langchain 0.2.16 → 0.2.17
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/experimental/chrome_ai/app/dist/bundle.cjs +1250 -0
- package/dist/experimental/chrome_ai/app/dist/bundle.d.ts +1 -0
- package/dist/experimental/chrome_ai/app/dist/bundle.js +1249 -0
- package/dist/vectorstores/memory.cjs +113 -3
- package/dist/vectorstores/memory.d.ts +110 -3
- package/dist/vectorstores/memory.js +113 -3
- package/package.json +6 -14
|
@@ -6,9 +6,114 @@ const documents_1 = require("@langchain/core/documents");
|
|
|
6
6
|
const similarities_js_1 = require("../util/ml-distance/similarities.cjs");
|
|
7
7
|
const math_js_1 = require("../util/math.cjs");
|
|
8
8
|
/**
|
|
9
|
-
*
|
|
10
|
-
*
|
|
11
|
-
*
|
|
9
|
+
* In-memory, ephemeral vector store.
|
|
10
|
+
*
|
|
11
|
+
* Setup:
|
|
12
|
+
* Install `langchain`:
|
|
13
|
+
*
|
|
14
|
+
* ```bash
|
|
15
|
+
* npm install langchain
|
|
16
|
+
* ```
|
|
17
|
+
*
|
|
18
|
+
* ## [Constructor args](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html#constructor)
|
|
19
|
+
*
|
|
20
|
+
* <details open>
|
|
21
|
+
* <summary><strong>Instantiate</strong></summary>
|
|
22
|
+
*
|
|
23
|
+
* ```typescript
|
|
24
|
+
* import { MemoryVectorStore } from 'langchain/vectorstores/memory';
|
|
25
|
+
* // Or other embeddings
|
|
26
|
+
* import { OpenAIEmbeddings } from '@langchain/openai';
|
|
27
|
+
*
|
|
28
|
+
* const embeddings = new OpenAIEmbeddings({
|
|
29
|
+
* model: "text-embedding-3-small",
|
|
30
|
+
* });
|
|
31
|
+
*
|
|
32
|
+
* const vectorStore = new MemoryVectorStore(embeddings);
|
|
33
|
+
* ```
|
|
34
|
+
* </details>
|
|
35
|
+
*
|
|
36
|
+
* <br />
|
|
37
|
+
*
|
|
38
|
+
* <details>
|
|
39
|
+
* <summary><strong>Add documents</strong></summary>
|
|
40
|
+
*
|
|
41
|
+
* ```typescript
|
|
42
|
+
* import type { Document } from '@langchain/core/documents';
|
|
43
|
+
*
|
|
44
|
+
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
|
|
45
|
+
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
|
|
46
|
+
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
|
|
47
|
+
*
|
|
48
|
+
* const documents: Document[] = [document1, document2, document3];
|
|
49
|
+
*
|
|
50
|
+
* await vectorStore.addDocuments(documents);
|
|
51
|
+
* ```
|
|
52
|
+
* </details>
|
|
53
|
+
*
|
|
54
|
+
* <br />
|
|
55
|
+
*
|
|
56
|
+
* <details>
|
|
57
|
+
* <summary><strong>Similarity search</strong></summary>
|
|
58
|
+
*
|
|
59
|
+
* ```typescript
|
|
60
|
+
* const results = await vectorStore.similaritySearch("thud", 1);
|
|
61
|
+
* for (const doc of results) {
|
|
62
|
+
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
63
|
+
* }
|
|
64
|
+
* // Output: * thud [{"baz":"bar"}]
|
|
65
|
+
* ```
|
|
66
|
+
* </details>
|
|
67
|
+
*
|
|
68
|
+
* <br />
|
|
69
|
+
*
|
|
70
|
+
*
|
|
71
|
+
* <details>
|
|
72
|
+
* <summary><strong>Similarity search with filter</strong></summary>
|
|
73
|
+
*
|
|
74
|
+
* ```typescript
|
|
75
|
+
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
|
|
76
|
+
*
|
|
77
|
+
* for (const doc of resultsWithFilter) {
|
|
78
|
+
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
79
|
+
* }
|
|
80
|
+
* // Output: * foo [{"baz":"bar"}]
|
|
81
|
+
* ```
|
|
82
|
+
* </details>
|
|
83
|
+
*
|
|
84
|
+
* <br />
|
|
85
|
+
*
|
|
86
|
+
*
|
|
87
|
+
* <details>
|
|
88
|
+
* <summary><strong>Similarity search with score</strong></summary>
|
|
89
|
+
*
|
|
90
|
+
* ```typescript
|
|
91
|
+
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
|
|
92
|
+
* for (const [doc, score] of resultsWithScore) {
|
|
93
|
+
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
94
|
+
* }
|
|
95
|
+
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
|
|
96
|
+
* ```
|
|
97
|
+
* </details>
|
|
98
|
+
*
|
|
99
|
+
* <br />
|
|
100
|
+
*
|
|
101
|
+
* <details>
|
|
102
|
+
* <summary><strong>As a retriever</strong></summary>
|
|
103
|
+
*
|
|
104
|
+
* ```typescript
|
|
105
|
+
* const retriever = vectorStore.asRetriever({
|
|
106
|
+
* searchType: "mmr", // Leave blank for standard similarity search
|
|
107
|
+
* k: 1,
|
|
108
|
+
* });
|
|
109
|
+
* const resultAsRetriever = await retriever.invoke("thud");
|
|
110
|
+
* console.log(resultAsRetriever);
|
|
111
|
+
*
|
|
112
|
+
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
|
|
113
|
+
* ```
|
|
114
|
+
* </details>
|
|
115
|
+
*
|
|
116
|
+
* <br />
|
|
12
117
|
*/
|
|
13
118
|
class MemoryVectorStore extends vectorstores_1.VectorStore {
|
|
14
119
|
_vectorstoreType() {
|
|
@@ -54,6 +159,7 @@ class MemoryVectorStore extends vectorstores_1.VectorStore {
|
|
|
54
159
|
content: documents[idx].pageContent,
|
|
55
160
|
embedding,
|
|
56
161
|
metadata: documents[idx].metadata,
|
|
162
|
+
id: documents[idx].id,
|
|
57
163
|
}));
|
|
58
164
|
this.memoryVectors = this.memoryVectors.concat(memoryVectors);
|
|
59
165
|
}
|
|
@@ -65,6 +171,7 @@ class MemoryVectorStore extends vectorstores_1.VectorStore {
|
|
|
65
171
|
const doc = new documents_1.Document({
|
|
66
172
|
metadata: memoryVector.metadata,
|
|
67
173
|
pageContent: memoryVector.content,
|
|
174
|
+
id: memoryVector.id,
|
|
68
175
|
});
|
|
69
176
|
return filter(doc);
|
|
70
177
|
};
|
|
@@ -76,6 +183,7 @@ class MemoryVectorStore extends vectorstores_1.VectorStore {
|
|
|
76
183
|
metadata: vector.metadata,
|
|
77
184
|
content: vector.content,
|
|
78
185
|
embedding: vector.embedding,
|
|
186
|
+
id: vector.id,
|
|
79
187
|
}))
|
|
80
188
|
.sort((a, b) => (a.similarity > b.similarity ? -1 : 0))
|
|
81
189
|
.slice(0, k);
|
|
@@ -96,6 +204,7 @@ class MemoryVectorStore extends vectorstores_1.VectorStore {
|
|
|
96
204
|
new documents_1.Document({
|
|
97
205
|
metadata: search.metadata,
|
|
98
206
|
pageContent: search.content,
|
|
207
|
+
id: search.id,
|
|
99
208
|
}),
|
|
100
209
|
search.similarity,
|
|
101
210
|
]);
|
|
@@ -109,6 +218,7 @@ class MemoryVectorStore extends vectorstores_1.VectorStore {
|
|
|
109
218
|
return mmrIndexes.map((idx) => new documents_1.Document({
|
|
110
219
|
metadata: searches[idx].metadata,
|
|
111
220
|
pageContent: searches[idx].content,
|
|
221
|
+
id: searches[idx].id,
|
|
112
222
|
}));
|
|
113
223
|
}
|
|
114
224
|
/**
|
|
@@ -11,6 +11,7 @@ interface MemoryVector {
|
|
|
11
11
|
content: string;
|
|
12
12
|
embedding: number[];
|
|
13
13
|
metadata: Record<string, any>;
|
|
14
|
+
id?: string;
|
|
14
15
|
}
|
|
15
16
|
/**
|
|
16
17
|
* Interface for the arguments that can be passed to the
|
|
@@ -21,9 +22,114 @@ export interface MemoryVectorStoreArgs {
|
|
|
21
22
|
similarity?: typeof cosine;
|
|
22
23
|
}
|
|
23
24
|
/**
|
|
24
|
-
*
|
|
25
|
-
*
|
|
26
|
-
*
|
|
25
|
+
* In-memory, ephemeral vector store.
|
|
26
|
+
*
|
|
27
|
+
* Setup:
|
|
28
|
+
* Install `langchain`:
|
|
29
|
+
*
|
|
30
|
+
* ```bash
|
|
31
|
+
* npm install langchain
|
|
32
|
+
* ```
|
|
33
|
+
*
|
|
34
|
+
* ## [Constructor args](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html#constructor)
|
|
35
|
+
*
|
|
36
|
+
* <details open>
|
|
37
|
+
* <summary><strong>Instantiate</strong></summary>
|
|
38
|
+
*
|
|
39
|
+
* ```typescript
|
|
40
|
+
* import { MemoryVectorStore } from 'langchain/vectorstores/memory';
|
|
41
|
+
* // Or other embeddings
|
|
42
|
+
* import { OpenAIEmbeddings } from '@langchain/openai';
|
|
43
|
+
*
|
|
44
|
+
* const embeddings = new OpenAIEmbeddings({
|
|
45
|
+
* model: "text-embedding-3-small",
|
|
46
|
+
* });
|
|
47
|
+
*
|
|
48
|
+
* const vectorStore = new MemoryVectorStore(embeddings);
|
|
49
|
+
* ```
|
|
50
|
+
* </details>
|
|
51
|
+
*
|
|
52
|
+
* <br />
|
|
53
|
+
*
|
|
54
|
+
* <details>
|
|
55
|
+
* <summary><strong>Add documents</strong></summary>
|
|
56
|
+
*
|
|
57
|
+
* ```typescript
|
|
58
|
+
* import type { Document } from '@langchain/core/documents';
|
|
59
|
+
*
|
|
60
|
+
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
|
|
61
|
+
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
|
|
62
|
+
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
|
|
63
|
+
*
|
|
64
|
+
* const documents: Document[] = [document1, document2, document3];
|
|
65
|
+
*
|
|
66
|
+
* await vectorStore.addDocuments(documents);
|
|
67
|
+
* ```
|
|
68
|
+
* </details>
|
|
69
|
+
*
|
|
70
|
+
* <br />
|
|
71
|
+
*
|
|
72
|
+
* <details>
|
|
73
|
+
* <summary><strong>Similarity search</strong></summary>
|
|
74
|
+
*
|
|
75
|
+
* ```typescript
|
|
76
|
+
* const results = await vectorStore.similaritySearch("thud", 1);
|
|
77
|
+
* for (const doc of results) {
|
|
78
|
+
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
79
|
+
* }
|
|
80
|
+
* // Output: * thud [{"baz":"bar"}]
|
|
81
|
+
* ```
|
|
82
|
+
* </details>
|
|
83
|
+
*
|
|
84
|
+
* <br />
|
|
85
|
+
*
|
|
86
|
+
*
|
|
87
|
+
* <details>
|
|
88
|
+
* <summary><strong>Similarity search with filter</strong></summary>
|
|
89
|
+
*
|
|
90
|
+
* ```typescript
|
|
91
|
+
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
|
|
92
|
+
*
|
|
93
|
+
* for (const doc of resultsWithFilter) {
|
|
94
|
+
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
95
|
+
* }
|
|
96
|
+
* // Output: * foo [{"baz":"bar"}]
|
|
97
|
+
* ```
|
|
98
|
+
* </details>
|
|
99
|
+
*
|
|
100
|
+
* <br />
|
|
101
|
+
*
|
|
102
|
+
*
|
|
103
|
+
* <details>
|
|
104
|
+
* <summary><strong>Similarity search with score</strong></summary>
|
|
105
|
+
*
|
|
106
|
+
* ```typescript
|
|
107
|
+
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
|
|
108
|
+
* for (const [doc, score] of resultsWithScore) {
|
|
109
|
+
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
110
|
+
* }
|
|
111
|
+
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
|
|
112
|
+
* ```
|
|
113
|
+
* </details>
|
|
114
|
+
*
|
|
115
|
+
* <br />
|
|
116
|
+
*
|
|
117
|
+
* <details>
|
|
118
|
+
* <summary><strong>As a retriever</strong></summary>
|
|
119
|
+
*
|
|
120
|
+
* ```typescript
|
|
121
|
+
* const retriever = vectorStore.asRetriever({
|
|
122
|
+
* searchType: "mmr", // Leave blank for standard similarity search
|
|
123
|
+
* k: 1,
|
|
124
|
+
* });
|
|
125
|
+
* const resultAsRetriever = await retriever.invoke("thud");
|
|
126
|
+
* console.log(resultAsRetriever);
|
|
127
|
+
*
|
|
128
|
+
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
|
|
129
|
+
* ```
|
|
130
|
+
* </details>
|
|
131
|
+
*
|
|
132
|
+
* <br />
|
|
27
133
|
*/
|
|
28
134
|
export declare class MemoryVectorStore extends VectorStore {
|
|
29
135
|
FilterType: (doc: Document) => boolean;
|
|
@@ -54,6 +160,7 @@ export declare class MemoryVectorStore extends VectorStore {
|
|
|
54
160
|
metadata: Record<string, any>;
|
|
55
161
|
content: string;
|
|
56
162
|
embedding: number[];
|
|
163
|
+
id: string | undefined;
|
|
57
164
|
}[]>;
|
|
58
165
|
/**
|
|
59
166
|
* Method to perform a similarity search in the memory vector store. It
|
|
@@ -3,9 +3,114 @@ import { Document } from "@langchain/core/documents";
|
|
|
3
3
|
import { cosine } from "../util/ml-distance/similarities.js";
|
|
4
4
|
import { maximalMarginalRelevance } from "../util/math.js";
|
|
5
5
|
/**
|
|
6
|
-
*
|
|
7
|
-
*
|
|
8
|
-
*
|
|
6
|
+
* In-memory, ephemeral vector store.
|
|
7
|
+
*
|
|
8
|
+
* Setup:
|
|
9
|
+
* Install `langchain`:
|
|
10
|
+
*
|
|
11
|
+
* ```bash
|
|
12
|
+
* npm install langchain
|
|
13
|
+
* ```
|
|
14
|
+
*
|
|
15
|
+
* ## [Constructor args](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html#constructor)
|
|
16
|
+
*
|
|
17
|
+
* <details open>
|
|
18
|
+
* <summary><strong>Instantiate</strong></summary>
|
|
19
|
+
*
|
|
20
|
+
* ```typescript
|
|
21
|
+
* import { MemoryVectorStore } from 'langchain/vectorstores/memory';
|
|
22
|
+
* // Or other embeddings
|
|
23
|
+
* import { OpenAIEmbeddings } from '@langchain/openai';
|
|
24
|
+
*
|
|
25
|
+
* const embeddings = new OpenAIEmbeddings({
|
|
26
|
+
* model: "text-embedding-3-small",
|
|
27
|
+
* });
|
|
28
|
+
*
|
|
29
|
+
* const vectorStore = new MemoryVectorStore(embeddings);
|
|
30
|
+
* ```
|
|
31
|
+
* </details>
|
|
32
|
+
*
|
|
33
|
+
* <br />
|
|
34
|
+
*
|
|
35
|
+
* <details>
|
|
36
|
+
* <summary><strong>Add documents</strong></summary>
|
|
37
|
+
*
|
|
38
|
+
* ```typescript
|
|
39
|
+
* import type { Document } from '@langchain/core/documents';
|
|
40
|
+
*
|
|
41
|
+
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
|
|
42
|
+
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
|
|
43
|
+
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
|
|
44
|
+
*
|
|
45
|
+
* const documents: Document[] = [document1, document2, document3];
|
|
46
|
+
*
|
|
47
|
+
* await vectorStore.addDocuments(documents);
|
|
48
|
+
* ```
|
|
49
|
+
* </details>
|
|
50
|
+
*
|
|
51
|
+
* <br />
|
|
52
|
+
*
|
|
53
|
+
* <details>
|
|
54
|
+
* <summary><strong>Similarity search</strong></summary>
|
|
55
|
+
*
|
|
56
|
+
* ```typescript
|
|
57
|
+
* const results = await vectorStore.similaritySearch("thud", 1);
|
|
58
|
+
* for (const doc of results) {
|
|
59
|
+
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
60
|
+
* }
|
|
61
|
+
* // Output: * thud [{"baz":"bar"}]
|
|
62
|
+
* ```
|
|
63
|
+
* </details>
|
|
64
|
+
*
|
|
65
|
+
* <br />
|
|
66
|
+
*
|
|
67
|
+
*
|
|
68
|
+
* <details>
|
|
69
|
+
* <summary><strong>Similarity search with filter</strong></summary>
|
|
70
|
+
*
|
|
71
|
+
* ```typescript
|
|
72
|
+
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
|
|
73
|
+
*
|
|
74
|
+
* for (const doc of resultsWithFilter) {
|
|
75
|
+
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
76
|
+
* }
|
|
77
|
+
* // Output: * foo [{"baz":"bar"}]
|
|
78
|
+
* ```
|
|
79
|
+
* </details>
|
|
80
|
+
*
|
|
81
|
+
* <br />
|
|
82
|
+
*
|
|
83
|
+
*
|
|
84
|
+
* <details>
|
|
85
|
+
* <summary><strong>Similarity search with score</strong></summary>
|
|
86
|
+
*
|
|
87
|
+
* ```typescript
|
|
88
|
+
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
|
|
89
|
+
* for (const [doc, score] of resultsWithScore) {
|
|
90
|
+
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
91
|
+
* }
|
|
92
|
+
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
|
|
93
|
+
* ```
|
|
94
|
+
* </details>
|
|
95
|
+
*
|
|
96
|
+
* <br />
|
|
97
|
+
*
|
|
98
|
+
* <details>
|
|
99
|
+
* <summary><strong>As a retriever</strong></summary>
|
|
100
|
+
*
|
|
101
|
+
* ```typescript
|
|
102
|
+
* const retriever = vectorStore.asRetriever({
|
|
103
|
+
* searchType: "mmr", // Leave blank for standard similarity search
|
|
104
|
+
* k: 1,
|
|
105
|
+
* });
|
|
106
|
+
* const resultAsRetriever = await retriever.invoke("thud");
|
|
107
|
+
* console.log(resultAsRetriever);
|
|
108
|
+
*
|
|
109
|
+
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
|
|
110
|
+
* ```
|
|
111
|
+
* </details>
|
|
112
|
+
*
|
|
113
|
+
* <br />
|
|
9
114
|
*/
|
|
10
115
|
export class MemoryVectorStore extends VectorStore {
|
|
11
116
|
_vectorstoreType() {
|
|
@@ -51,6 +156,7 @@ export class MemoryVectorStore extends VectorStore {
|
|
|
51
156
|
content: documents[idx].pageContent,
|
|
52
157
|
embedding,
|
|
53
158
|
metadata: documents[idx].metadata,
|
|
159
|
+
id: documents[idx].id,
|
|
54
160
|
}));
|
|
55
161
|
this.memoryVectors = this.memoryVectors.concat(memoryVectors);
|
|
56
162
|
}
|
|
@@ -62,6 +168,7 @@ export class MemoryVectorStore extends VectorStore {
|
|
|
62
168
|
const doc = new Document({
|
|
63
169
|
metadata: memoryVector.metadata,
|
|
64
170
|
pageContent: memoryVector.content,
|
|
171
|
+
id: memoryVector.id,
|
|
65
172
|
});
|
|
66
173
|
return filter(doc);
|
|
67
174
|
};
|
|
@@ -73,6 +180,7 @@ export class MemoryVectorStore extends VectorStore {
|
|
|
73
180
|
metadata: vector.metadata,
|
|
74
181
|
content: vector.content,
|
|
75
182
|
embedding: vector.embedding,
|
|
183
|
+
id: vector.id,
|
|
76
184
|
}))
|
|
77
185
|
.sort((a, b) => (a.similarity > b.similarity ? -1 : 0))
|
|
78
186
|
.slice(0, k);
|
|
@@ -93,6 +201,7 @@ export class MemoryVectorStore extends VectorStore {
|
|
|
93
201
|
new Document({
|
|
94
202
|
metadata: search.metadata,
|
|
95
203
|
pageContent: search.content,
|
|
204
|
+
id: search.id,
|
|
96
205
|
}),
|
|
97
206
|
search.similarity,
|
|
98
207
|
]);
|
|
@@ -106,6 +215,7 @@ export class MemoryVectorStore extends VectorStore {
|
|
|
106
215
|
return mmrIndexes.map((idx) => new Document({
|
|
107
216
|
metadata: searches[idx].metadata,
|
|
108
217
|
pageContent: searches[idx].content,
|
|
218
|
+
id: searches[idx].id,
|
|
109
219
|
}));
|
|
110
220
|
}
|
|
111
221
|
/**
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "langchain",
|
|
3
|
-
"version": "0.2.
|
|
3
|
+
"version": "0.2.17",
|
|
4
4
|
"description": "Typescript bindings for langchain",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"engines": {
|
|
@@ -574,12 +574,7 @@
|
|
|
574
574
|
"homepage": "https://github.com/langchain-ai/langchainjs/tree/main/langchain/",
|
|
575
575
|
"scripts": {
|
|
576
576
|
"build": "yarn turbo:command build:internal --filter=langchain",
|
|
577
|
-
"build:internal": "yarn
|
|
578
|
-
"build:deps": "yarn run turbo:command build --filter=@langchain/openai --filter=@langchain/textsplitters --filter=@langchain/cohere --concurrency=1",
|
|
579
|
-
"build:esm": "NODE_OPTIONS=--max-old-space-size=4096 tsc --outDir dist/ && rimraf dist/tests dist/**/tests",
|
|
580
|
-
"build:cjs": "NODE_OPTIONS=--max-old-space-size=4096 tsc --outDir dist-cjs/ -p tsconfig.cjs.json && yarn move-cjs-to-dist && rimraf dist-cjs",
|
|
581
|
-
"build:watch": "yarn create-entrypoints && tsc --outDir dist/ --watch",
|
|
582
|
-
"build:scripts": "yarn create-entrypoints && yarn check-tree-shaking",
|
|
577
|
+
"build:internal": "yarn lc_build --create-entrypoints --pre --tree-shaking --gen-maps",
|
|
583
578
|
"lint:eslint": "NODE_OPTIONS=--max-old-space-size=4096 eslint --cache --ext .ts,.js src/",
|
|
584
579
|
"lint:dpdm": "dpdm --exit-code circular:1 --no-warning --no-tree src/*.ts src/**/*.ts",
|
|
585
580
|
"lint": "yarn lint:eslint && yarn lint:dpdm",
|
|
@@ -593,10 +588,7 @@
|
|
|
593
588
|
"test:integration": "yarn run build:deps && NODE_OPTIONS=--experimental-vm-modules jest --testPathPattern=\\.int\\.test.ts --testTimeout 100000 --maxWorkers=50%",
|
|
594
589
|
"test:single": "yarn run build:deps && NODE_OPTIONS=--experimental-vm-modules yarn run jest --config jest.config.cjs --testTimeout 100000",
|
|
595
590
|
"format": "prettier --config .prettierrc --write \"src\"",
|
|
596
|
-
"format:check": "prettier --config .prettierrc --check \"src\""
|
|
597
|
-
"move-cjs-to-dist": "yarn lc-build --config ./langchain.config.js --move-cjs-dist",
|
|
598
|
-
"create-entrypoints": "yarn lc-build --config ./langchain.config.js --create-entrypoints",
|
|
599
|
-
"check-tree-shaking": "yarn lc-build --config ./langchain.config.js --tree-shaking"
|
|
591
|
+
"format:check": "prettier --config .prettierrc --check \"src\""
|
|
600
592
|
},
|
|
601
593
|
"author": "LangChain",
|
|
602
594
|
"license": "MIT",
|
|
@@ -616,12 +608,12 @@
|
|
|
616
608
|
"@langchain/anthropic": "^0.2.8",
|
|
617
609
|
"@langchain/aws": "^0.0.5",
|
|
618
610
|
"@langchain/cohere": "^0.2.1",
|
|
619
|
-
"@langchain/google-genai": "^0.0.
|
|
620
|
-
"@langchain/google-vertexai": "^0.0.
|
|
611
|
+
"@langchain/google-genai": "^0.0.26",
|
|
612
|
+
"@langchain/google-vertexai": "^0.0.26",
|
|
621
613
|
"@langchain/groq": "^0.0.15",
|
|
622
614
|
"@langchain/mistralai": "^0.0.26",
|
|
623
615
|
"@langchain/ollama": "^0.0.2",
|
|
624
|
-
"@langchain/scripts": "
|
|
616
|
+
"@langchain/scripts": ">=0.1.0 <0.2.0",
|
|
625
617
|
"@mendable/firecrawl-js": "^0.0.13",
|
|
626
618
|
"@notionhq/client": "^2.2.10",
|
|
627
619
|
"@pinecone-database/pinecone": "^1.1.0",
|