,MAAM,GAAG;AAEjB,KAAI,OAAO,QAAQ,YAAY,SAC7B,QAAO,IAAI,UAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,QAAQ,QAAQ,UAAU,CAAC;EACpE,MAAM;CACP;CAGH,MAAM,iBAAiB,CAAE;CACzB,IAAI,iBAAiB;AAErB,MAAK,MAAM,gBAAgB,QAAQ,QACjC,KAAI,OAAO,iBAAiB,UAAU;EACpC,kBAAkB;EAClB,eAAe,KACb,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,UAAU,CAAC,CACzD;CACF,WACC,OAAO,iBAAiB,YACxB,UAAU,gBACV,aAAa,SAAS,QACtB;EACA,kBAAkB;EAClB,eAAe,KAAK;GAClB,GAAG;GACH,MAAM,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,aAAa,KAAK,UAAU,CAAC;EACpE,EAAC;CACH,OACC,eAAe,KAAK,aAAa;AAIrC,KAAI,CAAC,gBACH,eAAe,QAAQ;EACrB,MAAM;EACN,MAAM,CAAC,MAAM,EAAE,KAAK,0BAA0B,CAAC;CAChD,EAAC;AAEJ,QAAO,IAAI,UAAU;EACnB,GAAG,QAAQ;EACX,SAAS;EACT,MAAM;CACP;AACF;;;;;;;;;;;;;;;;;AAkBD,SAAgB,uBAA8CA,SAAe;AAC3E,KAAI,CAAC,YAAY,QAAQ,IAAI,CAAC,QAAQ,QACpC,QAAO;CAGT,IAAIC,iBAAiC,CAAE;CACvC,IAAIC;AAEJ,KAAI,MAAM,QAAQ,QAAQ,QAAQ,EAChC,iBAAiB,QAAQ,QACtB,OAAO,CAAC,UAAU;AACjB,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,cAAc,CAAC,gBAAgB,aAAa,OAAO,KAAK;IAG1D,cAAc,UAAU;AACxB,WAAO;GACR;AACD,UAAO;EACR;AACD,SAAO;CACR,EAAC,CACD,IAAI,CAAC,UAAU;AACd,MAAI,MAAM,SAAS,UAAU,OAAO,MAAM,SAAS,UAAU;GAC3D,MAAM,YAAY,MAAM,KAAK,MAAM,aAAa;GAChD,MAAM,eAAe,MAAM,KAAK,MAAM,gBAAgB;AAEtD,OAAI,CAAC,aAAa,CAAC,aACjB,QAAO;GAKT,cAAc,UAAU;AAExB,UAAO;IACL,GAAG;IACH,MAAM,aAAa;GACpB;EACF;AACD,SAAO;CACR,EAAC;MACC;EACL,MAAM,UAAU,QAAQ;EACxB,MAAM,YAAY,QAAQ,MAAM,aAAa;EAC7C,MAAM,eAAe,QAAQ,MAAM,gBAAgB;AAEnD,MAAI,CAAC,aAAa,CAAC,aACjB,QAAO;EAIT,cAAc,UAAU;EAExB,iBAAiB,aAAa;CAC/B;AAED,QAAO,IAAI,UAAU;EACnB,GAAI,OAAO,KAAK,QAAQ,aAAa,CAAE,EAAC,CAAC,SAAS,IAC9C,QAAQ,YACR;EACJ,SAAS;EACT,MAAM;CACP;AACF;AAED,SAAgB,aACdC,MACoB;AACpB,QAAO,SAAS,WAAW,KAAK;AACjC;AAED,SAAgB,gBACdC,OACwB;AACxB,QACE,YAAY,SACZ,OAAO,MAAM,WAAW,cACxB,gBAAgB;AAEnB;AAGD,SAAgB,oBACdC,OACqC;AACrC,QACE,OAAO,UAAU,YACjB,SAAS,QACT,6BAA6B,SAC7B,YAAY,SACZ,OAAO,MAAM,WAAW;AAE3B;AAED,SAAS,0BACPC,KACmE;AACnE,KAAI,CAAC,gBAAgB,IAAI,CAAE,QAAO;AAClC,QAAO,eAAe,OAAO,OAAO,IAAI,cAAc;AACvD;AAED,SAAgB,kBAAkBC,QAA2B;CAC3D,IAAIC;AAEJ,KAAI,UAAU,MACZ,iBAAiB,eAAe,KAC9B,CAACC,UAA2C,MAAM,SACnD,CAAC,WAAW,EAAE,SAAS,qBAAsB,EAAC;UACtC,OAAO,WAAW,UAAU;EACrC,MAAM,gBAAgB,IAAI,cAAc;EACxC,iBAAiB,eAAe,KAC9B,CAACA,UAA2C;AAC1C,UAAO,CAAC,eAAe,GAAI,MAAM,YAAY,CAAE,CAAE;EAClD,EACF,CAAC,WAAW,EAAE,SAAS,qBAAsB,EAAC;CAChD,WAAU,cAAc,OAAO,IAAI,OAAO,UAAU,KAAK,UACxD,iBAAiB,eAAe,KAC9B,CAACA,UAA2C,CAAC,QAAQ,GAAG,MAAM,QAAS,EACxE,CAAC,WAAW,EAAE,SAAS,qBAAsB,EAAC;UACtC,OAAO,WAAW,YAC3B,iBAAiB,eAAe,KAAK,OAAO,CAAC,WAAW,EACtD,SAAS,qBACV,EAAC;UACO,SAAS,WAAW,OAAO,EACpC,iBAAiB;KAEjB,OAAM,IAAI,MAAM,CAAC,kCAAkC,EAAE,OAAO,QAAQ;AAGtE,QAAO;AACR;AAgHD,MAAM,mBAAmB,CACvBH,KACAI,aACAC,UAA6C,CAAE,MAC5C;AACH,KAAI,0BAA0B,IAAI,CAChC,QAAO,IAAI,UAAU,aAAa,QAAQ;AAG5C,KACE,gBAAgB,kBAAkB,IAAI,IACtC,0BAA0B,IAAI,MAAM,EACpC;EACA,MAAM,WAAW,IAAI,MAAM,UAAU,aAAa,QAAQ;AAE1D,MAAI,gBAAgB,kBAAkB,SAAS,CAC7C,QAAO,IAAI,gBAAgB;GACzB,OAAO,SAAS;GAChB,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,QAAQ;IAAE,GAAG,IAAI;IAAQ,GAAG,SAAS;GAAQ;GAC7C,iBAAiB,SAAS,mBAAmB,IAAI;EAClD;AAGH,SAAO,IAAI,gBAAgB;GACzB,OAAO;GACP,QAAQ,IAAI;GACZ,QAAQ,IAAI;GACZ,iBAAiB,IAAI;EACtB;CACF;AAED,QAAO;AACR;AAED,eAAsB,UACpBL,KACAI,aACAC,UAA6C,CAAE,GAK/C;CACA,MAAM,QAAQ,iBAAiB,KAAK,aAAa,QAAQ;AACzD,KAAI,MAAO,QAAO;AAElB,KAAI,oBAAoB,IAAI,EAAE;EAC5B,MAAMC,UAAQ,iBAAiB,MAAM,IAAI,QAAQ,EAAE,aAAa,QAAQ;AACxE,MAAIA,QAAO,QAAOA;CACnB;AAED,KAAI,iBAAiB,mBAAmB,IAAI,EAAE;EAC5C,MAAM,YAAY,IAAI,MAAM,UAC1B,CAAC,SACC,gBAAgB,kBAAkB,KAAK,IACvC,gBAAgB,KAAK,IACrB,oBAAoB,KAAK,CAC5B;AAED,MAAI,aAAa,GAAG;GAClB,MAAMA,UAAQ,iBACZ,IAAI,MAAM,YACV,aACA,QACD;AACD,OAAIA,SAAO;IACT,MAAMC,YAAuB,IAAI,MAAM,OAAO;IAC9C,UAAU,OAAO,WAAW,GAAGD,QAAM;AAErC,WAAO,iBAAiB,KACtB,UACD;GACF;EACF;CACF;AAED,OAAM,IAAI,MAAM,CAAC,IAAI,EAAE,IAAI,8BAA8B,CAAC;AAC3D;;;;;;;AAQD,SAAgB,2BAA2BN,KAA8B;;;;AAIvE,KAAI,OAAO,QAAQ,WACjB;CAGF,IAAI,QAAQ;;;;AAKZ,KAAI,iBAAiB,mBAAmB,MAAM,EAC5C,QACE,MAAM,MAAM,KAAK,CAACQ,SAChB,gBAAgB,kBAAkB,KAAK,CACxC,IAAI;;;;AAMT,KAAI,oBAAoB,MAAM;;;;AAI5B;;;;AAMF,KAAI,gBAAgB,kBAAkB,MAAM,EAAE;EAC5C,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;EAE9B,MAAM,mBACJ,MAAM,UAAU,QAChB,OAAO,MAAM,WAAW,YACxB,WAAW,MAAM,UACjB,MAAM,QAAQ,MAAM,OAAO,MAAM,IACjC,MAAM,OAAO,MAAM,SAAS;AAE9B,MAAI,oBAAoB,iBACtB,OAAM,IAAI;CAEb;;;;AAKD,KACE,WAAW,SACX,MAAM,UAAU,UAChB,MAAM,QAAQ,MAAM,MAAM,IAC1B,MAAM,MAAM,SAAS,EAErB,OAAM,IAAI;AAEb;;;;;;;AAQD,SAAgB,aAAaC,UAAkC;CAC7D,MAAM,cAAc,SAAS,GAAG,GAAG;AACnC,QAAO,QACL,uBAAuB,aACrB,YAAY,cACZ,YAAY,WAAW,SAAS,EACnC;AACF;AAaD,MAAM,8CAA8C,CAClD,cACA,sBACD;;;;;;AAOD,SAAgB,8BACdX,OACS;AACT,KAAI,CAAC,gBAAgB,MAAM,CACzB,QAAO;CAGT,MAAM,iBAAiB,MAAM,SAAS;AACtC,KACE,4CAA4C,SAAS,eAAe,KAClE,mBAAmB,gBAInB,WAAW,SACX,OAAO,MAAM,UAAU,YACvB,MAAM,MAAM,WAAW,QAAQ,IAI9B,mBAAmB,0BAClB,wBAAwB,OAE5B,QAAO;AAGT,QAAO;AACR"}
@@ -9,7 +9,7 @@ const __langchain_core_runnables = require_rolldown_runtime.__toESM(require("@la
9
9
  * This is useful for making a message history with multiple agents more coherent.
10
10
  *
11
11
  * NOTE: agent name is consumed from the message.name field.
12
- * If you're using an agent built with createReactAgent, name is automatically set.
12
+ * If you're using an agent built with createAgent, name is automatically set.
13
13
  * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.
14
14
  *
15
15
  * @param model - Language model to add agent name formatting to
@@ -1 +1 @@
1
- {"version":3,"file":"withAgentName.cjs","names":["model: LanguageModelLike","agentNameMode: AgentNameMode","processInputMessage: (message: BaseMessageLike) => BaseMessageLike","processOutputMessage: (message: BaseMessage) => BaseMessage","_addInlineAgentName","_removeInlineAgentName","messages: BaseMessageLike[]","RunnableSequence","RunnableLambda"],"sources":["../../src/agents/withAgentName.ts"],"sourcesContent":["import { BaseMessage, BaseMessageLike } from \"@langchain/core/messages\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { RunnableLambda, RunnableSequence } from \"@langchain/core/runnables\";\n\nimport {\n AgentNameMode,\n _addInlineAgentName,\n _removeInlineAgentName,\n} from \"./utils.js\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createReactAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param model - Language model to add agent name formatting to\n * @param agentNameMode - How to expose the agent name to the LLM\n * - \"inline\": Add the agent name directly into the content field of the AI message using XML-style tags.\n * Example: \"How can I help you\" -> \"<name>agent_name</name><content>How can I help you?</content>\".\n */\nexport function withAgentName(\n model: LanguageModelLike,\n agentNameMode: AgentNameMode\n): LanguageModelLike {\n let processInputMessage: (message: BaseMessageLike) => BaseMessageLike;\n let processOutputMessage: (message: BaseMessage) => BaseMessage;\n\n if (agentNameMode === \"inline\") {\n processInputMessage = _addInlineAgentName;\n processOutputMessage = _removeInlineAgentName;\n } else {\n throw new Error(\n `Invalid agent name mode: ${agentNameMode}. Needs to be one of: \"inline\"`\n );\n }\n\n function processInputMessages(\n messages: BaseMessageLike[]\n ): BaseMessageLike[] {\n return messages.map(processInputMessage);\n }\n\n return RunnableSequence.from([\n RunnableLambda.from(processInputMessages),\n model,\n RunnableLambda.from(processOutputMessage),\n ]);\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;;AAwBA,SAAgB,cACdA,OACAC,eACmB;CACnB,IAAIC;CACJ,IAAIC;AAEJ,KAAI,kBAAkB,UAAU;EAC9B,sBAAsBC;EACtB,uBAAuBC;CACxB,MACC,OAAM,IAAI,MACR,CAAC,yBAAyB,EAAE,cAAc,8BAA8B,CAAC;CAI7E,SAAS,qBACPC,UACmB;AACnB,SAAO,SAAS,IAAI,oBAAoB;CACzC;AAED,QAAOC,4CAAiB,KAAK;EAC3BC,0CAAe,KAAK,qBAAqB;EACzC;EACAA,0CAAe,KAAK,qBAAqB;CAC1C,EAAC;AACH"}
1
+ {"version":3,"file":"withAgentName.cjs","names":["model: LanguageModelLike","agentNameMode: AgentNameMode","processInputMessage: (message: BaseMessageLike) => BaseMessageLike","processOutputMessage: (message: BaseMessage) => BaseMessage","_addInlineAgentName","_removeInlineAgentName","messages: BaseMessageLike[]","RunnableSequence","RunnableLambda"],"sources":["../../src/agents/withAgentName.ts"],"sourcesContent":["import { BaseMessage, BaseMessageLike } from \"@langchain/core/messages\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { RunnableLambda, RunnableSequence } from \"@langchain/core/runnables\";\n\nimport {\n AgentNameMode,\n _addInlineAgentName,\n _removeInlineAgentName,\n} from \"./utils.js\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param model - Language model to add agent name formatting to\n * @param agentNameMode - How to expose the agent name to the LLM\n * - \"inline\": Add the agent name directly into the content field of the AI message using XML-style tags.\n * Example: \"How can I help you\" -> \"<name>agent_name</name><content>How can I help you?</content>\".\n */\nexport function withAgentName(\n model: LanguageModelLike,\n agentNameMode: AgentNameMode\n): LanguageModelLike {\n let processInputMessage: (message: BaseMessageLike) => BaseMessageLike;\n let processOutputMessage: (message: BaseMessage) => BaseMessage;\n\n if (agentNameMode === \"inline\") {\n processInputMessage = _addInlineAgentName;\n processOutputMessage = _removeInlineAgentName;\n } else {\n throw new Error(\n `Invalid agent name mode: ${agentNameMode}. Needs to be one of: \"inline\"`\n );\n }\n\n function processInputMessages(\n messages: BaseMessageLike[]\n ): BaseMessageLike[] {\n return messages.map(processInputMessage);\n }\n\n return RunnableSequence.from([\n RunnableLambda.from(processInputMessages),\n model,\n RunnableLambda.from(processOutputMessage),\n ]);\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;;AAwBA,SAAgB,cACdA,OACAC,eACmB;CACnB,IAAIC;CACJ,IAAIC;AAEJ,KAAI,kBAAkB,UAAU;EAC9B,sBAAsBC;EACtB,uBAAuBC;CACxB,MACC,OAAM,IAAI,MACR,CAAC,yBAAyB,EAAE,cAAc,8BAA8B,CAAC;CAI7E,SAAS,qBACPC,UACmB;AACnB,SAAO,SAAS,IAAI,oBAAoB;CACzC;AAED,QAAOC,4CAAiB,KAAK;EAC3BC,0CAAe,KAAK,qBAAqB;EACzC;EACAA,0CAAe,KAAK,qBAAqB;CAC1C,EAAC;AACH"}
@@ -8,7 +8,7 @@ import { RunnableLambda, RunnableSequence } from "@langchain/core/runnables";
8
8
  * This is useful for making a message history with multiple agents more coherent.
9
9
  *
10
10
  * NOTE: agent name is consumed from the message.name field.
11
- * If you're using an agent built with createReactAgent, name is automatically set.
11
+ * If you're using an agent built with createAgent, name is automatically set.
12
12
  * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.
13
13
  *
14
14
  * @param model - Language model to add agent name formatting to
@@ -1 +1 @@
1
- {"version":3,"file":"withAgentName.js","names":["model: LanguageModelLike","agentNameMode: AgentNameMode","processInputMessage: (message: BaseMessageLike) => BaseMessageLike","processOutputMessage: (message: BaseMessage) => BaseMessage","messages: BaseMessageLike[]"],"sources":["../../src/agents/withAgentName.ts"],"sourcesContent":["import { BaseMessage, BaseMessageLike } from \"@langchain/core/messages\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { RunnableLambda, RunnableSequence } from \"@langchain/core/runnables\";\n\nimport {\n AgentNameMode,\n _addInlineAgentName,\n _removeInlineAgentName,\n} from \"./utils.js\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createReactAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param model - Language model to add agent name formatting to\n * @param agentNameMode - How to expose the agent name to the LLM\n * - \"inline\": Add the agent name directly into the content field of the AI message using XML-style tags.\n * Example: \"How can I help you\" -> \"<name>agent_name</name><content>How can I help you?</content>\".\n */\nexport function withAgentName(\n model: LanguageModelLike,\n agentNameMode: AgentNameMode\n): LanguageModelLike {\n let processInputMessage: (message: BaseMessageLike) => BaseMessageLike;\n let processOutputMessage: (message: BaseMessage) => BaseMessage;\n\n if (agentNameMode === \"inline\") {\n processInputMessage = _addInlineAgentName;\n processOutputMessage = _removeInlineAgentName;\n } else {\n throw new Error(\n `Invalid agent name mode: ${agentNameMode}. Needs to be one of: \"inline\"`\n );\n }\n\n function processInputMessages(\n messages: BaseMessageLike[]\n ): BaseMessageLike[] {\n return messages.map(processInputMessage);\n }\n\n return RunnableSequence.from([\n RunnableLambda.from(processInputMessages),\n model,\n RunnableLambda.from(processOutputMessage),\n ]);\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;AAwBA,SAAgB,cACdA,OACAC,eACmB;CACnB,IAAIC;CACJ,IAAIC;AAEJ,KAAI,kBAAkB,UAAU;EAC9B,sBAAsB;EACtB,uBAAuB;CACxB,MACC,OAAM,IAAI,MACR,CAAC,yBAAyB,EAAE,cAAc,8BAA8B,CAAC;CAI7E,SAAS,qBACPC,UACmB;AACnB,SAAO,SAAS,IAAI,oBAAoB;CACzC;AAED,QAAO,iBAAiB,KAAK;EAC3B,eAAe,KAAK,qBAAqB;EACzC;EACA,eAAe,KAAK,qBAAqB;CAC1C,EAAC;AACH"}
1
+ {"version":3,"file":"withAgentName.js","names":["model: LanguageModelLike","agentNameMode: AgentNameMode","processInputMessage: (message: BaseMessageLike) => BaseMessageLike","processOutputMessage: (message: BaseMessage) => BaseMessage","messages: BaseMessageLike[]"],"sources":["../../src/agents/withAgentName.ts"],"sourcesContent":["import { BaseMessage, BaseMessageLike } from \"@langchain/core/messages\";\nimport { LanguageModelLike } from \"@langchain/core/language_models/base\";\nimport { RunnableLambda, RunnableSequence } from \"@langchain/core/runnables\";\n\nimport {\n AgentNameMode,\n _addInlineAgentName,\n _removeInlineAgentName,\n} from \"./utils.js\";\n\n/**\n * Attach formatted agent names to the messages passed to and from a language model.\n *\n * This is useful for making a message history with multiple agents more coherent.\n *\n * NOTE: agent name is consumed from the message.name field.\n * If you're using an agent built with createAgent, name is automatically set.\n * If you're building a custom agent, make sure to set the name on the AI message returned by the LLM.\n *\n * @param model - Language model to add agent name formatting to\n * @param agentNameMode - How to expose the agent name to the LLM\n * - \"inline\": Add the agent name directly into the content field of the AI message using XML-style tags.\n * Example: \"How can I help you\" -> \"<name>agent_name</name><content>How can I help you?</content>\".\n */\nexport function withAgentName(\n model: LanguageModelLike,\n agentNameMode: AgentNameMode\n): LanguageModelLike {\n let processInputMessage: (message: BaseMessageLike) => BaseMessageLike;\n let processOutputMessage: (message: BaseMessage) => BaseMessage;\n\n if (agentNameMode === \"inline\") {\n processInputMessage = _addInlineAgentName;\n processOutputMessage = _removeInlineAgentName;\n } else {\n throw new Error(\n `Invalid agent name mode: ${agentNameMode}. Needs to be one of: \"inline\"`\n );\n }\n\n function processInputMessages(\n messages: BaseMessageLike[]\n ): BaseMessageLike[] {\n return messages.map(processInputMessage);\n }\n\n return RunnableSequence.from([\n RunnableLambda.from(processInputMessages),\n model,\n RunnableLambda.from(processOutputMessage),\n ]);\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;AAwBA,SAAgB,cACdA,OACAC,eACmB;CACnB,IAAIC;CACJ,IAAIC;AAEJ,KAAI,kBAAkB,UAAU;EAC9B,sBAAsB;EACtB,uBAAuB;CACxB,MACC,OAAM,IAAI,MACR,CAAC,yBAAyB,EAAE,cAAc,8BAA8B,CAAC;CAI7E,SAAS,qBACPC,UACmB;AACnB,SAAO,SAAS,IAAI,oBAAoB;CACzC;AAED,QAAO,iBAAiB,KAAK;EAC3B,eAAe,KAAK,qBAAqB;EACzC;EACA,eAAe,KAAK,qBAAqB;CAC1C,EAAC;AACH"}
@@ -1 +1 @@
1
- {"version":3,"file":"trajectory.d.ts","names":["StructuredToolInterface","BaseLLMOutputParser","AgentStep","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","BaseChatModel","AgentTrajectoryEvaluator","EvalOutputType","LLMEvalChainInput","LLMTrajectoryEvaluatorArgs","ExtractLLMCallOptions","TrajectoryOutputParser","Promise","TrajectoryEvalChain","____________langchain_core_dist_prompt_values_js0","BasePromptValueInterface","Omit","Partial"],"sources":["../../../src/evaluation/agents/trajectory.d.ts"],"sourcesContent":["import type { StructuredToolInterface } from \"@langchain/core/tools\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { AgentStep } from \"@langchain/core/agents\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { BaseChatModel } from \"@langchain/core/language_models/chat_models\";\nimport { AgentTrajectoryEvaluator, EvalOutputType, LLMEvalChainInput, LLMTrajectoryEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\n/**\n * A parser for the output of the TrajectoryEvalChain.\n */\nexport declare class TrajectoryOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for evaluating ReAct style agents.\n *\n * This chain is used to evaluate ReAct style agents by reasoning about\n * the sequence of actions taken and their outcomes.\n */\nexport declare class TrajectoryEvalChain extends AgentTrajectoryEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n outputParser: TrajectoryOutputParser;\n static resolveTrajectoryPrompt(prompt?: BasePromptTemplate | undefined, agentTools?: StructuredToolInterface[]): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Get the description of the agent tools.\n *\n * @returns The description of the agent tools.\n */\n static toolsDescription(agentTools: StructuredToolInterface[]): string;\n /**\n * Create a new TrajectoryEvalChain.\n * @param llm\n * @param agentTools - The tools used by the agent.\n * @param chainOptions - The options for the chain.\n */\n static fromLLM(llm: BaseChatModel, agentTools?: StructuredToolInterface[], chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<TrajectoryEvalChain>;\n _prepareOutput(result: ChainValues): any;\n /**\n * Get the agent trajectory as a formatted string.\n *\n * @param steps - The agent trajectory.\n * @returns The formatted agent trajectory.\n */\n getAgentTrajectory(steps: AgentStep[]): string;\n formatReference(reference?: string): string;\n _evaluateAgentTrajectory(args: LLMTrajectoryEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n"],"mappings":";;;;;;;;;;;;;;;AAYqBe,cAAAA,sBAAAA,SAA+Bd,mBAAT,CAA6BU,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGzDN,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EM,cAA7EN,CAAAA;;;;;;AAH0C;AAWvE;AAAwC,cAAnBY,mBAAAA,SAA4BP,wBAAAA,CAAT;EAAA,OAMtBK,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAsB,aACIT,CAAAA,EAAAA,MAAAA;EAAkB,cAA2BN,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,EAAA,OAAA;EAAgH,iBAA3GM,EAAAA,OAAAA;EAAkB,YAM/FN,EAPtBe,sBAOsBf;EAAuB,OAOvCS,uBAAAA,CAAAA,MAAAA,CAAAA,EAboBH,kBAapBG,GAAAA,SAAAA,EAAAA,UAAAA,CAAAA,EAbiET,uBAajES,EAAAA,CAAAA,EAb6FH,kBAa7FG,CAAAA,GAAAA,EAbwF,wBAAA,EAaxFA,GAAAA,CAAAA;EAAa;;;;;EAA8H,OAA3BO,gBAAAA,CAAAA,UAAAA,EAPhGhB,uBAOgGgB,EAAAA,CAAAA,EAAAA,MAAAA;EAAO;;;;;;EAUQ,OAAWb,OAAAA,CAAAA,GAAAA,EAV1IM,aAU0IN,EAAAA,UAAAA,CAAAA,EAV9GH,uBAU8GG,EAAAA,EAAAA,YAAAA,CAAAA,EAVpEkB,OAUoElB,CAV5DiB,IAU4DjB,CAVvDS,iBAUuDT,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAV1Ba,OAU0Bb,CAVlBc,mBAUkBd,CAAAA;EAAW,cAAnBa,CAAAA,MAAAA,EAT/Hb,WAS+Ha,CAAAA,EAAAA,GAAAA;EAAO;AA9BxF;;;;;4BA4B3Cd;;iCAEKW,yCAAyCC,6CAA6CP,YAAYC,qBAAqBQ,QAAQb"}
1
+ {"version":3,"file":"trajectory.d.ts","names":["StructuredToolInterface","BaseLLMOutputParser","AgentStep","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","BaseChatModel","AgentTrajectoryEvaluator","EvalOutputType","LLMEvalChainInput","LLMTrajectoryEvaluatorArgs","ExtractLLMCallOptions","TrajectoryOutputParser","Promise","TrajectoryEvalChain","____________langchain_core_dist_prompt_values_js1","BasePromptValueInterface","Omit","Partial"],"sources":["../../../src/evaluation/agents/trajectory.d.ts"],"sourcesContent":["import type { StructuredToolInterface } from \"@langchain/core/tools\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { AgentStep } from \"@langchain/core/agents\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { BaseChatModel } from \"@langchain/core/language_models/chat_models\";\nimport { AgentTrajectoryEvaluator, EvalOutputType, LLMEvalChainInput, LLMTrajectoryEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\n/**\n * A parser for the output of the TrajectoryEvalChain.\n */\nexport declare class TrajectoryOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for evaluating ReAct style agents.\n *\n * This chain is used to evaluate ReAct style agents by reasoning about\n * the sequence of actions taken and their outcomes.\n */\nexport declare class TrajectoryEvalChain extends AgentTrajectoryEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n outputParser: TrajectoryOutputParser;\n static resolveTrajectoryPrompt(prompt?: BasePromptTemplate | undefined, agentTools?: StructuredToolInterface[]): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Get the description of the agent tools.\n *\n * @returns The description of the agent tools.\n */\n static toolsDescription(agentTools: StructuredToolInterface[]): string;\n /**\n * Create a new TrajectoryEvalChain.\n * @param llm\n * @param agentTools - The tools used by the agent.\n * @param chainOptions - The options for the chain.\n */\n static fromLLM(llm: BaseChatModel, agentTools?: StructuredToolInterface[], chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<TrajectoryEvalChain>;\n _prepareOutput(result: ChainValues): any;\n /**\n * Get the agent trajectory as a formatted string.\n *\n * @param steps - The agent trajectory.\n * @returns The formatted agent trajectory.\n */\n getAgentTrajectory(steps: AgentStep[]): string;\n formatReference(reference?: string): string;\n _evaluateAgentTrajectory(args: LLMTrajectoryEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n"],"mappings":";;;;;;;;;;;;;;;AAYqBe,cAAAA,sBAAAA,SAA+Bd,mBAAT,CAA6BU,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGzDN,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EM,cAA7EN,CAAAA;;;;;;AAH0C;AAWvE;AAAwC,cAAnBY,mBAAAA,SAA4BP,wBAAAA,CAAT;EAAA,OAMtBK,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAsB,aACIT,CAAAA,EAAAA,MAAAA;EAAkB,cAA2BN,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,EAAA,OAAA;EAAgH,iBAA3GM,EAAAA,OAAAA;EAAkB,YAM/FN,EAPtBe,sBAOsBf;EAAuB,OAOvCS,uBAAAA,CAAAA,MAAAA,CAAAA,EAboBH,kBAapBG,GAAAA,SAAAA,EAAAA,UAAAA,CAAAA,EAbiET,uBAajES,EAAAA,CAAAA,EAb6FH,kBAa7FG,CAAAA,GAAAA,EAbwF,wBAAA,EAaxFA,GAAAA,CAAAA;EAAa;;;;;EAA8H,OAA3BO,gBAAAA,CAAAA,UAAAA,EAPhGhB,uBAOgGgB,EAAAA,CAAAA,EAAAA,MAAAA;EAAO;;;;;;EAUQ,OAAWb,OAAAA,CAAAA,GAAAA,EAV1IM,aAU0IN,EAAAA,UAAAA,CAAAA,EAV9GH,uBAU8GG,EAAAA,EAAAA,YAAAA,CAAAA,EAVpEkB,OAUoElB,CAV5DiB,IAU4DjB,CAVvDS,iBAUuDT,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAV1Ba,OAU0Bb,CAVlBc,mBAUkBd,CAAAA;EAAW,cAAnBa,CAAAA,MAAAA,EAT/Hb,WAS+Ha,CAAAA,EAAAA,GAAAA;EAAO;AA9BxF;;;;;4BA4B3Cd;;iCAEKW,yCAAyCC,6CAA6CP,YAAYC,qBAAqBQ,QAAQb"}
@@ -1 +1 @@
1
- {"version":3,"file":"pairwise.d.cts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMPairwiseStringEvaluator","LLMPairwiseStringEvaluatorArgs","ExtractLLMCallOptions","CriteriaLike","PairwiseStringResultOutputParser","Promise","PairwiseStringEvalChain","Record","____________langchain_core_dist_prompt_values_js0","BasePromptValueInterface","Omit","Partial","LabeledPairwiseStringEvalChain"],"sources":["../../../src/evaluation/comparison/pairwise.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMPairwiseStringEvaluator, LLMPairwiseStringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { CriteriaLike } from \"../criteria/criteria.js\";\n/**\n * A parser for the output of the PairwiseStringEvalChain.\n */\nexport declare class PairwiseStringResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs.\n */\nexport declare class PairwiseStringEvalChain extends LLMPairwiseStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n outputParser: PairwiseStringResultOutputParser;\n static resolvePairwiseCriteria(criteria?: CriteriaLike): Record<string, string>;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the PairwiseStringEvalChain.\n * @param llm\n * @param criteria The criteria to use for evaluation.\n * @param chainOptions Options to pass to the chain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<PairwiseStringEvalChain>;\n _prepareOutput(result: ChainValues): any;\n _evaluateStringPairs(args: LLMPairwiseStringEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs,\n * with labeled preferences.\n */\nexport declare class LabeledPairwiseStringEvalChain extends PairwiseStringEvalChain {\n static lc_name(): string;\n requiresReference: boolean;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWqBc,cAAAA,gCAAAA,SAAyCb,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGnEJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EI,cAA7EJ,CAAAA;;;;;;AAHoD,cAS5DY,uBAAAA,SAAgCN,0BAAAA,CAT4B;EAS5DM,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,CAAA,EAAA,MAAA;EAAA,cAO1BF,CAAAA,EAAAA,MAAAA;EAAgC,aACJD,EAAAA,OAAAA;EAAY,iBAAGI,EAAAA,OAAAA;EAAM,oBACzBZ,EAAAA,MAAAA;EAAkB,YAAA,EAF1CS,gCAE0C;EAA8G,OAA3GT,uBAAAA,CAAAA,QAAAA,CAAAA,EADjBQ,YACiBR,CAAAA,EADFY,MACEZ,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAkB,OAOzDL,qBAAAA,CAAAA,MAAAA,CAAAA,EAPkBK,kBAOlBL,CAAAA,EAPuCK,kBAOvCL,CAAAA,GAAAA,EAPoC,wBAAA,EAOpCA,GAAAA,CAAAA;EAA0B;;;;;;EAA2F,OAClHE,OAAAA,CAAAA,GAAAA,EADHF,0BACGE,EAAAA,QAAAA,CAAAA,EADoCW,YACpCX,EAAAA,YAAAA,CAAAA,EADiEmB,OACjEnB,CADyEkB,IACzElB,CAD8EO,iBAC9EP,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAD2Ga,OAC3Gb,CADmHc,uBACnHd,CAAAA;EAAW,cACPS,CAAAA,MAAAA,EADJT,WACIS,CAAAA,EAAAA,GAAAA;EAA8B,oBAAeC,CAAAA,IAAAA,EAA7CD,8BAA6CC,EAAAA,WAAAA,EAAAA,qBAAAA,CAAAA,IAAAA,CAAAA,KAAAA,CAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAA6CN,SAA7CM,GAAyDL,kBAAzDK,CAAAA,EAA8EG,OAA9EH,CAAsFV,WAAtFU,CAAAA;;;;;;AAlBG;AAyB1DU,cAAAA,8BAAAA,SAAuCN,uBAAAA,CAAT;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,iBAGTX,EAAAA,OAAAA;EAAkB,OAAA,qBAAA,CAAA,MAAA,CAAA,EAAlBA,kBAAkB,CAAA,EAAGA,kBAAH,CAAA,GAAA,EAAA,wBAAA,EAAA,GAAA,CAAA"}
1
+ {"version":3,"file":"pairwise.d.cts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMPairwiseStringEvaluator","LLMPairwiseStringEvaluatorArgs","ExtractLLMCallOptions","CriteriaLike","PairwiseStringResultOutputParser","Promise","PairwiseStringEvalChain","Record","____________langchain_core_dist_prompt_values_js2","BasePromptValueInterface","Omit","Partial","LabeledPairwiseStringEvalChain"],"sources":["../../../src/evaluation/comparison/pairwise.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMPairwiseStringEvaluator, LLMPairwiseStringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { CriteriaLike } from \"../criteria/criteria.js\";\n/**\n * A parser for the output of the PairwiseStringEvalChain.\n */\nexport declare class PairwiseStringResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs.\n */\nexport declare class PairwiseStringEvalChain extends LLMPairwiseStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n outputParser: PairwiseStringResultOutputParser;\n static resolvePairwiseCriteria(criteria?: CriteriaLike): Record<string, string>;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the PairwiseStringEvalChain.\n * @param llm\n * @param criteria The criteria to use for evaluation.\n * @param chainOptions Options to pass to the chain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<PairwiseStringEvalChain>;\n _prepareOutput(result: ChainValues): any;\n _evaluateStringPairs(args: LLMPairwiseStringEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs,\n * with labeled preferences.\n */\nexport declare class LabeledPairwiseStringEvalChain extends PairwiseStringEvalChain {\n static lc_name(): string;\n requiresReference: boolean;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWqBc,cAAAA,gCAAAA,SAAyCb,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGnEJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EI,cAA7EJ,CAAAA;;;;;;AAHoD,cAS5DY,uBAAAA,SAAgCN,0BAAAA,CAT4B;EAS5DM,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,CAAA,EAAA,MAAA;EAAA,cAO1BF,CAAAA,EAAAA,MAAAA;EAAgC,aACJD,EAAAA,OAAAA;EAAY,iBAAGI,EAAAA,OAAAA;EAAM,oBACzBZ,EAAAA,MAAAA;EAAkB,YAAA,EAF1CS,gCAE0C;EAA8G,OAA3GT,uBAAAA,CAAAA,QAAAA,CAAAA,EADjBQ,YACiBR,CAAAA,EADFY,MACEZ,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAkB,OAOzDL,qBAAAA,CAAAA,MAAAA,CAAAA,EAPkBK,kBAOlBL,CAAAA,EAPuCK,kBAOvCL,CAAAA,GAAAA,EAPoC,wBAAA,EAOpCA,GAAAA,CAAAA;EAA0B;;;;;;EAA2F,OAClHE,OAAAA,CAAAA,GAAAA,EADHF,0BACGE,EAAAA,QAAAA,CAAAA,EADoCW,YACpCX,EAAAA,YAAAA,CAAAA,EADiEmB,OACjEnB,CADyEkB,IACzElB,CAD8EO,iBAC9EP,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAD2Ga,OAC3Gb,CADmHc,uBACnHd,CAAAA;EAAW,cACPS,CAAAA,MAAAA,EADJT,WACIS,CAAAA,EAAAA,GAAAA;EAA8B,oBAAeC,CAAAA,IAAAA,EAA7CD,8BAA6CC,EAAAA,WAAAA,EAAAA,qBAAAA,CAAAA,IAAAA,CAAAA,KAAAA,CAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAA6CN,SAA7CM,GAAyDL,kBAAzDK,CAAAA,EAA8EG,OAA9EH,CAAsFV,WAAtFU,CAAAA;;;;;;AAlBG;AAyB1DU,cAAAA,8BAAAA,SAAuCN,uBAAAA,CAAT;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,iBAGTX,EAAAA,OAAAA;EAAkB,OAAA,qBAAA,CAAA,MAAA,CAAA,EAAlBA,kBAAkB,CAAA,EAAGA,kBAAH,CAAA,GAAA,EAAA,wBAAA,EAAA,GAAA,CAAA"}
@@ -1 +1 @@
1
- {"version":3,"file":"pairwise.d.ts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMPairwiseStringEvaluator","LLMPairwiseStringEvaluatorArgs","ExtractLLMCallOptions","CriteriaLike","PairwiseStringResultOutputParser","Promise","PairwiseStringEvalChain","Record","____________langchain_core_dist_prompt_values_js2","BasePromptValueInterface","Omit","Partial","LabeledPairwiseStringEvalChain"],"sources":["../../../src/evaluation/comparison/pairwise.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMPairwiseStringEvaluator, LLMPairwiseStringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { CriteriaLike } from \"../criteria/criteria.js\";\n/**\n * A parser for the output of the PairwiseStringEvalChain.\n */\nexport declare class PairwiseStringResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs.\n */\nexport declare class PairwiseStringEvalChain extends LLMPairwiseStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n outputParser: PairwiseStringResultOutputParser;\n static resolvePairwiseCriteria(criteria?: CriteriaLike): Record<string, string>;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the PairwiseStringEvalChain.\n * @param llm\n * @param criteria The criteria to use for evaluation.\n * @param chainOptions Options to pass to the chain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<PairwiseStringEvalChain>;\n _prepareOutput(result: ChainValues): any;\n _evaluateStringPairs(args: LLMPairwiseStringEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs,\n * with labeled preferences.\n */\nexport declare class LabeledPairwiseStringEvalChain extends PairwiseStringEvalChain {\n static lc_name(): string;\n requiresReference: boolean;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWqBc,cAAAA,gCAAAA,SAAyCb,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGnEJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EI,cAA7EJ,CAAAA;;;;;;AAHoD,cAS5DY,uBAAAA,SAAgCN,0BAAAA,CAT4B;EAS5DM,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,CAAA,EAAA,MAAA;EAAA,cAO1BF,CAAAA,EAAAA,MAAAA;EAAgC,aACJD,EAAAA,OAAAA;EAAY,iBAAGI,EAAAA,OAAAA;EAAM,oBACzBZ,EAAAA,MAAAA;EAAkB,YAAA,EAF1CS,gCAE0C;EAA8G,OAA3GT,uBAAAA,CAAAA,QAAAA,CAAAA,EADjBQ,YACiBR,CAAAA,EADFY,MACEZ,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAkB,OAOzDL,qBAAAA,CAAAA,MAAAA,CAAAA,EAPkBK,kBAOlBL,CAAAA,EAPuCK,kBAOvCL,CAAAA,GAAAA,EAPoC,wBAAA,EAOpCA,GAAAA,CAAAA;EAA0B;;;;;;EAA2F,OAClHE,OAAAA,CAAAA,GAAAA,EADHF,0BACGE,EAAAA,QAAAA,CAAAA,EADoCW,YACpCX,EAAAA,YAAAA,CAAAA,EADiEmB,OACjEnB,CADyEkB,IACzElB,CAD8EO,iBAC9EP,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAD2Ga,OAC3Gb,CADmHc,uBACnHd,CAAAA;EAAW,cACPS,CAAAA,MAAAA,EADJT,WACIS,CAAAA,EAAAA,GAAAA;EAA8B,oBAAeC,CAAAA,IAAAA,EAA7CD,8BAA6CC,EAAAA,WAAAA,EAAAA,qBAAAA,CAAAA,IAAAA,CAAAA,KAAAA,CAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAA6CN,SAA7CM,GAAyDL,kBAAzDK,CAAAA,EAA8EG,OAA9EH,CAAsFV,WAAtFU,CAAAA;;;;;;AAlBG;AAyB1DU,cAAAA,8BAAAA,SAAuCN,uBAAAA,CAAT;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,iBAGTX,EAAAA,OAAAA;EAAkB,OAAA,qBAAA,CAAA,MAAA,CAAA,EAAlBA,kBAAkB,CAAA,EAAGA,kBAAH,CAAA,GAAA,EAAA,wBAAA,EAAA,GAAA,CAAA"}
1
+ {"version":3,"file":"pairwise.d.ts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMPairwiseStringEvaluator","LLMPairwiseStringEvaluatorArgs","ExtractLLMCallOptions","CriteriaLike","PairwiseStringResultOutputParser","Promise","PairwiseStringEvalChain","Record","____________langchain_core_dist_prompt_values_js0","BasePromptValueInterface","Omit","Partial","LabeledPairwiseStringEvalChain"],"sources":["../../../src/evaluation/comparison/pairwise.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMPairwiseStringEvaluator, LLMPairwiseStringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { CriteriaLike } from \"../criteria/criteria.js\";\n/**\n * A parser for the output of the PairwiseStringEvalChain.\n */\nexport declare class PairwiseStringResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs.\n */\nexport declare class PairwiseStringEvalChain extends LLMPairwiseStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n outputParser: PairwiseStringResultOutputParser;\n static resolvePairwiseCriteria(criteria?: CriteriaLike): Record<string, string>;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the PairwiseStringEvalChain.\n * @param llm\n * @param criteria The criteria to use for evaluation.\n * @param chainOptions Options to pass to the chain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<PairwiseStringEvalChain>;\n _prepareOutput(result: ChainValues): any;\n _evaluateStringPairs(args: LLMPairwiseStringEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs,\n * with labeled preferences.\n */\nexport declare class LabeledPairwiseStringEvalChain extends PairwiseStringEvalChain {\n static lc_name(): string;\n requiresReference: boolean;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWqBc,cAAAA,gCAAAA,SAAyCb,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGnEJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EI,cAA7EJ,CAAAA;;;;;;AAHoD,cAS5DY,uBAAAA,SAAgCN,0BAAAA,CAT4B;EAS5DM,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,CAAA,EAAA,MAAA;EAAA,cAO1BF,CAAAA,EAAAA,MAAAA;EAAgC,aACJD,EAAAA,OAAAA;EAAY,iBAAGI,EAAAA,OAAAA;EAAM,oBACzBZ,EAAAA,MAAAA;EAAkB,YAAA,EAF1CS,gCAE0C;EAA8G,OAA3GT,uBAAAA,CAAAA,QAAAA,CAAAA,EADjBQ,YACiBR,CAAAA,EADFY,MACEZ,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAkB,OAOzDL,qBAAAA,CAAAA,MAAAA,CAAAA,EAPkBK,kBAOlBL,CAAAA,EAPuCK,kBAOvCL,CAAAA,GAAAA,EAPoC,wBAAA,EAOpCA,GAAAA,CAAAA;EAA0B;;;;;;EAA2F,OAClHE,OAAAA,CAAAA,GAAAA,EADHF,0BACGE,EAAAA,QAAAA,CAAAA,EADoCW,YACpCX,EAAAA,YAAAA,CAAAA,EADiEmB,OACjEnB,CADyEkB,IACzElB,CAD8EO,iBAC9EP,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAD2Ga,OAC3Gb,CADmHc,uBACnHd,CAAAA;EAAW,cACPS,CAAAA,MAAAA,EADJT,WACIS,CAAAA,EAAAA,GAAAA;EAA8B,oBAAeC,CAAAA,IAAAA,EAA7CD,8BAA6CC,EAAAA,WAAAA,EAAAA,qBAAAA,CAAAA,IAAAA,CAAAA,KAAAA,CAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAA6CN,SAA7CM,GAAyDL,kBAAzDK,CAAAA,EAA8EG,OAA9EH,CAAsFV,WAAtFU,CAAAA;;;;;;AAlBG;AAyB1DU,cAAAA,8BAAAA,SAAuCN,uBAAAA,CAAT;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,iBAGTX,EAAAA,OAAAA;EAAkB,OAAA,qBAAA,CAAA,MAAA,CAAA,EAAlBA,kBAAkB,CAAA,EAAGA,kBAAH,CAAA,GAAA,EAAA,wBAAA,EAAA,GAAA,CAAA"}
@@ -1 +1 @@
1
- {"version":3,"file":"criteria.d.cts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMStringEvaluator","StringEvaluatorArgs","ExtractLLMCallOptions","ConstitutionalPrinciple","Criteria","CriteriaLike","CriteriaResultOutputParser","Promise","CriteriaEvalInput","CriteriaEvalChain","Record","____________langchain_core_dist_prompt_values_js2","BasePromptValueInterface","Omit","Partial","input","prediction","reference","LabeledCriteriaEvalChain"],"sources":["../../../src/evaluation/criteria/criteria.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMStringEvaluator, StringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { ConstitutionalPrinciple } from \"../../chains/constitutional_ai/constitutional_principle.js\";\n/**\n * A Criteria to evaluate.\n */\nexport type Criteria = \"conciseness\" | \"relevance\" | \"correctness\" | \"coherence\" | \"harmfulness\" | \"maliciousness\" | \"helpfulness\" | \"controversiality\" | \"misogyny\" | \"criminality\" | \"insensitivity\" | \"depth\" | \"creativity\" | \"detail\";\nexport type CriteriaLike = {\n [key: string]: string;\n} | Criteria | ConstitutionalPrinciple;\n/**\n * A parser for the output of the CriteriaEvalChain.\n */\nexport declare class CriteriaResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\nexport interface CriteriaEvalInput {\n input?: string;\n output: string;\n reference?: string;\n}\nexport declare class CriteriaEvalChain extends LLMStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n // The output parser to use for the evaluation chain.\n outputParser: BaseLLMOutputParser<EvalOutputType>;\n /**\n * Resolve the criteria to evaluate.\n * @param criteria The criteria to evaluate the runs against. It can be:\n * - a mapping of a criterion name to its description\n * - a single criterion name present in one of the default criteria\n * - a single `ConstitutionalPrinciple` instance\n *\n * @return A dictionary mapping criterion names to descriptions.\n */\n static resolveCriteria(criteria?: CriteriaLike): Record<string, string>;\n /**\n * Resolve the prompt to use for the evaluation.\n * @param prompt\n */\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the CriteriaEvalChain.\n * @param llm\n * @param criteria\n * @param chainOptions Options to pass to the constructor of the LLMChain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<CriteriaEvalChain>;\n getEvalInput({ input, prediction, reference }: StringEvaluatorArgs): CriteriaEvalInput;\n /**\n * Prepare the output of the evaluation.\n * @param result\n */\n _prepareOutput(result: ChainValues): any;\n _evaluateStrings(args: StringEvaluatorArgs & ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * Criteria evaluation chain that requires references.\n */\nexport declare class LabeledCriteriaEvalChain extends CriteriaEvalChain {\n static lc_name(): string;\n // Whether the evaluation requires a reference text.\n requiresReference: boolean;\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWYc,KAAAA,QAAAA,GAAQ,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,eAAA,GAAA,aAAA,GAAA,kBAAA,GAAA,UAAA,GAAA,aAAA,GAAA,eAAA,GAAA,OAAA,GAAA,YAAA,GAAA,QAAA;AACRC,KAAAA,YAAAA,GAAY;EAAA,CAAA,GAAA,EAAA,MAAA,CAAA,EAAA,MAAA;CAAA,GAEpBD,QAAAA,GAAWD,uBAAXC;;AAAkC;AAItC;AAA+C,cAA1BE,0BAAAA,SAAmCf,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAE7DJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEa,OAArEb,CAA6EI,cAA7EJ,CAAAA;;AAA6CE,UAEzDY,iBAAAA,CAFyDZ;EAAS,KAAuBE,CAAAA,EAAAA,MAAAA;EAAc,MAAtBS,EAAAA,MAAAA;EAAO,SAFjDhB,CAAAA,EAAAA,MAAAA;AAAmB;AAI1DiB,cAKIC,iBAAAA,SAA0BT,kBAAAA,CALb;EAKbS,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAiB;EAAA,aAAA,CAAA,EAAA,MAAA;EAAA,cAQAX,CAAAA,EAAAA,MAAAA;EAAc,aAAlCP,EAAAA,OAAAA;EAAmB,iBAUCc,EAAAA,OAAAA;EAAY,oBAAGK,EAAAA,MAAAA;EAAM;EAKP,YAAA,EAflCnB,mBAekC,CAfdO,cAec,CAAA;EAA8G;;;;;;;;;EAQ1I,OAAEkB,eAAAA,CAAAA,QAAAA,CAAAA,EAbYX,YAaZW,CAAAA,EAb2BN,MAa3BM,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAU;;;;EAKE,OACXf,aAAAA,CAAAA,MAAAA,CAAAA,EAdON,kBAcPM,CAAAA,EAd4BN,kBAc5BM,CAAAA,GAAAA,EAdyB,wBAAA,EAczBA,GAAAA,CAAAA;EAAmB;;;;;;EArCmB,OAAA,OAAA,CAAA,GAAA,EA8BzCX,0BA9ByC,EAAA,QAAA,CAAA,EA8BFe,YA9BE,EAAA,YAAA,CAAA,EA8B2BS,OA9B3B,CA8BmCD,IA9BnC,CA8BwCd,iBA9BxC,EAAA,KAAA,CAAA,CAAA,CAAA,EA8BqEQ,OA9BrE,CA8B6EE,iBA9B7E,CAAA;EA0C5CS,YAAAA,CAAAA;IAAAA,KAAAA;IAAAA,UAAwB;IAAA;EAAA,CAAA,EAXMjB,mBAWN,CAAA,EAX4BO,iBAW5B;EAAA;;;;EAI4B,cAJnBC,CAAAA,MAAAA,EAN3BjB,WAM2BiB,CAAAA,EAAAA,GAAAA;EAAiB,gBAAA,CAAA,IAAA,EAL5CR,mBAK4C,GALtBC,qBAKsB,CAAA,IAAA,CAAA,KAAA,CAAA,CAAA,EAAA,MAAA,CAAA,EALuBN,SAKvB,GALmCC,kBAKnC,CAAA,EALwDU,OAKxD,CALgEf,WAKhE,CAAA;;;;;cAAlD0B,wBAAAA,SAAiCT,iBAAAA;;;;gCAIpBd,qBAAqBA,wBAAH,wBAAA"}
1
+ {"version":3,"file":"criteria.d.cts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMStringEvaluator","StringEvaluatorArgs","ExtractLLMCallOptions","ConstitutionalPrinciple","Criteria","CriteriaLike","CriteriaResultOutputParser","Promise","CriteriaEvalInput","CriteriaEvalChain","Record","____________langchain_core_dist_prompt_values_js0","BasePromptValueInterface","Omit","Partial","input","prediction","reference","LabeledCriteriaEvalChain"],"sources":["../../../src/evaluation/criteria/criteria.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMStringEvaluator, StringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { ConstitutionalPrinciple } from \"../../chains/constitutional_ai/constitutional_principle.js\";\n/**\n * A Criteria to evaluate.\n */\nexport type Criteria = \"conciseness\" | \"relevance\" | \"correctness\" | \"coherence\" | \"harmfulness\" | \"maliciousness\" | \"helpfulness\" | \"controversiality\" | \"misogyny\" | \"criminality\" | \"insensitivity\" | \"depth\" | \"creativity\" | \"detail\";\nexport type CriteriaLike = {\n [key: string]: string;\n} | Criteria | ConstitutionalPrinciple;\n/**\n * A parser for the output of the CriteriaEvalChain.\n */\nexport declare class CriteriaResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\nexport interface CriteriaEvalInput {\n input?: string;\n output: string;\n reference?: string;\n}\nexport declare class CriteriaEvalChain extends LLMStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n // The output parser to use for the evaluation chain.\n outputParser: BaseLLMOutputParser<EvalOutputType>;\n /**\n * Resolve the criteria to evaluate.\n * @param criteria The criteria to evaluate the runs against. It can be:\n * - a mapping of a criterion name to its description\n * - a single criterion name present in one of the default criteria\n * - a single `ConstitutionalPrinciple` instance\n *\n * @return A dictionary mapping criterion names to descriptions.\n */\n static resolveCriteria(criteria?: CriteriaLike): Record<string, string>;\n /**\n * Resolve the prompt to use for the evaluation.\n * @param prompt\n */\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the CriteriaEvalChain.\n * @param llm\n * @param criteria\n * @param chainOptions Options to pass to the constructor of the LLMChain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<CriteriaEvalChain>;\n getEvalInput({ input, prediction, reference }: StringEvaluatorArgs): CriteriaEvalInput;\n /**\n * Prepare the output of the evaluation.\n * @param result\n */\n _prepareOutput(result: ChainValues): any;\n _evaluateStrings(args: StringEvaluatorArgs & ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * Criteria evaluation chain that requires references.\n */\nexport declare class LabeledCriteriaEvalChain extends CriteriaEvalChain {\n static lc_name(): string;\n // Whether the evaluation requires a reference text.\n requiresReference: boolean;\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWYc,KAAAA,QAAAA,GAAQ,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,eAAA,GAAA,aAAA,GAAA,kBAAA,GAAA,UAAA,GAAA,aAAA,GAAA,eAAA,GAAA,OAAA,GAAA,YAAA,GAAA,QAAA;AACRC,KAAAA,YAAAA,GAAY;EAAA,CAAA,GAAA,EAAA,MAAA,CAAA,EAAA,MAAA;CAAA,GAEpBD,QAAAA,GAAWD,uBAAXC;;AAAkC;AAItC;AAA+C,cAA1BE,0BAAAA,SAAmCf,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAE7DJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEa,OAArEb,CAA6EI,cAA7EJ,CAAAA;;AAA6CE,UAEzDY,iBAAAA,CAFyDZ;EAAS,KAAuBE,CAAAA,EAAAA,MAAAA;EAAc,MAAtBS,EAAAA,MAAAA;EAAO,SAFjDhB,CAAAA,EAAAA,MAAAA;AAAmB;AAI1DiB,cAKIC,iBAAAA,SAA0BT,kBAAAA,CALb;EAKbS,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAiB;EAAA,aAAA,CAAA,EAAA,MAAA;EAAA,cAQAX,CAAAA,EAAAA,MAAAA;EAAc,aAAlCP,EAAAA,OAAAA;EAAmB,iBAUCc,EAAAA,OAAAA;EAAY,oBAAGK,EAAAA,MAAAA;EAAM;EAKP,YAAA,EAflCnB,mBAekC,CAfdO,cAec,CAAA;EAA8G;;;;;;;;;EAQ1I,OAAEkB,eAAAA,CAAAA,QAAAA,CAAAA,EAbYX,YAaZW,CAAAA,EAb2BN,MAa3BM,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAU;;;;EAKE,OACXf,aAAAA,CAAAA,MAAAA,CAAAA,EAdON,kBAcPM,CAAAA,EAd4BN,kBAc5BM,CAAAA,GAAAA,EAdyB,wBAAA,EAczBA,GAAAA,CAAAA;EAAmB;;;;;;EArCmB,OAAA,OAAA,CAAA,GAAA,EA8BzCX,0BA9ByC,EAAA,QAAA,CAAA,EA8BFe,YA9BE,EAAA,YAAA,CAAA,EA8B2BS,OA9B3B,CA8BmCD,IA9BnC,CA8BwCd,iBA9BxC,EAAA,KAAA,CAAA,CAAA,CAAA,EA8BqEQ,OA9BrE,CA8B6EE,iBA9B7E,CAAA;EA0C5CS,YAAAA,CAAAA;IAAAA,KAAAA;IAAAA,UAAwB;IAAA;EAAA,CAAA,EAXMjB,mBAWN,CAAA,EAX4BO,iBAW5B;EAAA;;;;EAI4B,cAJnBC,CAAAA,MAAAA,EAN3BjB,WAM2BiB,CAAAA,EAAAA,GAAAA;EAAiB,gBAAA,CAAA,IAAA,EAL5CR,mBAK4C,GALtBC,qBAKsB,CAAA,IAAA,CAAA,KAAA,CAAA,CAAA,EAAA,MAAA,CAAA,EALuBN,SAKvB,GALmCC,kBAKnC,CAAA,EALwDU,OAKxD,CALgEf,WAKhE,CAAA;;;;;cAAlD0B,wBAAAA,SAAiCT,iBAAAA;;;;gCAIpBd,qBAAqBA,wBAAH,wBAAA"}
@@ -1 +1 @@
1
- {"version":3,"file":"criteria.d.ts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMStringEvaluator","StringEvaluatorArgs","ExtractLLMCallOptions","ConstitutionalPrinciple","Criteria","CriteriaLike","CriteriaResultOutputParser","Promise","CriteriaEvalInput","CriteriaEvalChain","Record","____________langchain_core_dist_prompt_values_js0","BasePromptValueInterface","Omit","Partial","input","prediction","reference","LabeledCriteriaEvalChain"],"sources":["../../../src/evaluation/criteria/criteria.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMStringEvaluator, StringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { ConstitutionalPrinciple } from \"../../chains/constitutional_ai/constitutional_principle.js\";\n/**\n * A Criteria to evaluate.\n */\nexport type Criteria = \"conciseness\" | \"relevance\" | \"correctness\" | \"coherence\" | \"harmfulness\" | \"maliciousness\" | \"helpfulness\" | \"controversiality\" | \"misogyny\" | \"criminality\" | \"insensitivity\" | \"depth\" | \"creativity\" | \"detail\";\nexport type CriteriaLike = {\n [key: string]: string;\n} | Criteria | ConstitutionalPrinciple;\n/**\n * A parser for the output of the CriteriaEvalChain.\n */\nexport declare class CriteriaResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\nexport interface CriteriaEvalInput {\n input?: string;\n output: string;\n reference?: string;\n}\nexport declare class CriteriaEvalChain extends LLMStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n // The output parser to use for the evaluation chain.\n outputParser: BaseLLMOutputParser<EvalOutputType>;\n /**\n * Resolve the criteria to evaluate.\n * @param criteria The criteria to evaluate the runs against. It can be:\n * - a mapping of a criterion name to its description\n * - a single criterion name present in one of the default criteria\n * - a single `ConstitutionalPrinciple` instance\n *\n * @return A dictionary mapping criterion names to descriptions.\n */\n static resolveCriteria(criteria?: CriteriaLike): Record<string, string>;\n /**\n * Resolve the prompt to use for the evaluation.\n * @param prompt\n */\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the CriteriaEvalChain.\n * @param llm\n * @param criteria\n * @param chainOptions Options to pass to the constructor of the LLMChain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<CriteriaEvalChain>;\n getEvalInput({ input, prediction, reference }: StringEvaluatorArgs): CriteriaEvalInput;\n /**\n * Prepare the output of the evaluation.\n * @param result\n */\n _prepareOutput(result: ChainValues): any;\n _evaluateStrings(args: StringEvaluatorArgs & ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * Criteria evaluation chain that requires references.\n */\nexport declare class LabeledCriteriaEvalChain extends CriteriaEvalChain {\n static lc_name(): string;\n // Whether the evaluation requires a reference text.\n requiresReference: boolean;\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWYc,KAAAA,QAAAA,GAAQ,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,eAAA,GAAA,aAAA,GAAA,kBAAA,GAAA,UAAA,GAAA,aAAA,GAAA,eAAA,GAAA,OAAA,GAAA,YAAA,GAAA,QAAA;AACRC,KAAAA,YAAAA,GAAY;EAAA,CAAA,GAAA,EAAA,MAAA,CAAA,EAAA,MAAA;CAAA,GAEpBD,QAAAA,GAAWD,uBAAXC;;AAAkC;AAItC;AAA+C,cAA1BE,0BAAAA,SAAmCf,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAE7DJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEa,OAArEb,CAA6EI,cAA7EJ,CAAAA;;AAA6CE,UAEzDY,iBAAAA,CAFyDZ;EAAS,KAAuBE,CAAAA,EAAAA,MAAAA;EAAc,MAAtBS,EAAAA,MAAAA;EAAO,SAFjDhB,CAAAA,EAAAA,MAAAA;AAAmB;AAI1DiB,cAKIC,iBAAAA,SAA0BT,kBAAAA,CALb;EAKbS,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAiB;EAAA,aAAA,CAAA,EAAA,MAAA;EAAA,cAQAX,CAAAA,EAAAA,MAAAA;EAAc,aAAlCP,EAAAA,OAAAA;EAAmB,iBAUCc,EAAAA,OAAAA;EAAY,oBAAGK,EAAAA,MAAAA;EAAM;EAKP,YAAA,EAflCnB,mBAekC,CAfdO,cAec,CAAA;EAA8G;;;;;;;;;EAQ1I,OAAEkB,eAAAA,CAAAA,QAAAA,CAAAA,EAbYX,YAaZW,CAAAA,EAb2BN,MAa3BM,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAU;;;;EAKE,OACXf,aAAAA,CAAAA,MAAAA,CAAAA,EAdON,kBAcPM,CAAAA,EAd4BN,kBAc5BM,CAAAA,GAAAA,EAdyB,wBAAA,EAczBA,GAAAA,CAAAA;EAAmB;;;;;;EArCmB,OAAA,OAAA,CAAA,GAAA,EA8BzCX,0BA9ByC,EAAA,QAAA,CAAA,EA8BFe,YA9BE,EAAA,YAAA,CAAA,EA8B2BS,OA9B3B,CA8BmCD,IA9BnC,CA8BwCd,iBA9BxC,EAAA,KAAA,CAAA,CAAA,CAAA,EA8BqEQ,OA9BrE,CA8B6EE,iBA9B7E,CAAA;EA0C5CS,YAAAA,CAAAA;IAAAA,KAAAA;IAAAA,UAAwB;IAAA;EAAA,CAAA,EAXMjB,mBAWN,CAAA,EAX4BO,iBAW5B;EAAA;;;;EAI4B,cAJnBC,CAAAA,MAAAA,EAN3BjB,WAM2BiB,CAAAA,EAAAA,GAAAA;EAAiB,gBAAA,CAAA,IAAA,EAL5CR,mBAK4C,GALtBC,qBAKsB,CAAA,IAAA,CAAA,KAAA,CAAA,CAAA,EAAA,MAAA,CAAA,EALuBN,SAKvB,GALmCC,kBAKnC,CAAA,EALwDU,OAKxD,CALgEf,WAKhE,CAAA;;;;;cAAlD0B,wBAAAA,SAAiCT,iBAAAA;;;;gCAIpBd,qBAAqBA,wBAAH,wBAAA"}
1
+ {"version":3,"file":"criteria.d.ts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMStringEvaluator","StringEvaluatorArgs","ExtractLLMCallOptions","ConstitutionalPrinciple","Criteria","CriteriaLike","CriteriaResultOutputParser","Promise","CriteriaEvalInput","CriteriaEvalChain","Record","____________langchain_core_dist_prompt_values_js2","BasePromptValueInterface","Omit","Partial","input","prediction","reference","LabeledCriteriaEvalChain"],"sources":["../../../src/evaluation/criteria/criteria.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMStringEvaluator, StringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { ConstitutionalPrinciple } from \"../../chains/constitutional_ai/constitutional_principle.js\";\n/**\n * A Criteria to evaluate.\n */\nexport type Criteria = \"conciseness\" | \"relevance\" | \"correctness\" | \"coherence\" | \"harmfulness\" | \"maliciousness\" | \"helpfulness\" | \"controversiality\" | \"misogyny\" | \"criminality\" | \"insensitivity\" | \"depth\" | \"creativity\" | \"detail\";\nexport type CriteriaLike = {\n [key: string]: string;\n} | Criteria | ConstitutionalPrinciple;\n/**\n * A parser for the output of the CriteriaEvalChain.\n */\nexport declare class CriteriaResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\nexport interface CriteriaEvalInput {\n input?: string;\n output: string;\n reference?: string;\n}\nexport declare class CriteriaEvalChain extends LLMStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n // The output parser to use for the evaluation chain.\n outputParser: BaseLLMOutputParser<EvalOutputType>;\n /**\n * Resolve the criteria to evaluate.\n * @param criteria The criteria to evaluate the runs against. It can be:\n * - a mapping of a criterion name to its description\n * - a single criterion name present in one of the default criteria\n * - a single `ConstitutionalPrinciple` instance\n *\n * @return A dictionary mapping criterion names to descriptions.\n */\n static resolveCriteria(criteria?: CriteriaLike): Record<string, string>;\n /**\n * Resolve the prompt to use for the evaluation.\n * @param prompt\n */\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the CriteriaEvalChain.\n * @param llm\n * @param criteria\n * @param chainOptions Options to pass to the constructor of the LLMChain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<CriteriaEvalChain>;\n getEvalInput({ input, prediction, reference }: StringEvaluatorArgs): CriteriaEvalInput;\n /**\n * Prepare the output of the evaluation.\n * @param result\n */\n _prepareOutput(result: ChainValues): any;\n _evaluateStrings(args: StringEvaluatorArgs & ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * Criteria evaluation chain that requires references.\n */\nexport declare class LabeledCriteriaEvalChain extends CriteriaEvalChain {\n static lc_name(): string;\n // Whether the evaluation requires a reference text.\n requiresReference: boolean;\n static resolvePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWYc,KAAAA,QAAAA,GAAQ,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,WAAA,GAAA,aAAA,GAAA,eAAA,GAAA,aAAA,GAAA,kBAAA,GAAA,UAAA,GAAA,aAAA,GAAA,eAAA,GAAA,OAAA,GAAA,YAAA,GAAA,QAAA;AACRC,KAAAA,YAAAA,GAAY;EAAA,CAAA,GAAA,EAAA,MAAA,CAAA,EAAA,MAAA;CAAA,GAEpBD,QAAAA,GAAWD,uBAAXC;;AAAkC;AAItC;AAA+C,cAA1BE,0BAAAA,SAAmCf,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAE7DJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEa,OAArEb,CAA6EI,cAA7EJ,CAAAA;;AAA6CE,UAEzDY,iBAAAA,CAFyDZ;EAAS,KAAuBE,CAAAA,EAAAA,MAAAA;EAAc,MAAtBS,EAAAA,MAAAA;EAAO,SAFjDhB,CAAAA,EAAAA,MAAAA;AAAmB;AAI1DiB,cAKIC,iBAAAA,SAA0BT,kBAAAA,CALb;EAKbS,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAiB;EAAA,aAAA,CAAA,EAAA,MAAA;EAAA,cAQAX,CAAAA,EAAAA,MAAAA;EAAc,aAAlCP,EAAAA,OAAAA;EAAmB,iBAUCc,EAAAA,OAAAA;EAAY,oBAAGK,EAAAA,MAAAA;EAAM;EAKP,YAAA,EAflCnB,mBAekC,CAfdO,cAec,CAAA;EAA8G;;;;;;;;;EAQ1I,OAAEkB,eAAAA,CAAAA,QAAAA,CAAAA,EAbYX,YAaZW,CAAAA,EAb2BN,MAa3BM,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAU;;;;EAKE,OACXf,aAAAA,CAAAA,MAAAA,CAAAA,EAdON,kBAcPM,CAAAA,EAd4BN,kBAc5BM,CAAAA,GAAAA,EAdyB,wBAAA,EAczBA,GAAAA,CAAAA;EAAmB;;;;;;EArCmB,OAAA,OAAA,CAAA,GAAA,EA8BzCX,0BA9ByC,EAAA,QAAA,CAAA,EA8BFe,YA9BE,EAAA,YAAA,CAAA,EA8B2BS,OA9B3B,CA8BmCD,IA9BnC,CA8BwCd,iBA9BxC,EAAA,KAAA,CAAA,CAAA,CAAA,EA8BqEQ,OA9BrE,CA8B6EE,iBA9B7E,CAAA;EA0C5CS,YAAAA,CAAAA;IAAAA,KAAAA;IAAAA,UAAwB;IAAA;EAAA,CAAA,EAXMjB,mBAWN,CAAA,EAX4BO,iBAW5B;EAAA;;;;EAI4B,cAJnBC,CAAAA,MAAAA,EAN3BjB,WAM2BiB,CAAAA,EAAAA,GAAAA;EAAiB,gBAAA,CAAA,IAAA,EAL5CR,mBAK4C,GALtBC,qBAKsB,CAAA,IAAA,CAAA,KAAA,CAAA,CAAA,EAAA,MAAA,CAAA,EALuBN,SAKvB,GALmCC,kBAKnC,CAAA,EALwDU,OAKxD,CALgEf,WAKhE,CAAA;;;;;cAAlD0B,wBAAAA,SAAiCT,iBAAAA;;;;gCAIpBd,qBAAqBA,wBAAH,wBAAA"}
package/dist/index.cjs CHANGED
@@ -27,7 +27,7 @@ require_rolldown_runtime.__export(src_exports, {
27
27
  ToolMessage: () => __langchain_core_messages.ToolMessage,
28
28
  ToolMessageChunk: () => __langchain_core_messages.ToolMessageChunk,
29
29
  ToolNode: () => require_ToolNode.ToolNode,
30
- createReactAgent: () => require_index.createReactAgent,
30
+ createAgent: () => require_index.createAgent,
31
31
  filterMessages: () => __langchain_core_messages.filterMessages,
32
32
  getContextVariable: () => __langchain_core_context.getContextVariable,
33
33
  initChatModel: () => require_chat_models_universal.initChatModel,
@@ -124,7 +124,7 @@ Object.defineProperty(exports, 'ToolMessageChunk', {
124
124
  }
125
125
  });
126
126
  exports.ToolNode = require_ToolNode.ToolNode;
127
- exports.createReactAgent = require_index.createReactAgent;
127
+ exports.createAgent = require_index.createAgent;
128
128
  Object.defineProperty(exports, 'filterMessages', {
129
129
  enumerable: true,
130
130
  get: function () {
@@ -1 +1 @@
1
- {"version":3,"file":"index.cjs","names":[],"sources":["../src/index.ts"],"sourcesContent":["/**\n * LangChain Messages\n */\nexport {\n BaseMessage,\n BaseMessageChunk,\n AIMessage,\n AIMessageChunk,\n SystemMessage,\n SystemMessageChunk,\n HumanMessage,\n HumanMessageChunk,\n ToolMessage,\n ToolMessageChunk,\n type ContentBlock,\n filterMessages,\n trimMessages,\n} from \"@langchain/core/messages\";\n\n/**\n * Universal Chat Model\n */\nexport { initChatModel } from \"./chat_models/universal.js\";\n\n/**\n * LangChain Tools\n */\nexport { tool, DynamicStructuredTool } from \"@langchain/core/tools\";\n\n/**\n * LangChain Agents\n */\nexport {\n createReactAgent,\n toolStrategy,\n providerStrategy,\n ToolNode,\n type AgentState,\n type AgentRuntime,\n type HumanInterrupt,\n type HumanInterruptConfig,\n type ActionRequest,\n type HumanResponse,\n} from \"./agents/index.js\";\n\n/**\n * LangChain Memory\n * Check in what we want to export here\n */\nexport { MemorySaver, InMemoryStore } from \"@langchain/langgraph\";\n\n/**\n * LangChain Context\n */\nexport {\n setContextVariable,\n getContextVariable,\n} from \"@langchain/core/context\";\n\n/**\n * LangChain Documents\n */\nexport { Document } from \"@langchain/core/documents\";\n"],"mappings":""}
1
+ {"version":3,"file":"index.cjs","names":[],"sources":["../src/index.ts"],"sourcesContent":["/**\n * LangChain Messages\n */\nexport {\n BaseMessage,\n BaseMessageChunk,\n AIMessage,\n AIMessageChunk,\n SystemMessage,\n SystemMessageChunk,\n HumanMessage,\n HumanMessageChunk,\n ToolMessage,\n ToolMessageChunk,\n type ContentBlock,\n filterMessages,\n trimMessages,\n} from \"@langchain/core/messages\";\n\n/**\n * Universal Chat Model\n */\nexport { initChatModel } from \"./chat_models/universal.js\";\n\n/**\n * LangChain Tools\n */\nexport { tool, DynamicStructuredTool } from \"@langchain/core/tools\";\n\n/**\n * LangChain Agents\n */\nexport {\n createAgent,\n toolStrategy,\n providerStrategy,\n ToolNode,\n type AgentState,\n type AgentRuntime,\n type HumanInterrupt,\n type HumanInterruptConfig,\n type ActionRequest,\n type HumanResponse,\n} from \"./agents/index.js\";\n\n/**\n * LangChain Memory\n * Check in what we want to export here\n */\nexport { MemorySaver, InMemoryStore } from \"@langchain/langgraph\";\n\n/**\n * LangChain Context\n */\nexport {\n setContextVariable,\n getContextVariable,\n} from \"@langchain/core/context\";\n\n/**\n * LangChain Documents\n */\nexport { Document } from \"@langchain/core/documents\";\n"],"mappings":""}
package/dist/index.d.cts CHANGED
@@ -3,10 +3,10 @@ import { providerStrategy, toolStrategy } from "./agents/responses.cjs";
3
3
  import { ToolNode } from "./agents/nodes/ToolNode.cjs";
4
4
  import { AgentRuntime, AgentState } from "./agents/types.cjs";
5
5
  import { ActionRequest, HumanInterrupt, HumanInterruptConfig, HumanResponse } from "./agents/interrupt.cjs";
6
- import { createReactAgent } from "./agents/index.cjs";
6
+ import { createAgent } from "./agents/index.cjs";
7
7
  import { Document } from "@langchain/core/documents";
8
8
  import { AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ContentBlock, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, filterMessages, trimMessages } from "@langchain/core/messages";
9
9
  import { DynamicStructuredTool, tool } from "@langchain/core/tools";
10
10
  import { InMemoryStore, MemorySaver } from "@langchain/langgraph";
11
11
  import { getContextVariable, setContextVariable } from "@langchain/core/context";
12
- export { AIMessage, AIMessageChunk, type ActionRequest, type AgentRuntime, type AgentState, BaseMessage, BaseMessageChunk, type ContentBlock, Document, DynamicStructuredTool, type HumanInterrupt, type HumanInterruptConfig, HumanMessage, HumanMessageChunk, type HumanResponse, InMemoryStore, MemorySaver, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, ToolNode, createReactAgent, filterMessages, getContextVariable, initChatModel, providerStrategy, setContextVariable, tool, toolStrategy, trimMessages };
12
+ export { AIMessage, AIMessageChunk, type ActionRequest, type AgentRuntime, type AgentState, BaseMessage, BaseMessageChunk, type ContentBlock, Document, DynamicStructuredTool, type HumanInterrupt, type HumanInterruptConfig, HumanMessage, HumanMessageChunk, type HumanResponse, InMemoryStore, MemorySaver, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, ToolNode, createAgent, filterMessages, getContextVariable, initChatModel, providerStrategy, setContextVariable, tool, toolStrategy, trimMessages };
package/dist/index.d.ts CHANGED
@@ -3,10 +3,10 @@ import { providerStrategy, toolStrategy } from "./agents/responses.js";
3
3
  import { ToolNode } from "./agents/nodes/ToolNode.js";
4
4
  import { AgentRuntime, AgentState } from "./agents/types.js";
5
5
  import { ActionRequest, HumanInterrupt, HumanInterruptConfig, HumanResponse } from "./agents/interrupt.js";
6
- import { createReactAgent } from "./agents/index.js";
6
+ import { createAgent } from "./agents/index.js";
7
7
  import { Document } from "@langchain/core/documents";
8
8
  import { AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ContentBlock, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, filterMessages, trimMessages } from "@langchain/core/messages";
9
9
  import { DynamicStructuredTool, tool } from "@langchain/core/tools";
10
10
  import { InMemoryStore, MemorySaver } from "@langchain/langgraph";
11
11
  import { getContextVariable, setContextVariable } from "@langchain/core/context";
12
- export { AIMessage, AIMessageChunk, type ActionRequest, type AgentRuntime, type AgentState, BaseMessage, BaseMessageChunk, type ContentBlock, Document, DynamicStructuredTool, type HumanInterrupt, type HumanInterruptConfig, HumanMessage, HumanMessageChunk, type HumanResponse, InMemoryStore, MemorySaver, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, ToolNode, createReactAgent, filterMessages, getContextVariable, initChatModel, providerStrategy, setContextVariable, tool, toolStrategy, trimMessages };
12
+ export { AIMessage, AIMessageChunk, type ActionRequest, type AgentRuntime, type AgentState, BaseMessage, BaseMessageChunk, type ContentBlock, Document, DynamicStructuredTool, type HumanInterrupt, type HumanInterruptConfig, HumanMessage, HumanMessageChunk, type HumanResponse, InMemoryStore, MemorySaver, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, ToolNode, createAgent, filterMessages, getContextVariable, initChatModel, providerStrategy, setContextVariable, tool, toolStrategy, trimMessages };
package/dist/index.js CHANGED
@@ -2,7 +2,7 @@ import { __export } from "./_virtual/rolldown_runtime.js";
2
2
  import { initChatModel } from "./chat_models/universal.js";
3
3
  import { providerStrategy, toolStrategy } from "./agents/responses.js";
4
4
  import { ToolNode } from "./agents/nodes/ToolNode.js";
5
- import { createReactAgent } from "./agents/index.js";
5
+ import { createAgent } from "./agents/index.js";
6
6
  import { Document } from "@langchain/core/documents";
7
7
  import { AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, filterMessages, trimMessages } from "@langchain/core/messages";
8
8
  import { DynamicStructuredTool, tool } from "@langchain/core/tools";
@@ -27,7 +27,7 @@ __export(src_exports, {
27
27
  ToolMessage: () => ToolMessage,
28
28
  ToolMessageChunk: () => ToolMessageChunk,
29
29
  ToolNode: () => ToolNode,
30
- createReactAgent: () => createReactAgent,
30
+ createAgent: () => createAgent,
31
31
  filterMessages: () => filterMessages,
32
32
  getContextVariable: () => getContextVariable,
33
33
  initChatModel: () => initChatModel,
@@ -39,5 +39,5 @@ __export(src_exports, {
39
39
  });
40
40
 
41
41
  //#endregion
42
- export { AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, Document, DynamicStructuredTool, HumanMessage, HumanMessageChunk, InMemoryStore, MemorySaver, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, ToolNode, createReactAgent, filterMessages, getContextVariable, initChatModel, providerStrategy, setContextVariable, src_exports, tool, toolStrategy, trimMessages };
42
+ export { AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, Document, DynamicStructuredTool, HumanMessage, HumanMessageChunk, InMemoryStore, MemorySaver, SystemMessage, SystemMessageChunk, ToolMessage, ToolMessageChunk, ToolNode, createAgent, filterMessages, getContextVariable, initChatModel, providerStrategy, setContextVariable, src_exports, tool, toolStrategy, trimMessages };
43
43
  //# sourceMappingURL=index.js.map
package/dist/index.js.map CHANGED
@@ -1 +1 @@
1
- {"version":3,"file":"index.js","names":[],"sources":["../src/index.ts"],"sourcesContent":["/**\n * LangChain Messages\n */\nexport {\n BaseMessage,\n BaseMessageChunk,\n AIMessage,\n AIMessageChunk,\n SystemMessage,\n SystemMessageChunk,\n HumanMessage,\n HumanMessageChunk,\n ToolMessage,\n ToolMessageChunk,\n type ContentBlock,\n filterMessages,\n trimMessages,\n} from \"@langchain/core/messages\";\n\n/**\n * Universal Chat Model\n */\nexport { initChatModel } from \"./chat_models/universal.js\";\n\n/**\n * LangChain Tools\n */\nexport { tool, DynamicStructuredTool } from \"@langchain/core/tools\";\n\n/**\n * LangChain Agents\n */\nexport {\n createReactAgent,\n toolStrategy,\n providerStrategy,\n ToolNode,\n type AgentState,\n type AgentRuntime,\n type HumanInterrupt,\n type HumanInterruptConfig,\n type ActionRequest,\n type HumanResponse,\n} from \"./agents/index.js\";\n\n/**\n * LangChain Memory\n * Check in what we want to export here\n */\nexport { MemorySaver, InMemoryStore } from \"@langchain/langgraph\";\n\n/**\n * LangChain Context\n */\nexport {\n setContextVariable,\n getContextVariable,\n} from \"@langchain/core/context\";\n\n/**\n * LangChain Documents\n */\nexport { Document } from \"@langchain/core/documents\";\n"],"mappings":""}
1
+ {"version":3,"file":"index.js","names":[],"sources":["../src/index.ts"],"sourcesContent":["/**\n * LangChain Messages\n */\nexport {\n BaseMessage,\n BaseMessageChunk,\n AIMessage,\n AIMessageChunk,\n SystemMessage,\n SystemMessageChunk,\n HumanMessage,\n HumanMessageChunk,\n ToolMessage,\n ToolMessageChunk,\n type ContentBlock,\n filterMessages,\n trimMessages,\n} from \"@langchain/core/messages\";\n\n/**\n * Universal Chat Model\n */\nexport { initChatModel } from \"./chat_models/universal.js\";\n\n/**\n * LangChain Tools\n */\nexport { tool, DynamicStructuredTool } from \"@langchain/core/tools\";\n\n/**\n * LangChain Agents\n */\nexport {\n createAgent,\n toolStrategy,\n providerStrategy,\n ToolNode,\n type AgentState,\n type AgentRuntime,\n type HumanInterrupt,\n type HumanInterruptConfig,\n type ActionRequest,\n type HumanResponse,\n} from \"./agents/index.js\";\n\n/**\n * LangChain Memory\n * Check in what we want to export here\n */\nexport { MemorySaver, InMemoryStore } from \"@langchain/langgraph\";\n\n/**\n * LangChain Context\n */\nexport {\n setContextVariable,\n getContextVariable,\n} from \"@langchain/core/context\";\n\n/**\n * LangChain Documents\n */\nexport { Document } from \"@langchain/core/documents\";\n"],"mappings":""}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "langchain",
3
- "version": "1.0.0-alpha.3",
3
+ "version": "1.0.0-alpha.4",
4
4
  "description": "Typescript bindings for langchain",
5
5
  "author": "LangChain",
6
6
  "license": "MIT",
@@ -46,9 +46,9 @@
46
46
  "typeorm": "^0.3.20",
47
47
  "typescript": "~5.8.3",
48
48
  "vitest": "^3.2.4",
49
- "@langchain/anthropic": "1.0.0-alpha.1",
50
49
  "@langchain/core": "1.0.0-alpha.2",
51
- "@langchain/cohere": "0.3.4"
50
+ "@langchain/cohere": "0.3.4",
51
+ "@langchain/anthropic": "1.0.0-alpha.1"
52
52
  },
53
53
  "peerDependencies": {
54
54
  "@langchain/core": "^1.0.0-alpha.1 <2.0.0",
@@ -77,8 +77,8 @@
77
77
  "uuid": "^10.0.0",
78
78
  "yaml": "^2.2.1",
79
79
  "zod": "^3.25.32",
80
- "@langchain/openai": "1.0.0-alpha.1",
81
- "@langchain/textsplitters": "1.0.0-alpha.1"
80
+ "@langchain/textsplitters": "1.0.0-alpha.1",
81
+ "@langchain/openai": "1.0.0-alpha.1"
82
82
  },
83
83
  "optionalDependencies": {
84
84
  "langsmith": "^0.3.64"