goscript 0.0.34 → 0.0.36
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/compiler/analysis.go +28 -20
- package/compiler/analysis_test.go +14 -0
- package/compiler/assignment.go +19 -7
- package/compiler/compiler.go +15 -99
- package/compiler/composite-lit.go +60 -17
- package/compiler/decl.go +1 -1
- package/compiler/expr-call.go +233 -35
- package/compiler/expr-selector.go +28 -2
- package/compiler/expr.go +13 -37
- package/compiler/lit.go +111 -2
- package/compiler/primitive.go +6 -6
- package/compiler/protobuf.go +0 -5
- package/compiler/sanitize.go +101 -0
- package/compiler/spec-struct.go +41 -8
- package/compiler/spec-value.go +29 -18
- package/compiler/stmt-assign.go +22 -1
- package/compiler/stmt.go +26 -9
- package/compiler/type.go +3 -3
- package/dist/gs/builtin/builtin.d.ts +3 -2
- package/dist/gs/builtin/builtin.js +2 -1
- package/dist/gs/builtin/builtin.js.map +1 -1
- package/dist/gs/builtin/map.js.map +1 -1
- package/dist/gs/builtin/slice.d.ts +7 -1
- package/dist/gs/builtin/slice.js +112 -22
- package/dist/gs/builtin/slice.js.map +1 -1
- package/dist/gs/github.com/pkg/errors/errors.d.ts +13 -0
- package/dist/gs/github.com/pkg/errors/errors.js +232 -0
- package/dist/gs/github.com/pkg/errors/errors.js.map +1 -0
- package/dist/gs/github.com/pkg/errors/go113.d.ts +4 -0
- package/dist/gs/github.com/pkg/errors/go113.js +34 -0
- package/dist/gs/github.com/pkg/errors/go113.js.map +1 -0
- package/dist/gs/github.com/pkg/errors/index.d.ts +3 -0
- package/dist/gs/github.com/pkg/errors/index.js +4 -0
- package/dist/gs/github.com/pkg/errors/index.js.map +1 -0
- package/dist/gs/github.com/pkg/errors/stack.d.ts +32 -0
- package/dist/gs/github.com/pkg/errors/stack.js +111 -0
- package/dist/gs/github.com/pkg/errors/stack.js.map +1 -0
- package/dist/gs/maps/index.d.ts +2 -2
- package/dist/gs/maps/index.js +2 -2
- package/dist/gs/maps/index.js.map +1 -1
- package/dist/gs/maps/iter.d.ts +7 -0
- package/dist/gs/maps/iter.js +57 -0
- package/dist/gs/maps/iter.js.map +1 -0
- package/dist/gs/maps/maps.d.ts +7 -0
- package/dist/gs/maps/maps.js +67 -0
- package/dist/gs/maps/maps.js.map +1 -0
- package/dist/gs/math/abs.gs.d.ts +1 -0
- package/dist/gs/math/abs.gs.js +10 -0
- package/dist/gs/math/abs.gs.js.map +1 -0
- package/dist/gs/math/acosh.gs.d.ts +2 -0
- package/dist/gs/math/acosh.gs.js +14 -0
- package/dist/gs/math/acosh.gs.js.map +1 -0
- package/dist/gs/math/asin.gs.d.ts +4 -0
- package/dist/gs/math/asin.gs.js +24 -0
- package/dist/gs/math/asin.gs.js.map +1 -0
- package/dist/gs/math/asinh.gs.d.ts +2 -0
- package/dist/gs/math/asinh.gs.js +14 -0
- package/dist/gs/math/asinh.gs.js.map +1 -0
- package/dist/gs/math/atan.gs.d.ts +4 -0
- package/dist/gs/math/atan.gs.js +22 -0
- package/dist/gs/math/atan.gs.js.map +1 -0
- package/dist/gs/math/atan2.gs.d.ts +2 -0
- package/dist/gs/math/atan2.gs.js +30 -0
- package/dist/gs/math/atan2.gs.js.map +1 -0
- package/dist/gs/math/atanh.gs.d.ts +2 -0
- package/dist/gs/math/atanh.gs.js +16 -0
- package/dist/gs/math/atanh.gs.js.map +1 -0
- package/dist/gs/math/bits.gs.d.ts +5 -0
- package/dist/gs/math/bits.gs.js +46 -0
- package/dist/gs/math/bits.gs.js.map +1 -0
- package/dist/gs/math/cbrt.gs.d.ts +2 -0
- package/dist/gs/math/cbrt.gs.js +14 -0
- package/dist/gs/math/cbrt.gs.js.map +1 -0
- package/dist/gs/math/const.gs.d.ts +30 -0
- package/dist/gs/math/const.gs.js +61 -0
- package/dist/gs/math/const.gs.js.map +1 -0
- package/dist/gs/math/copysign.gs.d.ts +1 -0
- package/dist/gs/math/copysign.gs.js +20 -0
- package/dist/gs/math/copysign.gs.js.map +1 -0
- package/dist/gs/math/dim.gs.d.ts +5 -0
- package/dist/gs/math/dim.gs.js +69 -0
- package/dist/gs/math/dim.gs.js.map +1 -0
- package/dist/gs/math/erf.gs.d.ts +4 -0
- package/dist/gs/math/erf.gs.js +336 -0
- package/dist/gs/math/erf.gs.js.map +1 -0
- package/dist/gs/math/erfinv.gs.d.ts +2 -0
- package/dist/gs/math/erfinv.gs.js +118 -0
- package/dist/gs/math/erfinv.gs.js.map +1 -0
- package/dist/gs/math/exp.gs.d.ts +5 -0
- package/dist/gs/math/exp.gs.js +30 -0
- package/dist/gs/math/exp.gs.js.map +1 -0
- package/dist/gs/math/expm1.gs.d.ts +2 -0
- package/dist/gs/math/expm1.gs.js +17 -0
- package/dist/gs/math/expm1.gs.js.map +1 -0
- package/dist/gs/math/floor.gs.d.ts +8 -0
- package/dist/gs/math/floor.gs.js +75 -0
- package/dist/gs/math/floor.gs.js.map +1 -0
- package/dist/gs/math/fma.gs.d.ts +1 -0
- package/dist/gs/math/fma.gs.js +8 -0
- package/dist/gs/math/fma.gs.js.map +1 -0
- package/dist/gs/math/frexp.gs.d.ts +2 -0
- package/dist/gs/math/frexp.gs.js +28 -0
- package/dist/gs/math/frexp.gs.js.map +1 -0
- package/dist/gs/math/gamma.gs.d.ts +3 -0
- package/dist/gs/math/gamma.gs.js +149 -0
- package/dist/gs/math/gamma.gs.js.map +1 -0
- package/dist/gs/math/hypot.gs.d.ts +2 -0
- package/dist/gs/math/hypot.gs.js +16 -0
- package/dist/gs/math/hypot.gs.js.map +1 -0
- package/dist/gs/math/index.d.ts +44 -0
- package/dist/gs/math/index.js +45 -0
- package/dist/gs/math/index.js.map +1 -0
- package/dist/gs/math/j0.gs.d.ts +4 -0
- package/dist/gs/math/j0.gs.js +228 -0
- package/dist/gs/math/j0.gs.js.map +1 -0
- package/dist/gs/math/j1.gs.d.ts +4 -0
- package/dist/gs/math/j1.gs.js +211 -0
- package/dist/gs/math/j1.gs.js.map +1 -0
- package/dist/gs/math/jn.gs.d.ts +2 -0
- package/dist/gs/math/jn.gs.js +412 -0
- package/dist/gs/math/jn.gs.js.map +1 -0
- package/dist/gs/math/ldexp.gs.d.ts +2 -0
- package/dist/gs/math/ldexp.gs.js +20 -0
- package/dist/gs/math/ldexp.gs.js.map +1 -0
- package/dist/gs/math/lgamma.gs.d.ts +2 -0
- package/dist/gs/math/lgamma.gs.js +243 -0
- package/dist/gs/math/lgamma.gs.js.map +1 -0
- package/dist/gs/math/log.gs.d.ts +2 -0
- package/dist/gs/math/log.gs.js +16 -0
- package/dist/gs/math/log.gs.js.map +1 -0
- package/dist/gs/math/log10.gs.d.ts +4 -0
- package/dist/gs/math/log10.gs.js +17 -0
- package/dist/gs/math/log10.gs.js.map +1 -0
- package/dist/gs/math/log1p.gs.d.ts +2 -0
- package/dist/gs/math/log1p.gs.js +17 -0
- package/dist/gs/math/log1p.gs.js.map +1 -0
- package/dist/gs/math/logb.gs.d.ts +3 -0
- package/dist/gs/math/logb.gs.js +43 -0
- package/dist/gs/math/logb.gs.js.map +1 -0
- package/dist/gs/math/mod.gs.d.ts +2 -0
- package/dist/gs/math/mod.gs.js +26 -0
- package/dist/gs/math/mod.gs.js.map +1 -0
- package/dist/gs/math/modf.gs.d.ts +2 -0
- package/dist/gs/math/modf.gs.js +24 -0
- package/dist/gs/math/modf.gs.js.map +1 -0
- package/dist/gs/math/nextafter.gs.d.ts +2 -0
- package/dist/gs/math/nextafter.gs.js +66 -0
- package/dist/gs/math/nextafter.gs.js.map +1 -0
- package/dist/gs/math/pow.gs.d.ts +3 -0
- package/dist/gs/math/pow.gs.js +40 -0
- package/dist/gs/math/pow.gs.js.map +1 -0
- package/dist/gs/math/pow10.gs.d.ts +1 -0
- package/dist/gs/math/pow10.gs.js +14 -0
- package/dist/gs/math/pow10.gs.js.map +1 -0
- package/dist/gs/math/remainder.gs.d.ts +2 -0
- package/dist/gs/math/remainder.gs.js +25 -0
- package/dist/gs/math/remainder.gs.js.map +1 -0
- package/dist/gs/math/signbit.gs.d.ts +1 -0
- package/dist/gs/math/signbit.gs.js +5 -0
- package/dist/gs/math/signbit.gs.js.map +1 -0
- package/dist/gs/math/sin.gs.d.ts +4 -0
- package/dist/gs/math/sin.gs.js +29 -0
- package/dist/gs/math/sin.gs.js.map +1 -0
- package/dist/gs/math/sincos.gs.d.ts +1 -0
- package/dist/gs/math/sincos.gs.js +11 -0
- package/dist/gs/math/sincos.gs.js.map +1 -0
- package/dist/gs/math/sinh.gs.d.ts +4 -0
- package/dist/gs/math/sinh.gs.js +27 -0
- package/dist/gs/math/sinh.gs.js.map +1 -0
- package/dist/gs/math/sqrt.gs.d.ts +2 -0
- package/dist/gs/math/sqrt.gs.js +15 -0
- package/dist/gs/math/sqrt.gs.js.map +1 -0
- package/dist/gs/math/tan.gs.d.ts +2 -0
- package/dist/gs/math/tan.gs.js +17 -0
- package/dist/gs/math/tan.gs.js.map +1 -0
- package/dist/gs/math/tanh.gs.d.ts +2 -0
- package/dist/gs/math/tanh.gs.js +17 -0
- package/dist/gs/math/tanh.gs.js.map +1 -0
- package/dist/gs/math/trig_reduce.gs.d.ts +1 -0
- package/dist/gs/math/trig_reduce.gs.js +62 -0
- package/dist/gs/math/trig_reduce.gs.js.map +1 -0
- package/dist/gs/math/unsafe.gs.d.ts +4 -0
- package/dist/gs/math/unsafe.gs.js +47 -0
- package/dist/gs/math/unsafe.gs.js.map +1 -0
- package/dist/gs/strconv/atob.gs.d.ts +4 -0
- package/dist/gs/strconv/atob.gs.js +42 -0
- package/dist/gs/strconv/atob.gs.js.map +1 -0
- package/dist/gs/strconv/atof.gs.d.ts +2 -0
- package/dist/gs/strconv/atof.gs.js +51 -0
- package/dist/gs/strconv/atof.gs.js.map +1 -0
- package/dist/gs/strconv/atoi.gs.d.ts +33 -0
- package/dist/gs/strconv/atoi.gs.js +200 -0
- package/dist/gs/strconv/atoi.gs.js.map +1 -0
- package/dist/gs/strconv/doc.gs.d.ts +1 -0
- package/dist/gs/strconv/doc.gs.js +2 -0
- package/dist/gs/strconv/doc.gs.js.map +1 -0
- package/dist/gs/strconv/ftoa.gs.d.ts +3 -0
- package/dist/gs/strconv/ftoa.gs.js +58 -0
- package/dist/gs/strconv/ftoa.gs.js.map +1 -0
- package/dist/gs/strconv/index.d.ts +6 -0
- package/dist/gs/strconv/index.js +7 -0
- package/dist/gs/strconv/index.js.map +1 -0
- package/dist/gs/strconv/itoa.gs.d.ts +6 -0
- package/dist/gs/strconv/itoa.gs.js +37 -0
- package/dist/gs/strconv/itoa.gs.js.map +1 -0
- package/dist/gs/strconv/quote.gs.d.ts +19 -0
- package/dist/gs/strconv/quote.gs.js +217 -0
- package/dist/gs/strconv/quote.gs.js.map +1 -0
- package/dist/gs/strings/index.d.ts +3 -0
- package/dist/gs/strings/index.js +4 -0
- package/dist/gs/strings/index.js.map +1 -1
- package/dist/gs/strings/replace.d.ts +0 -74
- package/dist/gs/strings/replace.js +6 -204
- package/dist/gs/strings/replace.js.map +1 -1
- package/dist/gs/strings/search.d.ts +0 -1
- package/dist/gs/strings/search.js +0 -21
- package/dist/gs/strings/search.js.map +1 -1
- package/dist/gs/sync/atomic/doc.gs.d.ts +28 -0
- package/dist/gs/sync/atomic/doc.gs.js +265 -0
- package/dist/gs/sync/atomic/doc.gs.js.map +1 -0
- package/dist/gs/sync/atomic/doc_64.gs.d.ts +15 -0
- package/dist/gs/sync/atomic/doc_64.gs.js +165 -0
- package/dist/gs/sync/atomic/doc_64.gs.js.map +1 -0
- package/dist/gs/sync/atomic/index.d.ts +4 -0
- package/dist/gs/sync/atomic/index.js +5 -0
- package/dist/gs/sync/atomic/index.js.map +1 -0
- package/dist/gs/sync/atomic/type.gs.d.ts +130 -0
- package/dist/gs/sync/atomic/type.gs.js +433 -0
- package/dist/gs/sync/atomic/type.gs.js.map +1 -0
- package/dist/gs/sync/atomic/value.gs.d.ts +19 -0
- package/dist/gs/sync/atomic/value.gs.js +116 -0
- package/dist/gs/sync/atomic/value.gs.js.map +1 -0
- package/dist/gs/unsafe/unsafe.d.ts +1 -0
- package/dist/gs/unsafe/unsafe.js +5 -0
- package/dist/gs/unsafe/unsafe.js.map +1 -1
- package/gs/builtin/builtin.ts +9 -7
- package/gs/builtin/map.ts +5 -1
- package/gs/builtin/slice.ts +152 -24
- package/gs/github.com/pkg/errors/errors.ts +307 -0
- package/gs/github.com/pkg/errors/go113.ts +39 -0
- package/gs/github.com/pkg/errors/index.ts +3 -0
- package/gs/github.com/pkg/errors/stack.ts +127 -0
- package/gs/maps/index.ts +2 -2
- package/gs/maps/iter.ts +67 -0
- package/gs/maps/maps.ts +89 -0
- package/gs/math/TODO.md +156 -0
- package/gs/math/abs.gs.test.ts +29 -0
- package/gs/math/abs.gs.ts +13 -0
- package/gs/math/acosh.gs.test.ts +39 -0
- package/gs/math/acosh.gs.ts +21 -0
- package/gs/math/asin.gs.test.ts +66 -0
- package/gs/math/asin.gs.ts +27 -0
- package/gs/math/asinh.gs.test.ts +37 -0
- package/gs/math/asinh.gs.ts +21 -0
- package/gs/math/atan.gs.test.ts +49 -0
- package/gs/math/atan.gs.ts +27 -0
- package/gs/math/atan2.gs.test.ts +55 -0
- package/gs/math/atan2.gs.ts +37 -0
- package/gs/math/atanh.gs.test.ts +47 -0
- package/gs/math/atanh.gs.ts +21 -0
- package/gs/math/bits.gs.test.ts +88 -0
- package/gs/math/bits.gs.ts +61 -0
- package/gs/math/cbrt.gs.test.ts +57 -0
- package/gs/math/cbrt.gs.ts +20 -0
- package/gs/math/const.gs.test.ts +54 -0
- package/gs/math/const.gs.ts +93 -0
- package/gs/math/copysign.gs.test.ts +44 -0
- package/gs/math/copysign.gs.ts +27 -0
- package/gs/math/dim.gs.test.ts +102 -0
- package/gs/math/dim.gs.ts +84 -0
- package/gs/math/erf.gs.test.ts +92 -0
- package/gs/math/erf.gs.ts +409 -0
- package/gs/math/erfinv.gs.test.ts +104 -0
- package/gs/math/erfinv.gs.ts +169 -0
- package/gs/math/exp.gs.test.ts +82 -0
- package/gs/math/exp.gs.ts +39 -0
- package/gs/math/expm1.gs.test.ts +48 -0
- package/gs/math/expm1.gs.ts +23 -0
- package/gs/math/floor.gs.test.ts +146 -0
- package/gs/math/floor.gs.ts +88 -0
- package/gs/math/fma.gs.test.ts +83 -0
- package/gs/math/fma.gs.ts +7 -0
- package/gs/math/frexp.gs.test.ts +146 -0
- package/gs/math/frexp.gs.ts +37 -0
- package/gs/math/gamma.gs.test.ts +66 -0
- package/gs/math/gamma.gs.ts +158 -0
- package/gs/math/hypot.gs.test.ts +73 -0
- package/gs/math/hypot.gs.ts +23 -0
- package/gs/math/index.ts +44 -0
- package/gs/math/j0.gs.test.ts +74 -0
- package/gs/math/j0.gs.ts +257 -0
- package/gs/math/j1.gs.test.ts +81 -0
- package/gs/math/j1.gs.ts +231 -0
- package/gs/math/jn.gs.test.ts +133 -0
- package/gs/math/jn.gs.ts +447 -0
- package/gs/math/ldexp.gs.test.ts +128 -0
- package/gs/math/ldexp.gs.ts +28 -0
- package/gs/math/lgamma.gs.test.ts +102 -0
- package/gs/math/lgamma.gs.ts +251 -0
- package/gs/math/log.gs.test.ts +40 -0
- package/gs/math/log.gs.ts +21 -0
- package/gs/math/log10.gs.test.ts +80 -0
- package/gs/math/log10.gs.ts +25 -0
- package/gs/math/log1p.gs.test.ts +55 -0
- package/gs/math/log1p.gs.ts +24 -0
- package/gs/math/logb.gs.test.ts +87 -0
- package/gs/math/logb.gs.ts +54 -0
- package/gs/math/mod.gs.test.ts +64 -0
- package/gs/math/mod.gs.ts +36 -0
- package/gs/math/modf.gs.test.ts +80 -0
- package/gs/math/modf.gs.ts +32 -0
- package/gs/math/nextafter.gs.test.ts +107 -0
- package/gs/math/nextafter.gs.ts +71 -0
- package/gs/math/pow.gs.test.ts +103 -0
- package/gs/math/pow.gs.ts +55 -0
- package/gs/math/pow10.gs.test.ts +58 -0
- package/gs/math/pow10.gs.ts +19 -0
- package/gs/math/remainder.gs.test.ts +70 -0
- package/gs/math/remainder.gs.ts +33 -0
- package/gs/math/signbit.gs.test.ts +33 -0
- package/gs/math/signbit.gs.ts +8 -0
- package/gs/math/sin.gs.test.ts +83 -0
- package/gs/math/sin.gs.ts +38 -0
- package/gs/math/sincos.gs.test.ts +91 -0
- package/gs/math/sincos.gs.ts +15 -0
- package/gs/math/sinh.gs.test.ts +66 -0
- package/gs/math/sinh.gs.ts +34 -0
- package/gs/math/sqrt.gs.test.ts +49 -0
- package/gs/math/sqrt.gs.ts +20 -0
- package/gs/math/tan.gs.test.ts +50 -0
- package/gs/math/tan.gs.ts +23 -0
- package/gs/math/tanh.gs.test.ts +52 -0
- package/gs/math/tanh.gs.ts +23 -0
- package/gs/math/trig_reduce.gs.ts +66 -0
- package/gs/math/unsafe.gs.ts +52 -0
- package/gs/strconv/atob.gs.ts +45 -0
- package/gs/strconv/atof.gs.ts +60 -0
- package/gs/strconv/atoi.gs.ts +243 -0
- package/gs/strconv/doc.gs.ts +2 -0
- package/gs/strconv/ftoa.gs.ts +66 -0
- package/gs/strconv/index.ts +6 -0
- package/gs/strconv/itoa.gs.ts +41 -0
- package/gs/strconv/quote.gs.ts +245 -0
- package/gs/strings/index.ts +4 -0
- package/gs/strings/replace.ts +9 -237
- package/gs/strings/search.ts +0 -28
- package/gs/sync/atomic/doc.gs.ts +276 -0
- package/gs/sync/atomic/doc_64.gs.ts +168 -0
- package/gs/sync/atomic/index.ts +4 -0
- package/gs/sync/atomic/type.gs.ts +596 -0
- package/gs/sync/atomic/value.gs.ts +158 -0
- package/gs/unsafe/unsafe.ts +6 -0
- package/package.json +1 -1
- package/gs/maps/iter.gs.ts +0 -71
- package/gs/maps/maps.gs.ts +0 -87
- package/gs/stringslite/godoc.txt +0 -17
- package/gs/stringslite/index.ts +0 -1
- package/gs/stringslite/strings.ts +0 -82
|
@@ -0,0 +1,412 @@
|
|
|
1
|
+
import { Abs } from "./abs.gs.js";
|
|
2
|
+
import { Inf, IsInf, IsNaN, NaN } from "./bits.gs.js";
|
|
3
|
+
import { J0, Y0 } from "./j0.gs.js";
|
|
4
|
+
import { J1, Y1 } from "./j1.gs.js";
|
|
5
|
+
import { Log } from "./log.gs.js";
|
|
6
|
+
import { Sincos } from "./sincos.gs.js";
|
|
7
|
+
import { Sqrt } from "./sqrt.gs.js";
|
|
8
|
+
// Jn returns the order-n Bessel function of the first kind.
|
|
9
|
+
//
|
|
10
|
+
// Special cases are:
|
|
11
|
+
//
|
|
12
|
+
// Jn(n, ±Inf) = 0
|
|
13
|
+
// Jn(n, NaN) = NaN
|
|
14
|
+
export function Jn(n, x) {
|
|
15
|
+
// special cases
|
|
16
|
+
// J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
|
|
17
|
+
// Thus, J(-n, x) = J(n, -x)
|
|
18
|
+
switch (true) {
|
|
19
|
+
case IsNaN(x):
|
|
20
|
+
return x;
|
|
21
|
+
case IsInf(x, 0):
|
|
22
|
+
return 0;
|
|
23
|
+
}
|
|
24
|
+
if (n == 0) {
|
|
25
|
+
return J0(x);
|
|
26
|
+
}
|
|
27
|
+
if (x == 0) {
|
|
28
|
+
return 0;
|
|
29
|
+
}
|
|
30
|
+
if (n < 0) {
|
|
31
|
+
[n, x] = [-n, -x];
|
|
32
|
+
}
|
|
33
|
+
if (n == 1) {
|
|
34
|
+
return J1(x);
|
|
35
|
+
}
|
|
36
|
+
let sign = false;
|
|
37
|
+
// odd n and negative x
|
|
38
|
+
if (x < 0) {
|
|
39
|
+
x = -x;
|
|
40
|
+
// odd n and negative x
|
|
41
|
+
if ((n & 1) == 1) {
|
|
42
|
+
sign = true; // odd n and negative x
|
|
43
|
+
}
|
|
44
|
+
}
|
|
45
|
+
let b = 0;
|
|
46
|
+
// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
|
|
47
|
+
// x > 2**302
|
|
48
|
+
// (x >> n**2)
|
|
49
|
+
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
50
|
+
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
51
|
+
// Let s=sin(x), c=cos(x),
|
|
52
|
+
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
53
|
+
//
|
|
54
|
+
// n sin(xn)*sqt2 cos(xn)*sqt2
|
|
55
|
+
// ----------------------------------
|
|
56
|
+
// 0 s-c c+s
|
|
57
|
+
// 1 -s-c -c+s
|
|
58
|
+
// 2 -s+c -c-s
|
|
59
|
+
// 3 s+c c-s
|
|
60
|
+
// avoid underflow
|
|
61
|
+
// x < 2**-29
|
|
62
|
+
// x is tiny, return the first Taylor expansion of J(n,x)
|
|
63
|
+
// J(n,x) = 1/n!*(x/2)**n - ...
|
|
64
|
+
// underflow
|
|
65
|
+
// a = n!
|
|
66
|
+
// b = (x/2)**n
|
|
67
|
+
// use backward recurrence
|
|
68
|
+
// x x**2 x**2
|
|
69
|
+
// J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
70
|
+
// 2n - 2(n+1) - 2(n+2)
|
|
71
|
+
//
|
|
72
|
+
// 1 1 1
|
|
73
|
+
// (for large x) = ---- ------ ------ .....
|
|
74
|
+
// 2n 2(n+1) 2(n+2)
|
|
75
|
+
// -- - ------ - ------ -
|
|
76
|
+
// x x x
|
|
77
|
+
//
|
|
78
|
+
// Let w = 2n/x and h=2/x, then the above quotient
|
|
79
|
+
// is equal to the continued fraction:
|
|
80
|
+
// 1
|
|
81
|
+
// = -----------------------
|
|
82
|
+
// 1
|
|
83
|
+
// w - -----------------
|
|
84
|
+
// 1
|
|
85
|
+
// w+h - ---------
|
|
86
|
+
// w+2h - ...
|
|
87
|
+
//
|
|
88
|
+
// To determine how many terms needed, let
|
|
89
|
+
// Q(0) = w, Q(1) = w(w+h) - 1,
|
|
90
|
+
// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
91
|
+
// When Q(k) > 1e4 good for single
|
|
92
|
+
// When Q(k) > 1e9 good for double
|
|
93
|
+
// When Q(k) > 1e17 good for quadruple
|
|
94
|
+
// determine k
|
|
95
|
+
// estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
|
|
96
|
+
// Hence, if n*(log(2n/x)) > ...
|
|
97
|
+
// single 8.8722839355e+01
|
|
98
|
+
// double 7.09782712893383973096e+02
|
|
99
|
+
// long double 1.1356523406294143949491931077970765006170e+04
|
|
100
|
+
// then recurrent value may overflow and the result is
|
|
101
|
+
// likely underflow to zero
|
|
102
|
+
// scale b to avoid spurious overflow
|
|
103
|
+
if (n <= x) {
|
|
104
|
+
// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
|
|
105
|
+
// x > 2**302
|
|
106
|
+
// (x >> n**2)
|
|
107
|
+
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
108
|
+
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
109
|
+
// Let s=sin(x), c=cos(x),
|
|
110
|
+
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
111
|
+
//
|
|
112
|
+
// n sin(xn)*sqt2 cos(xn)*sqt2
|
|
113
|
+
// ----------------------------------
|
|
114
|
+
// 0 s-c c+s
|
|
115
|
+
// 1 -s-c -c+s
|
|
116
|
+
// 2 -s+c -c-s
|
|
117
|
+
// 3 s+c c-s
|
|
118
|
+
// avoid underflow
|
|
119
|
+
if (x >= 8148143905337944345073782753637512644205873574663745002544561797417525199053346824733589504) {
|
|
120
|
+
// x > 2**302
|
|
121
|
+
// (x >> n**2)
|
|
122
|
+
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
123
|
+
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
124
|
+
// Let s=sin(x), c=cos(x),
|
|
125
|
+
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
126
|
+
//
|
|
127
|
+
// n sin(xn)*sqt2 cos(xn)*sqt2
|
|
128
|
+
// ----------------------------------
|
|
129
|
+
// 0 s-c c+s
|
|
130
|
+
// 1 -s-c -c+s
|
|
131
|
+
// 2 -s+c -c-s
|
|
132
|
+
// 3 s+c c-s
|
|
133
|
+
let temp = 0;
|
|
134
|
+
const [s, c] = Sincos(x);
|
|
135
|
+
switch ((n & 3)) {
|
|
136
|
+
case 0:
|
|
137
|
+
temp = c + s;
|
|
138
|
+
break;
|
|
139
|
+
case 1:
|
|
140
|
+
temp = -c + s;
|
|
141
|
+
break;
|
|
142
|
+
case 2:
|
|
143
|
+
temp = -c - s;
|
|
144
|
+
break;
|
|
145
|
+
case 3:
|
|
146
|
+
temp = c - s;
|
|
147
|
+
break;
|
|
148
|
+
}
|
|
149
|
+
b = (1 / 1.77245) * temp / Sqrt(x);
|
|
150
|
+
}
|
|
151
|
+
else {
|
|
152
|
+
b = J1(x);
|
|
153
|
+
// avoid underflow
|
|
154
|
+
for (let i = 1, a = J0(x); i < n; i++) {
|
|
155
|
+
[a, b] = [b, b * ((i + i) / x) - a]; // avoid underflow
|
|
156
|
+
}
|
|
157
|
+
}
|
|
158
|
+
}
|
|
159
|
+
else {
|
|
160
|
+
// x < 2**-29
|
|
161
|
+
// x is tiny, return the first Taylor expansion of J(n,x)
|
|
162
|
+
// J(n,x) = 1/n!*(x/2)**n - ...
|
|
163
|
+
// underflow
|
|
164
|
+
// a = n!
|
|
165
|
+
// b = (x/2)**n
|
|
166
|
+
// use backward recurrence
|
|
167
|
+
// x x**2 x**2
|
|
168
|
+
// J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
169
|
+
// 2n - 2(n+1) - 2(n+2)
|
|
170
|
+
//
|
|
171
|
+
// 1 1 1
|
|
172
|
+
// (for large x) = ---- ------ ------ .....
|
|
173
|
+
// 2n 2(n+1) 2(n+2)
|
|
174
|
+
// -- - ------ - ------ -
|
|
175
|
+
// x x x
|
|
176
|
+
//
|
|
177
|
+
// Let w = 2n/x and h=2/x, then the above quotient
|
|
178
|
+
// is equal to the continued fraction:
|
|
179
|
+
// 1
|
|
180
|
+
// = -----------------------
|
|
181
|
+
// 1
|
|
182
|
+
// w - -----------------
|
|
183
|
+
// 1
|
|
184
|
+
// w+h - ---------
|
|
185
|
+
// w+2h - ...
|
|
186
|
+
//
|
|
187
|
+
// To determine how many terms needed, let
|
|
188
|
+
// Q(0) = w, Q(1) = w(w+h) - 1,
|
|
189
|
+
// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
190
|
+
// When Q(k) > 1e4 good for single
|
|
191
|
+
// When Q(k) > 1e9 good for double
|
|
192
|
+
// When Q(k) > 1e17 good for quadruple
|
|
193
|
+
// determine k
|
|
194
|
+
// estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
|
|
195
|
+
// Hence, if n*(log(2n/x)) > ...
|
|
196
|
+
// single 8.8722839355e+01
|
|
197
|
+
// double 7.09782712893383973096e+02
|
|
198
|
+
// long double 1.1356523406294143949491931077970765006170e+04
|
|
199
|
+
// then recurrent value may overflow and the result is
|
|
200
|
+
// likely underflow to zero
|
|
201
|
+
// scale b to avoid spurious overflow
|
|
202
|
+
if (x < 1.86265e-09) {
|
|
203
|
+
// x < 2**-29
|
|
204
|
+
// x is tiny, return the first Taylor expansion of J(n,x)
|
|
205
|
+
// J(n,x) = 1/n!*(x/2)**n - ...
|
|
206
|
+
// underflow
|
|
207
|
+
// a = n!
|
|
208
|
+
// b = (x/2)**n
|
|
209
|
+
if (n > 33) {
|
|
210
|
+
// underflow
|
|
211
|
+
b = 0;
|
|
212
|
+
}
|
|
213
|
+
else {
|
|
214
|
+
let temp = x * 0.5;
|
|
215
|
+
b = temp;
|
|
216
|
+
let a = 1.0;
|
|
217
|
+
// a = n!
|
|
218
|
+
// b = (x/2)**n
|
|
219
|
+
for (let i = 2; i <= n; i++) {
|
|
220
|
+
a *= i; // a = n!
|
|
221
|
+
b *= temp; // b = (x/2)**n
|
|
222
|
+
}
|
|
223
|
+
b /= a;
|
|
224
|
+
}
|
|
225
|
+
}
|
|
226
|
+
else {
|
|
227
|
+
// use backward recurrence
|
|
228
|
+
// x x**2 x**2
|
|
229
|
+
// J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
230
|
+
// 2n - 2(n+1) - 2(n+2)
|
|
231
|
+
//
|
|
232
|
+
// 1 1 1
|
|
233
|
+
// (for large x) = ---- ------ ------ .....
|
|
234
|
+
// 2n 2(n+1) 2(n+2)
|
|
235
|
+
// -- - ------ - ------ -
|
|
236
|
+
// x x x
|
|
237
|
+
//
|
|
238
|
+
// Let w = 2n/x and h=2/x, then the above quotient
|
|
239
|
+
// is equal to the continued fraction:
|
|
240
|
+
// 1
|
|
241
|
+
// = -----------------------
|
|
242
|
+
// 1
|
|
243
|
+
// w - -----------------
|
|
244
|
+
// 1
|
|
245
|
+
// w+h - ---------
|
|
246
|
+
// w+2h - ...
|
|
247
|
+
//
|
|
248
|
+
// To determine how many terms needed, let
|
|
249
|
+
// Q(0) = w, Q(1) = w(w+h) - 1,
|
|
250
|
+
// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
251
|
+
// When Q(k) > 1e4 good for single
|
|
252
|
+
// When Q(k) > 1e9 good for double
|
|
253
|
+
// When Q(k) > 1e17 good for quadruple
|
|
254
|
+
// determine k
|
|
255
|
+
let w = (n + n) / x;
|
|
256
|
+
let h = 2 / x;
|
|
257
|
+
let q0 = w;
|
|
258
|
+
let z = w + h;
|
|
259
|
+
let q1 = w * z - 1;
|
|
260
|
+
let k = 1;
|
|
261
|
+
for (; q1 < 1e9;) {
|
|
262
|
+
k++;
|
|
263
|
+
z += h;
|
|
264
|
+
[q0, q1] = [q1, z * q1 - q0];
|
|
265
|
+
}
|
|
266
|
+
let m = n + n;
|
|
267
|
+
let t = 0.0;
|
|
268
|
+
for (let i = 2 * (n + k); i >= m; i -= 2) {
|
|
269
|
+
t = 1 / (i / x - t);
|
|
270
|
+
}
|
|
271
|
+
let a = t;
|
|
272
|
+
// estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
|
|
273
|
+
// Hence, if n*(log(2n/x)) > ...
|
|
274
|
+
// single 8.8722839355e+01
|
|
275
|
+
// double 7.09782712893383973096e+02
|
|
276
|
+
// long double 1.1356523406294143949491931077970765006170e+04
|
|
277
|
+
// then recurrent value may overflow and the result is
|
|
278
|
+
// likely underflow to zero
|
|
279
|
+
b = 1;
|
|
280
|
+
let tmp = n;
|
|
281
|
+
let v = 2 / x;
|
|
282
|
+
tmp = tmp * Log(Abs(v * tmp));
|
|
283
|
+
// scale b to avoid spurious overflow
|
|
284
|
+
if (tmp < 7.09782712893383973096e+02) {
|
|
285
|
+
for (let i = n - 1; i > 0; i--) {
|
|
286
|
+
let di = (i + i);
|
|
287
|
+
[a, b] = [b, b * di / x - a];
|
|
288
|
+
}
|
|
289
|
+
}
|
|
290
|
+
else {
|
|
291
|
+
// scale b to avoid spurious overflow
|
|
292
|
+
for (let i = n - 1; i > 0; i--) {
|
|
293
|
+
let di = (i + i);
|
|
294
|
+
[a, b] = [b, b * di / x - a];
|
|
295
|
+
// scale b to avoid spurious overflow
|
|
296
|
+
if (b > 1e100) {
|
|
297
|
+
a /= b;
|
|
298
|
+
t /= b;
|
|
299
|
+
b = 1;
|
|
300
|
+
}
|
|
301
|
+
}
|
|
302
|
+
}
|
|
303
|
+
b = t * J0(x) / b;
|
|
304
|
+
}
|
|
305
|
+
}
|
|
306
|
+
if (sign) {
|
|
307
|
+
return -b;
|
|
308
|
+
}
|
|
309
|
+
return b;
|
|
310
|
+
}
|
|
311
|
+
// Yn returns the order-n Bessel function of the second kind.
|
|
312
|
+
//
|
|
313
|
+
// Special cases are:
|
|
314
|
+
//
|
|
315
|
+
// Yn(n, +Inf) = 0
|
|
316
|
+
// Yn(n ≥ 0, 0) = -Inf
|
|
317
|
+
// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
|
|
318
|
+
// Yn(n, x < 0) = NaN
|
|
319
|
+
// Yn(n, NaN) = NaN
|
|
320
|
+
export function Yn(n, x) {
|
|
321
|
+
// special cases
|
|
322
|
+
switch (true) {
|
|
323
|
+
case x < 0 || IsNaN(x):
|
|
324
|
+
return NaN();
|
|
325
|
+
case IsInf(x, 1):
|
|
326
|
+
return 0;
|
|
327
|
+
}
|
|
328
|
+
if (n == 0) {
|
|
329
|
+
return Y0(x);
|
|
330
|
+
}
|
|
331
|
+
if (x == 0) {
|
|
332
|
+
if (n < 0 && (n & 1) == 1) {
|
|
333
|
+
return Inf(1);
|
|
334
|
+
}
|
|
335
|
+
return Inf(-1);
|
|
336
|
+
}
|
|
337
|
+
let sign = false;
|
|
338
|
+
// sign true if n < 0 && |n| odd
|
|
339
|
+
if (n < 0) {
|
|
340
|
+
n = -n;
|
|
341
|
+
// sign true if n < 0 && |n| odd
|
|
342
|
+
if ((n & 1) == 1) {
|
|
343
|
+
sign = true; // sign true if n < 0 && |n| odd
|
|
344
|
+
}
|
|
345
|
+
}
|
|
346
|
+
if (n == 1) {
|
|
347
|
+
if (sign) {
|
|
348
|
+
return -Y1(x);
|
|
349
|
+
}
|
|
350
|
+
return Y1(x);
|
|
351
|
+
}
|
|
352
|
+
let b = 0;
|
|
353
|
+
// x > 2**302
|
|
354
|
+
// (x >> n**2)
|
|
355
|
+
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
356
|
+
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
357
|
+
// Let s=sin(x), c=cos(x),
|
|
358
|
+
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
359
|
+
//
|
|
360
|
+
// n sin(xn)*sqt2 cos(xn)*sqt2
|
|
361
|
+
// ----------------------------------
|
|
362
|
+
// 0 s-c c+s
|
|
363
|
+
// 1 -s-c -c+s
|
|
364
|
+
// 2 -s+c -c-s
|
|
365
|
+
// 3 s+c c-s
|
|
366
|
+
// quit if b is -inf
|
|
367
|
+
if (x >= 8148143905337944345073782753637512644205873574663745002544561797417525199053346824733589504) {
|
|
368
|
+
// x > 2**302
|
|
369
|
+
// (x >> n**2)
|
|
370
|
+
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
371
|
+
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
372
|
+
// Let s=sin(x), c=cos(x),
|
|
373
|
+
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
374
|
+
//
|
|
375
|
+
// n sin(xn)*sqt2 cos(xn)*sqt2
|
|
376
|
+
// ----------------------------------
|
|
377
|
+
// 0 s-c c+s
|
|
378
|
+
// 1 -s-c -c+s
|
|
379
|
+
// 2 -s+c -c-s
|
|
380
|
+
// 3 s+c c-s
|
|
381
|
+
let temp = 0;
|
|
382
|
+
const [s, c] = Sincos(x);
|
|
383
|
+
switch ((n & 3)) {
|
|
384
|
+
case 0:
|
|
385
|
+
temp = s - c;
|
|
386
|
+
break;
|
|
387
|
+
case 1:
|
|
388
|
+
temp = -s - c;
|
|
389
|
+
break;
|
|
390
|
+
case 2:
|
|
391
|
+
temp = -s + c;
|
|
392
|
+
break;
|
|
393
|
+
case 3:
|
|
394
|
+
temp = s + c;
|
|
395
|
+
break;
|
|
396
|
+
}
|
|
397
|
+
b = (1 / 1.77245) * temp / Sqrt(x);
|
|
398
|
+
}
|
|
399
|
+
else {
|
|
400
|
+
let a = Y0(x);
|
|
401
|
+
b = Y1(x);
|
|
402
|
+
// quit if b is -inf
|
|
403
|
+
for (let i = 1; i < n && !IsInf(b, -1); i++) {
|
|
404
|
+
[a, b] = [b, ((i + i) / x) * b - a];
|
|
405
|
+
}
|
|
406
|
+
}
|
|
407
|
+
if (sign) {
|
|
408
|
+
return -b;
|
|
409
|
+
}
|
|
410
|
+
return b;
|
|
411
|
+
}
|
|
412
|
+
//# sourceMappingURL=jn.gs.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"jn.gs.js","sourceRoot":"","sources":["../../../gs/math/jn.gs.ts"],"names":[],"mappings":"AACA,OAAO,EAAE,GAAG,EAAE,MAAM,aAAa,CAAC;AAClC,OAAO,EAAE,GAAG,EAAE,KAAK,EAAE,KAAK,EAAE,GAAG,EAAE,MAAM,cAAc,CAAC;AACtD,OAAO,EAAE,EAAE,EAAE,EAAE,EAAE,MAAM,YAAY,CAAC;AACpC,OAAO,EAAE,EAAE,EAAE,EAAE,EAAE,MAAM,YAAY,CAAC;AACpC,OAAO,EAAE,GAAG,EAAE,MAAM,aAAa,CAAC;AAClC,OAAO,EAAE,MAAM,EAAE,MAAM,gBAAgB,CAAC;AACxC,OAAO,EAAE,IAAI,EAAE,MAAM,cAAc,CAAC;AAEpC,4DAA4D;AAC5D,EAAE;AACF,qBAAqB;AACrB,EAAE;AACF,kBAAkB;AAClB,mBAAmB;AACnB,MAAM,UAAU,EAAE,CAAC,CAAS,EAAE,CAAS;IACtC,gBAAgB;IAEhB,6DAA6D;IAC7D,4BAA4B;IAC5B,QAAQ,IAAI,EAAE,CAAC;QACd,KAAK,KAAK,CAAC,CAAC,CAAC;YACZ,OAAO,CAAC,CAAC;QACV,KAAK,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC;YACf,OAAO,CAAC,CAAC;IACX,CAAC;IAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACZ,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;IACd,CAAC;IACD,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACZ,OAAO,CAAC,CAAC;IACV,CAAC;IACD,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC;QACX,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IACnB,CAAC;IACD,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACZ,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;IACd,CAAC;IACD,IAAI,IAAI,GAAG,KAAK,CAAC;IAEjB,uBAAuB;IACvB,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC;QACX,CAAC,GAAG,CAAC,CAAC,CAAC;QAEP,uBAAuB;QACvB,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YAClB,IAAI,GAAG,IAAI,CAAC,CAAC,uBAAuB;QACrC,CAAC;IACF,CAAC;IACD,IAAI,CAAC,GAAW,CAAC,CAAC;IAElB,6CAA6C;IAC7C,aAAa;IAEb,cAAc;IACd,mDAAmD;IACnD,mDAAmD;IACnD,mCAAmC;IACnC,qDAAqD;IACrD,EAAE;IACF,oDAAoD;IACpD,kDAAkD;IAClD,4CAA4C;IAC5C,4CAA4C;IAC5C,4CAA4C;IAC5C,4CAA4C;IAE5C,kBAAkB;IAElB,aAAa;IACb,yDAAyD;IACzD,gCAAgC;IAEhC,YAAY;IAEZ,SAAS;IACT,eAAe;IAEf,0BAA0B;IAC1B,6CAA6C;IAC7C,qDAAqD;IACrD,6CAA6C;IAC7C,EAAE;IACF,yCAAyC;IACzC,oDAAoD;IACpD,4CAA4C;IAC5C,8CAA8C;IAC9C,0CAA0C;IAC1C,EAAE;IACF,kDAAkD;IAClD,sCAAsC;IACtC,qBAAqB;IACrB,iCAAiC;IACjC,wBAAwB;IACxB,gCAAgC;IAChC,2BAA2B;IAC3B,+BAA+B;IAC/B,iCAAiC;IACjC,EAAE;IACF,0CAA0C;IAC1C,+BAA+B;IAC/B,kCAAkC;IAClC,kCAAkC;IAClC,kCAAkC;IAClC,sCAAsC;IAEtC,cAAc;IAEd,kDAAkD;IAClD,iCAAiC;IACjC,2BAA2B;IAC3B,qCAAqC;IACrC,8DAA8D;IAC9D,uDAAuD;IACvD,4BAA4B;IAE5B,qCAAqC;IACrC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACZ,6CAA6C;QAC7C,aAAa;QAEb,cAAc;QACd,mDAAmD;QACnD,mDAAmD;QACnD,mCAAmC;QACnC,qDAAqD;QACrD,EAAE;QACF,oDAAoD;QACpD,kDAAkD;QAClD,4CAA4C;QAC5C,4CAA4C;QAC5C,4CAA4C;QAC5C,4CAA4C;QAE5C,kBAAkB;QAClB,IAAI,CAAC,IAAI,2FAA2F,EAAE,CAAC;YACtG,aAAa;YAEb,cAAc;YACd,mDAAmD;YACnD,mDAAmD;YACnD,mCAAmC;YACnC,qDAAqD;YACrD,EAAE;YACF,oDAAoD;YACpD,kDAAkD;YAClD,4CAA4C;YAC5C,4CAA4C;YAC5C,4CAA4C;YAC5C,4CAA4C;YAE5C,IAAI,IAAI,GAAW,CAAC,CAAC;YACrB,MAAM,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;YACzB,QAAQ,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC;gBACjB,KAAK,CAAC;oBACL,IAAI,GAAG,CAAC,GAAG,CAAC,CAAC;oBACb,MAAM;gBACP,KAAK,CAAC;oBACL,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;oBACd,MAAM;gBACP,KAAK,CAAC;oBACL,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;oBACd,MAAM;gBACP,KAAK,CAAC;oBACL,IAAI,GAAG,CAAC,GAAG,CAAC,CAAC;oBACb,MAAM;YACR,CAAC;YACD,CAAC,GAAG,CAAC,CAAC,GAAG,OAAO,CAAC,GAAG,IAAI,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;QACpC,CAAC;aAAM,CAAC;YACP,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;YAEV,kBAAkB;YAClB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;gBACvC,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,kBAAkB;YACxD,CAAC;QACF,CAAC;IACF,CAAC;SAAM,CAAC;QACP,aAAa;QACb,yDAAyD;QACzD,gCAAgC;QAEhC,YAAY;QAEZ,SAAS;QACT,eAAe;QAEf,0BAA0B;QAC1B,6CAA6C;QAC7C,qDAAqD;QACrD,6CAA6C;QAC7C,EAAE;QACF,yCAAyC;QACzC,oDAAoD;QACpD,4CAA4C;QAC5C,8CAA8C;QAC9C,0CAA0C;QAC1C,EAAE;QACF,kDAAkD;QAClD,sCAAsC;QACtC,qBAAqB;QACrB,iCAAiC;QACjC,wBAAwB;QACxB,gCAAgC;QAChC,2BAA2B;QAC3B,+BAA+B;QAC/B,iCAAiC;QACjC,EAAE;QACF,0CAA0C;QAC1C,+BAA+B;QAC/B,kCAAkC;QAClC,kCAAkC;QAClC,kCAAkC;QAClC,sCAAsC;QAEtC,cAAc;QAEd,kDAAkD;QAClD,iCAAiC;QACjC,2BAA2B;QAC3B,qCAAqC;QACrC,8DAA8D;QAC9D,uDAAuD;QACvD,4BAA4B;QAE5B,qCAAqC;QACrC,IAAI,CAAC,GAAG,WAAW,EAAE,CAAC;YACrB,aAAa;YACb,yDAAyD;YACzD,gCAAgC;YAEhC,YAAY;YAEZ,SAAS;YACT,eAAe;YACf,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC;gBACZ,YAAY;gBACZ,CAAC,GAAG,CAAC,CAAC;YACP,CAAC;iBAAM,CAAC;gBACP,IAAI,IAAI,GAAG,CAAC,GAAG,GAAG,CAAC;gBACnB,CAAC,GAAG,IAAI,CAAC;gBACT,IAAI,CAAC,GAAG,GAAG,CAAC;gBAEZ,SAAS;gBACT,eAAe;gBACf,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;oBAC7B,CAAC,IAAI,CAAC,CAAC,CAAC,SAAS;oBACjB,CAAC,IAAI,IAAI,CAAC,CAAC,eAAe;gBAC3B,CAAC;gBACD,CAAC,IAAI,CAAC,CAAC;YACR,CAAC;QACF,CAAC;aAAM,CAAC;YACP,0BAA0B;YAC1B,6CAA6C;YAC7C,qDAAqD;YACrD,6CAA6C;YAC7C,EAAE;YACF,yCAAyC;YACzC,oDAAoD;YACpD,4CAA4C;YAC5C,8CAA8C;YAC9C,0CAA0C;YAC1C,EAAE;YACF,kDAAkD;YAClD,sCAAsC;YACtC,qBAAqB;YACrB,iCAAiC;YACjC,wBAAwB;YACxB,gCAAgC;YAChC,2BAA2B;YAC3B,+BAA+B;YAC/B,iCAAiC;YACjC,EAAE;YACF,0CAA0C;YAC1C,+BAA+B;YAC/B,kCAAkC;YAClC,kCAAkC;YAClC,kCAAkC;YAClC,sCAAsC;YAEtC,cAAc;YACd,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;YACpB,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YACd,IAAI,EAAE,GAAG,CAAC,CAAC;YACX,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YACd,IAAI,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YACnB,IAAI,CAAC,GAAG,CAAC,CAAC;YACV,OAAO,EAAE,GAAG,GAAG,GAAI,CAAC;gBACnB,CAAC,EAAE,CAAC;gBACJ,CAAC,IAAI,CAAC,CAAC;gBACP,CAAC,EAAE,EAAE,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,GAAG,EAAE,GAAG,EAAE,CAAC,CAAC;YAC9B,CAAC;YACD,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YACd,IAAI,CAAC,GAAG,GAAG,CAAC;YACZ,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC;gBAC1C,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;YACrB,CAAC;YACD,IAAI,CAAC,GAAG,CAAC,CAAC;YAEV,kDAAkD;YAClD,iCAAiC;YACjC,2BAA2B;YAC3B,qCAAqC;YACrC,8DAA8D;YAC9D,uDAAuD;YACvD,4BAA4B;YAC5B,CAAC,GAAG,CAAC,CAAC;YAEN,IAAI,GAAG,GAAG,CAAC,CAAC;YACZ,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;YACd,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YAE9B,qCAAqC;YACrC,IAAI,GAAG,GAAG,0BAA0B,EAAE,CAAC;gBACtC,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;oBAChC,IAAI,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;oBACjB,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;gBAC9B,CAAC;YACF,CAAC;iBAAM,CAAC;gBAEP,qCAAqC;gBACrC,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;oBAChC,IAAI,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;oBACjB,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;oBAC7B,qCAAqC;oBACrC,IAAI,CAAC,GAAG,KAAK,EAAE,CAAC;wBACf,CAAC,IAAI,CAAC,CAAC;wBACP,CAAC,IAAI,CAAC,CAAC;wBACP,CAAC,GAAG,CAAC,CAAC;oBACP,CAAC;gBACF,CAAC;YACF,CAAC;YACD,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QACnB,CAAC;IACF,CAAC;IACD,IAAI,IAAI,EAAE,CAAC;QACV,OAAO,CAAC,CAAC,CAAC;IACX,CAAC;IACD,OAAO,CAAC,CAAC;AACV,CAAC;AAED,6DAA6D;AAC7D,EAAE;AACF,qBAAqB;AACrB,EAAE;AACF,kBAAkB;AAClB,sBAAsB;AACtB,qDAAqD;AACrD,qBAAqB;AACrB,mBAAmB;AACnB,MAAM,UAAU,EAAE,CAAC,CAAS,EAAE,CAAS;IACtC,gBAAgB;IAChB,QAAQ,IAAI,EAAE,CAAC;QACd,KAAK,CAAC,GAAG,CAAC,IAAI,KAAK,CAAC,CAAC,CAAC;YACrB,OAAO,GAAG,EAAE,CAAC;QACd,KAAK,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC;YACf,OAAO,CAAC,CAAC;IACX,CAAC;IAED,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACZ,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;IACd,CAAC;IACD,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACZ,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YAC3B,OAAO,GAAG,CAAC,CAAC,CAAC,CAAC;QACf,CAAC;QACD,OAAO,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IAChB,CAAC;IACD,IAAI,IAAI,GAAG,KAAK,CAAC;IAEjB,gCAAgC;IAChC,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC;QACX,CAAC,GAAG,CAAC,CAAC,CAAC;QAEP,gCAAgC;QAChC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YAClB,IAAI,GAAG,IAAI,CAAC,CAAC,gCAAgC;QAC9C,CAAC;IACF,CAAC;IACD,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACZ,IAAI,IAAI,EAAE,CAAC;YACV,OAAO,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;QACf,CAAC;QACD,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;IACd,CAAC;IACD,IAAI,CAAC,GAAW,CAAC,CAAC;IAClB,aAAa;IACb,cAAc;IACd,8CAA8C;IAC9C,8CAA8C;IAC9C,8BAA8B;IAC9B,yCAAyC;IACzC,EAAE;IACF,kCAAkC;IAClC,sCAAsC;IACtC,mBAAmB;IACnB,oBAAoB;IACpB,mBAAmB;IACnB,mBAAmB;IAEnB,oBAAoB;IACpB,IAAI,CAAC,IAAI,2FAA2F,EAAE,CAAC;QACtG,aAAa;QACb,cAAc;QACd,8CAA8C;QAC9C,8CAA8C;QAC9C,8BAA8B;QAC9B,yCAAyC;QACzC,EAAE;QACF,kCAAkC;QAClC,sCAAsC;QACtC,mBAAmB;QACnB,oBAAoB;QACpB,mBAAmB;QACnB,mBAAmB;QAEnB,IAAI,IAAI,GAAW,CAAC,CAAC;QACrB,MAAM,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;QACzB,QAAQ,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC;YACjB,KAAK,CAAC;gBACL,IAAI,GAAG,CAAC,GAAG,CAAC,CAAC;gBACb,MAAM;YACP,KAAK,CAAC;gBACL,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;gBACd,MAAM;YACP,KAAK,CAAC;gBACL,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;gBACd,MAAM;YACP,KAAK,CAAC;gBACL,IAAI,GAAG,CAAC,GAAG,CAAC,CAAC;gBACb,MAAM;QACR,CAAC;QACD,CAAC,GAAG,CAAC,CAAC,GAAG,OAAO,CAAC,GAAG,IAAI,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;IACpC,CAAC;SAAM,CAAC;QACP,IAAI,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;QACd,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;QACV,oBAAoB;QACpB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;YAC7C,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;QACrC,CAAC;IACF,CAAC;IACD,IAAI,IAAI,EAAE,CAAC;QACV,OAAO,CAAC,CAAC,CAAC;IACX,CAAC;IACD,OAAO,CAAC,CAAC;AACV,CAAC"}
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
// Ldexp is the inverse of [Frexp].
|
|
2
|
+
// It returns frac × 2**exp.
|
|
3
|
+
//
|
|
4
|
+
// Special cases are:
|
|
5
|
+
//
|
|
6
|
+
// Ldexp(±0, exp) = ±0
|
|
7
|
+
// Ldexp(±Inf, exp) = ±Inf
|
|
8
|
+
// Ldexp(NaN, exp) = NaN
|
|
9
|
+
export function Ldexp(frac, exp) {
|
|
10
|
+
return ldexp(frac, exp);
|
|
11
|
+
}
|
|
12
|
+
export function ldexp(frac, exp) {
|
|
13
|
+
// Handle special cases
|
|
14
|
+
if (frac === 0 || !Number.isFinite(frac) || Number.isNaN(frac)) {
|
|
15
|
+
return frac;
|
|
16
|
+
}
|
|
17
|
+
// Return frac × 2**exp
|
|
18
|
+
return frac * Math.pow(2, exp);
|
|
19
|
+
}
|
|
20
|
+
//# sourceMappingURL=ldexp.gs.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"ldexp.gs.js","sourceRoot":"","sources":["../../../gs/math/ldexp.gs.ts"],"names":[],"mappings":"AAMA,mCAAmC;AACnC,4BAA4B;AAC5B,EAAE;AACF,qBAAqB;AACrB,EAAE;AACF,sBAAsB;AACtB,0BAA0B;AAC1B,wBAAwB;AACxB,MAAM,UAAU,KAAK,CAAC,IAAY,EAAE,GAAW;IAC9C,OAAO,KAAK,CAAC,IAAI,EAAE,GAAG,CAAC,CAAA;AACxB,CAAC;AAED,MAAM,UAAU,KAAK,CAAC,IAAY,EAAE,GAAW;IAC9C,uBAAuB;IACvB,IAAI,IAAI,KAAK,CAAC,IAAI,CAAC,MAAM,CAAC,QAAQ,CAAC,IAAI,CAAC,IAAI,MAAM,CAAC,KAAK,CAAC,IAAI,CAAC,EAAE,CAAC;QAChE,OAAO,IAAI,CAAA;IACZ,CAAC;IAED,uBAAuB;IACvB,OAAO,IAAI,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAA;AAC/B,CAAC"}
|