langchain 0.3.5 → 0.3.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -1
- package/dist/agents/chat_convo/prompt.cjs +1 -1
- package/dist/agents/chat_convo/prompt.d.ts +1 -1
- package/dist/agents/chat_convo/prompt.js +1 -1
- package/dist/chat_models/universal.cjs +26 -18
- package/dist/chat_models/universal.js +26 -18
- package/dist/output_parsers/openai_functions.cjs +9 -4
- package/dist/output_parsers/openai_functions.js +10 -5
- package/dist/output_parsers/structured.cjs +6 -1
- package/dist/output_parsers/structured.js +6 -1
- package/package.json +2 -2
- package/dist/experimental/chrome_ai/app/dist/bundle.cjs +0 -1250
- package/dist/experimental/chrome_ai/app/dist/bundle.d.ts +0 -1
- package/dist/experimental/chrome_ai/app/dist/bundle.js +0 -1249
package/README.md
CHANGED
|
@@ -34,7 +34,7 @@ LangChain is written in TypeScript and can be used in:
|
|
|
34
34
|
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
|
|
35
35
|
|
|
36
36
|
This framework consists of several parts.
|
|
37
|
-
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://js.langchain.com/docs/concepts
|
|
37
|
+
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://js.langchain.com/docs/concepts/lcel), [components](https://js.langchain.com/docs/concepts), and [third-party integrations](https://js.langchain.com/docs/integrations/platforms/).
|
|
38
38
|
Use [LangGraph.js](https://js.langchain.com/docs/concepts/#langgraphjs) to build stateful agents with first-class streaming and human-in-the-loop support.
|
|
39
39
|
- **Productionization**: Use [LangSmith](https://docs.smith.langchain.com/) to inspect, monitor and evaluate your chains, so that you can continuously optimize and deploy with confidence.
|
|
40
40
|
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
|
|
@@ -31,7 +31,7 @@ Use this if you want to respond directly and conversationally to the human. Mark
|
|
|
31
31
|
\`\`\`json
|
|
32
32
|
{{{{
|
|
33
33
|
"action": "Final Answer",
|
|
34
|
-
"action_input": string // You should put what you want to return to
|
|
34
|
+
"action_input": string // You should put what you want to return to user here and make sure to use valid json newline characters.
|
|
35
35
|
}}}}
|
|
36
36
|
\`\`\`
|
|
37
37
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
export declare const DEFAULT_PREFIX = "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.";
|
|
2
2
|
export declare const PREFIX_END = " However, above all else, all responses must adhere to the format of RESPONSE FORMAT INSTRUCTIONS.";
|
|
3
|
-
export declare const FORMAT_INSTRUCTIONS = "RESPONSE FORMAT INSTRUCTIONS\n----------------------------\n\nOutput a JSON markdown code snippet containing a valid JSON object in one of two formats:\n\n**Option 1:**\nUse this if you want the human to use a tool.\nMarkdown code snippet formatted in the following schema:\n\n```json\n{{{{\n \"action\": string, // The action to take. Must be one of [{tool_names}]\n \"action_input\": string // The input to the action. May be a stringified object.\n}}}}\n```\n\n**Option #2:**\nUse this if you want to respond directly and conversationally to the human. Markdown code snippet formatted in the following schema:\n\n```json\n{{{{\n \"action\": \"Final Answer\",\n \"action_input\": string // You should put what you want to return to
|
|
3
|
+
export declare const FORMAT_INSTRUCTIONS = "RESPONSE FORMAT INSTRUCTIONS\n----------------------------\n\nOutput a JSON markdown code snippet containing a valid JSON object in one of two formats:\n\n**Option 1:**\nUse this if you want the human to use a tool.\nMarkdown code snippet formatted in the following schema:\n\n```json\n{{{{\n \"action\": string, // The action to take. Must be one of [{tool_names}]\n \"action_input\": string // The input to the action. May be a stringified object.\n}}}}\n```\n\n**Option #2:**\nUse this if you want to respond directly and conversationally to the human. Markdown code snippet formatted in the following schema:\n\n```json\n{{{{\n \"action\": \"Final Answer\",\n \"action_input\": string // You should put what you want to return to user here and make sure to use valid json newline characters.\n}}}}\n```\n\nFor both options, remember to always include the surrounding markdown code snippet delimiters (begin with \"```json\" and end with \"```\")!\n";
|
|
4
4
|
export declare const DEFAULT_SUFFIX = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{tools}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{input}}";
|
|
5
5
|
export declare const TEMPLATE_TOOL_RESPONSE = "TOOL RESPONSE:\n---------------------\n{observation}\n\nUSER'S INPUT\n--------------------\n\nOkay, so what is the response to my last comment? If using information obtained from the tools you must mention it explicitly without mentioning the tool names - I have forgotten all TOOL RESPONSES! Remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else.";
|
|
@@ -28,7 +28,7 @@ Use this if you want to respond directly and conversationally to the human. Mark
|
|
|
28
28
|
\`\`\`json
|
|
29
29
|
{{{{
|
|
30
30
|
"action": "Final Answer",
|
|
31
|
-
"action_input": string // You should put what you want to return to
|
|
31
|
+
"action_input": string // You should put what you want to return to user here and make sure to use valid json newline characters.
|
|
32
32
|
}}}}
|
|
33
33
|
\`\`\`
|
|
34
34
|
|
|
@@ -25,47 +25,48 @@ params = {}) {
|
|
|
25
25
|
if (!modelProviderCopy) {
|
|
26
26
|
throw new Error(`Unable to infer model provider for { model: ${model} }, please specify modelProvider directly.`);
|
|
27
27
|
}
|
|
28
|
+
const { modelProvider: _unused, ...passedParams } = params;
|
|
28
29
|
try {
|
|
29
30
|
switch (modelProviderCopy) {
|
|
30
31
|
case "openai": {
|
|
31
32
|
const { ChatOpenAI } = await import("@langchain/openai");
|
|
32
|
-
return new ChatOpenAI({ model, ...
|
|
33
|
+
return new ChatOpenAI({ model, ...passedParams });
|
|
33
34
|
}
|
|
34
35
|
case "anthropic": {
|
|
35
36
|
const { ChatAnthropic } = await import("@langchain/anthropic");
|
|
36
|
-
return new ChatAnthropic({ model, ...
|
|
37
|
+
return new ChatAnthropic({ model, ...passedParams });
|
|
37
38
|
}
|
|
38
39
|
case "azure_openai": {
|
|
39
40
|
const { AzureChatOpenAI } = await import("@langchain/openai");
|
|
40
|
-
return new AzureChatOpenAI({ model, ...
|
|
41
|
+
return new AzureChatOpenAI({ model, ...passedParams });
|
|
41
42
|
}
|
|
42
43
|
case "cohere": {
|
|
43
44
|
const { ChatCohere } = await import("@langchain/cohere");
|
|
44
|
-
return new ChatCohere({ model, ...
|
|
45
|
+
return new ChatCohere({ model, ...passedParams });
|
|
45
46
|
}
|
|
46
47
|
case "google-vertexai": {
|
|
47
48
|
const { ChatVertexAI } = await import("@langchain/google-vertexai");
|
|
48
|
-
return new ChatVertexAI({ model, ...
|
|
49
|
+
return new ChatVertexAI({ model, ...passedParams });
|
|
49
50
|
}
|
|
50
51
|
case "google-genai": {
|
|
51
52
|
const { ChatGoogleGenerativeAI } = await import("@langchain/google-genai");
|
|
52
|
-
return new ChatGoogleGenerativeAI({ model, ...
|
|
53
|
+
return new ChatGoogleGenerativeAI({ model, ...passedParams });
|
|
53
54
|
}
|
|
54
55
|
case "ollama": {
|
|
55
56
|
const { ChatOllama } = await import("@langchain/ollama");
|
|
56
|
-
return new ChatOllama({ model, ...
|
|
57
|
+
return new ChatOllama({ model, ...passedParams });
|
|
57
58
|
}
|
|
58
59
|
case "mistralai": {
|
|
59
60
|
const { ChatMistralAI } = await import("@langchain/mistralai");
|
|
60
|
-
return new ChatMistralAI({ model, ...
|
|
61
|
+
return new ChatMistralAI({ model, ...passedParams });
|
|
61
62
|
}
|
|
62
63
|
case "groq": {
|
|
63
64
|
const { ChatGroq } = await import("@langchain/groq");
|
|
64
|
-
return new ChatGroq({ model, ...
|
|
65
|
+
return new ChatGroq({ model, ...passedParams });
|
|
65
66
|
}
|
|
66
67
|
case "bedrock": {
|
|
67
68
|
const { ChatBedrockConverse } = await import("@langchain/aws");
|
|
68
|
-
return new ChatBedrockConverse({ model, ...
|
|
69
|
+
return new ChatBedrockConverse({ model, ...passedParams });
|
|
69
70
|
}
|
|
70
71
|
case "fireworks": {
|
|
71
72
|
const { ChatFireworks } = await import(
|
|
@@ -75,7 +76,7 @@ params = {}) {
|
|
|
75
76
|
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
|
|
76
77
|
// @ts-ignore - Can not install as a proper dependency due to circular dependency
|
|
77
78
|
"@langchain/community/chat_models/fireworks");
|
|
78
|
-
return new ChatFireworks({ model, ...
|
|
79
|
+
return new ChatFireworks({ model, ...passedParams });
|
|
79
80
|
}
|
|
80
81
|
case "together": {
|
|
81
82
|
const { ChatTogetherAI } = await import(
|
|
@@ -85,7 +86,7 @@ params = {}) {
|
|
|
85
86
|
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
|
|
86
87
|
// @ts-ignore - Can not install as a proper dependency due to circular dependency
|
|
87
88
|
"@langchain/community/chat_models/togetherai");
|
|
88
|
-
return new ChatTogetherAI({ model, ...
|
|
89
|
+
return new ChatTogetherAI({ model, ...passedParams });
|
|
89
90
|
}
|
|
90
91
|
default: {
|
|
91
92
|
const supported = _SUPPORTED_PROVIDERS.join(", ");
|
|
@@ -117,7 +118,9 @@ params = {}) {
|
|
|
117
118
|
* _inferModelProvider("unknown-model"); // returns undefined
|
|
118
119
|
*/
|
|
119
120
|
function _inferModelProvider(modelName) {
|
|
120
|
-
if (modelName.startsWith("gpt-3") ||
|
|
121
|
+
if (modelName.startsWith("gpt-3") ||
|
|
122
|
+
modelName.startsWith("gpt-4") ||
|
|
123
|
+
modelName.startsWith("o1")) {
|
|
121
124
|
return "openai";
|
|
122
125
|
}
|
|
123
126
|
else if (modelName.startsWith("claude")) {
|
|
@@ -208,7 +211,10 @@ class _ConfigurableModel extends chat_models_1.BaseChatModel {
|
|
|
208
211
|
this._configurableFields = "any";
|
|
209
212
|
}
|
|
210
213
|
else {
|
|
211
|
-
this._configurableFields = fields.configurableFields ??
|
|
214
|
+
this._configurableFields = fields.configurableFields ?? [
|
|
215
|
+
"model",
|
|
216
|
+
"modelProvider",
|
|
217
|
+
];
|
|
212
218
|
}
|
|
213
219
|
if (fields.configPrefix) {
|
|
214
220
|
this._configPrefix = fields.configPrefix.endsWith("_")
|
|
@@ -563,18 +569,20 @@ fields) {
|
|
|
563
569
|
configPrefix: "",
|
|
564
570
|
...(fields ?? {}),
|
|
565
571
|
};
|
|
566
|
-
let configurableFieldsCopy = configurableFields
|
|
567
|
-
|
|
572
|
+
let configurableFieldsCopy = Array.isArray(configurableFields)
|
|
573
|
+
? [...configurableFields]
|
|
574
|
+
: configurableFields;
|
|
575
|
+
if (!model && configurableFieldsCopy === undefined) {
|
|
568
576
|
configurableFieldsCopy = ["model", "modelProvider"];
|
|
569
577
|
}
|
|
570
|
-
if (configPrefix &&
|
|
578
|
+
if (configPrefix && configurableFieldsCopy === undefined) {
|
|
571
579
|
console.warn(`{ configPrefix: ${configPrefix} } has been set but no fields are configurable. Set ` +
|
|
572
580
|
`{ configurableFields: [...] } to specify the model params that are ` +
|
|
573
581
|
`configurable.`);
|
|
574
582
|
}
|
|
575
583
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
576
584
|
const paramsCopy = { ...params };
|
|
577
|
-
if (
|
|
585
|
+
if (configurableFieldsCopy === undefined) {
|
|
578
586
|
return new _ConfigurableModel({
|
|
579
587
|
defaultConfig: {
|
|
580
588
|
...paramsCopy,
|
|
@@ -22,47 +22,48 @@ params = {}) {
|
|
|
22
22
|
if (!modelProviderCopy) {
|
|
23
23
|
throw new Error(`Unable to infer model provider for { model: ${model} }, please specify modelProvider directly.`);
|
|
24
24
|
}
|
|
25
|
+
const { modelProvider: _unused, ...passedParams } = params;
|
|
25
26
|
try {
|
|
26
27
|
switch (modelProviderCopy) {
|
|
27
28
|
case "openai": {
|
|
28
29
|
const { ChatOpenAI } = await import("@langchain/openai");
|
|
29
|
-
return new ChatOpenAI({ model, ...
|
|
30
|
+
return new ChatOpenAI({ model, ...passedParams });
|
|
30
31
|
}
|
|
31
32
|
case "anthropic": {
|
|
32
33
|
const { ChatAnthropic } = await import("@langchain/anthropic");
|
|
33
|
-
return new ChatAnthropic({ model, ...
|
|
34
|
+
return new ChatAnthropic({ model, ...passedParams });
|
|
34
35
|
}
|
|
35
36
|
case "azure_openai": {
|
|
36
37
|
const { AzureChatOpenAI } = await import("@langchain/openai");
|
|
37
|
-
return new AzureChatOpenAI({ model, ...
|
|
38
|
+
return new AzureChatOpenAI({ model, ...passedParams });
|
|
38
39
|
}
|
|
39
40
|
case "cohere": {
|
|
40
41
|
const { ChatCohere } = await import("@langchain/cohere");
|
|
41
|
-
return new ChatCohere({ model, ...
|
|
42
|
+
return new ChatCohere({ model, ...passedParams });
|
|
42
43
|
}
|
|
43
44
|
case "google-vertexai": {
|
|
44
45
|
const { ChatVertexAI } = await import("@langchain/google-vertexai");
|
|
45
|
-
return new ChatVertexAI({ model, ...
|
|
46
|
+
return new ChatVertexAI({ model, ...passedParams });
|
|
46
47
|
}
|
|
47
48
|
case "google-genai": {
|
|
48
49
|
const { ChatGoogleGenerativeAI } = await import("@langchain/google-genai");
|
|
49
|
-
return new ChatGoogleGenerativeAI({ model, ...
|
|
50
|
+
return new ChatGoogleGenerativeAI({ model, ...passedParams });
|
|
50
51
|
}
|
|
51
52
|
case "ollama": {
|
|
52
53
|
const { ChatOllama } = await import("@langchain/ollama");
|
|
53
|
-
return new ChatOllama({ model, ...
|
|
54
|
+
return new ChatOllama({ model, ...passedParams });
|
|
54
55
|
}
|
|
55
56
|
case "mistralai": {
|
|
56
57
|
const { ChatMistralAI } = await import("@langchain/mistralai");
|
|
57
|
-
return new ChatMistralAI({ model, ...
|
|
58
|
+
return new ChatMistralAI({ model, ...passedParams });
|
|
58
59
|
}
|
|
59
60
|
case "groq": {
|
|
60
61
|
const { ChatGroq } = await import("@langchain/groq");
|
|
61
|
-
return new ChatGroq({ model, ...
|
|
62
|
+
return new ChatGroq({ model, ...passedParams });
|
|
62
63
|
}
|
|
63
64
|
case "bedrock": {
|
|
64
65
|
const { ChatBedrockConverse } = await import("@langchain/aws");
|
|
65
|
-
return new ChatBedrockConverse({ model, ...
|
|
66
|
+
return new ChatBedrockConverse({ model, ...passedParams });
|
|
66
67
|
}
|
|
67
68
|
case "fireworks": {
|
|
68
69
|
const { ChatFireworks } = await import(
|
|
@@ -72,7 +73,7 @@ params = {}) {
|
|
|
72
73
|
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
|
|
73
74
|
// @ts-ignore - Can not install as a proper dependency due to circular dependency
|
|
74
75
|
"@langchain/community/chat_models/fireworks");
|
|
75
|
-
return new ChatFireworks({ model, ...
|
|
76
|
+
return new ChatFireworks({ model, ...passedParams });
|
|
76
77
|
}
|
|
77
78
|
case "together": {
|
|
78
79
|
const { ChatTogetherAI } = await import(
|
|
@@ -82,7 +83,7 @@ params = {}) {
|
|
|
82
83
|
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
|
|
83
84
|
// @ts-ignore - Can not install as a proper dependency due to circular dependency
|
|
84
85
|
"@langchain/community/chat_models/togetherai");
|
|
85
|
-
return new ChatTogetherAI({ model, ...
|
|
86
|
+
return new ChatTogetherAI({ model, ...passedParams });
|
|
86
87
|
}
|
|
87
88
|
default: {
|
|
88
89
|
const supported = _SUPPORTED_PROVIDERS.join(", ");
|
|
@@ -114,7 +115,9 @@ params = {}) {
|
|
|
114
115
|
* _inferModelProvider("unknown-model"); // returns undefined
|
|
115
116
|
*/
|
|
116
117
|
export function _inferModelProvider(modelName) {
|
|
117
|
-
if (modelName.startsWith("gpt-3") ||
|
|
118
|
+
if (modelName.startsWith("gpt-3") ||
|
|
119
|
+
modelName.startsWith("gpt-4") ||
|
|
120
|
+
modelName.startsWith("o1")) {
|
|
118
121
|
return "openai";
|
|
119
122
|
}
|
|
120
123
|
else if (modelName.startsWith("claude")) {
|
|
@@ -204,7 +207,10 @@ class _ConfigurableModel extends BaseChatModel {
|
|
|
204
207
|
this._configurableFields = "any";
|
|
205
208
|
}
|
|
206
209
|
else {
|
|
207
|
-
this._configurableFields = fields.configurableFields ??
|
|
210
|
+
this._configurableFields = fields.configurableFields ?? [
|
|
211
|
+
"model",
|
|
212
|
+
"modelProvider",
|
|
213
|
+
];
|
|
208
214
|
}
|
|
209
215
|
if (fields.configPrefix) {
|
|
210
216
|
this._configPrefix = fields.configPrefix.endsWith("_")
|
|
@@ -559,18 +565,20 @@ fields) {
|
|
|
559
565
|
configPrefix: "",
|
|
560
566
|
...(fields ?? {}),
|
|
561
567
|
};
|
|
562
|
-
let configurableFieldsCopy = configurableFields
|
|
563
|
-
|
|
568
|
+
let configurableFieldsCopy = Array.isArray(configurableFields)
|
|
569
|
+
? [...configurableFields]
|
|
570
|
+
: configurableFields;
|
|
571
|
+
if (!model && configurableFieldsCopy === undefined) {
|
|
564
572
|
configurableFieldsCopy = ["model", "modelProvider"];
|
|
565
573
|
}
|
|
566
|
-
if (configPrefix &&
|
|
574
|
+
if (configPrefix && configurableFieldsCopy === undefined) {
|
|
567
575
|
console.warn(`{ configPrefix: ${configPrefix} } has been set but no fields are configurable. Set ` +
|
|
568
576
|
`{ configurableFields: [...] } to specify the model params that are ` +
|
|
569
577
|
`configurable.`);
|
|
570
578
|
}
|
|
571
579
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
572
580
|
const paramsCopy = { ...params };
|
|
573
|
-
if (
|
|
581
|
+
if (configurableFieldsCopy === undefined) {
|
|
574
582
|
return new _ConfigurableModel({
|
|
575
583
|
defaultConfig: {
|
|
576
584
|
...paramsCopy,
|
|
@@ -137,12 +137,17 @@ class JsonOutputFunctionsParser extends output_parsers_1.BaseCumulativeTransform
|
|
|
137
137
|
return this.parse(result);
|
|
138
138
|
}
|
|
139
139
|
async parse(text) {
|
|
140
|
-
|
|
141
|
-
|
|
140
|
+
try {
|
|
141
|
+
const parsedResult = JSON.parse(text);
|
|
142
|
+
if (this.argsOnly) {
|
|
143
|
+
return parsedResult;
|
|
144
|
+
}
|
|
145
|
+
parsedResult.arguments = JSON.parse(parsedResult.arguments);
|
|
142
146
|
return parsedResult;
|
|
143
147
|
}
|
|
144
|
-
|
|
145
|
-
|
|
148
|
+
catch (e) {
|
|
149
|
+
throw new output_parsers_1.OutputParserException(`Failed to parse. Text: "${text}". Error: ${e}`);
|
|
150
|
+
}
|
|
146
151
|
}
|
|
147
152
|
getFormatInstructions() {
|
|
148
153
|
return "";
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
import { compare, } from "@langchain/core/utils/json_patch";
|
|
2
|
-
import { BaseCumulativeTransformOutputParser, BaseLLMOutputParser, } from "@langchain/core/output_parsers";
|
|
2
|
+
import { BaseCumulativeTransformOutputParser, BaseLLMOutputParser, OutputParserException, } from "@langchain/core/output_parsers";
|
|
3
3
|
import { parsePartialJson } from "@langchain/core/output_parsers";
|
|
4
4
|
/**
|
|
5
5
|
* Class for parsing the output of an LLM. Can be configured to return
|
|
@@ -133,12 +133,17 @@ export class JsonOutputFunctionsParser extends BaseCumulativeTransformOutputPars
|
|
|
133
133
|
return this.parse(result);
|
|
134
134
|
}
|
|
135
135
|
async parse(text) {
|
|
136
|
-
|
|
137
|
-
|
|
136
|
+
try {
|
|
137
|
+
const parsedResult = JSON.parse(text);
|
|
138
|
+
if (this.argsOnly) {
|
|
139
|
+
return parsedResult;
|
|
140
|
+
}
|
|
141
|
+
parsedResult.arguments = JSON.parse(parsedResult.arguments);
|
|
138
142
|
return parsedResult;
|
|
139
143
|
}
|
|
140
|
-
|
|
141
|
-
|
|
144
|
+
catch (e) {
|
|
145
|
+
throw new OutputParserException(`Failed to parse. Text: "${text}". Error: ${e}`);
|
|
146
|
+
}
|
|
142
147
|
}
|
|
143
148
|
getFormatInstructions() {
|
|
144
149
|
return "";
|
|
@@ -80,7 +80,12 @@ ${JSON.stringify((0, zod_to_json_schema_1.zodToJsonSchema)(this.schema))}
|
|
|
80
80
|
return await this.schema.parseAsync(JSON.parse(json));
|
|
81
81
|
}
|
|
82
82
|
catch (e) {
|
|
83
|
-
|
|
83
|
+
try {
|
|
84
|
+
return await this.schema.parseAsync(JSON.parse(text.trim()));
|
|
85
|
+
}
|
|
86
|
+
catch (e2) {
|
|
87
|
+
throw new output_parsers_1.OutputParserException(`Failed to parse. Text: "${text}". Error: ${e2}`, text);
|
|
88
|
+
}
|
|
84
89
|
}
|
|
85
90
|
}
|
|
86
91
|
}
|
|
@@ -77,7 +77,12 @@ ${JSON.stringify(zodToJsonSchema(this.schema))}
|
|
|
77
77
|
return await this.schema.parseAsync(JSON.parse(json));
|
|
78
78
|
}
|
|
79
79
|
catch (e) {
|
|
80
|
-
|
|
80
|
+
try {
|
|
81
|
+
return await this.schema.parseAsync(JSON.parse(text.trim()));
|
|
82
|
+
}
|
|
83
|
+
catch (e2) {
|
|
84
|
+
throw new OutputParserException(`Failed to parse. Text: "${text}". Error: ${e2}`, text);
|
|
85
|
+
}
|
|
81
86
|
}
|
|
82
87
|
}
|
|
83
88
|
}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "langchain",
|
|
3
|
-
"version": "0.3.
|
|
3
|
+
"version": "0.3.7",
|
|
4
4
|
"description": "Typescript bindings for langchain",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"engines": {
|
|
@@ -520,7 +520,7 @@
|
|
|
520
520
|
"js-tiktoken": "^1.0.12",
|
|
521
521
|
"js-yaml": "^4.1.0",
|
|
522
522
|
"jsonpointer": "^5.0.1",
|
|
523
|
-
"langsmith": "^0.2.
|
|
523
|
+
"langsmith": "^0.2.8",
|
|
524
524
|
"openapi-types": "^12.1.3",
|
|
525
525
|
"p-retry": "4",
|
|
526
526
|
"uuid": "^10.0.0",
|