graph-typed 1.47.6 → 1.47.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/dist/data-structures/binary-tree/avl-tree.d.ts +40 -22
  2. package/dist/data-structures/binary-tree/avl-tree.js +45 -36
  3. package/dist/data-structures/binary-tree/binary-tree.d.ts +105 -113
  4. package/dist/data-structures/binary-tree/binary-tree.js +133 -119
  5. package/dist/data-structures/binary-tree/bst.d.ts +53 -44
  6. package/dist/data-structures/binary-tree/bst.js +137 -154
  7. package/dist/data-structures/binary-tree/rb-tree.d.ts +48 -15
  8. package/dist/data-structures/binary-tree/rb-tree.js +70 -33
  9. package/dist/data-structures/binary-tree/segment-tree.d.ts +6 -6
  10. package/dist/data-structures/binary-tree/segment-tree.js +7 -7
  11. package/dist/data-structures/binary-tree/tree-multimap.d.ts +26 -37
  12. package/dist/data-structures/binary-tree/tree-multimap.js +58 -137
  13. package/dist/data-structures/graph/abstract-graph.d.ts +17 -17
  14. package/dist/data-structures/graph/abstract-graph.js +30 -30
  15. package/dist/data-structures/graph/directed-graph.d.ts +24 -24
  16. package/dist/data-structures/graph/directed-graph.js +28 -28
  17. package/dist/data-structures/graph/undirected-graph.d.ts +14 -14
  18. package/dist/data-structures/graph/undirected-graph.js +18 -18
  19. package/dist/data-structures/hash/hash-map.d.ts +2 -6
  20. package/dist/data-structures/hash/hash-map.js +5 -8
  21. package/dist/data-structures/linked-list/doubly-linked-list.d.ts +28 -28
  22. package/dist/data-structures/linked-list/doubly-linked-list.js +33 -33
  23. package/dist/data-structures/linked-list/singly-linked-list.d.ts +21 -21
  24. package/dist/data-structures/linked-list/singly-linked-list.js +27 -27
  25. package/dist/data-structures/linked-list/skip-linked-list.js +4 -4
  26. package/dist/data-structures/queue/queue.d.ts +13 -13
  27. package/dist/data-structures/queue/queue.js +13 -13
  28. package/dist/data-structures/stack/stack.d.ts +6 -6
  29. package/dist/data-structures/stack/stack.js +7 -7
  30. package/dist/data-structures/trie/trie.d.ts +3 -0
  31. package/dist/data-structures/trie/trie.js +19 -4
  32. package/dist/interfaces/binary-tree.d.ts +3 -3
  33. package/dist/types/common.d.ts +6 -1
  34. package/dist/types/data-structures/graph/abstract-graph.d.ts +2 -2
  35. package/dist/types/data-structures/hash/hash-map.d.ts +1 -2
  36. package/package.json +2 -2
  37. package/src/data-structures/binary-tree/avl-tree.ts +59 -39
  38. package/src/data-structures/binary-tree/binary-tree.ts +192 -180
  39. package/src/data-structures/binary-tree/bst.ts +157 -154
  40. package/src/data-structures/binary-tree/rb-tree.ts +78 -37
  41. package/src/data-structures/binary-tree/segment-tree.ts +10 -10
  42. package/src/data-structures/binary-tree/tree-multimap.ts +67 -145
  43. package/src/data-structures/graph/abstract-graph.ts +46 -46
  44. package/src/data-structures/graph/directed-graph.ts +40 -40
  45. package/src/data-structures/graph/undirected-graph.ts +26 -26
  46. package/src/data-structures/hash/hash-map.ts +8 -8
  47. package/src/data-structures/linked-list/doubly-linked-list.ts +45 -45
  48. package/src/data-structures/linked-list/singly-linked-list.ts +38 -38
  49. package/src/data-structures/linked-list/skip-linked-list.ts +4 -4
  50. package/src/data-structures/queue/queue.ts +13 -13
  51. package/src/data-structures/stack/stack.ts +9 -9
  52. package/src/data-structures/trie/trie.ts +23 -4
  53. package/src/interfaces/binary-tree.ts +3 -3
  54. package/src/types/common.ts +11 -1
  55. package/src/types/data-structures/graph/abstract-graph.ts +2 -2
  56. package/src/types/data-structures/hash/hash-map.ts +1 -2
@@ -24,20 +24,17 @@ exports.TreeMultimapNode = TreeMultimapNode;
24
24
  * The only distinction between a TreeMultimap and a AVLTree lies in the ability of the former to store duplicate nodes through the utilization of counters.
25
25
  */
26
26
  class TreeMultimap extends avl_tree_1.AVLTree {
27
- /**
28
- * The constructor function for a TreeMultimap class in TypeScript, which extends another class and sets an option to
29
- * merge duplicated values.
30
- * @param {TreeMultimapOptions} [options] - An optional object that contains additional configuration options for the
31
- * TreeMultimap.
32
- */
33
27
  constructor(elements, options) {
34
28
  super([], options);
35
29
  this._count = 0;
36
30
  if (elements)
37
- this.init(elements);
31
+ this.addMany(elements);
38
32
  }
33
+ // TODO the _count is not accurate after nodes count modified
39
34
  get count() {
40
- return this._count;
35
+ let sum = 0;
36
+ this.subTreeTraverse(node => sum += node.count);
37
+ return sum;
41
38
  }
42
39
  /**
43
40
  * The function creates a new BSTNode with the given key, value, and count.
@@ -54,131 +51,68 @@ class TreeMultimap extends avl_tree_1.AVLTree {
54
51
  createTree(options) {
55
52
  return new TreeMultimap([], Object.assign({ iterationType: this.iterationType, comparator: this.comparator }, options));
56
53
  }
54
+ /**
55
+ * Time Complexity: O(log n) - logarithmic time, where "n" is the number of nodes in the tree. The add method of the superclass (AVLTree) has logarithmic time complexity.
56
+ * Space Complexity: O(1) - constant space, as it doesn't use additional data structures that scale with input size.
57
+ */
57
58
  /**
58
59
  * Time Complexity: O(log n) - logarithmic time, where "n" is the number of nodes in the tree. The add method of the superclass (AVLTree) has logarithmic time complexity.
59
60
  * Space Complexity: O(1) - constant space, as it doesn't use additional data structures that scale with input size.
60
61
  *
61
- * The `add` function adds a new node to the tree multimap, updating the count if the key already
62
- * exists, and balances the tree if necessary.
63
- * @param {BTNKey | N | null | undefined} keyOrNode - The `keyOrNode` parameter can be one of the
64
- * following types:
65
- * @param {V} [value] - The `value` parameter represents the value associated with the key that is
66
- * being added to the tree. It is an optional parameter, so it can be omitted if not needed.
62
+ * The `add` function overrides the base class `add` function to add a new node to the tree multimap
63
+ * and update the count.
64
+ * @param keyOrNodeOrEntry - The `keyOrNodeOrEntry` parameter can be one of the following:
67
65
  * @param [count=1] - The `count` parameter is an optional parameter that specifies the number of
68
- * times the key-value pair should be added to the multimap. If not provided, the default value is 1.
69
- * @returns a node (`N`) or `undefined`.
66
+ * times the key or node or entry should be added to the multimap. If not provided, the default value
67
+ * is 1.
68
+ * @returns either a node (`N`) or `undefined`.
70
69
  */
71
- add(keyOrNode, value, count = 1) {
72
- if (keyOrNode === null)
73
- return undefined;
74
- let inserted = undefined, newNode;
75
- if (keyOrNode instanceof TreeMultimapNode) {
76
- newNode = this.createNode(keyOrNode.key, keyOrNode.value, keyOrNode.count);
70
+ add(keyOrNodeOrEntry, count = 1) {
71
+ let newNode;
72
+ if (keyOrNodeOrEntry === undefined || keyOrNodeOrEntry === null) {
73
+ return;
77
74
  }
78
- else if (keyOrNode === undefined) {
79
- newNode = undefined;
75
+ else if (keyOrNodeOrEntry instanceof TreeMultimapNode) {
76
+ newNode = keyOrNodeOrEntry;
80
77
  }
81
- else {
82
- newNode = this.createNode(keyOrNode, value, count);
78
+ else if (this.isNodeKey(keyOrNodeOrEntry)) {
79
+ newNode = this.createNode(keyOrNodeOrEntry, undefined, count);
83
80
  }
84
- if (!this.root) {
85
- this._setRoot(newNode);
86
- this._size = this.size + 1;
87
- if (newNode)
88
- this._count += newNode.count;
89
- inserted = this.root;
81
+ else if (this.isEntry(keyOrNodeOrEntry)) {
82
+ const [key, value] = keyOrNodeOrEntry;
83
+ if (key === undefined || key === null) {
84
+ return;
85
+ }
86
+ else {
87
+ newNode = this.createNode(key, value, count);
88
+ }
90
89
  }
91
90
  else {
92
- let cur = this.root;
93
- let traversing = true;
94
- while (traversing) {
95
- if (cur) {
96
- if (newNode) {
97
- if (this._compare(cur.key, newNode.key) === types_1.CP.eq) {
98
- cur.value = newNode.value;
99
- cur.count += newNode.count;
100
- this._count += newNode.count;
101
- traversing = false;
102
- inserted = cur;
103
- }
104
- else if (this._compare(cur.key, newNode.key) === types_1.CP.gt) {
105
- // Traverse left of the node
106
- if (cur.left === undefined) {
107
- //Add to the left of the current node
108
- cur.left = newNode;
109
- this._size = this.size + 1;
110
- this._count += newNode.count;
111
- traversing = false;
112
- inserted = cur.left;
113
- }
114
- else {
115
- //Traverse the left of the current node
116
- if (cur.left)
117
- cur = cur.left;
118
- }
119
- }
120
- else if (this._compare(cur.key, newNode.key) === types_1.CP.lt) {
121
- // Traverse right of the node
122
- if (cur.right === undefined) {
123
- //Add to the right of the current node
124
- cur.right = newNode;
125
- this._size = this.size + 1;
126
- this._count += newNode.count;
127
- traversing = false;
128
- inserted = cur.right;
129
- }
130
- else {
131
- //Traverse the left of the current node
132
- if (cur.right)
133
- cur = cur.right;
134
- }
135
- }
136
- }
137
- else {
138
- // TODO may need to support undefined inserted
139
- }
140
- }
141
- else {
142
- traversing = false;
143
- }
144
- }
91
+ return;
92
+ }
93
+ const orgNodeCount = (newNode === null || newNode === void 0 ? void 0 : newNode.count) || 0;
94
+ const inserted = super.add(newNode);
95
+ if (inserted) {
96
+ this._count += orgNodeCount;
145
97
  }
146
- if (inserted)
147
- this._balancePath(inserted);
148
98
  return inserted;
149
99
  }
150
100
  /**
151
- * Time Complexity: O(log n) - logarithmic time, where "n" is the number of nodes in the tree. The add method of the superclass (AVLTree) has logarithmic time complexity.
101
+ * Time Complexity: O(k log n) - logarithmic time, where "n" is the number of nodes in the tree. The add method of the superclass (AVLTree) has logarithmic time complexity.
152
102
  * Space Complexity: O(1) - constant space, as it doesn't use additional data structures that scale with input size.
153
103
  */
154
104
  /**
155
- * Time Complexity: O(k log n) - logarithmic time for each insertion, where "n" is the number of nodes in the tree, and "k" is the number of keys to be inserted. This is because the method iterates through the keys and calls the add method for each.
105
+ * Time Complexity: O(k log n) - logarithmic time, where "n" is the number of nodes in the tree. The add method of the superclass (AVLTree) has logarithmic time complexity.
156
106
  * Space Complexity: O(1) - constant space, as it doesn't use additional data structures that scale with input size.
157
107
  *
158
- * The function `addMany` takes an array of keys or nodes and adds them to the TreeMultimap,
159
- * returning an array of the inserted nodes.
160
- * @param {(BTNKey | N | undefined)[]} keysOrNodes - An array of keys or nodes. Each element can be
161
- * of type BTNKey, N, or undefined.
162
- * @param {V[]} [data] - The `data` parameter is an optional array of values that correspond to the
163
- * keys or nodes being added. It is used to associate data with each key or node being added to the
164
- * TreeMultimap. If provided, the length of the `data` array should be the same as the length of the
165
- * @returns The function `addMany` returns an array of nodes (`N`) or `undefined` values.
108
+ * The function overrides the addMany method to add multiple keys, nodes, or entries to a data
109
+ * structure.
110
+ * @param keysOrNodesOrEntries - The parameter `keysOrNodesOrEntries` is an iterable that can contain
111
+ * either keys, nodes, or entries.
112
+ * @returns The method is returning an array of type `N | undefined`.
166
113
  */
167
- addMany(keysOrNodes, data) {
168
- const inserted = [];
169
- for (let i = 0; i < keysOrNodes.length; i++) {
170
- const keyOrNode = keysOrNodes[i];
171
- if (keyOrNode instanceof TreeMultimapNode) {
172
- inserted.push(this.add(keyOrNode.key, keyOrNode.value, keyOrNode.count));
173
- continue;
174
- }
175
- if (keyOrNode === undefined) {
176
- inserted.push(this.add(NaN, undefined, 0));
177
- continue;
178
- }
179
- inserted.push(this.add(keyOrNode, data === null || data === void 0 ? void 0 : data[i], 1));
180
- }
181
- return inserted;
114
+ addMany(keysOrNodesOrEntries) {
115
+ return super.addMany(keysOrNodesOrEntries);
182
116
  }
183
117
  /**
184
118
  * Time Complexity: O(1) - constant time, as it performs basic pointer assignments.
@@ -206,7 +140,7 @@ class TreeMultimap extends avl_tree_1.AVLTree {
206
140
  return;
207
141
  const m = l + Math.floor((r - l) / 2);
208
142
  const midNode = sorted[m];
209
- this.add(midNode.key, midNode.value, midNode.count);
143
+ this.add([midNode.key, midNode.value], midNode.count);
210
144
  buildBalanceBST(l, m - 1);
211
145
  buildBalanceBST(m + 1, r);
212
146
  };
@@ -222,7 +156,7 @@ class TreeMultimap extends avl_tree_1.AVLTree {
222
156
  if (l <= r) {
223
157
  const m = l + Math.floor((r - l) / 2);
224
158
  const midNode = sorted[m];
225
- this.add(midNode.key, midNode.value, midNode.count);
159
+ this.add([midNode.key, midNode.value], midNode.count);
226
160
  stack.push([m + 1, r]);
227
161
  stack.push([l, m - 1]);
228
162
  }
@@ -289,7 +223,7 @@ class TreeMultimap extends avl_tree_1.AVLTree {
289
223
  const leftSubTreeRightMost = curr.left ? this.getRightMost(curr.left) : undefined;
290
224
  if (leftSubTreeRightMost) {
291
225
  const parentOfLeftSubTreeMax = leftSubTreeRightMost.parent;
292
- orgCurrent = this._swap(curr, leftSubTreeRightMost);
226
+ orgCurrent = this._swapProperties(curr, leftSubTreeRightMost);
293
227
  if (parentOfLeftSubTreeMax) {
294
228
  if (parentOfLeftSubTreeMax.right === leftSubTreeRightMost) {
295
229
  parentOfLeftSubTreeMax.right = leftSubTreeRightMost.left;
@@ -323,23 +257,6 @@ class TreeMultimap extends avl_tree_1.AVLTree {
323
257
  super.clear();
324
258
  this._count = 0;
325
259
  }
326
- /**
327
- * Time Complexity: O(log n) - logarithmic time, where "n" is the number of nodes in the tree. The delete method of the superclass (AVLTree) has logarithmic time complexity.
328
- * Space Complexity: O(1) - constant space, as it doesn't use additional data structures that scale with input size.
329
- */
330
- init(elements) {
331
- if (elements) {
332
- for (const entryOrKey of elements) {
333
- if (Array.isArray(entryOrKey)) {
334
- const [key, value] = entryOrKey;
335
- this.add(key, value);
336
- }
337
- else {
338
- this.add(entryOrKey);
339
- }
340
- }
341
- }
342
- }
343
260
  /**
344
261
  * Time Complexity: O(1) - constant time, as it performs basic pointer assignments.
345
262
  * Space Complexity: O(1) - constant space, as it only uses a constant amount of memory.
@@ -356,7 +273,7 @@ class TreeMultimap extends avl_tree_1.AVLTree {
356
273
  * added, or `undefined` if no node was added.
357
274
  */
358
275
  _addTo(newNode, parent) {
359
- parent = this.ensureNotKey(parent);
276
+ parent = this.ensureNode(parent);
360
277
  if (parent) {
361
278
  if (parent.left === undefined) {
362
279
  parent.left = newNode;
@@ -383,7 +300,7 @@ class TreeMultimap extends avl_tree_1.AVLTree {
383
300
  }
384
301
  }
385
302
  /**
386
- * The `_swap` function swaps the key, value, count, and height properties between two nodes.
303
+ * The `_swapProperties` function swaps the key, value, count, and height properties between two nodes.
387
304
  * @param {BTNKey | N | undefined} srcNode - The `srcNode` parameter represents the source node from
388
305
  * which the values will be swapped. It can be of type `BTNKey`, `N`, or `undefined`.
389
306
  * @param {BTNKey | N | undefined} destNode - The `destNode` parameter represents the destination
@@ -391,9 +308,9 @@ class TreeMultimap extends avl_tree_1.AVLTree {
391
308
  * @returns either the `destNode` object if both `srcNode` and `destNode` are defined, or `undefined`
392
309
  * if either `srcNode` or `destNode` is undefined.
393
310
  */
394
- _swap(srcNode, destNode) {
395
- srcNode = this.ensureNotKey(srcNode);
396
- destNode = this.ensureNotKey(destNode);
311
+ _swapProperties(srcNode, destNode) {
312
+ srcNode = this.ensureNode(srcNode);
313
+ destNode = this.ensureNode(destNode);
397
314
  if (srcNode && destNode) {
398
315
  const { key, value, count, height } = destNode;
399
316
  const tempNode = this.createNode(key, value, count);
@@ -412,5 +329,9 @@ class TreeMultimap extends avl_tree_1.AVLTree {
412
329
  }
413
330
  return undefined;
414
331
  }
332
+ _replaceNode(oldNode, newNode) {
333
+ newNode.count = oldNode.count + newNode.count;
334
+ return super._replaceNode(oldNode, newNode);
335
+ }
415
336
  }
416
337
  exports.TreeMultimap = TreeMultimap;
@@ -47,13 +47,13 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
47
47
  * @param value
48
48
  */
49
49
  abstract createEdge(srcOrV1: VertexKey, destOrV2: VertexKey, weight?: number, value?: E): EO;
50
- abstract deleteEdge(edge: EO): EO | null;
51
- abstract getEdge(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | null;
50
+ abstract deleteEdge(edge: EO): EO | undefined;
51
+ abstract getEdge(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | undefined;
52
52
  abstract degreeOf(vertexOrKey: VO | VertexKey): number;
53
53
  abstract edgeSet(): EO[];
54
54
  abstract edgesOf(vertexOrKey: VO | VertexKey): EO[];
55
55
  abstract getNeighbors(vertexOrKey: VO | VertexKey): VO[];
56
- abstract getEndsOfEdge(edge: EO): [VO, VO] | null;
56
+ abstract getEndsOfEdge(edge: EO): [VO, VO] | undefined;
57
57
  /**
58
58
  * Time Complexity: O(1) - Constant time for Map lookup.
59
59
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
@@ -62,13 +62,13 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
62
62
  * Time Complexity: O(1) - Constant time for Map lookup.
63
63
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
64
64
  *
65
- * The function "getVertex" returns the vertex with the specified ID or null if it doesn't exist.
65
+ * The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
66
66
  * @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
67
67
  * the `_vertices` map.
68
68
  * @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertices`
69
- * map. If the vertex does not exist, it returns `null`.
69
+ * map. If the vertex does not exist, it returns `undefined`.
70
70
  */
71
- getVertex(vertexKey: VertexKey): VO | null;
71
+ getVertex(vertexKey: VertexKey): VO | undefined;
72
72
  /**
73
73
  * Time Complexity: O(1) - Constant time for Map lookup.
74
74
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
@@ -201,7 +201,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
201
201
  * vertices. If `isWeight` is `false` or not provided, it uses a breadth-first search (BFS) algorithm to calculate the
202
202
  * minimum number of
203
203
  */
204
- getMinCostBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean): number | null;
204
+ getMinCostBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean): number | undefined;
205
205
  /**
206
206
  * Time Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
207
207
  * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
@@ -223,9 +223,9 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
223
223
  * followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
224
224
  * so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
225
225
  * @returns The function `getMinPathBetween` returns an array of vertices (`VO[]`) representing the minimum path between
226
- * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `null`.
226
+ * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `undefined`.
227
227
  */
228
- getMinPathBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean, isDFS?: boolean): VO[] | null;
228
+ getMinPathBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean, isDFS?: boolean): VO[] | undefined;
229
229
  /**
230
230
  * Dijkstra algorithm time: O(VE) space: O(VO + EO)
231
231
  * /
@@ -242,9 +242,9 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
242
242
  * a graph without using a heap data structure.
243
243
  * @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
244
244
  * vertex object or a vertex ID.
245
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
245
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
246
246
  * parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
247
- * identifier. If no destination is provided, the value is set to `null`.
247
+ * identifier. If no destination is provided, the value is set to `undefined`.
248
248
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
249
249
  * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
250
250
  * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
@@ -253,7 +253,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
253
253
  * shortest paths from the source vertex to all other vertices in the graph. If `genPaths
254
254
  * @returns The function `dijkstraWithoutHeap` returns an object of type `DijkstraResult<VO>`.
255
255
  */
256
- dijkstraWithoutHeap(src: VO | VertexKey, dest?: VO | VertexKey | null, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
256
+ dijkstraWithoutHeap(src: VO | VertexKey, dest?: VO | VertexKey | undefined, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
257
257
  /**
258
258
  * Dijkstra algorithm time: O(logVE) space: O(VO + EO)
259
259
  *
@@ -276,7 +276,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
276
276
  * optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
277
277
  * @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
278
278
  * start. It can be either a vertex object or a vertex ID.
279
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
279
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
280
280
  * vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
281
281
  * will calculate the shortest paths to all other vertices from the source vertex.
282
282
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
@@ -287,7 +287,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
287
287
  * shortest paths from the source vertex to all other vertices in the graph. If `genPaths
288
288
  * @returns The function `dijkstra` returns an object of type `DijkstraResult<VO>`.
289
289
  */
290
- dijkstra(src: VO | VertexKey, dest?: VO | VertexKey | null, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
290
+ dijkstra(src: VO | VertexKey, dest?: VO | VertexKey | undefined, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
291
291
  /**
292
292
  * Time Complexity: O(V * E) - Quadratic time in the worst case (Bellman-Ford algorithm).
293
293
  * Space Complexity: O(V + E) - Depends on the implementation (Bellman-Ford algorithm).
@@ -353,12 +353,12 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
353
353
  * graph.
354
354
  * @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
355
355
  * property is a 2D array of numbers representing the shortest path costs between vertices in a graph. The
356
- * `predecessor` property is a 2D array of vertices (or `null`) representing the predecessor vertices in the shortest
356
+ * `predecessor` property is a 2D array of vertices (or `undefined`) representing the predecessor vertices in the shortest
357
357
  * path between vertices in the
358
358
  */
359
359
  floydWarshall(): {
360
360
  costs: number[][];
361
- predecessor: (VO | null)[][];
361
+ predecessor: (VO | undefined)[][];
362
362
  };
363
363
  /**
364
364
  * Time Complexity: O(V + E) - Linear time (Tarjan's algorithm).
@@ -445,6 +445,6 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
445
445
  getBridges(): EO[];
446
446
  protected abstract _addEdgeOnly(edge: EO): boolean;
447
447
  protected _addVertexOnly(newVertex: VO): boolean;
448
- protected _getVertex(vertexOrKey: VertexKey | VO): VO | null;
448
+ protected _getVertex(vertexOrKey: VertexKey | VO): VO | undefined;
449
449
  protected _getVertexKey(vertexOrKey: VO | VertexKey): VertexKey;
450
450
  }
@@ -60,14 +60,14 @@ class AbstractGraph {
60
60
  * Time Complexity: O(1) - Constant time for Map lookup.
61
61
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
62
62
  *
63
- * The function "getVertex" returns the vertex with the specified ID or null if it doesn't exist.
63
+ * The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
64
64
  * @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
65
65
  * the `_vertices` map.
66
66
  * @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertices`
67
- * map. If the vertex does not exist, it returns `null`.
67
+ * map. If the vertex does not exist, it returns `undefined`.
68
68
  */
69
69
  getVertex(vertexKey) {
70
- return this._vertices.get(vertexKey) || null;
70
+ return this._vertices.get(vertexKey) || undefined;
71
71
  }
72
72
  /**
73
73
  * Time Complexity: O(1) - Constant time for Map lookup.
@@ -305,7 +305,7 @@ class AbstractGraph {
305
305
  const vertex2 = this._getVertex(v2);
306
306
  const vertex1 = this._getVertex(v1);
307
307
  if (!(vertex1 && vertex2)) {
308
- return null;
308
+ return undefined;
309
309
  }
310
310
  const visited = new Map();
311
311
  const queue = new queue_1.Queue([vertex1]);
@@ -330,7 +330,7 @@ class AbstractGraph {
330
330
  }
331
331
  cost++;
332
332
  }
333
- return null;
333
+ return undefined;
334
334
  }
335
335
  }
336
336
  /**
@@ -354,7 +354,7 @@ class AbstractGraph {
354
354
  * followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
355
355
  * so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
356
356
  * @returns The function `getMinPathBetween` returns an array of vertices (`VO[]`) representing the minimum path between
357
- * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `null`.
357
+ * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `undefined`.
358
358
  */
359
359
  getMinPathBetween(v1, v2, isWeight, isDFS = false) {
360
360
  var _a, _b;
@@ -374,7 +374,7 @@ class AbstractGraph {
374
374
  }
375
375
  index++;
376
376
  }
377
- return allPaths[minIndex] || null;
377
+ return allPaths[minIndex] || undefined;
378
378
  }
379
379
  else {
380
380
  return (_b = (_a = this.dijkstra(v1, v2, true, true)) === null || _a === void 0 ? void 0 : _a.minPath) !== null && _b !== void 0 ? _b : [];
@@ -423,9 +423,9 @@ class AbstractGraph {
423
423
  * a graph without using a heap data structure.
424
424
  * @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
425
425
  * vertex object or a vertex ID.
426
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
426
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
427
427
  * parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
428
- * identifier. If no destination is provided, the value is set to `null`.
428
+ * identifier. If no destination is provided, the value is set to `undefined`.
429
429
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
430
430
  * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
431
431
  * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
@@ -440,9 +440,9 @@ class AbstractGraph {
440
440
  if (genPaths === undefined)
441
441
  genPaths = false;
442
442
  if (dest === undefined)
443
- dest = null;
443
+ dest = undefined;
444
444
  let minDist = Infinity;
445
- let minDest = null;
445
+ let minDest = undefined;
446
446
  let minPath = [];
447
447
  const paths = [];
448
448
  const vertices = this._vertices;
@@ -450,9 +450,9 @@ class AbstractGraph {
450
450
  const seen = new Set();
451
451
  const preMap = new Map(); // predecessor
452
452
  const srcVertex = this._getVertex(src);
453
- const destVertex = dest ? this._getVertex(dest) : null;
453
+ const destVertex = dest ? this._getVertex(dest) : undefined;
454
454
  if (!srcVertex) {
455
- return null;
455
+ return undefined;
456
456
  }
457
457
  for (const vertex of vertices) {
458
458
  const vertexOrKey = vertex[1];
@@ -460,10 +460,10 @@ class AbstractGraph {
460
460
  distMap.set(vertexOrKey, Infinity);
461
461
  }
462
462
  distMap.set(srcVertex, 0);
463
- preMap.set(srcVertex, null);
463
+ preMap.set(srcVertex, undefined);
464
464
  const getMinOfNoSeen = () => {
465
465
  let min = Infinity;
466
- let minV = null;
466
+ let minV = undefined;
467
467
  for (const [key, value] of distMap) {
468
468
  if (!seen.has(key)) {
469
469
  if (value < min) {
@@ -511,7 +511,7 @@ class AbstractGraph {
511
511
  if (edge) {
512
512
  const curFromMap = distMap.get(cur);
513
513
  const neighborFromMap = distMap.get(neighbor);
514
- // TODO after no-non-null-assertion not ensure the logic
514
+ // TODO after no-non-undefined-assertion not ensure the logic
515
515
  if (curFromMap !== undefined && neighborFromMap !== undefined) {
516
516
  if (edge.weight + curFromMap < neighborFromMap) {
517
517
  distMap.set(neighbor, edge.weight + curFromMap);
@@ -558,7 +558,7 @@ class AbstractGraph {
558
558
  * optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
559
559
  * @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
560
560
  * start. It can be either a vertex object or a vertex ID.
561
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
561
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
562
562
  * vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
563
563
  * will calculate the shortest paths to all other vertices from the source vertex.
564
564
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
@@ -576,9 +576,9 @@ class AbstractGraph {
576
576
  if (genPaths === undefined)
577
577
  genPaths = false;
578
578
  if (dest === undefined)
579
- dest = null;
579
+ dest = undefined;
580
580
  let minDist = Infinity;
581
- let minDest = null;
581
+ let minDest = undefined;
582
582
  let minPath = [];
583
583
  const paths = [];
584
584
  const vertices = this._vertices;
@@ -586,9 +586,9 @@ class AbstractGraph {
586
586
  const seen = new Set();
587
587
  const preMap = new Map(); // predecessor
588
588
  const srcVertex = this._getVertex(src);
589
- const destVertex = dest ? this._getVertex(dest) : null;
589
+ const destVertex = dest ? this._getVertex(dest) : undefined;
590
590
  if (!srcVertex)
591
- return null;
591
+ return undefined;
592
592
  for (const vertex of vertices) {
593
593
  const vertexOrKey = vertex[1];
594
594
  if (vertexOrKey instanceof AbstractVertex)
@@ -597,11 +597,11 @@ class AbstractGraph {
597
597
  const heap = new priority_queue_1.PriorityQueue([], { comparator: (a, b) => a.key - b.key });
598
598
  heap.add({ key: 0, value: srcVertex });
599
599
  distMap.set(srcVertex, 0);
600
- preMap.set(srcVertex, null);
600
+ preMap.set(srcVertex, undefined);
601
601
  /**
602
602
  * The function `getPaths` retrieves all paths from vertices to a specified minimum vertex.
603
- * @param {VO | null} minV - The parameter `minV` is of type `VO | null`. It represents the minimum vertex value or
604
- * null.
603
+ * @param {VO | undefined} minV - The parameter `minV` is of type `VO | undefined`. It represents the minimum vertex value or
604
+ * undefined.
605
605
  */
606
606
  const getPaths = (minV) => {
607
607
  for (const vertex of vertices) {
@@ -737,7 +737,7 @@ class AbstractGraph {
737
737
  }
738
738
  }
739
739
  }
740
- let minDest = null;
740
+ let minDest = undefined;
741
741
  if (getMin) {
742
742
  distMap.forEach((d, v) => {
743
743
  if (v !== srcVertex) {
@@ -813,7 +813,7 @@ class AbstractGraph {
813
813
  * graph.
814
814
  * @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
815
815
  * property is a 2D array of numbers representing the shortest path costs between vertices in a graph. The
816
- * `predecessor` property is a 2D array of vertices (or `null`) representing the predecessor vertices in the shortest
816
+ * `predecessor` property is a 2D array of vertices (or `undefined`) representing the predecessor vertices in the shortest
817
817
  * path between vertices in the
818
818
  */
819
819
  floydWarshall() {
@@ -827,7 +827,7 @@ class AbstractGraph {
827
827
  costs[i] = [];
828
828
  predecessor[i] = [];
829
829
  for (let j = 0; j < n; j++) {
830
- predecessor[i][j] = null;
830
+ predecessor[i][j] = undefined;
831
831
  }
832
832
  }
833
833
  for (let i = 0; i < n; i++) {
@@ -919,7 +919,7 @@ class AbstractGraph {
919
919
  }
920
920
  const childLow = lowMap.get(neighbor);
921
921
  const curLow = lowMap.get(cur);
922
- // TODO after no-non-null-assertion not ensure the logic
922
+ // TODO after no-non-undefined-assertion not ensure the logic
923
923
  if (curLow !== undefined && childLow !== undefined) {
924
924
  lowMap.set(cur, Math.min(curLow, childLow));
925
925
  }
@@ -943,7 +943,7 @@ class AbstractGraph {
943
943
  }
944
944
  }
945
945
  };
946
- dfs(root, null);
946
+ dfs(root, undefined);
947
947
  let SCCs = new Map();
948
948
  const getSCCs = () => {
949
949
  const SCCs = new Map();
@@ -1038,7 +1038,7 @@ class AbstractGraph {
1038
1038
  }
1039
1039
  _getVertex(vertexOrKey) {
1040
1040
  const vertexKey = this._getVertexKey(vertexOrKey);
1041
- return this._vertices.get(vertexKey) || null;
1041
+ return this._vertices.get(vertexKey) || undefined;
1042
1042
  }
1043
1043
  _getVertexKey(vertexOrKey) {
1044
1044
  return vertexOrKey instanceof AbstractVertex ? vertexOrKey.key : vertexOrKey;