langchain 0.1.22 → 0.1.24

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,6 +2,7 @@
2
2
  Object.defineProperty(exports, "__esModule", { value: true });
3
3
  exports.Agent = exports.LLMSingleActionAgent = exports.RunnableAgent = exports.BaseMultiActionAgent = exports.BaseSingleActionAgent = exports.BaseAgent = void 0;
4
4
  const serializable_1 = require("@langchain/core/load/serializable");
5
+ const runnables_1 = require("@langchain/core/runnables");
5
6
  /**
6
7
  * Error class for parse errors in LangChain. Contains information about
7
8
  * the error message and the output that caused the error.
@@ -119,12 +120,12 @@ class RunnableAgent extends BaseMultiActionAgent {
119
120
  this.runnable = fields.runnable;
120
121
  this.stop = fields.stop;
121
122
  }
122
- async plan(steps, inputs, callbackManager) {
123
+ async plan(steps, inputs, callbackManager, config) {
123
124
  const invokeInput = { ...inputs, steps };
124
- const output = await this.runnable.invoke(invokeInput, {
125
+ const output = await this.runnable.invoke(invokeInput, (0, runnables_1.patchConfig)(config, {
125
126
  callbacks: callbackManager,
126
127
  runName: "RunnableAgent",
127
- });
128
+ }));
128
129
  if (isAgentAction(output)) {
129
130
  return [output];
130
131
  }
@@ -6,7 +6,7 @@ import { AgentAction, AgentFinish, AgentStep } from "@langchain/core/agents";
6
6
  import { BaseMessage } from "@langchain/core/messages";
7
7
  import { ChainValues } from "@langchain/core/utils/types";
8
8
  import { Serializable } from "@langchain/core/load/serializable";
9
- import { Runnable } from "@langchain/core/runnables";
9
+ import { Runnable, type RunnableConfig } from "@langchain/core/runnables";
10
10
  import { LLMChain } from "../chains/llm_chain.js";
11
11
  import { AgentActionOutputParser, AgentInput, RunnableAgentInput, SerializedAgent, StoppingMethod } from "./types.js";
12
12
  /**
@@ -55,7 +55,7 @@ export declare abstract class BaseSingleActionAgent extends BaseAgent {
55
55
  *
56
56
  * @returns Action specifying what tool to use.
57
57
  */
58
- abstract plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentAction | AgentFinish>;
58
+ abstract plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager, config?: RunnableConfig): Promise<AgentAction | AgentFinish>;
59
59
  }
60
60
  /**
61
61
  * Abstract base class for multi-action agents in LangChain. Extends the
@@ -73,7 +73,7 @@ export declare abstract class BaseMultiActionAgent extends BaseAgent {
73
73
  *
74
74
  * @returns Actions specifying what tools to use.
75
75
  */
76
- abstract plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentAction[] | AgentFinish>;
76
+ abstract plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager, config?: RunnableConfig): Promise<AgentAction[] | AgentFinish>;
77
77
  }
78
78
  /**
79
79
  * Class representing a single action agent which accepts runnables.
@@ -89,7 +89,7 @@ export declare class RunnableAgent extends BaseMultiActionAgent {
89
89
  stop?: string[];
90
90
  get inputKeys(): string[];
91
91
  constructor(fields: RunnableAgentInput);
92
- plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager): Promise<AgentAction[] | AgentFinish>;
92
+ plan(steps: AgentStep[], inputs: ChainValues, callbackManager?: CallbackManager, config?: RunnableConfig): Promise<AgentAction[] | AgentFinish>;
93
93
  }
94
94
  /**
95
95
  * Interface for input data for creating a LLMSingleActionAgent.
@@ -1,4 +1,5 @@
1
1
  import { Serializable } from "@langchain/core/load/serializable";
2
+ import { patchConfig, } from "@langchain/core/runnables";
2
3
  /**
3
4
  * Error class for parse errors in LangChain. Contains information about
4
5
  * the error message and the output that caused the error.
@@ -113,12 +114,12 @@ export class RunnableAgent extends BaseMultiActionAgent {
113
114
  this.runnable = fields.runnable;
114
115
  this.stop = fields.stop;
115
116
  }
116
- async plan(steps, inputs, callbackManager) {
117
+ async plan(steps, inputs, callbackManager, config) {
117
118
  const invokeInput = { ...inputs, steps };
118
- const output = await this.runnable.invoke(invokeInput, {
119
+ const output = await this.runnable.invoke(invokeInput, patchConfig(config, {
119
120
  callbacks: callbackManager,
120
121
  runName: "RunnableAgent",
121
- });
122
+ }));
122
123
  if (isAgentAction(output)) {
123
124
  return [output];
124
125
  }
@@ -46,24 +46,34 @@ class AgentExecutorIterator extends serializable_1.Serializable {
46
46
  writable: true,
47
47
  value: void 0
48
48
  });
49
+ Object.defineProperty(this, "config", {
50
+ enumerable: true,
51
+ configurable: true,
52
+ writable: true,
53
+ value: void 0
54
+ });
55
+ /** @deprecated Use "config" */
49
56
  Object.defineProperty(this, "callbacks", {
50
57
  enumerable: true,
51
58
  configurable: true,
52
59
  writable: true,
53
60
  value: void 0
54
61
  });
62
+ /** @deprecated Use "config" */
55
63
  Object.defineProperty(this, "tags", {
56
64
  enumerable: true,
57
65
  configurable: true,
58
66
  writable: true,
59
67
  value: void 0
60
68
  });
69
+ /** @deprecated Use "config" */
61
70
  Object.defineProperty(this, "metadata", {
62
71
  enumerable: true,
63
72
  configurable: true,
64
73
  writable: true,
65
74
  value: void 0
66
75
  });
76
+ /** @deprecated Use "config" */
67
77
  Object.defineProperty(this, "runName", {
68
78
  enumerable: true,
69
79
  configurable: true,
@@ -101,6 +111,7 @@ class AgentExecutorIterator extends serializable_1.Serializable {
101
111
  this.metadata = fields.metadata;
102
112
  this.runName = fields.runName;
103
113
  this.runManager = fields.runManager;
114
+ this.config = fields.config;
104
115
  }
105
116
  /**
106
117
  * Reset the iterator to its initial state, clearing intermediate steps,
@@ -158,7 +169,7 @@ class AgentExecutorIterator extends serializable_1.Serializable {
158
169
  * AgentExecutor's _takeNextStep method.
159
170
  */
160
171
  async _executeNextStep(runManager) {
161
- return this.agentExecutor._takeNextStep(this.nameToToolMap, this.inputs, this.intermediateSteps, runManager);
172
+ return this.agentExecutor._takeNextStep(this.nameToToolMap, this.inputs, this.intermediateSteps, runManager, this.config);
162
173
  }
163
174
  /**
164
175
  * Process the output of the next step,
@@ -390,7 +401,7 @@ class AgentExecutor extends base_js_1.BaseChain {
390
401
  while (this.shouldContinue(iterations)) {
391
402
  let output;
392
403
  try {
393
- output = await this.agent.plan(steps, inputs, runManager?.getChild());
404
+ output = await this.agent.plan(steps, inputs, runManager?.getChild(), config);
394
405
  }
395
406
  catch (e) {
396
407
  // eslint-disable-next-line no-instanceof/no-instanceof
@@ -483,10 +494,10 @@ class AgentExecutor extends base_js_1.BaseChain {
483
494
  const finish = await this.agent.returnStoppedResponse(this.earlyStoppingMethod, steps, inputs);
484
495
  return getOutput(finish);
485
496
  }
486
- async _takeNextStep(nameToolMap, inputs, intermediateSteps, runManager) {
497
+ async _takeNextStep(nameToolMap, inputs, intermediateSteps, runManager, config) {
487
498
  let output;
488
499
  try {
489
- output = await this.agent.plan(intermediateSteps, inputs, runManager?.getChild());
500
+ output = await this.agent.plan(intermediateSteps, inputs, runManager?.getChild(), config);
490
501
  }
491
502
  catch (e) {
492
503
  // eslint-disable-next-line no-instanceof/no-instanceof
@@ -614,6 +625,8 @@ class AgentExecutor extends base_js_1.BaseChain {
614
625
  const agentExecutorIterator = new AgentExecutorIterator({
615
626
  inputs,
616
627
  agentExecutor: this,
628
+ config: options,
629
+ // TODO: Deprecate these other parameters
617
630
  metadata: options?.metadata,
618
631
  tags: options?.tags,
619
632
  callbacks: options?.callbacks,
@@ -12,8 +12,12 @@ import { BaseChain, ChainInputs } from "../chains/base.js";
12
12
  interface AgentExecutorIteratorInput {
13
13
  agentExecutor: AgentExecutor;
14
14
  inputs: Record<string, string>;
15
+ config?: RunnableConfig;
16
+ /** @deprecated Use "config" */
15
17
  callbacks?: Callbacks;
18
+ /** @deprecated Use "config" */
16
19
  tags?: string[];
20
+ /** @deprecated Use "config" */
17
21
  metadata?: Record<string, unknown>;
18
22
  runName?: string;
19
23
  runManager?: CallbackManagerForChainRun;
@@ -22,9 +26,14 @@ export declare class AgentExecutorIterator extends Serializable implements Agent
22
26
  lc_namespace: string[];
23
27
  agentExecutor: AgentExecutor;
24
28
  inputs: Record<string, string>;
29
+ config?: RunnableConfig;
30
+ /** @deprecated Use "config" */
25
31
  callbacks?: Callbacks;
32
+ /** @deprecated Use "config" */
26
33
  tags: string[] | undefined;
34
+ /** @deprecated Use "config" */
27
35
  metadata: Record<string, unknown> | undefined;
36
+ /** @deprecated Use "config" */
28
37
  runName: string | undefined;
29
38
  private _finalOutputs;
30
39
  get finalOutputs(): Record<string, unknown> | undefined;
@@ -141,7 +150,7 @@ export declare class AgentExecutor extends BaseChain<ChainValues, AgentExecutorO
141
150
  private shouldContinue;
142
151
  /** @ignore */
143
152
  _call(inputs: ChainValues, runManager?: CallbackManagerForChainRun, config?: RunnableConfig): Promise<AgentExecutorOutput>;
144
- _takeNextStep(nameToolMap: Record<string, ToolInterface>, inputs: ChainValues, intermediateSteps: AgentStep[], runManager?: CallbackManagerForChainRun): Promise<AgentFinish | AgentStep[]>;
153
+ _takeNextStep(nameToolMap: Record<string, ToolInterface>, inputs: ChainValues, intermediateSteps: AgentStep[], runManager?: CallbackManagerForChainRun, config?: RunnableConfig): Promise<AgentFinish | AgentStep[]>;
145
154
  _return(output: AgentFinish, intermediateSteps: AgentStep[], runManager?: CallbackManagerForChainRun): Promise<AgentExecutorOutput>;
146
155
  _getToolReturn(nextStepOutput: AgentStep): Promise<AgentFinish | null>;
147
156
  _returnStoppedResponse(earlyStoppingMethod: StoppingMethod): AgentFinish;
@@ -43,24 +43,34 @@ export class AgentExecutorIterator extends Serializable {
43
43
  writable: true,
44
44
  value: void 0
45
45
  });
46
+ Object.defineProperty(this, "config", {
47
+ enumerable: true,
48
+ configurable: true,
49
+ writable: true,
50
+ value: void 0
51
+ });
52
+ /** @deprecated Use "config" */
46
53
  Object.defineProperty(this, "callbacks", {
47
54
  enumerable: true,
48
55
  configurable: true,
49
56
  writable: true,
50
57
  value: void 0
51
58
  });
59
+ /** @deprecated Use "config" */
52
60
  Object.defineProperty(this, "tags", {
53
61
  enumerable: true,
54
62
  configurable: true,
55
63
  writable: true,
56
64
  value: void 0
57
65
  });
66
+ /** @deprecated Use "config" */
58
67
  Object.defineProperty(this, "metadata", {
59
68
  enumerable: true,
60
69
  configurable: true,
61
70
  writable: true,
62
71
  value: void 0
63
72
  });
73
+ /** @deprecated Use "config" */
64
74
  Object.defineProperty(this, "runName", {
65
75
  enumerable: true,
66
76
  configurable: true,
@@ -98,6 +108,7 @@ export class AgentExecutorIterator extends Serializable {
98
108
  this.metadata = fields.metadata;
99
109
  this.runName = fields.runName;
100
110
  this.runManager = fields.runManager;
111
+ this.config = fields.config;
101
112
  }
102
113
  /**
103
114
  * Reset the iterator to its initial state, clearing intermediate steps,
@@ -155,7 +166,7 @@ export class AgentExecutorIterator extends Serializable {
155
166
  * AgentExecutor's _takeNextStep method.
156
167
  */
157
168
  async _executeNextStep(runManager) {
158
- return this.agentExecutor._takeNextStep(this.nameToToolMap, this.inputs, this.intermediateSteps, runManager);
169
+ return this.agentExecutor._takeNextStep(this.nameToToolMap, this.inputs, this.intermediateSteps, runManager, this.config);
159
170
  }
160
171
  /**
161
172
  * Process the output of the next step,
@@ -385,7 +396,7 @@ export class AgentExecutor extends BaseChain {
385
396
  while (this.shouldContinue(iterations)) {
386
397
  let output;
387
398
  try {
388
- output = await this.agent.plan(steps, inputs, runManager?.getChild());
399
+ output = await this.agent.plan(steps, inputs, runManager?.getChild(), config);
389
400
  }
390
401
  catch (e) {
391
402
  // eslint-disable-next-line no-instanceof/no-instanceof
@@ -478,10 +489,10 @@ export class AgentExecutor extends BaseChain {
478
489
  const finish = await this.agent.returnStoppedResponse(this.earlyStoppingMethod, steps, inputs);
479
490
  return getOutput(finish);
480
491
  }
481
- async _takeNextStep(nameToolMap, inputs, intermediateSteps, runManager) {
492
+ async _takeNextStep(nameToolMap, inputs, intermediateSteps, runManager, config) {
482
493
  let output;
483
494
  try {
484
- output = await this.agent.plan(intermediateSteps, inputs, runManager?.getChild());
495
+ output = await this.agent.plan(intermediateSteps, inputs, runManager?.getChild(), config);
485
496
  }
486
497
  catch (e) {
487
498
  // eslint-disable-next-line no-instanceof/no-instanceof
@@ -609,6 +620,8 @@ export class AgentExecutor extends BaseChain {
609
620
  const agentExecutorIterator = new AgentExecutorIterator({
610
621
  inputs,
611
622
  agentExecutor: this,
623
+ config: options,
624
+ // TODO: Deprecate these other parameters
612
625
  metadata: options?.metadata,
613
626
  tags: options?.tags,
614
627
  callbacks: options?.callbacks,
@@ -3,6 +3,7 @@ Object.defineProperty(exports, "__esModule", { value: true });
3
3
  exports.BaseChain = void 0;
4
4
  const outputs_1 = require("@langchain/core/outputs");
5
5
  const manager_1 = require("@langchain/core/callbacks/manager");
6
+ const runnables_1 = require("@langchain/core/runnables");
6
7
  const base_1 = require("@langchain/core/language_models/base");
7
8
  /**
8
9
  * Base interface that all chains must implement.
@@ -48,7 +49,7 @@ class BaseChain extends base_1.BaseLangChain {
48
49
  * @returns Promise that resolves with the output of the chain run.
49
50
  */
50
51
  async invoke(input, options) {
51
- const [config] = this._getOptionsList(options ?? {}, 1);
52
+ const config = (0, runnables_1.ensureConfig)(options);
52
53
  const fullValues = await this._formatValues(input);
53
54
  const callbackManager_ = await manager_1.CallbackManager.configure(config?.callbacks, this.callbacks, config?.tags, this.tags, config?.metadata, this.metadata, { verbose: this.verbose });
54
55
  const runManager = await callbackManager_?.handleChainStart(this.toJSON(), fullValues, undefined, undefined, undefined, undefined, config?.runName);
@@ -1,5 +1,6 @@
1
1
  import { RUN_KEY } from "@langchain/core/outputs";
2
2
  import { CallbackManager, parseCallbackConfigArg, } from "@langchain/core/callbacks/manager";
3
+ import { ensureConfig } from "@langchain/core/runnables";
3
4
  import { BaseLangChain, } from "@langchain/core/language_models/base";
4
5
  /**
5
6
  * Base interface that all chains must implement.
@@ -45,7 +46,7 @@ export class BaseChain extends BaseLangChain {
45
46
  * @returns Promise that resolves with the output of the chain run.
46
47
  */
47
48
  async invoke(input, options) {
48
- const [config] = this._getOptionsList(options ?? {}, 1);
49
+ const config = ensureConfig(options);
49
50
  const fullValues = await this._formatValues(input);
50
51
  const callbackManager_ = await CallbackManager.configure(config?.callbacks, this.callbacks, config?.tags, this.tags, config?.metadata, this.metadata, { verbose: this.verbose });
51
52
  const runManager = await callbackManager_?.handleChainStart(this.toJSON(), fullValues, undefined, undefined, undefined, undefined, config?.runName);
@@ -14,10 +14,4 @@ var __exportStar = (this && this.__exportStar) || function(m, exports) {
14
14
  for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p);
15
15
  };
16
16
  Object.defineProperty(exports, "__esModule", { value: true });
17
- const entrypoint_deprecation_js_1 = require("../util/entrypoint_deprecation.cjs");
18
17
  __exportStar(require("@langchain/core/utils/testing"), exports);
19
- /* #__PURE__ */ (0, entrypoint_deprecation_js_1.logVersion010MigrationWarning)({
20
- oldEntrypointName: "embeddings/fake",
21
- newEntrypointName: "utils/testing",
22
- newPackageName: "@langchain/core",
23
- });
@@ -1,7 +1 @@
1
- import { logVersion010MigrationWarning } from "../util/entrypoint_deprecation.js";
2
1
  export * from "@langchain/core/utils/testing";
3
- /* #__PURE__ */ logVersion010MigrationWarning({
4
- oldEntrypointName: "embeddings/fake",
5
- newEntrypointName: "utils/testing",
6
- newPackageName: "@langchain/core",
7
- });
@@ -24,8 +24,8 @@ var __importStar = (this && this.__importStar) || function (mod) {
24
24
  return result;
25
25
  };
26
26
  Object.defineProperty(exports, "__esModule", { value: true });
27
- exports.storage__in_memory = exports.storage__encoder_backed = exports.stores__message__in_memory = exports.stores__file__in_memory = exports.stores__doc__in_memory = exports.retrievers__vespa = exports.retrievers__score_threshold = exports.retrievers__hyde = exports.retrievers__document_compressors__embeddings_filter = exports.retrievers__document_compressors__chain_extract = exports.retrievers__time_weighted = exports.retrievers__parent_document = exports.retrievers__multi_vector = exports.retrievers__multi_query = exports.retrievers__document_compressors = exports.retrievers__contextual_compression = exports.retrievers__remote = exports.output_parsers = exports.schema__query_constructor = exports.schema__prompt_template = exports.chat_models__anthropic = exports.document_transformers__openai_functions = exports.document_loaders__web__sort_xyz_blockchain = exports.document_loaders__web__serpapi = exports.document_loaders__web__searchapi = exports.document_loaders__base = exports.text_splitter = exports.vectorstores__memory = exports.llms__fake = exports.embeddings__fake = exports.embeddings__cache_backed = exports.chains__retrieval = exports.chains__openai_functions = exports.chains__history_aware_retriever = exports.chains__combine_documents__reduce = exports.chains__combine_documents = exports.chains = exports.tools__retriever = exports.tools__render = exports.tools__chain = exports.agents__openai__output_parser = exports.agents__xml__output_parser = exports.agents__react__output_parser = exports.agents__format_scratchpad__log_to_message = exports.agents__format_scratchpad__xml = exports.agents__format_scratchpad__log = exports.agents__format_scratchpad__openai_tools = exports.agents__format_scratchpad = exports.agents__toolkits = exports.agents = void 0;
28
- exports.llms__fireworks = exports.chat_models__fireworks = exports.schema__output = exports.schema__output_parser = exports.schema__runnable = exports.prompts__base = exports.prompts__pipeline = exports.prompts__image = exports.prompts__chat = exports.schema = exports.schema__messages = exports.prompts__prompt = exports.embeddings__openai = exports.llms__openai = exports.chat_models__openai = exports.indexes = exports.runnables__remote = exports.smith = exports.evaluation = exports.experimental__prompts__custom_format = exports.experimental__masking = exports.experimental__chains__violation_of_expectations = exports.experimental__chat_models__bittensor = exports.experimental__plan_and_execute = exports.experimental__generative_agents = exports.experimental__babyagi = exports.experimental__openai_files = exports.experimental__openai_assistant = exports.experimental__autogpt = exports.util__time = exports.util__math = exports.util__document = void 0;
27
+ exports.storage__encoder_backed = exports.stores__message__in_memory = exports.stores__file__in_memory = exports.stores__doc__in_memory = exports.retrievers__matryoshka_retriever = exports.retrievers__vespa = exports.retrievers__score_threshold = exports.retrievers__hyde = exports.retrievers__document_compressors__embeddings_filter = exports.retrievers__document_compressors__chain_extract = exports.retrievers__time_weighted = exports.retrievers__parent_document = exports.retrievers__multi_vector = exports.retrievers__multi_query = exports.retrievers__document_compressors = exports.retrievers__contextual_compression = exports.retrievers__remote = exports.output_parsers = exports.schema__query_constructor = exports.schema__prompt_template = exports.chat_models__anthropic = exports.document_transformers__openai_functions = exports.document_loaders__web__sort_xyz_blockchain = exports.document_loaders__web__serpapi = exports.document_loaders__web__searchapi = exports.document_loaders__base = exports.text_splitter = exports.vectorstores__memory = exports.llms__fake = exports.embeddings__fake = exports.embeddings__cache_backed = exports.chains__retrieval = exports.chains__openai_functions = exports.chains__history_aware_retriever = exports.chains__combine_documents__reduce = exports.chains__combine_documents = exports.chains = exports.tools__retriever = exports.tools__render = exports.tools__chain = exports.agents__openai__output_parser = exports.agents__xml__output_parser = exports.agents__react__output_parser = exports.agents__format_scratchpad__log_to_message = exports.agents__format_scratchpad__xml = exports.agents__format_scratchpad__log = exports.agents__format_scratchpad__openai_tools = exports.agents__format_scratchpad = exports.agents__toolkits = exports.agents = void 0;
28
+ exports.llms__fireworks = exports.chat_models__fireworks = exports.schema__output = exports.schema__output_parser = exports.schema__runnable = exports.prompts__base = exports.prompts__pipeline = exports.prompts__image = exports.prompts__chat = exports.schema = exports.schema__messages = exports.prompts__prompt = exports.embeddings__openai = exports.llms__openai = exports.chat_models__openai = exports.indexes = exports.runnables__remote = exports.smith = exports.evaluation = exports.experimental__prompts__custom_format = exports.experimental__masking = exports.experimental__chains__violation_of_expectations = exports.experimental__chat_models__bittensor = exports.experimental__plan_and_execute = exports.experimental__generative_agents = exports.experimental__babyagi = exports.experimental__openai_files = exports.experimental__openai_assistant = exports.experimental__autogpt = exports.util__time = exports.util__math = exports.util__document = exports.storage__in_memory = void 0;
29
29
  exports.agents = __importStar(require("../agents/index.cjs"));
30
30
  exports.agents__toolkits = __importStar(require("../agents/toolkits/index.cjs"));
31
31
  exports.agents__format_scratchpad = __importStar(require("../agents/format_scratchpad/openai_functions.cjs"));
@@ -71,6 +71,7 @@ exports.retrievers__document_compressors__embeddings_filter = __importStar(requi
71
71
  exports.retrievers__hyde = __importStar(require("../retrievers/hyde.cjs"));
72
72
  exports.retrievers__score_threshold = __importStar(require("../retrievers/score_threshold.cjs"));
73
73
  exports.retrievers__vespa = __importStar(require("../retrievers/vespa.cjs"));
74
+ exports.retrievers__matryoshka_retriever = __importStar(require("../retrievers/matryoshka_retriever.cjs"));
74
75
  exports.stores__doc__in_memory = __importStar(require("../stores/doc/in_memory.cjs"));
75
76
  exports.stores__file__in_memory = __importStar(require("../stores/file/in_memory.cjs"));
76
77
  exports.stores__message__in_memory = __importStar(require("../stores/message/in_memory.cjs"));
@@ -43,6 +43,7 @@ export * as retrievers__document_compressors__embeddings_filter from "../retriev
43
43
  export * as retrievers__hyde from "../retrievers/hyde.js";
44
44
  export * as retrievers__score_threshold from "../retrievers/score_threshold.js";
45
45
  export * as retrievers__vespa from "../retrievers/vespa.js";
46
+ export * as retrievers__matryoshka_retriever from "../retrievers/matryoshka_retriever.js";
46
47
  export * as stores__doc__in_memory from "../stores/doc/in_memory.js";
47
48
  export * as stores__file__in_memory from "../stores/file/in_memory.js";
48
49
  export * as stores__message__in_memory from "../stores/message/in_memory.js";
@@ -44,6 +44,7 @@ export * as retrievers__document_compressors__embeddings_filter from "../retriev
44
44
  export * as retrievers__hyde from "../retrievers/hyde.js";
45
45
  export * as retrievers__score_threshold from "../retrievers/score_threshold.js";
46
46
  export * as retrievers__vespa from "../retrievers/vespa.js";
47
+ export * as retrievers__matryoshka_retriever from "../retrievers/matryoshka_retriever.js";
47
48
  export * as stores__doc__in_memory from "../stores/doc/in_memory.js";
48
49
  export * as stores__file__in_memory from "../stores/file/in_memory.js";
49
50
  export * as stores__message__in_memory from "../stores/message/in_memory.js";
@@ -0,0 +1,148 @@
1
+ "use strict";
2
+ Object.defineProperty(exports, "__esModule", { value: true });
3
+ exports.MatryoshkaRetriever = void 0;
4
+ const math_1 = require("@langchain/core/utils/math");
5
+ const vectorstores_1 = require("@langchain/core/vectorstores");
6
+ /**
7
+ * A retriever that uses two sets of embeddings to perform adaptive retrieval. Based
8
+ * off of the "Matryoshka embeddings: faster OpenAI vector search using Adaptive Retrieval"
9
+ * blog post {@link https://supabase.com/blog/matryoshka-embeddings}.
10
+ *
11
+ *
12
+ * This class performs "Adaptive Retrieval" for searching text embeddings efficiently using the
13
+ * Matryoshka Representation Learning (MRL) technique. It retrieves documents similar to a query
14
+ * embedding in two steps:
15
+ *
16
+ * First-pass: Uses a lower dimensional sub-vector from the MRL embedding for an initial, fast,
17
+ * but less accurate search.
18
+ *
19
+ * Second-pass: Re-ranks the top results from the first pass using the full, high-dimensional
20
+ * embedding for higher accuracy.
21
+ *
22
+ *
23
+ * This code implements MRL embeddings for efficient vector search by combining faster,
24
+ * lower-dimensional initial search with accurate, high-dimensional re-ranking.
25
+ */
26
+ class MatryoshkaRetriever extends vectorstores_1.VectorStoreRetriever {
27
+ constructor(fields) {
28
+ super(fields);
29
+ Object.defineProperty(this, "smallK", {
30
+ enumerable: true,
31
+ configurable: true,
32
+ writable: true,
33
+ value: 50
34
+ });
35
+ Object.defineProperty(this, "largeK", {
36
+ enumerable: true,
37
+ configurable: true,
38
+ writable: true,
39
+ value: 8
40
+ });
41
+ Object.defineProperty(this, "largeEmbeddingKey", {
42
+ enumerable: true,
43
+ configurable: true,
44
+ writable: true,
45
+ value: "lc_large_embedding"
46
+ });
47
+ Object.defineProperty(this, "largeEmbeddingModel", {
48
+ enumerable: true,
49
+ configurable: true,
50
+ writable: true,
51
+ value: void 0
52
+ });
53
+ Object.defineProperty(this, "searchType", {
54
+ enumerable: true,
55
+ configurable: true,
56
+ writable: true,
57
+ value: "cosine"
58
+ });
59
+ /**
60
+ * Override the default `addDocuments` method to embed the documents twice,
61
+ * once using the larger embeddings model, and then again using the default
62
+ * embedding model linked to the vector store.
63
+ *
64
+ * @param {DocumentInterface[]} documents - An array of documents to add to the vector store.
65
+ * @param {AddDocumentOptions} options - An optional object containing additional options for adding documents.
66
+ * @returns {Promise<string[] | void>} A promise that resolves to an array of the document IDs that were added to the vector store.
67
+ */
68
+ Object.defineProperty(this, "addDocuments", {
69
+ enumerable: true,
70
+ configurable: true,
71
+ writable: true,
72
+ value: async (documents, options) => {
73
+ // Insure documents metadata does not contain the large embedding key
74
+ if (documents.some((doc) => this.largeEmbeddingKey in doc.metadata)) {
75
+ throw new Error(`All documents must not contain the large embedding key: ${this.largeEmbeddingKey} in their metadata.`);
76
+ }
77
+ const allDocPageContent = documents.map((doc) => doc.pageContent);
78
+ const allDocLargeEmbeddings = await this.largeEmbeddingModel.embedDocuments(allDocPageContent);
79
+ const newDocuments = documents.map((doc, idx) => ({
80
+ ...doc,
81
+ metadata: {
82
+ ...doc.metadata,
83
+ [this.largeEmbeddingKey]: JSON.stringify(allDocLargeEmbeddings[idx]),
84
+ },
85
+ }));
86
+ return this.vectorStore.addDocuments(newDocuments, options);
87
+ }
88
+ });
89
+ this.smallK = fields.smallK ?? this.smallK;
90
+ this.largeK = fields.largeK ?? this.largeK;
91
+ this.largeEmbeddingKey = fields.largeEmbeddingKey ?? this.largeEmbeddingKey;
92
+ this.largeEmbeddingModel = fields.largeEmbeddingModel;
93
+ this.searchType = fields.searchType ?? this.searchType;
94
+ }
95
+ /**
96
+ * Ranks documents based on their similarity to a query embedding using larger embeddings.
97
+ *
98
+ * This method takes a query embedding and a list of documents (smallResults) as input. Each document
99
+ * in the smallResults array has previously been associated with a large embedding stored in its metadata.
100
+ * Depending on the `searchType` (cosine, innerProduct, or euclidean), it calculates the similarity scores
101
+ * between the query embedding and each document's large embedding. It then ranks the documents based on
102
+ * these similarity scores, from the most similar to the least similar.
103
+ *
104
+ * The method returns a promise that resolves to an array of the top `largeK` documents, where `largeK`
105
+ * is a class property defining the number of documents to return. This subset of documents is determined
106
+ * by sorting the entire list of documents based on their similarity scores and then selecting the top
107
+ * `largeK` documents.
108
+ *
109
+ * @param {number[]} embeddedQuery The embedding of the query, represented as an array of numbers.
110
+ * @param {DocumentInterface[]} smallResults An array of documents, each with metadata that includes a large embedding for similarity comparison.
111
+ * @returns {Promise<DocumentInterface[]>} A promise that resolves to an array of the top `largeK` ranked documents based on their similarity to the query embedding.
112
+ */
113
+ _rankByLargeEmbeddings(embeddedQuery, smallResults) {
114
+ const largeEmbeddings = smallResults.map((doc) => JSON.parse(doc.metadata[this.largeEmbeddingKey]));
115
+ let func;
116
+ switch (this.searchType) {
117
+ case "cosine":
118
+ func = () => (0, math_1.cosineSimilarity)([embeddedQuery], largeEmbeddings);
119
+ break;
120
+ case "innerProduct":
121
+ func = () => (0, math_1.innerProduct)([embeddedQuery], largeEmbeddings);
122
+ break;
123
+ case "euclidean":
124
+ func = () => (0, math_1.euclideanDistance)([embeddedQuery], largeEmbeddings);
125
+ break;
126
+ default:
127
+ throw new Error(`Unknown search type: ${this.searchType}`);
128
+ }
129
+ // Calculate the similarity scores between the query embedding and the large embeddings
130
+ const [similarityScores] = func();
131
+ // Create an array of indices from 0 to N-1, where N is the number of documents
132
+ let indices = Array.from({ length: smallResults.length }, (_, index) => index);
133
+ indices = indices
134
+ .map((v, i) => [similarityScores[i], v])
135
+ .sort(([a], [b]) => b - a)
136
+ .slice(0, this.largeK)
137
+ .map(([, i]) => i);
138
+ return indices.map((i) => smallResults[i]);
139
+ }
140
+ async _getRelevantDocuments(query) {
141
+ const [embeddedQuery, smallResults] = await Promise.all([
142
+ this.largeEmbeddingModel.embedQuery(query),
143
+ this.vectorStore.similaritySearch(query, this.smallK, this.filter),
144
+ ]);
145
+ return this._rankByLargeEmbeddings(embeddedQuery, smallResults);
146
+ }
147
+ }
148
+ exports.MatryoshkaRetriever = MatryoshkaRetriever;
@@ -0,0 +1,93 @@
1
+ import { DocumentInterface } from "@langchain/core/documents";
2
+ import { Embeddings } from "@langchain/core/embeddings";
3
+ import { VectorStore, VectorStoreRetriever, VectorStoreRetrieverInput } from "@langchain/core/vectorstores";
4
+ /**
5
+ * Type for options when adding a document to the VectorStore.
6
+ */
7
+ type AddDocumentOptions = Record<string, any>;
8
+ export interface MatryoshkaRetrieverFields {
9
+ /**
10
+ * The number of documents to retrieve from the small store.
11
+ * @default 50
12
+ */
13
+ smallK?: number;
14
+ /**
15
+ * The number of documents to retrieve from the large store.
16
+ * @default 8
17
+ */
18
+ largeK?: number;
19
+ /**
20
+ * The metadata key to store the larger embeddings.
21
+ * @default "lc_large_embedding"
22
+ */
23
+ largeEmbeddingKey?: string;
24
+ /**
25
+ * The embedding model to use when generating the large
26
+ * embeddings.
27
+ */
28
+ largeEmbeddingModel: Embeddings;
29
+ /**
30
+ * The type of search to perform using the large embeddings.
31
+ * @default "cosine"
32
+ */
33
+ searchType?: "cosine" | "innerProduct" | "euclidean";
34
+ }
35
+ /**
36
+ * A retriever that uses two sets of embeddings to perform adaptive retrieval. Based
37
+ * off of the "Matryoshka embeddings: faster OpenAI vector search using Adaptive Retrieval"
38
+ * blog post {@link https://supabase.com/blog/matryoshka-embeddings}.
39
+ *
40
+ *
41
+ * This class performs "Adaptive Retrieval" for searching text embeddings efficiently using the
42
+ * Matryoshka Representation Learning (MRL) technique. It retrieves documents similar to a query
43
+ * embedding in two steps:
44
+ *
45
+ * First-pass: Uses a lower dimensional sub-vector from the MRL embedding for an initial, fast,
46
+ * but less accurate search.
47
+ *
48
+ * Second-pass: Re-ranks the top results from the first pass using the full, high-dimensional
49
+ * embedding for higher accuracy.
50
+ *
51
+ *
52
+ * This code implements MRL embeddings for efficient vector search by combining faster,
53
+ * lower-dimensional initial search with accurate, high-dimensional re-ranking.
54
+ */
55
+ export declare class MatryoshkaRetriever<Store extends VectorStore = VectorStore> extends VectorStoreRetriever<Store> {
56
+ smallK: number;
57
+ largeK: number;
58
+ largeEmbeddingKey: string;
59
+ largeEmbeddingModel: Embeddings;
60
+ searchType: "cosine" | "innerProduct" | "euclidean";
61
+ constructor(fields: MatryoshkaRetrieverFields & VectorStoreRetrieverInput<Store>);
62
+ /**
63
+ * Ranks documents based on their similarity to a query embedding using larger embeddings.
64
+ *
65
+ * This method takes a query embedding and a list of documents (smallResults) as input. Each document
66
+ * in the smallResults array has previously been associated with a large embedding stored in its metadata.
67
+ * Depending on the `searchType` (cosine, innerProduct, or euclidean), it calculates the similarity scores
68
+ * between the query embedding and each document's large embedding. It then ranks the documents based on
69
+ * these similarity scores, from the most similar to the least similar.
70
+ *
71
+ * The method returns a promise that resolves to an array of the top `largeK` documents, where `largeK`
72
+ * is a class property defining the number of documents to return. This subset of documents is determined
73
+ * by sorting the entire list of documents based on their similarity scores and then selecting the top
74
+ * `largeK` documents.
75
+ *
76
+ * @param {number[]} embeddedQuery The embedding of the query, represented as an array of numbers.
77
+ * @param {DocumentInterface[]} smallResults An array of documents, each with metadata that includes a large embedding for similarity comparison.
78
+ * @returns {Promise<DocumentInterface[]>} A promise that resolves to an array of the top `largeK` ranked documents based on their similarity to the query embedding.
79
+ */
80
+ private _rankByLargeEmbeddings;
81
+ _getRelevantDocuments(query: string): Promise<DocumentInterface[]>;
82
+ /**
83
+ * Override the default `addDocuments` method to embed the documents twice,
84
+ * once using the larger embeddings model, and then again using the default
85
+ * embedding model linked to the vector store.
86
+ *
87
+ * @param {DocumentInterface[]} documents - An array of documents to add to the vector store.
88
+ * @param {AddDocumentOptions} options - An optional object containing additional options for adding documents.
89
+ * @returns {Promise<string[] | void>} A promise that resolves to an array of the document IDs that were added to the vector store.
90
+ */
91
+ addDocuments: (documents: DocumentInterface[], options?: AddDocumentOptions) => Promise<string[] | void>;
92
+ }
93
+ export {};
@@ -0,0 +1,144 @@
1
+ import { cosineSimilarity, euclideanDistance, innerProduct, } from "@langchain/core/utils/math";
2
+ import { VectorStoreRetriever, } from "@langchain/core/vectorstores";
3
+ /**
4
+ * A retriever that uses two sets of embeddings to perform adaptive retrieval. Based
5
+ * off of the "Matryoshka embeddings: faster OpenAI vector search using Adaptive Retrieval"
6
+ * blog post {@link https://supabase.com/blog/matryoshka-embeddings}.
7
+ *
8
+ *
9
+ * This class performs "Adaptive Retrieval" for searching text embeddings efficiently using the
10
+ * Matryoshka Representation Learning (MRL) technique. It retrieves documents similar to a query
11
+ * embedding in two steps:
12
+ *
13
+ * First-pass: Uses a lower dimensional sub-vector from the MRL embedding for an initial, fast,
14
+ * but less accurate search.
15
+ *
16
+ * Second-pass: Re-ranks the top results from the first pass using the full, high-dimensional
17
+ * embedding for higher accuracy.
18
+ *
19
+ *
20
+ * This code implements MRL embeddings for efficient vector search by combining faster,
21
+ * lower-dimensional initial search with accurate, high-dimensional re-ranking.
22
+ */
23
+ export class MatryoshkaRetriever extends VectorStoreRetriever {
24
+ constructor(fields) {
25
+ super(fields);
26
+ Object.defineProperty(this, "smallK", {
27
+ enumerable: true,
28
+ configurable: true,
29
+ writable: true,
30
+ value: 50
31
+ });
32
+ Object.defineProperty(this, "largeK", {
33
+ enumerable: true,
34
+ configurable: true,
35
+ writable: true,
36
+ value: 8
37
+ });
38
+ Object.defineProperty(this, "largeEmbeddingKey", {
39
+ enumerable: true,
40
+ configurable: true,
41
+ writable: true,
42
+ value: "lc_large_embedding"
43
+ });
44
+ Object.defineProperty(this, "largeEmbeddingModel", {
45
+ enumerable: true,
46
+ configurable: true,
47
+ writable: true,
48
+ value: void 0
49
+ });
50
+ Object.defineProperty(this, "searchType", {
51
+ enumerable: true,
52
+ configurable: true,
53
+ writable: true,
54
+ value: "cosine"
55
+ });
56
+ /**
57
+ * Override the default `addDocuments` method to embed the documents twice,
58
+ * once using the larger embeddings model, and then again using the default
59
+ * embedding model linked to the vector store.
60
+ *
61
+ * @param {DocumentInterface[]} documents - An array of documents to add to the vector store.
62
+ * @param {AddDocumentOptions} options - An optional object containing additional options for adding documents.
63
+ * @returns {Promise<string[] | void>} A promise that resolves to an array of the document IDs that were added to the vector store.
64
+ */
65
+ Object.defineProperty(this, "addDocuments", {
66
+ enumerable: true,
67
+ configurable: true,
68
+ writable: true,
69
+ value: async (documents, options) => {
70
+ // Insure documents metadata does not contain the large embedding key
71
+ if (documents.some((doc) => this.largeEmbeddingKey in doc.metadata)) {
72
+ throw new Error(`All documents must not contain the large embedding key: ${this.largeEmbeddingKey} in their metadata.`);
73
+ }
74
+ const allDocPageContent = documents.map((doc) => doc.pageContent);
75
+ const allDocLargeEmbeddings = await this.largeEmbeddingModel.embedDocuments(allDocPageContent);
76
+ const newDocuments = documents.map((doc, idx) => ({
77
+ ...doc,
78
+ metadata: {
79
+ ...doc.metadata,
80
+ [this.largeEmbeddingKey]: JSON.stringify(allDocLargeEmbeddings[idx]),
81
+ },
82
+ }));
83
+ return this.vectorStore.addDocuments(newDocuments, options);
84
+ }
85
+ });
86
+ this.smallK = fields.smallK ?? this.smallK;
87
+ this.largeK = fields.largeK ?? this.largeK;
88
+ this.largeEmbeddingKey = fields.largeEmbeddingKey ?? this.largeEmbeddingKey;
89
+ this.largeEmbeddingModel = fields.largeEmbeddingModel;
90
+ this.searchType = fields.searchType ?? this.searchType;
91
+ }
92
+ /**
93
+ * Ranks documents based on their similarity to a query embedding using larger embeddings.
94
+ *
95
+ * This method takes a query embedding and a list of documents (smallResults) as input. Each document
96
+ * in the smallResults array has previously been associated with a large embedding stored in its metadata.
97
+ * Depending on the `searchType` (cosine, innerProduct, or euclidean), it calculates the similarity scores
98
+ * between the query embedding and each document's large embedding. It then ranks the documents based on
99
+ * these similarity scores, from the most similar to the least similar.
100
+ *
101
+ * The method returns a promise that resolves to an array of the top `largeK` documents, where `largeK`
102
+ * is a class property defining the number of documents to return. This subset of documents is determined
103
+ * by sorting the entire list of documents based on their similarity scores and then selecting the top
104
+ * `largeK` documents.
105
+ *
106
+ * @param {number[]} embeddedQuery The embedding of the query, represented as an array of numbers.
107
+ * @param {DocumentInterface[]} smallResults An array of documents, each with metadata that includes a large embedding for similarity comparison.
108
+ * @returns {Promise<DocumentInterface[]>} A promise that resolves to an array of the top `largeK` ranked documents based on their similarity to the query embedding.
109
+ */
110
+ _rankByLargeEmbeddings(embeddedQuery, smallResults) {
111
+ const largeEmbeddings = smallResults.map((doc) => JSON.parse(doc.metadata[this.largeEmbeddingKey]));
112
+ let func;
113
+ switch (this.searchType) {
114
+ case "cosine":
115
+ func = () => cosineSimilarity([embeddedQuery], largeEmbeddings);
116
+ break;
117
+ case "innerProduct":
118
+ func = () => innerProduct([embeddedQuery], largeEmbeddings);
119
+ break;
120
+ case "euclidean":
121
+ func = () => euclideanDistance([embeddedQuery], largeEmbeddings);
122
+ break;
123
+ default:
124
+ throw new Error(`Unknown search type: ${this.searchType}`);
125
+ }
126
+ // Calculate the similarity scores between the query embedding and the large embeddings
127
+ const [similarityScores] = func();
128
+ // Create an array of indices from 0 to N-1, where N is the number of documents
129
+ let indices = Array.from({ length: smallResults.length }, (_, index) => index);
130
+ indices = indices
131
+ .map((v, i) => [similarityScores[i], v])
132
+ .sort(([a], [b]) => b - a)
133
+ .slice(0, this.largeK)
134
+ .map(([, i]) => i);
135
+ return indices.map((i) => smallResults[i]);
136
+ }
137
+ async _getRelevantDocuments(query) {
138
+ const [embeddedQuery, smallResults] = await Promise.all([
139
+ this.largeEmbeddingModel.embedQuery(query),
140
+ this.vectorStore.similaritySearch(query, this.smallK, this.filter),
141
+ ]);
142
+ return this._rankByLargeEmbeddings(embeddedQuery, smallResults);
143
+ }
144
+ }
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "langchain",
3
- "version": "0.1.22",
3
+ "version": "0.1.24",
4
4
  "description": "Typescript bindings for langchain",
5
5
  "type": "module",
6
6
  "engines": {
@@ -942,6 +942,10 @@
942
942
  "retrievers/vespa.js",
943
943
  "retrievers/vespa.d.ts",
944
944
  "retrievers/vespa.d.cts",
945
+ "retrievers/matryoshka_retriever.cjs",
946
+ "retrievers/matryoshka_retriever.js",
947
+ "retrievers/matryoshka_retriever.d.ts",
948
+ "retrievers/matryoshka_retriever.d.cts",
945
949
  "cache.cjs",
946
950
  "cache.js",
947
951
  "cache.d.ts",
@@ -1508,8 +1512,8 @@
1508
1512
  },
1509
1513
  "dependencies": {
1510
1514
  "@anthropic-ai/sdk": "^0.9.1",
1511
- "@langchain/community": "~0.0.32",
1512
- "@langchain/core": "~0.1.34",
1515
+ "@langchain/community": "~0.0.33",
1516
+ "@langchain/core": "~0.1.36",
1513
1517
  "@langchain/openai": "~0.0.14",
1514
1518
  "binary-extensions": "^2.2.0",
1515
1519
  "expr-eval": "^2.0.2",
@@ -1517,7 +1521,7 @@
1517
1521
  "js-yaml": "^4.1.0",
1518
1522
  "jsonpointer": "^5.0.1",
1519
1523
  "langchainhub": "~0.0.8",
1520
- "langsmith": "~0.1.1",
1524
+ "langsmith": "~0.1.7",
1521
1525
  "ml-distance": "^4.0.0",
1522
1526
  "openapi-types": "^12.1.3",
1523
1527
  "p-retry": "4",
@@ -3641,6 +3645,15 @@
3641
3645
  "import": "./retrievers/vespa.js",
3642
3646
  "require": "./retrievers/vespa.cjs"
3643
3647
  },
3648
+ "./retrievers/matryoshka_retriever": {
3649
+ "types": {
3650
+ "import": "./retrievers/matryoshka_retriever.d.ts",
3651
+ "require": "./retrievers/matryoshka_retriever.d.cts",
3652
+ "default": "./retrievers/matryoshka_retriever.d.ts"
3653
+ },
3654
+ "import": "./retrievers/matryoshka_retriever.js",
3655
+ "require": "./retrievers/matryoshka_retriever.cjs"
3656
+ },
3644
3657
  "./cache": {
3645
3658
  "types": {
3646
3659
  "import": "./cache.d.ts",
@@ -0,0 +1 @@
1
+ module.exports = require('../dist/retrievers/matryoshka_retriever.cjs');
@@ -0,0 +1 @@
1
+ export * from '../dist/retrievers/matryoshka_retriever.js'
@@ -0,0 +1 @@
1
+ export * from '../dist/retrievers/matryoshka_retriever.js'
@@ -0,0 +1 @@
1
+ export * from '../dist/retrievers/matryoshka_retriever.js'