koishi-plugin-best-cave 2.2.2 → 2.2.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -29,7 +29,7 @@ export declare class HashManager {
29
29
  */
30
30
  generateHashesForHistoricalCaves(): Promise<string>;
31
31
  /**
32
- * @description 对所有已存在哈希的回声洞进行相似度检查。
32
+ * @description 对回声洞进行混合策略的相似度与重复内容检查。
33
33
  * @returns {Promise<string>} 一个包含操作结果的报告字符串。
34
34
  */
35
35
  checkForSimilarCaves(): Promise<string>;
package/lib/Utils.d.ts ADDED
@@ -0,0 +1,85 @@
1
+ import { Context, h, Logger, Session } from 'koishi';
2
+ import { CaveObject, Config, StoredElement, CaveHashObject } from './index';
3
+ import { FileManager } from './FileManager';
4
+ import { HashManager } from './HashManager';
5
+ import { ReviewManager } from './ReviewManager';
6
+ /**
7
+ * @description 将数据库存储的 StoredElement[] 转换为 Koishi 的 h() 元素数组。
8
+ * @param elements 从数据库读取的元素数组。
9
+ * @returns 转换后的 h() 元素数组。
10
+ */
11
+ export declare function storedFormatToHElements(elements: StoredElement[]): h[];
12
+ /**
13
+ * @description 构建一条用于发送的完整回声洞消息,处理不同存储后端的资源链接。
14
+ * @param cave 回声洞对象。
15
+ * @param config 插件配置。
16
+ * @param fileManager 文件管理器实例。
17
+ * @param logger 日志记录器实例。
18
+ * @returns 包含 h() 元素和字符串的消息数组。
19
+ */
20
+ export declare function buildCaveMessage(cave: CaveObject, config: Config, fileManager: FileManager, logger: Logger): Promise<(string | h)[]>;
21
+ /**
22
+ * @description 清理数据库中标记为 'delete' 状态的回声洞及其关联文件和哈希。
23
+ * @param ctx Koishi 上下文。
24
+ * @param fileManager 文件管理器实例。
25
+ * @param logger 日志记录器实例。
26
+ * @param reusableIds 可复用 ID 的内存缓存。
27
+ */
28
+ export declare function cleanupPendingDeletions(ctx: Context, fileManager: FileManager, logger: Logger, reusableIds: Set<number>): Promise<void>;
29
+ /**
30
+ * @description 根据配置和会话,生成数据库查询的范围条件。
31
+ * @param session 当前会话。
32
+ * @param config 插件配置。
33
+ * @param includeStatus 是否包含 status: 'active' 条件,默认为 true。
34
+ * @returns 数据库查询条件对象。
35
+ */
36
+ export declare function getScopeQuery(session: Session, config: Config, includeStatus?: boolean): object;
37
+ /**
38
+ * @description 获取下一个可用的回声洞 ID,采用“回收ID > 扫描空缺 > 最大ID+1”策略。
39
+ * @param ctx Koishi 上下文。
40
+ * @param query 查询范围条件。
41
+ * @param reusableIds 可复用 ID 的内存缓存。
42
+ * @returns 可用的新 ID。
43
+ */
44
+ export declare function getNextCaveId(ctx: Context, query: object, reusableIds: Set<number>): Promise<number>;
45
+ /**
46
+ * @description 检查用户是否处于指令冷却中。
47
+ * @returns 若在冷却中则提示字符串,否则 null。
48
+ */
49
+ export declare function checkCooldown(session: Session, config: Config, lastUsed: Map<string, number>): string | null;
50
+ /**
51
+ * @description 更新指定频道的指令使用时间戳。
52
+ */
53
+ export declare function updateCooldownTimestamp(session: Session, config: Config, lastUsed: Map<string, number>): void;
54
+ /**
55
+ * @description 解析消息元素,分离出文本和待下载的媒体文件。
56
+ * @param sourceElements 原始的 Koishi 消息元素数组。
57
+ * @param newId 这条回声洞的新 ID。
58
+ * @param session 触发操作的会话。
59
+ * @returns 包含数据库元素和待保存媒体列表的对象。
60
+ */
61
+ export declare function processMessageElements(sourceElements: h[], newId: number, session: Session): Promise<{
62
+ finalElementsForDb: StoredElement[];
63
+ mediaToSave: {
64
+ sourceUrl: string;
65
+ fileName: string;
66
+ }[];
67
+ }>;
68
+ /**
69
+ * @description 异步处理文件上传、查重和状态更新的后台任务。
70
+ * @param ctx - Koishi 上下文。
71
+ * @param config - 插件配置。
72
+ * @param fileManager - FileManager 实例,用于保存文件。
73
+ * @param logger - 日志记录器实例。
74
+ * @param reviewManager - ReviewManager 实例,用于提交审核。
75
+ * @param cave - 刚刚在数据库中创建的 `preload` 状态的回声洞对象。
76
+ * @param mediaToSave - 需要下载和处理的媒体文件列表。
77
+ * @param reusableIds - 可复用 ID 的内存缓存。
78
+ * @param session - 触发此操作的用户会话,用于发送反馈。
79
+ * @param hashManager - HashManager 实例,如果启用则用于哈希计算和比较。
80
+ * @param textHashesToStore - 已预先计算好的、待存入数据库的文本哈希对象数组。
81
+ */
82
+ export declare function handleFileUploads(ctx: Context, config: Config, fileManager: FileManager, logger: Logger, reviewManager: ReviewManager, cave: CaveObject, mediaToToSave: {
83
+ sourceUrl: string;
84
+ fileName: string;
85
+ }[], reusableIds: Set<number>, session: Session, hashManager: HashManager, textHashesToStore: Omit<CaveHashObject, 'cave'>[]): Promise<void>;
package/lib/index.js CHANGED
@@ -427,32 +427,39 @@ async function processMessageElements(sourceElements, newId, session) {
427
427
  return { finalElementsForDb, mediaToSave };
428
428
  }
429
429
  __name(processMessageElements, "processMessageElements");
430
- async function handleFileUploads(ctx, config, fileManager, logger2, reviewManager, cave, mediaToSave, reusableIds, session, hashManager, textHashesToStore) {
430
+ async function handleFileUploads(ctx, config, fileManager, logger2, reviewManager, cave, mediaToToSave, reusableIds, session, hashManager, textHashesToStore) {
431
431
  try {
432
432
  const downloadedMedia = [];
433
433
  const imageHashesToStore = [];
434
- for (const media of mediaToSave) {
434
+ const existingPHashes = hashManager ? await ctx.database.get("cave_hash", { type: "phash" }) : [];
435
+ const existingSubHashes = hashManager ? await ctx.database.get("cave_hash", { type: "sub" }) : [];
436
+ for (const media of mediaToToSave) {
435
437
  const buffer = Buffer.from(await ctx.http.get(media.sourceUrl, { responseType: "arraybuffer", timeout: 3e4 }));
436
438
  downloadedMedia.push({ fileName: media.fileName, buffer });
437
439
  if (hashManager && [".png", ".jpg", ".jpeg", ".webp"].includes(path2.extname(media.fileName).toLowerCase())) {
438
440
  const pHash = await hashManager.generateImagePHash(buffer);
441
+ for (const existing of existingPHashes) {
442
+ const similarity = hashManager.calculateSimilarity(pHash, existing.hash);
443
+ if (similarity >= config.imageThreshold) {
444
+ await session.send(`图片与回声洞(${existing.cave})的相似度为 ${(similarity * 100).toFixed(2)}%,超过阈值`);
445
+ await ctx.database.upsert("cave", [{ id: cave.id, status: "delete" }]);
446
+ reusableIds.add(cave.id);
447
+ return;
448
+ }
449
+ }
450
+ const pHashEntry = { hash: pHash, type: "phash" };
451
+ imageHashesToStore.push(pHashEntry);
439
452
  const subHashes = await hashManager.generateImageSubHashes(buffer);
440
- const allNewImageHashes = [pHash, ...subHashes];
441
- const existingImageHashes = await ctx.database.get("cave_hash", { type: /^image_/ });
442
- for (const newHash of allNewImageHashes) {
443
- for (const existing of existingImageHashes) {
444
- const similarity = hashManager.calculateSimilarity(newHash, existing.hash);
453
+ for (const newSubHash of subHashes) {
454
+ for (const existing of existingSubHashes) {
455
+ const similarity = hashManager.calculateSimilarity(newSubHash, existing.hash);
445
456
  if (similarity >= config.imageThreshold) {
446
- await session.send(`图片与回声洞(${existing.cave})的相似度(${(similarity * 100).toFixed(2)}%)过高`);
447
- await ctx.database.upsert("cave", [{ id: cave.id, status: "delete" }]);
448
- reusableIds.add(cave.id);
449
- return;
457
+ await session.send(`图片局部与回声洞(${existing.cave})的相似度为 ${(similarity * 100).toFixed(2)}%`);
450
458
  }
451
459
  }
452
460
  }
453
- const pHashEntry = { hash: pHash, type: "phash" };
454
461
  const subHashEntries = [...subHashes].map((sh) => ({ hash: sh, type: "sub" }));
455
- imageHashesToStore.push(pHashEntry, ...subHashEntries);
462
+ imageHashesToStore.push(...subHashEntries);
456
463
  }
457
464
  }
458
465
  await Promise.all(downloadedMedia.map((item) => fileManager.saveFile(item.fileName, item.buffer)));
@@ -682,51 +689,81 @@ var HashManager = class {
682
689
  return totalHashesGenerated > 0 ? `已补全 ${historicalCount} 个回声洞的 ${totalHashesGenerated} 条哈希` : "无需补全回声洞哈希";
683
690
  }
684
691
  /**
685
- * @description 对所有已存在哈希的回声洞进行相似度检查。
692
+ * @description 对回声洞进行混合策略的相似度与重复内容检查。
686
693
  * @returns {Promise<string>} 一个包含操作结果的报告字符串。
687
694
  */
688
695
  async checkForSimilarCaves() {
689
696
  const allHashes = await this.ctx.database.get("cave_hash", {});
690
697
  const caveTextHashes = /* @__PURE__ */ new Map();
691
698
  const caveImagePHashes = /* @__PURE__ */ new Map();
699
+ const subHashToCaves = /* @__PURE__ */ new Map();
692
700
  for (const hash of allHashes) {
693
- if (hash.type === "sim") {
694
- caveTextHashes.set(hash.cave, hash.hash);
695
- } else if (hash.type === "phash") {
696
- if (!caveImagePHashes.has(hash.cave)) caveImagePHashes.set(hash.cave, []);
697
- caveImagePHashes.get(hash.cave).push(hash.hash);
701
+ switch (hash.type) {
702
+ case "sim":
703
+ caveTextHashes.set(hash.cave, hash.hash);
704
+ break;
705
+ case "phash":
706
+ if (!caveImagePHashes.has(hash.cave)) caveImagePHashes.set(hash.cave, []);
707
+ caveImagePHashes.get(hash.cave).push(hash.hash);
708
+ break;
709
+ case "sub":
710
+ if (!subHashToCaves.has(hash.hash)) subHashToCaves.set(hash.hash, /* @__PURE__ */ new Set());
711
+ subHashToCaves.get(hash.hash).add(hash.cave);
712
+ break;
698
713
  }
699
714
  }
700
- const caveIds = Array.from(/* @__PURE__ */ new Set([...caveTextHashes.keys(), ...caveImagePHashes.keys()]));
701
- const similarPairs = /* @__PURE__ */ new Set();
702
- for (let i = 0; i < caveIds.length; i++) {
703
- for (let j = i + 1; j < caveIds.length; j++) {
704
- const id1 = caveIds[i];
705
- const id2 = caveIds[j];
715
+ const subHashDuplicates = [];
716
+ subHashToCaves.forEach((caves, hash) => {
717
+ if (caves.size > 1) {
718
+ const sortedCaves = [...caves].sort((a, b) => a - b).join(", ");
719
+ subHashDuplicates.push(`[${sortedCaves}]`);
720
+ }
721
+ });
722
+ const textSimilarPairs = [];
723
+ const imageSimilarPairs = [];
724
+ const allCaveIds = Array.from(/* @__PURE__ */ new Set([...caveTextHashes.keys(), ...caveImagePHashes.keys()]));
725
+ for (let i = 0; i < allCaveIds.length; i++) {
726
+ for (let j = i + 1; j < allCaveIds.length; j++) {
727
+ const id1 = allCaveIds[i];
728
+ const id2 = allCaveIds[j];
706
729
  const textHash1 = caveTextHashes.get(id1);
707
730
  const textHash2 = caveTextHashes.get(id2);
708
731
  if (textHash1 && textHash2) {
709
732
  const textSim = this.calculateSimilarity(textHash1, textHash2);
710
733
  if (textSim >= this.config.textThreshold) {
711
- similarPairs.add(`文本${id1}&${id2}=${(textSim * 100).toFixed(2)}%`);
734
+ textSimilarPairs.push(`${id1} & ${id2} = ${(textSim * 100).toFixed(2)}%`);
712
735
  }
713
736
  }
714
- const imageHashes1 = caveImagePHashes.get(id1) || [];
715
- const imageHashes2 = caveImagePHashes.get(id2) || [];
716
- if (imageHashes1.length > 0 && imageHashes2.length > 0) {
717
- for (const imgHash1 of imageHashes1) {
718
- for (const imgHash2 of imageHashes2) {
737
+ const pHashes1 = caveImagePHashes.get(id1) || [];
738
+ const pHashes2 = caveImagePHashes.get(id2) || [];
739
+ if (pHashes1.length > 0 && pHashes2.length > 0) {
740
+ for (const imgHash1 of pHashes1) {
741
+ for (const imgHash2 of pHashes2) {
719
742
  const imgSim = this.calculateSimilarity(imgHash1, imgHash2);
720
743
  if (imgSim >= this.config.imageThreshold) {
721
- similarPairs.add(`图片${id1}&${id2}=${(imgSim * 100).toFixed(2)}%`);
744
+ imageSimilarPairs.push(`${id1} & ${id2} = ${(imgSim * 100).toFixed(2)}%`);
722
745
  }
723
746
  }
724
747
  }
725
748
  }
726
749
  }
727
750
  }
728
- return similarPairs.size > 0 ? `已发现 ${similarPairs.size} 对高相似度内容:
729
- ` + [...similarPairs].join("\n") : "未发现高相似度内容";
751
+ const totalFindings = textSimilarPairs.length + imageSimilarPairs.length + subHashDuplicates.length;
752
+ if (totalFindings === 0) {
753
+ return "未发现高相似度的内容";
754
+ }
755
+ let report = `已发现 ${totalFindings} 组高相似度的内容:
756
+ `;
757
+ if (textSimilarPairs.length > 0) {
758
+ report += "文本相似度过高:\n" + [...new Set(textSimilarPairs)].join("\n");
759
+ }
760
+ if (imageSimilarPairs.length > 0) {
761
+ report += "图片相似度过高:\n" + [...new Set(imageSimilarPairs)].join("\n");
762
+ }
763
+ if (subHashDuplicates.length > 0) {
764
+ report += "子图完全重复:\n" + subHashDuplicates.join("\n");
765
+ }
766
+ return report.trim();
730
767
  }
731
768
  /**
732
769
  * @description 将图片切割为4个象限并为每个象限生成pHash。
@@ -916,7 +953,7 @@ function apply(ctx, config) {
916
953
  for (const existing of existingTextHashes) {
917
954
  const similarity = hashManager.calculateSimilarity(newSimhash, existing.hash);
918
955
  if (similarity >= config.textThreshold) {
919
- return `内容与回声洞(${existing.cave})的相似度(${(similarity * 100).toFixed(2)}%)过高`;
956
+ return `文本与回声洞(${existing.cave})的相似度为 ${(similarity * 100).toFixed(2)}%,超过阈值`;
920
957
  }
921
958
  }
922
959
  textHashesToStore.push({ hash: newSimhash, type: "sim" });
@@ -985,7 +1022,7 @@ function apply(ctx, config) {
985
1022
  try {
986
1023
  const userCaves = await ctx.database.get("cave", { ...getScopeQuery(session, config), userId: session.userId });
987
1024
  if (!userCaves.length) return "你还没有投稿过回声洞";
988
- const caveIds = userCaves.map((c) => c.id).sort((a, b) => a - b).join(", ");
1025
+ const caveIds = userCaves.map((c) => c.id).sort((a, b) => a - b).join("|");
989
1026
  return `你已投稿 ${userCaves.length} 条回声洞,序号为:
990
1027
  ${caveIds}`;
991
1028
  } catch (error) {
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "koishi-plugin-best-cave",
3
3
  "description": "功能强大、高度可定制的回声洞。支持丰富的媒体类型、内容查重、人工审核、用户昵称、数据迁移以及本地/S3 双重文件存储后端。",
4
- "version": "2.2.2",
4
+ "version": "2.2.3",
5
5
  "contributors": [
6
6
  "Yis_Rime <yis_rime@outlook.com>"
7
7
  ],